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Feature Selection

@ How to represent real-world objects (e.g. Papaya) as a feature vector
?
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Feature Selection

@ How to represent real-world objects (e.g. Papaya) as a feature vector
?

@ Even if we have a representation as a feature vector, maybe there's a
“better” representation ?

@ What is “better”? depends on the hypothesis class:
Example: regression problem,

r ~U[-1,1], y=2z%  x3~Uly—0.01,y+0.01]

Which feature is better, x1 or 257
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Feature Selection

@ How to represent real-world objects (e.g. Papaya) as a feature vector
?

@ Even if we have a representation as a feature vector, maybe there's a
“better” representation ?

@ What is “better”? depends on the hypothesis class:
Example: regression problem,

r ~U[-1,1], y=2z%  x3~Uly—0.01,y+0.01]

Which feature is better, x1 or 257

@ If the hypothesis class is linear regressors, we should prefer zo. If the
hypothesis class is quadratic regressors, we should prefer ;.

@ No-free-lunch ...
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Outline

@ Feature Selection
o Filters
o Greedy selection
@ /1 norm

© Feature Manipulation and Normalization

© Feature Learning
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Feature Selection

o X =R4
o We'd like to learn a predictor that only relies on k& < d features
o Why ?

e Can reduce estimation error

o Reduces memory and runtime (both at train and test time)
o Obtaining features may be costly (e.g. medical applications)
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Feature Selection

@ Optimal approach: try all subsets of k£ out of d features and choose
the one which leads to best performing predictor
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Feature Selection

@ Optimal approach: try all subsets of k£ out of d features and choose
the one which leads to best performing predictor

@ Problem: runtime is d*... can formally prove hardness in many
situations

@ We describe three computationally efficient heuristics (some of them
come with some types of formal guarantees, but this is beyond the
scope)
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Outline

@ Feature Selection
o Filters

© Feature Manipulation and Normalization

© Feature Learning
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o Filter method: assess individual features, independently of other
features, according to some quality measure, and select k features
with highest score
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o Filter method: assess individual features, independently of other
features, according to some quality measure, and select k features
with highest score

@ Score function: Many possible score functions. E.g.:

e Minimize loss: Rank features according to

m

7(3}1,16%{ 2 L(av; + b, y;)
1=
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o Filter method: assess individual features, independently of other
features, according to some quality measure, and select k features
with highest score

@ Score function: Many possible score functions. E.g.:

e Minimize loss: Rank features according to

m

Cmi Vav: 4 b. v
a{%gﬁ{ L (avz + ayl)
1=

e Pearson correlation coefficient: (obtained by minimizing squared loss)

(v =0,y — )|
v =2l lly -4l
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o Filter method: assess individual features, independently of other
features, according to some quality measure, and select k features
with highest score

@ Score function: Many possible score functions. E.g.:

e Minimize loss: Rank features according to

m

Cmi Vav: 4 b. v
a{%gﬁ{ L (avz + ayl)
1=

e Pearson correlation coefficient: (obtained by minimizing squared loss)

(v =0,y — )|
v =2l lly -4l

e Spearman's rho: Apply Pearson's coefficient on the ranking of v
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o Filter method: assess individual features, independently of other
features, according to some quality measure, and select k features
with highest score

@ Score function: Many possible score functions. E.g.:

e Minimize loss: Rank features according to

m

Cmi Vav: 4 b. v
a{%gﬁ{ L (avz + ayl)
1=

e Pearson correlation coefficient: (obtained by minimizing squared loss)
(v -0,y — )|
v =2l ly — gl

e Spearman's rho: Apply Pearson's coefficient on the ranking of v
o Mutual information: > p(vi, y;) log(p(vi, yi)/(p(vi)p(y:)))
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Weakness of Filters

o If Pearson’s coefficient is zero then v alone is useless for predicting y
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Weakness of Filters

o If Pearson’s coefficient is zero then v alone is useless for predicting y

@ This doesn't mean that v is a bad feature — maybe with other
features it is very useful

@ Example:
y=x1+ 2z, x1~U[El], z2=(2—121)/2, z~U[%]]

Then, Pearson of 7 is zero, but no function can predict y without

Shai Shalev-Shwartz (Hebrew U) IML Lecture 13 Features 8 /28



Outline

@ Feature Selection

o Greedy selection

© Feature Manipulation and Normalization

© Feature Learning
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Forward Greedy Selection

@ Start with empty set of features I = ()
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Forward Greedy Selection

@ Start with empty set of features I = ()
@ At each iteration, go over all i ¢ I and learn a predictor based on I U1
@ Choose the i that led to best predictor and update I = I U {i}
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Forward Greedy Selection

Start with empty set of features I = ()
At each iteration, go over all i ¢ I and learn a predictor based on I Ui
Choose the i that led to best predictor and update I = I U {i}

Example: Orthogonal Matching Pursuit
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Orthogonal Matching Pursuit (OMP)

o Let X € R™? be a data matrix (instances in rows). Let y € R™ be
the targets vector.
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Orthogonal Matching Pursuit (OMP)

o Let X € R™? be a data matrix (instances in rows). Let y € R™ be
the targets vector.
@ Let X, denote the i'th column of X and let X; be the matrix whose

columns are {X; :i € I}.
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Orthogonal Matching Pursuit (OMP)

o Let X € R™? be a data matrix (instances in rows). Let y € R™ be
the targets vector.

@ Let X, denote the i'th column of X and let X; be the matrix whose
columns are {X; :i € I}.

o At iteration t, we add the feature

. o . . ) o 2
Jt—argjr,nlnvrvrgﬂgtllet_lu{]}W ylI© -
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Orthogonal Matching Pursuit (OMP)

o Let X € R™? be a data matrix (instances in rows). Let y € R™ be
the targets vector.

@ Let X, denote the i'th column of X and let X; be the matrix whose
columns are {X; :i € I}.
o At iteration t, we add the feature

. o . . ) o 2
Jt—argjr,nlnvrvrgﬂgtllet_lu{]}w ylI© -

@ An efficient implementation: let V; be a matrix whose columns are
orthonormal basis of the columns of Xj,. Clearly,

min || X7, w — y||* = min |V;0 - y|* .
w OcRt
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Orthogonal Matching Pursuit (OMP)

o Let X € R™? be a data matrix (instances in rows). Let y € R™ be
the targets vector.

@ Let X, denote the i'th column of X and let X; be the matrix whose
columns are {X; :i € I}.
o At iteration t, we add the feature

. o . . ) o 2
Jt—argjr,nlnvrvrgﬂgtllet_lu{]}w ylI© -

@ An efficient implementation: let V; be a matrix whose columns are
orthonormal basis of the columns of Xj,. Clearly,

min || X7, w — y||* = min |V;0 - y|* .
w OcRt

o Let 0; be a minimizer of the right-hand side
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Orthogonal Matching Pursuit (OMP)

@ Given V;_1 and 6;_1, we write for every j, X; = vt_lv,[lxj +uj,
where u; is orthogonal to V;. Then:
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Orthogonal Matching Pursuit (OMP)

@ Given V;_1 and 6;_1, we write for every j, X; = vt_lv,[lxj +uj,
where u; is orthogonal to V;. Then:

min ||V;—10 + au; — y|?
0,
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Orthogonal Matching Pursuit (OMP)

@ Given V;_1 and 6;_1, we write for every j, X; = vt_lv,[lxj +uj,
where u; is orthogonal to V;. Then:

min ||V;—10 + au; — y|?

0,

)

= win [ Vi16 =y + o? [ > + 2a(uj, Vi 10 — y)]
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Orthogonal Matching Pursuit (OMP)

@ Given V;_1 and 6;_1, we write for every j, X; = vt_lv,[lxj +uj,
where u; is orthogonal to V;. Then:

rgin |Vi-10 + au; — y|?

O{l[HVt 10 = y* + o®||uyl|* + 2a(u;, Vi—10 — )]

m
0
in 0 [[[Vi-16 = y[1* + o®||uj||* + 2a(u;, —y)]
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Orthogonal Matching Pursuit (OMP)

@ Given V;_1 and 6;_1, we write for every j, X; = vt_lv,[lxj +uj,
where u; is orthogonal to V;. Then:

rg’in |Vi-10 + au; — y|?

= min 0 [[[Vi10 = y|* + o®[|uyl* + 2a(u;, V16 — y)]
= pin (110 — Y1 + 0% + 20 (o, )]
= min

n [[[Vi-16 — y[*] + min [o?|luy]|* — 20(u;, y)]
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Orthogonal Matching Pursuit (OMP)

@ Given V;_1 and 6;_1, we write for every j, X; = vt_lv,[lxj +uj,
where u; is orthogonal to V;. Then:

min |Vi-10 + au; — y|?

)

ZIg n [[|Vie16 = y|” + @?|lu;||? + 2a(u;, V;-16 — )]
= min [[|V;-16 I + o®|luyl* + 2a(uy, —y)]

= min [[|V;16 — y[|*] + min [0, [|* — 2a{uy, y)]

= [IIVi10:-1 — y|*] + min [0®u;]]* - 2a(u;, y)]
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Orthogonal Matching Pursuit (OMP)

@ Given V;_1 and 6;_1, we write for every j, X; = vt_lv,[lxj +uj,
where u; is orthogonal to V;. Then:

min |Vi-10 + au; — y|?

)

ZIg n[[[Vie10 = y|1? + ?||u;]* + 2a(uy, Vi 16 — y)]
= min [[|V;-16 I + o®|luyl* + 2a(uy, —y)]

= min [[|V;16 — y[|*] + min [0, [|* — 2a{uy, y)]
= [IIVi10:-1 — y|*] + min [0®u;]]* - 2a(u;, y)]

2
o It follows that we should select the feature j; = argmax; (<”51’)|’|>2) .
J
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Orthogonal Matching Pursuit (OMP)

Orthogonal Matching Pursuit (OMP)

input:
data matrix X € R4 labels vector y € R™,
budget of features T'
initialize: I; =0
fort=1,...,T
use SVD to find an orthonormal basis V € R™~! of X,
(for t =1 set V to be the all zeros matrix)
foreach j € [d]\ I; let u; = X; —VVTX;
. 2
let ji = argmaxgr, | u;|>0 7«&%?
update Iy11 = I; U {js}
output I7
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Gradient-based Greedy Selection

o Let R(w) be the empirical risk as a function of w

Shai Shalev-Shwartz (Hebrew U) IML Lecture 13 Features 14 / 28



Gradient-based Greedy Selection

o Let R(w) be the empirical risk as a function of w

e For the squared loss, R(w) = 1| Xw — y]||?, we can easily solve the
problem

argmin min R(w
gj w:supp(w)=IU{i} ( )

Shai Shalev-Shwartz (Hebrew U) IML Lecture 13 Features 14 / 28



Gradient-based Greedy Selection

o Let R(w) be the empirical risk as a function of w

e For the squared loss, R(w) = 1| Xw — y]||?, we can easily solve the

problem

argmin min R(w
gj w:supp(w)=IU{i} ( )

@ For general R, this may be expensive. An approximation is to only

optimize w over the new feature:

argmin min R(w + ne;)
j neR
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Gradient-based Greedy Selection

Let R(w) be the empirical risk as a function of w

For the squared loss, R(w) = 1| Xw — y]||?, we can easily solve the
problem

argmin min R(w
gj w:supp(w)=IU{i} ( )

For general R, this may be expensive. An approximation is to only
optimize w over the new feature:

argmin min R(w + ne;)
j neR

@ An even simpler approach is to choose the feature which minimizes
the above for infinitesimal 7, namely,

argmin |V; R(w)|
J
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AdaBoost as Forward Greedy Selection

@ It is possible to show (left as an exercise), that the AdaBoost
algorithm is in fact Forward Greedy Selection for the objective
function

m d
R(w) = log Z exp | —vi Z w;ih;(x;)
i=1 j=1
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Outline

@ Feature Selection

@ /1 norm

© Feature Manipulation and Normalization

© Feature Learning
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Sparsity Inducing Norms

@ Minimizing the empirical risk subject to a budget of k features can be
written as:
min Lg(w) s.t. ||wl|o<Ek ,
W
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Sparsity Inducing Norms

@ Minimizing the empirical risk subject to a budget of k features can be
written as:
min Lg(w) s.t. ||wl|o<Ek ,
W

@ Replace the non-convex constraint, ||w|o < k, with a convex
constraint, ||w|; < k;.
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@ Minimizing the empirical risk subject to a budget of k features can be
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min Lg(w) s.t. ||wl|o<Ek ,
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@ Replace the non-convex constraint, ||w|o < k, with a convex
constraint, ||w|; < k;.
o Why ¢; 7
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@ Replace the non-convex constraint, ||w|o < k, with a convex
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Sparsity Inducing Norms

@ Minimizing the empirical risk subject to a budget of k features can be

written as:
min Lg(w) s.t. ||wl|o<Ek ,
W

@ Replace the non-convex constraint, ||w|o < k, with a convex
constraint, ||w|; < k;.
o Why ¢; 7

e “Closest” convex surrogate
o If |[w]||; is small, can construct W with ||W||o small and similar value of

Ls
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Sparsity Inducing Norms

@ Minimizing the empirical risk subject to a budget of k features can be

written as:
min Lg(w) s.t. ||wl|o<Ek ,
W

@ Replace the non-convex constraint, ||w|o < k, with a convex
constraint, ||w|; < k;.
o Why ¢; 7

e “Closest” convex surrogate
o If |[w]||; is small, can construct W with ||W||o small and similar value of

Ls
e Often, ¢1 “induces” sparse solutions
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¢4 regularization

o Instead of constraining ||w||; we can regularize:

n%‘i,n (Ls(w) + Mlwl|1)
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¢4 regularization

o Instead of constraining ||w||; we can regularize:
min (Ls(w) + Alwl|1)

@ For Squared-Loss this is the Lasso method
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¢4 regularization

o Instead of constraining ||w||; we can regularize:
min (Ls(w) + Alwl|1)

@ For Squared-Loss this is the Lasso method

@ /1 norm often induces sparse solutions. Example:

1
min <2w2 —zw+ /\|w|> .

weR
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¢4 regularization

o Instead of constraining ||w||; we can regularize:
min (Ls(w) + Alwl|1)

@ For Squared-Loss this is the Lasso method

@ /1 norm often induces sparse solutions. Example:

weR

1
min <2w2 —zw+ /\|w|> .
@ East to verify that the solution is “soft thresholding”

w = sign(z) [l| - AL,
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¢4 regularization

o Instead of constraining ||w||; we can regularize:
min (Ls(w) + Alwl|1)

@ For Squared-Loss this is the Lasso method

@ /1 norm often induces sparse solutions. Example:

1

min <w2 —zw+ /\|w|> .

weR \ 2

@ East to verify that the solution is “soft thresholding”
w = sign(a) [lo| - AL,

@ Sparsity: w = 0 unless |z| > A
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¢4 regularization

@ One dimensional Lasso:

m

. 1 2
argmin | — Tiw — y;)° + Aw
rgmin | 5.0 Do =+ Al
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¢4 regularization

@ One dimensional Lasso:

1 & 2
argmin <2m Z(ajiw—yi) +)\|w]> .

weR™

i=1
@ Rewrite:
1
. 1 2 2 1
- = E : — | = E Ui + A .
aigeflgin <2< i xl> w (mz 1mzyz> w \w|>
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¢4 regularization

@ One dimensional Lasso:

1 & 2
argmin <2m Z(ajiw—yi) +)\|w]> .

weR™

i=1
@ Rewrite:
1
. 1 2 2 1
- = E : — | = E Ui + A .
aigeflgin <2< i xl> w (mz 1mzyz> w \w|>

o Assume L 3 22 =1, and denote (x,y) = >/ z;y;, then the
optimal solution is

w = sign((x,y)) [[{(x, y)|/m = Al
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¢4 regularization

@ One dimensional Lasso:
1
. 2
argmin | — g Tiw —y;) + AMw| | .
weR™M <2mi 1( ‘ i) | ’)

@ Rewrite:

. 1(, 2 2 1 =
—| = E - — | = E Ui + A .
alf)gelal?”lln (2 < i xl) b " i=1 o Y ‘wl
@ Assume L+ > Za:? =1, and denote (x,y) = > ;n,l x;vy;, then the

optimal solution is

w = Sign(<X7Y>) [|<X7Y>‘/m - )‘]+ .
@ Sparsity: w = 0 unless the correlation between x and y is larger than
A
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¢4 regularization

@ One dimensional Lasso:

1 & 2
argmin <2m Z(ajiw—yi) +)\|w]> .

weR™

i=1
@ Rewrite:
1
. 1 2 2 1
234 2wy ) w Al )
aiggin <2< i xl> w (miﬂ $1y1> w \w|>

o Assume L 3 22 =1, and denote (x,y) = >/ z;y;, then the
optimal solution is

w = Sign(<X7Y>) [|<X7Y>‘/m - )‘]+ .
@ Sparsity: w = 0 unless the correlation between x and y is larger than
A
@ Exercise: Show that the £5 norm doesn't induce a sparse solution for
this case
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Outline

© Feature Manipulation and Normalization
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Feature Manipulation and Normalization

@ Simple transformations that we apply on each of our original features
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Feature Manipulation and Normalization

@ Simple transformations that we apply on each of our original features

@ May decrease the approximation or estimation errors of our
hypothesis class, or can yield a faster algorithm
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Feature Manipulation and Normalization

@ Simple transformations that we apply on each of our original features

@ May decrease the approximation or estimation errors of our
hypothesis class, or can yield a faster algorithm

@ As in feature selection, there are no absolute “good” and "bad”
transformations — need prior knowledge
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Example: The effect of Normalization

o Consider 2-dim ridge regression problem:

1
argmin [HXW —-ylI”+ )\||W||2:| =@2wnl + XTX) X Ty .
wm
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Example: The effect of Normalization

o Consider 2-dim ridge regression problem:
1
argmin [HXW —-ylI”+ )\||W||2:| =@2wnl + XTX) X Ty .
w m

@ Suppose: y ~U(x1), a ~U(x1), 1 =y + /2, x5 = 0.0001y
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Example: The effect of Normalization

o Consider 2-dim ridge regression problem:
1
argmin [HXW —-ylI”+ )\||W||2:| =@2wnl + XTX) X Ty .
w m

@ Suppose: y ~U(x1), a ~U(x1), 1 =y + /2, x5 = 0.0001y
@ Best weight vector is w* = [0; 10000], and Lp(w*) = 0.
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Example: The effect of Normalization

o Consider 2-dim ridge regression problem:
1
argmin [HXW —-ylI”+ )\||W||2:| =@2wnl + XTX) X Ty .
w m

@ Suppose: y ~U(x1), a ~U(x1), 1 =y + /2, x5 = 0.0001y
@ Best weight vector is w* = [0; 10000], and Lp(w*) = 0.

o However, the objective of ridge regression at w* is A10® while the
objective of ridge regression at w = [1;0] is likely to be close to
0.254+ A = we'll choose wrong solution if A is not too small
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o Consider 2-dim ridge regression problem:
1
argmin [HXW —-ylI”+ )\||W||2:| =@2wnl + XTX) X Ty .
w m

@ Suppose: y ~U(x1), a ~U(x1), 1 =y + /2, x5 = 0.0001y
@ Best weight vector is w* = [0; 10000], and Lp(w*) = 0.

o However, the objective of ridge regression at w* is A10® while the
objective of ridge regression at w = [1;0] is likely to be close to
0.254+ A = we'll choose wrong solution if A is not too small

@ Crux of the problem: features have completely different scale while /5
regularization treats them equally
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Example: The effect of Normalization

o Consider 2-dim ridge regression problem:
1
argmin [HXW —-ylI”+ )\||W||2:| =@2wnl + XTX) X Ty .
w m

Suppose: y ~ U(£1), a ~U(£1), 1 =y + /2, 2 = 0.0001y
Best weight vector is w* = [0; 10000], and Lp(w*) = 0.

However, the objective of ridge regression at w* is A10® while the
objective of ridge regression at w = [1;0] is likely to be close to
0.254+ A = we'll choose wrong solution if A is not too small

Crux of the problem: features have completely different scale while ¢
regularization treats them equally

Simple solution: normalize features to have the same range (dividing
by max, or by standard deviation)
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Example: The effect of Transformations

e Consider 1-dim regression problem, y ~ U(£1), a > 1, and

L {y w.p. (1—1/a)

ay w.p.1l/a
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Example: The effect of Transformations

e Consider 1-dim regression problem, y ~ U(£1), a > 1, and
oy wp (1—-1/a)
ay w.p.1l/a

2a—1
a’+a—1

@ It is easy to show that w* = so w* = 0 asa—
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Example: The effect of Transformations

e Consider 1-dim regression problem, y ~ U(£1), a > 1, and
oy wp (1—-1/a)
ay w.p.1l/a

2a—1
a’+a—1

@ It is easy to show that w* = so w* = 0 asa—

e It follows that Lp(w*) — 0.5
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Example: The effect of Transformations

e Consider 1-dim regression problem, y ~ U(£1), a > 1, and

L {y w.p. (1—1/a)
ay w.p.1l/a

2a—1

*
a1 oW —0asa—

@ It is easy to show that w* =
e It follows that Lp(w*) — 0.5

e But, if we apply “clipping”, = — sign(z) min{1, ||}, then Lp(1) =0
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Example: The effect of Transformations

e Consider 1-dim regression problem, y ~ U(£1), a > 1, and

L {y w.p. (1—1/a)

ay w.p.1l/a

It is easy to show that w* = afi;il sow* —0asa— o

It follows that Lp(w*) — 0.5
But, if we apply “clipping”, = +— sign(z) min{1, ||}, then Lp(1) =0
“Prior knowledge": features that get values larger than a predefined

threshold value give us no additional useful information, and therefore
we can clip them to the predefined threshold.
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Example: The effect of Transformations

e Consider 1-dim regression problem, y ~ U(£1), a > 1, and

L {y w.p. (1—1/a)

ay w.p.1l/a

2a—1

*
a1 oW —0asa—

It is easy to show that w* =
It follows that Lp(w*) — 0.5
But, if we apply “clipping”, = +— sign(z) min{1, ||}, then Lp(1) =0

“Prior knowledge": features that get values larger than a predefined
threshold value give us no additional useful information, and therefore
we can clip them to the predefined threshold.

@ Of course, this “prior knowledge” can be wrong and it is easy to
construct examples for which clipping hurts performance
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Some Examples of Feature Transformations

e Denote f = (f1,..., fm) € R™ the values of the feature and f the
empirical mean

Shai Shalev-Shwartz (Hebrew U) IML Lecture 13 Features 24 /28



Some Examples of Feature Transformations

e Denote f = (f1,..., fm) € R™ the values of the feature and f the
empirical mean

o Centering: f; + fi— f.
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Some Examples of Feature Transformations

e Denote f = (f1,..., fm) € R™ the values of the feature and f the
empirical mean

o Centering: f; + fi— f.
o Unit Range: fiax = max fi, fuin = min; f;, f; ¢ pLlain
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Some Examples of Feature Transformations

e Denote f = (f1,..., fm) € R™ the values of the feature and f the
empirical mean

o Centering: f; « fi— f.
o Unit Range: fmax = max; fi, fmin = min; fi, fi <

e Standardization: v = 23" (fi— f)% f; + ﬂT_j

fi_fmin

fmax_fmin ’
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Some Examples of Feature Transformations

e Denote f = (f1,..., fm) € R™ the values of the feature and f the
empirical mean

Centering: f; < fi — f.

Unit Range: fmax = Max; f;, fmin = min; fi, fi <
@ Standardization: v = % S (fi— 2 fi fief

NG
Clipping: fi « sign(f;) max{b, |fi|}

fi_fmin

fmax_fmin ’
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Some Examples of Feature Transformations

e Denote f = (f1,..., fm) € R™ the values of the feature and f the
empirical mean

Centering: f; < fi — f.

Unit Range: fumax = max; fi, fmin = min; f;, fi <
e Standardization: v = 23" (fi— f)% f; + ﬂT_j
Clipping: f; < sign(f;) max{b, |fi|}

Sigmoidal transformation: f; m

fi_fmin

fmax_fmin ’
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Some Examples of Feature Transformations

e Denote f = (f1,..., fm) € R™ the values of the feature and f the
empirical mean

Centering: f; < fi — f.

Unit Range: fumax = max; fi, fmin = min; f;, fi <
e Standardization: v = 23" (fi— f)% f; + ﬂT_j
Clipping: f; < sign(f;) max{b, |fi|}

Sigmoidal transformation: f;

fi_fmin

fmax_fmin ’

1
1+exp(b fi)
Logarithmic transformation: f; < log(b+ f;)
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Some Examples of Feature Transformations

e Denote f = (f1,..., fm) € R™ the values of the feature and f the
empirical mean

o Centering: f; + fi— f.
fi_fmin

fmax_fmin ’

o Unit Range: finax = max; fi, fmin = min; f;, fi +
e Standardization: v = 23" (fi— f)% f; + ﬂT_j
e Clipping: f; < sign(f;) max{b,|fi|}

@ Sigmoidal transformation: f; < ﬁp(bﬁ)

e Logarithmic transformation: f; < log(b+ f;)

@ Unary representation for categorical features:

fir (Il{fizl]a ) Il{fi:k])
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Feature Learning

@ Goal: learn a feature mapping, 1) : X — R, so that a linear predictor
on top of ¥ (x) will yield a good hypothesis class
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Feature Learning

@ Goal: learn a feature mapping, 1) : X — R, so that a linear predictor
on top of ¥ (x) will yield a good hypothesis class

@ Example: we can think on the first layers of a neural network as ()
and the last layer as the linear predictor applied on top of it
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Feature Learning

@ Goal: learn a feature mapping, 1) : X — R, so that a linear predictor
on top of ¥ (x) will yield a good hypothesis class

@ Example: we can think on the first layers of a neural network as ()
and the last layer as the linear predictor applied on top of it

@ We will describe an unsupervised learning approach for feature
learning called Dictionary learning
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Dictionary Learning

@ Motivation: recall the description of a document as a “bag-of-words" :
Y(z) € {0,1}* where coordinate i of () determines if word i
appears in the document or not
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Dictionary Learning

@ Motivation: recall the description of a document as a “bag-of-words" :
Y(z) € {0,1}* where coordinate i of () determines if word i
appears in the document or not

@ What is the dictionary in general ? For example, what will be a good
dictionary for visual data ? Can we learn 1 : X — {0, 1}* that
captures “visual words”, e.g., (¢(x)); captures something like “there
is an eye in the image” 7
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Dictionary Learning

@ Motivation: recall the description of a document as a “bag-of-words" :
Y(z) € {0,1}* where coordinate i of () determines if word i
appears in the document or not

@ What is the dictionary in general ? For example, what will be a good
dictionary for visual data ? Can we learn 1 : X — {0, 1}* that
captures “visual words”, e.g., (¢(x)); captures something like “there
is an eye in the image” 7

@ Using clustering: A clustering function ¢ : X — {1,...,k} yields the
mapping ¥ (z); = 1 iff x belongs to cluster i
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Dictionary Learning

@ Motivation: recall the description of a document as a “bag-of-words" :
Y(z) € {0,1}* where coordinate i of () determines if word i
appears in the document or not

@ What is the dictionary in general ? For example, what will be a good
dictionary for visual data ? Can we learn 1 : X — {0, 1}* that
captures “visual words”, e.g., (¢(x)); captures something like “there
is an eye in the image” 7

@ Using clustering: A clustering function ¢ : X — {1,...,k} yields the
mapping ¥ (z); = 1 iff x belongs to cluster i

@ Sparse auto-encoders: Given x € R? and dictionary matrix D € R%*,
let

Y(x) = argmin ||x — Dv|| s.t. |[v]o <s
veRF
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Summary

o Feature selection
@ Feature normalization and manipulations

o Feature learning
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