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Dimensionality Reduction

@ Dimensionality Reduction = taking data in high dimensional space
and mapping it into a low dimensional space
o Why?
o Reduces training (and testing) time

o Reduces estimation error
o Interpretability of the data, finding meaningful structure in data,

illustration
e Linear dimensionality reduction: x — Wx where W € R™% and n < d
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Outline

@ Principal Component Analysis (PCA)

© Random Projections

© Compressed Sensing
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Principal Component Analysis (PCA)

x — Wx

@ What makes W a good matrix for dimensionality reduction ?
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Principal Component Analysis (PCA)

x — Wx

@ What makes W a good matrix for dimensionality reduction ?
o Natural criterion: we want to be able to approximately recover x from
y =Wx
e PCA:
o Linear recovery: x =Uy = UWx

o Measures “approximate recovery” by averaged squared norm: given
examples X1, ...,X,,, solve

m
argmin Z |x; — UWx;]|?

WeRmd UeRdn 5
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Solving the PCA Problem

m
argmin Z [x: — UWx;]?
WeR™4d,UeRd™ ;7
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Solving the PCA Problem

m
argmin Z [x: — UWx;]?
WeR™4d,UeRd™ ;7

Let A=), x,-xiT and let uy, ..., u, be the n leading eigenvectors of
A. Then, the solution to the PCA problem is to set the columns of U to
beuy,...,u, and to set W = Ut
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o UW is of rank n, therefore its range is n dimensional subspace,
denoted S
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Proof main ideas

o UW is of rank n, therefore its range is n dimensional subspace,
denoted S

@ The transformation x — UWx moves x to this subspace

@ The point in S which is closest to x is V'V Tx, where columns of V
are orthonormal basis of S
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Proof main ideas

o UW is of rank n, therefore its range is n dimensional subspace,
denoted S

@ The transformation x — UWx moves x to this subspace

@ The point in S which is closest to x is V'V Tx, where columns of V
are orthonormal basis of S

@ Therefore, we can assume w.l.o.g. that W = U and that columns of
U are orthonormal
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Proof main ideas

Observe:
Ix —UU x| = |x||? —2x"UU "x +x"UUTUU "x
= |x|> - x"UUx

= ||x||? - trace(U 'xx'U) ,
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Proof main ideas

Observe:
Ix —UU x| = |x||? —2x"UU "x +x"UUTUU "x
= |x|> - x"UUx
= ||x||? - trace(U 'xx'U) ,
Therefore, an equivalent PCA problem is

argmax trace (UT (Z xixiT> U) .

UERd’nIUTU:I i=1
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Proof main ideas

Observe:
Ix —UU x| = |x||? —2x"UU "x +x"UUTUU "x
= |x|> - x"UUx

= ||x||? - trace(U 'xx'U) ,

Therefore, an equivalent PCA problem is

m
argmax  trace [ U g XixiT U
UERd’nIUTU:I i=1

The solution is to set U to be the leading eigenvectors of A = 3", xixiT.
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Value of the objective

It is easy to see that

d

m

min x;, — UWx;||? = g Ni(A

WeRnd, [eRd:n 4 i i ‘ i(4)
=1 i=n+1
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@ It is a common practice to “center” the examples before applying
PCA, namely:
: 1
o First calculate pu = - 3" | x;
@ Then apply PCA on the vectors (x1 — ), ..., (Xm — 1)
@ This is also related to the interpretation of PCA as variance
maximization (will be given in exercise)

Dimensionality Reduction
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Efficient implementation for d > m and kernel PCA

o Recall: A=>" xx/ = X"X where X € R™? is a matrix whose
i'th row is x; .

o Let B=XX". Thatis, B;; = (x;,%;)

o If Bu = Au then

AX"u)=X"XX"u=X"Bu=\X"u)

Tu - . o
e So, ﬁ is an eigenvector of A with eigenvalue A

@ We can therefore calculate the PCA solution by calculating the
eigenvalues of B instead of A

@ The complexity is O(m? + m?d)

@ And, it can be computed using a kernel function
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PCA

input
A matrix of m examples X € R™¢
number of components n

if (m > d)
A=XTX
Let uy,...,u, be the eigenvectors of A with largest eigenvalues
else
B=XX"T
Let vq,...,v, be the eigenvectors of B with largest eigenvalues
fori=1,...,nset u; = mXTvi
output: uy,...,u,
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Demonstration
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Demonstration

@ 50 x 50 images from Yale dataset
o Before (left) and after reconstruction (right) to 10 dimensions
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Demonstration

@ Before and after
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Demonstration

o Images after dim reduction to R?

o Different marks indicate different individuals

o o® @o
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Outline

© Random Projections
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What is a successful dimensionality reduction?

@ In PCA, we measured succes as squared distance between x and a
reconstruction of x fromy = Wx
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What is a successful dimensionality reduction?

@ In PCA, we measured succes as squared distance between x and a
reconstruction of x fromy = Wx

@ In some cases, we don't care about reconstruction, all we care is that
Y1i,---,¥m Will retain certain properties of x1,...,X,

@ One option: do not distort distances. That is, we'd like that for all
i d llxi = x5l = llyi — il

o Equivalently, we'd like that for all 4,5, WXi=W;l

[l =l

~1

o Equivalently, we'd like that for all x € @), where

Q= {xi —x; 11,5 € [m]}, we'll have xl ~ 1
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Random Projections do not distort norms

@ Random projection: The transformation x — Wx, where W is a
random matrix
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Random Projections do not distort norms

@ Random projection: The transformation x — Wx, where W is a
random matrix

e We'll analyze the distortion due to W s.t. W; ; ~ N(0,1/n)
@ Let w; be the i'th row of W. Then:

n

E[|W?] = 3 B{((wi. x zx Efwiw

1
=nx' <I> x = [|x||?
n
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Random Projections do not distort norms

@ Random projection: The transformation x — Wx, where W is a
random matrix

e We'll analyze the distortion due to W s.t. W; ; ~ N(0,1/n)

@ Let w; be the i'th row of W. Then:

n

E[Wx]?] = S E[(wi,x zx Elww

i=1

1
=nx' <I> x = [|x||?
n

e In fact, |[Wx||? has a x2 distribution, and using a measure
concentration inequality it can be shown that

2
[ Iwx|®

12

>e] < 9=’ n/6
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Random Projections do not distort norms

@ Applying the union bound over all vectors in () we obtain:

Lemma (Johnson-Lindenstrauss lemma)

Let Q be a finite set of vectors in R?. Let § € (0,1) and n be an integer

such that
= [EIoBCRI)

Then, with probability of at least 1 — § over a choice of a random matrix
W € R with W; j ~ N(0,1/n), we have

x|
xeQ | [|x|1?

—1‘<e.
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Outline

© Compressed Sensing
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Compressed Sensing

@ Prior assumption: x =~ U« where U is orthonormal and
letllo % {4 - oy # 0}] < s for some s < d
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Compressed Sensing

@ Prior assumption: x =~ U« where U is orthonormal and
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def | (.
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def | (.
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Compressed Sensing

@ Prior assumption: x =~ U« where U is orthonormal and
letllo % {4 - oy # 0}] < s for some s < d

@ E.g.: natural images are approximately sparse in a wavelet basis
@ How to “store” x 7

e We can find @ = U "x and then save the non-zero elements of o

e Requires order of slog(d) storage

o Why go to so much effort to acquire all the d coordinates of x when
most of what we get will be thrown away? Can't we just directly
measure the part that won't end up being thrown away?
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Compressed Sensing

Informally, the main premise of compressed sensing is the following three
“surprising” results:

@ It is possible to fully reconstruct any sparse signal if it was
compressed by x — Wx, where W is a matrix which satisfies a
condition called Restricted Isoperimetric Property (RIP). A matrix
that satisfies this property is guaranteed to have a low distortion of
the norm of any sparse representable vector.
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“surprising” results:

@ It is possible to fully reconstruct any sparse signal if it was
compressed by x — Wx, where W is a matrix which satisfies a
condition called Restricted Isoperimetric Property (RIP). A matrix
that satisfies this property is guaranteed to have a low distortion of
the norm of any sparse representable vector.

© The reconstruction can be calculated in polynomial time by solving a
linear program.
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Compressed Sensing

Informally, the main premise of compressed sensing is the following three
“surprising” results:

@ It is possible to fully reconstruct any sparse signal if it was
compressed by x — Wx, where W is a matrix which satisfies a
condition called Restricted Isoperimetric Property (RIP). A matrix
that satisfies this property is guaranteed to have a low distortion of
the norm of any sparse representable vector.

© The reconstruction can be calculated in polynomial time by solving a
linear program.

© A random n x d matrix is likely to satisfy the RIP condition provided
that n is greater than order of slog(d).
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Restricted Isoperimetric Property (RIP)

A matrix W € R™? is (¢, s)-RIP if for all x # 0 s.t. [|xlo < s we have

W3
1113

—1‘§e.
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RIP matrices yield lossless compression for sparse vectors

Let e < 1 and let W be a (¢,2s)-RIP matrix. Let x be a vector s.t.
[xllo < s, lety = Wx and let x € argmin,,yy—y [[V[o. Then, X = x.
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RIP matrices yield lossless compression for sparse vectors

Let e < 1 and let W be a (¢,2s)-RIP matrix. Let x be a vector s.t.
[xllo < s, lety = Wx and let x € argmin,,yy—y [[V[o. Then, X = x.

@ Assume, by way of contradiction, that x # x.

Shai Shalev-Shwartz (Hebrew U) IML Lecture 11 Dimensionality Reduction 24 / 25



RIP matrices yield lossless compression for sparse vectors

Let e < 1 and let W be a (¢,2s)-RIP matrix. Let x be a vector s.t.
[xllo < s, lety = Wx and let x € argmin,,yy—y [[V[o. Then, X = x.

@ Assume, by way of contradiction, that x # x.

@ Since x satisfies the constraints in the optimization problem that
defines X we clearly have that ||x[|o < ||x||o < s.
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RIP matrices yield lossless compression for sparse vectors

Let e < 1 and let W be a (¢,2s)-RIP matrix. Let x be a vector s.t.
[xllo < s, lety = Wx and let x € argmin,,yy—y [[V[o. Then, X = x.

@ Assume, by way of contradiction, that x # x.

@ Since x satisfies the constraints in the optimization problem that
defines X we clearly have that ||x[|o < ||x||o < s.

@ Therefore, ||x — X||g < 2s.
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RIP matrices yield lossless compression for sparse vectors

Let e < 1 and let W be a (¢,2s)-RIP matrix. Let x be a vector s.t.
[xllo < s, lety = Wx and let x € argmin,,yy—y [[V[o. Then, X = x.

@ Assume, by way of contradiction, that x # x.

@ Since x satisfies the constraints in the optimization problem that
defines X we clearly have that ||x[|o < ||x||o < s.

@ Therefore, ||x — X||g < 2s.

IWe=R)1 _ 4

@ By RIP on x — x we have X2

<e
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RIP matrices yield lossless compression for sparse vectors

Let e < 1 and let W be a (¢,2s)-RIP matrix. Let x be a vector s.t.
[xllo < s, lety = Wx and let x € argmin,,yy—y [[V[o. Then, X = x.

@ Assume, by way of contradiction, that x # x.

@ Since x satisfies the constraints in the optimization problem that
defines x we clearly have that ||x||op < [|x]|o < s.

@ Therefore, ||x — X||g < 2s.

W (x—%) |2

@ By RIP on x — x we have X2

—1| <e

@ But, since W(x — x) = 0 we get that |0 — 1| < e. Contradiction.
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Efficient reconstruction

1
@ If we further assume that € < 575 then
x = argmin ||v]p = argmin ||v]|; .
v:Wv=y v:Wv=y
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Efficient reconstruction

1

@ If we further assume that € < 575 then
x = argmin ||v]p = argmin ||v]|; .
v:Wv=y v:Wv=y

@ The right-hand side is a linear programming problem
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Efficient reconstruction

1

@ If we further assume that € < 575 then
x = argmin ||v]p = argmin ||v]|; .
v:Wv=y v:Wv=y

@ The right-hand side is a linear programming problem

@ Summary: we can reconstruct all sparse vector efficiently based on
O(slog(d)) measurements
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PCA vs. Random Projections

@ Random projections guarantee perfect recovery for all
O(n/log(d))-sparse vectors
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PCA vs. Random Projections

@ Random projections guarantee perfect recovery for all
O(n/ log(d))-sparse vectors

@ PCA guarantee perfect recovery if all examples are in an
n-dimensional subspace

o Different prior knowledge:
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PCA vs. Random Projections

@ Random projections guarantee perfect recovery for all
O(n/ log(d))-sparse vectors

@ PCA guarantee perfect recovery if all examples are in an
n-dimensional subspace

o Different prior knowledge:

o If the data is ey, ..., ey, random projections will be perfect but PCA
will fail
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PCA vs. Random Projections

@ Random projections guarantee perfect recovery for all
O(n/ log(d))-sparse vectors

@ PCA guarantee perfect recovery if all examples are in an
n-dimensional subspace

o Different prior knowledge:
o If the data is ey, ..., ey, random projections will be perfect but PCA

will fail
o If d is very large and data is exactly on an n-dim subspace. Then, PCA

will be perfect but random projections might fail
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Summary

@ Linear dimensionality reduction x — Wx
o PCA: optimal if reconstruction is linear and error is squared distance

e Random projections: preserves disctances
o Random projections: exact reconstruction for sparse vectors (but with

a non-linear reconstruction)

@ Not covered: non-linear dimensionality reduction
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