Introduction to Machine Learning (67577) Lecture 12

Shai Shalev-Shwartz

School of CS and Engineering, The Hebrew University of Jerusalem

Clustering

Clustering

- One of the most widely used techniques for exploratory data analysis
- Unsupervised learning: finding meaningful patterns in data

• Intuitively: grouping a set of objects such that

- Intuitively: grouping a set of objects such that
 - similar objects end up in the same group

- Intuitively: grouping a set of objects such that
 - similar objects end up in the same group
 - dissimilar objects are separated into different groups

- Intuitively: grouping a set of objects such that
 - similar objects end up in the same group
 - dissimilar objects are separated into different groups
- Imprecise, possibly ambiguous, definition

- Intuitively: grouping a set of objects such that
 - similar objects end up in the same group
 - dissimilar objects are separated into different groups
- Imprecise, possibly ambiguous, definition
- Quite surprisingly, it is not at all clear how to come up with a more rigorous definition ...

Our intuitive objective

- Our intuitive objective
 - similar objects end up in the same group

- Our intuitive objective
 - similar objects end up in the same group
 - dissimilar objects are separated into different groups

- Our intuitive objective
 - similar objects end up in the same group
 - dissimilar objects are separated into different groups
- Problem I: Two contradicting objectives: Similarity is not a transitive relation while class membership is transitive

- Our intuitive objective
 - similar objects end up in the same group
 - dissimilar objects are separated into different groups
- Problem I: Two contradicting objectives: Similarity is not a transitive relation while class membership is transitive
- Problem II: Lack of ground truth

.....

.....

similar objects in same group dissimilar objects are separated

Lack of ground truth:

Cluster these points into **two** clusters.

Lack of ground truth:

Cluster these points into two clusters.

We have two well justifiable solutions:

• Input: a set of elements and a distance $d: \mathcal{X} \times \mathcal{X} \to \mathbb{R}_+$

- Input: a set of elements and a distance $d: \mathcal{X} \times \mathcal{X} \to \mathbb{R}_+$
- Output: Partition of \mathcal{X} : $\mathcal{X} = \bigcup_{i=1}^k C_i$ with $C_i \cap C_j = \emptyset$

- Input: a set of elements and a distance $d: \mathcal{X} \times \mathcal{X} \to \mathbb{R}_+$
- Output: Partition of \mathcal{X} : $\mathcal{X} = \bigcup_{i=1}^k C_i$ with $C_i \cap C_j = \emptyset$
- Remarks:

- ullet Input: a set of elements and a distance $d:\mathcal{X}\times\mathcal{X}\to\mathbb{R}_+$
- Output: Partition of \mathcal{X} : $\mathcal{X} = \bigcup_{i=1}^k C_i$ with $C_i \cap C_j = \emptyset$
- Remarks:
 - ullet Sometimes the input also contains the number of desired clusters, k.

- Input: a set of elements and a distance $d: \mathcal{X} \times \mathcal{X} \to \mathbb{R}_+$
- Output: Partition of \mathcal{X} : $\mathcal{X} = \bigcup_{i=1}^k C_i$ with $C_i \cap C_j = \emptyset$
- Remarks:
 - ullet Sometimes the input also contains the number of desired clusters, k.
 - Sometimes, the output is a dendrogram (from Greek dendron = tree, gramma = drawing)

Outline

Linkage-based Clustering Algorithms

2 The k-means family

 Start from the trivial clustering that has each data point as a single-point cluster

- Start from the trivial clustering that has each data point as a single-point cluster
- Repeatedly merge the "closest" clusters of the previous clustering

- Start from the trivial clustering that has each data point as a single-point cluster
- Repeatedly merge the "closest" clusters of the previous clustering
- End when the result is the trivial clustering in which all of the domain points share one large cluster

- Start from the trivial clustering that has each data point as a single-point cluster
- Repeatedly merge the "closest" clusters of the previous clustering
- End when the result is the trivial clustering in which all of the domain points share one large cluster

- Start from the trivial clustering that has each data point as a single-point cluster
- Repeatedly merge the "closest" clusters of the previous clustering
- End when the result is the trivial clustering in which all of the domain points share one large cluster

Different linkage methods differ in how they extend the distance function \boldsymbol{d} from points to clusters:

- $\bullet \ \ \mathsf{Single \ Linkage:} \ \ D(A,B) \ = \ \min\{d(x,y): x \in A, \ y \in B\}$
- **a** Average Linkage: $D(A,B) = \frac{1}{|A||B|} \sum_{x \in A, y \in B} d(x,y)$

The output of linkage clustering is a Dendrogram

Outline

1 Linkage-based Clustering Algorithms

2 The k-means family

Cost Minimization Clustering

- Define a function, G, that takes as input (\mathcal{X},d) and a proposed clustering $C=(C_1,\ldots,C_k)$, and returns a quality (positive scalar)
- Return the clustering C that minimizes $G((\mathcal{X},d),C)$

The k-means objective

$$G_{k-\text{means}}((\mathcal{X}, d), (C_1, \dots, C_k)) = \min_{\mu_1, \dots, \mu_k \in \mathcal{X}'} \sum_{i=1}^k \sum_{x \in C_i} d(x, \mu_i)^2$$

The k-means objective

$$G_{k-\text{means}}((\mathcal{X}, d), (C_1, \dots, C_k)) = \min_{\mu_1, \dots \mu_k \in \mathcal{X}'} \sum_{i=1}^k \sum_{x \in C_i} d(x, \mu_i)^2$$

ullet $\mathcal{X}\subset\mathcal{X}'$ (e.g., data points are in \mathbb{R}^d)

The k-means objective

$$G_{k-\text{means}}((\mathcal{X}, d), (C_1, \dots, C_k)) = \min_{\mu_1, \dots \mu_k \in \mathcal{X}'} \sum_{i=1}^k \sum_{x \in C_i} d(x, \mu_i)^2$$

- ullet $\mathcal{X}\subset\mathcal{X}'$ (e.g., data points are in \mathbb{R}^d)
- If we define the centroid of C_i as

$$\mu_i(C_i) = \underset{\mu \in \mathcal{X}'}{\operatorname{argmin}} \sum_{x \in C_i} d(x, \mu)^2.$$

Then, the k-means objective becomes

$$G_{k-\text{means}}((\mathcal{X}, d), (C_1, \dots, C_k)) = \sum_{i=1}^k \sum_{x \in C_i} d(x, \mu_i(C_i))^2$$
.

Other objectives from the k-means family

k-Medoids:

$$G_{\mathrm{K-medoid}}((\mathcal{X},d),(C_1,\ldots,C_k)) = \min_{\mu_1,\ldots,\mu_k\in\mathcal{X}} \sum_{i=1}^k \sum_{x\in C_i} d(x,\mu_i)^2.$$

k-median:

$$G_{\mathrm{K-median}}((\mathcal{X},d),(C_1,\ldots,C_k)) = \min_{\mu_1,\ldots,\mu_k\in\mathcal{X}} \sum_{i=1}^k \sum_{x\in C_i} d(x,\mu_i)$$
.

How to solve the k-means optimization problem?

NP hard ...

How to solve the k-means optimization problem?

NP hard ...

A good practical heuristic is Lloyd's algorithm

How to solve the k-means optimization problem?

NP hard ...

A good practical heuristic is Lloyd's algorithm

k-means

input: $\mathcal{X} \subset \mathbb{R}^n$; Number of clusters k initialize: Randomly choose initial centroids μ_1, \ldots, μ_k repeat until convergence $\forall i \in [k] \text{ set } C_i = \{\mathbf{x} \in \mathcal{X} : i = \operatorname{argmin}_j \|\mathbf{x} - \boldsymbol{\mu}_j\|\}$ (break ties in some arbitrary manner) $\forall i \in [k] \text{ update } \boldsymbol{\mu}_i = \frac{1}{|C_i|} \sum_{\mathbf{x} \in C_i} \mathbf{x}$

Summary

- Clustering is a very intuitive task, but there's no good rigorous defintion
- Linkage based family and k-means family
- There are many other clustering methods: spectral clustering, information bottleneck, ...