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Feature Selection

How to represent real-world objects (e.g. Papaya) as a feature vector
?

Even if we have a representation as a feature vector, maybe there’s a
“better” representation ?

What is “better”? depends on the hypothesis class:
Example: regression problem,

x1 ∼ U [−1, 1], y = x2
1, x2 ∼ U [y − 0.01, y + 0.01]

Which feature is better, x1 or x2?

If the hypothesis class is linear regressors, we should prefer x2. If the
hypothesis class is quadratic regressors, we should prefer x1.

No-free-lunch ...
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Feature Selection

X = Rd

We’d like to learn a predictor that only relies on k � d features

Why ?

Can reduce estimation error
Reduces memory and runtime (both at train and test time)
Obtaining features may be costly (e.g. medical applications)
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Feature Selection

Optimal approach: try all subsets of k out of d features and choose
the one which leads to best performing predictor

Problem: runtime is dk... can formally prove hardness in many
situations

We describe three computationally efficient heuristics (some of them
come with some types of formal guarantees, but this is beyond the
scope)
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Filters

Filter method: assess individual features, independently of other
features, according to some quality measure, and select k features
with highest score

Score function: Many possible score functions. E.g.:

Minimize loss: Rank features according to

− min
a,b∈R

m∑
i=1

`(avi + b, yi)

Pearson correlation coefficient: (obtained by minimizing squared loss)

|〈v − v̄,y − ȳ〉|
‖v − v̄‖ ‖y − ȳ‖

Spearman’s rho: Apply Pearson’s coefficient on the ranking of v
Mutual information:

∑
p(vi, yi) log(p(vi, yi)/(p(vi)p(yi)))
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Weakness of Filters

If Pearson’s coefficient is zero then v alone is useless for predicting y

This doesn’t mean that v is a bad feature — maybe with other
features it is very useful

Example:

y = x1 + 2x2, x1 ∼ U [±1], x2 = (z − x1)/2, z ∼ U [±1]

Then, Pearson of x1 is zero, but no function can predict y without x1
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Forward Greedy Selection

Start with empty set of features I = ∅

At each iteration, go over all i /∈ I and learn a predictor based on I ∪ i
Choose the i that led to best predictor and update I = I ∪ {i}
Example: Orthogonal Matching Pursuit
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Orthogonal Matching Pursuit (OMP)

Let X ∈ Rm,d be a data matrix (instances in rows). Let y ∈ Rm be
the targets vector.

Let Xi denote the i’th column of X and let XI be the matrix whose
columns are {Xi : i ∈ I}.
At iteration t, we add the feature

jt = argmin
j

min
w∈Rt

‖XIt−1∪{j}w − y‖2 .

An efficient implementation: let Vt be a matrix whose columns are
orthonormal basis of the columns of XIt . Clearly,

min
w
‖XItw − y‖2 = min

θ∈Rt
‖Vtθ − y‖2 .

Let θt be a minimizer of the right-hand side
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Orthogonal Matching Pursuit (OMP)

Given Vt−1 and θt−1, we write for every j, Xj = Vt−1V
>
t−1Xj + uj ,

where uj is orthogonal to Vj . Then:

min
θ,α
‖Vt−1θ + αuj − y‖2

= min
θ,α

[
‖Vt−1θ − y‖2 + α2‖uj‖2 + 2α〈uj , Vt−1θ − y〉

]
= min

θ,α

[
‖Vt−1θ − y‖2 + α2‖uj‖2 + 2α〈uj ,−y〉

]
= min

θ

[
‖Vt−1θ − y‖2

]
+ min

α

[
α2‖uj‖2 − 2α〈uj ,y〉

]
=
[
‖Vt−1θt−1 − y‖2

]
+ min

α

[
α2‖uj‖2 − 2α〈uj ,y〉

]
= ‖Vt−1θt−1 − y‖2 − (〈uj ,y〉)2

‖uj‖2

It follows that we should select the feature jt = argmaxj
(〈uj ,y〉)2
‖uj‖2 .
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Orthogonal Matching Pursuit (OMP)

Orthogonal Matching Pursuit (OMP)

input:
data matrix X ∈ Rm,d, labels vector y ∈ Rm,
budget of features T

initialize: I1 = ∅
for t = 1, . . . , T

use SVD to find an orthonormal basis V ∈ Rm,t−1 of XIt

(for t = 1 set V to be the all zeros matrix)
foreach j ∈ [d] \ It let uj = Xj − V V >Xj

let jt = argmaxj /∈It:‖uj‖>0
(〈uj ,y〉)2
‖uj‖2

update It+1 = It ∪ {jt}
output IT+1
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Gradient-based Greedy Selection

Let R(w) be the empirical risk as a function of w

For the squared loss, R(w) = 1
m‖Xw − y‖2, we can easily solve the

problem
argmin

j
min

w:supp(w)=I∪{i}
R(w)

For general R, this may be expensive. An approximation is to only
optimize w over the new feature:

argmin
j

min
η∈R

R(w + ηej)

An even simpler approach is to choose the feature which minimizes
the above for infinitesimal η, namely,

argmin
j
|∇jR(w)|
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AdaBoost as Forward Greedy Selection

It is possible to show (left as an exercise), that the AdaBoost
algorithm is in fact Forward Greedy Selection for the objective
function

R(w) = log

 m∑
i=1

exp

−yi d∑
j=1

wjhj(xj)

 .
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Outline

1 Feature Selection
Filters
Greedy selection
`1 norm

2 Feature Manipulation and Normalization

3 Feature Learning
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Sparsity Inducing Norms

Minimizing the empirical risk subject to a budget of k features can be
written as:

min
w

LS(w) s.t. ‖w‖0 ≤ k ,

Replace the non-convex constraint, ‖w‖0 ≤ k, with a convex
constraint, ‖w‖1 ≤ k1.

Why `1 ?

“Closest” convex surrogate
If ‖w‖1 is small, can construct w̃ with ‖w̃‖0 small and similar value of
LS

Often, `1 “induces” sparse solutions
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`1 regularization

Instead of constraining ‖w‖1 we can regularize:

min
w

(LS(w) + λ‖w‖1)

For Squared-Loss this is the Lasso method

`1 norm often induces sparse solutions. Example:

min
w∈R

(
1

2
w2 − xw + λ|w|

)
.

East to verify that the solution is “soft thresholding”

w = sign(x) [|x| − λ]+

Sparsity: w = 0 unless |x| > λ
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`1 regularization

One dimensional Lasso:

argmin
w∈Rm

(
1

2m

m∑
i=1

(xiw − yi)2 + λ|w|

)
.

Rewrite:

argmin
w∈Rm

(
1

2

(
1
m

∑
i

x2
i

)
w2 −

(
1
m

m∑
i=1

xiyi

)
w + λ|w|

)
.

Assume 1
m

∑
i x

2
i = 1, and denote 〈x,y〉 =

∑m
i=1 xiyi, then the

optimal solution is

w = sign(〈x,y〉) [|〈x,y〉|/m− λ]+ .

Sparsity: w = 0 unless the correlation between x and y is larger than
λ.

Exercise: Show that the `2 norm doesn’t induce a sparse solution for
this case
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Feature Manipulation and Normalization

Simple transformations that we apply on each of our original features

May decrease the approximation or estimation errors of our
hypothesis class, or can yield a faster algorithm

As in feature selection, there are no absolute “good” and “bad”
transformations — need prior knowledge
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Example: The effect of Normalization

Consider 2-dim ridge regression problem:

argmin
w

[
1

m
‖Xw − y‖2 + λ‖w‖2

]
= (2λmI +X>X)−1X>y .

Suppose: y ∼ U(±1), α ∼ U(±1), x1 = y + α/2, x2 = 0.0001y

Best weight vector is w? = [0; 10000], and LD(w?) = 0.

However, the objective of ridge regression at w? is λ108 while the
objective of ridge regression at w = [1; 0] is likely to be close to
0.25 + λ ⇒ we’ll choose wrong solution if λ is not too small

Crux of the problem: features have completely different scale while `2
regularization treats them equally

Simple solution: normalize features to have the same range (dividing
by max, or by standard deviation)
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Example: The effect of Transformations

Consider 1-dim regression problem, y ∼ U(±1), a� 1, and

x =

{
y w.p. (1− 1/a)

ay w.p. 1/a

It is easy to show that w∗ = 2a−1
a2+a−1

so w∗ → 0 as a→∞
It follows that LD(w∗)→ 0.5

But, if we apply “clipping”, x 7→ sign(x) min{1, |x|}, then LD(1) = 0

“Prior knowledge”: features that get values larger than a predefined
threshold value give us no additional useful information, and therefore
we can clip them to the predefined threshold.

Of course, this “prior knowledge” can be wrong and it is easy to
construct examples for which clipping hurts performance

Shai Shalev-Shwartz (Hebrew U) IML Lecture 13 Features 23 / 28



Example: The effect of Transformations

Consider 1-dim regression problem, y ∼ U(±1), a� 1, and

x =

{
y w.p. (1− 1/a)

ay w.p. 1/a

It is easy to show that w∗ = 2a−1
a2+a−1

so w∗ → 0 as a→∞

It follows that LD(w∗)→ 0.5

But, if we apply “clipping”, x 7→ sign(x) min{1, |x|}, then LD(1) = 0

“Prior knowledge”: features that get values larger than a predefined
threshold value give us no additional useful information, and therefore
we can clip them to the predefined threshold.

Of course, this “prior knowledge” can be wrong and it is easy to
construct examples for which clipping hurts performance

Shai Shalev-Shwartz (Hebrew U) IML Lecture 13 Features 23 / 28



Example: The effect of Transformations

Consider 1-dim regression problem, y ∼ U(±1), a� 1, and

x =

{
y w.p. (1− 1/a)

ay w.p. 1/a

It is easy to show that w∗ = 2a−1
a2+a−1

so w∗ → 0 as a→∞
It follows that LD(w∗)→ 0.5

But, if we apply “clipping”, x 7→ sign(x) min{1, |x|}, then LD(1) = 0

“Prior knowledge”: features that get values larger than a predefined
threshold value give us no additional useful information, and therefore
we can clip them to the predefined threshold.

Of course, this “prior knowledge” can be wrong and it is easy to
construct examples for which clipping hurts performance

Shai Shalev-Shwartz (Hebrew U) IML Lecture 13 Features 23 / 28



Example: The effect of Transformations

Consider 1-dim regression problem, y ∼ U(±1), a� 1, and

x =

{
y w.p. (1− 1/a)

ay w.p. 1/a

It is easy to show that w∗ = 2a−1
a2+a−1

so w∗ → 0 as a→∞
It follows that LD(w∗)→ 0.5

But, if we apply “clipping”, x 7→ sign(x) min{1, |x|}, then LD(1) = 0

“Prior knowledge”: features that get values larger than a predefined
threshold value give us no additional useful information, and therefore
we can clip them to the predefined threshold.

Of course, this “prior knowledge” can be wrong and it is easy to
construct examples for which clipping hurts performance

Shai Shalev-Shwartz (Hebrew U) IML Lecture 13 Features 23 / 28



Example: The effect of Transformations

Consider 1-dim regression problem, y ∼ U(±1), a� 1, and

x =

{
y w.p. (1− 1/a)

ay w.p. 1/a

It is easy to show that w∗ = 2a−1
a2+a−1

so w∗ → 0 as a→∞
It follows that LD(w∗)→ 0.5

But, if we apply “clipping”, x 7→ sign(x) min{1, |x|}, then LD(1) = 0

“Prior knowledge”: features that get values larger than a predefined
threshold value give us no additional useful information, and therefore
we can clip them to the predefined threshold.

Of course, this “prior knowledge” can be wrong and it is easy to
construct examples for which clipping hurts performance

Shai Shalev-Shwartz (Hebrew U) IML Lecture 13 Features 23 / 28



Example: The effect of Transformations

Consider 1-dim regression problem, y ∼ U(±1), a� 1, and

x =

{
y w.p. (1− 1/a)

ay w.p. 1/a

It is easy to show that w∗ = 2a−1
a2+a−1

so w∗ → 0 as a→∞
It follows that LD(w∗)→ 0.5

But, if we apply “clipping”, x 7→ sign(x) min{1, |x|}, then LD(1) = 0

“Prior knowledge”: features that get values larger than a predefined
threshold value give us no additional useful information, and therefore
we can clip them to the predefined threshold.

Of course, this “prior knowledge” can be wrong and it is easy to
construct examples for which clipping hurts performance

Shai Shalev-Shwartz (Hebrew U) IML Lecture 13 Features 23 / 28



Some Examples of Feature Transformations

Denote f = (f1, . . . , fm) ∈ Rm the values of the feature and f̄ the
empirical mean

Centering: fi ← fi − f̄ .

Unit Range: fmax = maxi fi, fmin = mini fi, fi ← fi−fmin
fmax−fmin

.

Standardization: ν = 1
m

∑m
i=1(fi − f̄)2, fi ← fi−f̄√

ν
.

Clipping: fi ← sign(fi) max{b, |fi|}
Sigmoidal transformation: fi ← 1

1+exp(b fi)

Logarithmic transformation: fi ← log(b+ fi)

Unary representation for categorical features:
fi 7→ (1[fi=1], . . . ,1[fi=k])
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fmax−fmin

.

Standardization: ν = 1
m

∑m
i=1(fi − f̄)2, fi ← fi−f̄√

ν
.

Clipping: fi ← sign(fi) max{b, |fi|}
Sigmoidal transformation: fi ← 1

1+exp(b fi)

Logarithmic transformation: fi ← log(b+ fi)

Unary representation for categorical features:
fi 7→ (1[fi=1], . . . ,1[fi=k])
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Outline

1 Feature Selection
Filters
Greedy selection
`1 norm

2 Feature Manipulation and Normalization

3 Feature Learning
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Feature Learning

Goal: learn a feature mapping, ψ : X → Rd, so that a linear predictor
on top of ψ(x) will yield a good hypothesis class

Example: we can think on the first layers of a neural network as ψ(x)
and the last layer as the linear predictor applied on top of it

We will describe an unsupervised learning approach for feature
learning called Dictionary learning
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Dictionary Learning

Motivation: recall the description of a document as a “bag-of-words”:
ψ(x) ∈ {0, 1}k where coordinate i of ψ(x) determines if word i
appears in the document or not

What is the dictionary in general ? For example, what will be a good
dictionary for visual data ? Can we learn ψ : X → {0, 1}k that
captures “visual words”, e.g., (ψ(x))i captures something like “there
is an eye in the image” ?

Using clustering: A clustering function c : X → {1, . . . , k} yields the
mapping ψ(x)i = 1 iff x belongs to cluster i

Sparse auto-encoders: Given x ∈ Rd and dictionary matrix D ∈ Rd,k,
let

ψ(x) = argmin
v∈Rk

‖x−Dv‖ s.t. ‖v‖0 ≤ s
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Summary

Feature selection

Feature normalization and manipulations

Feature learning
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