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A Single Artificial Neuron

A single neuron is a function of the form x 7→ σ(〈v,x〉), where
σ : R→ R is called the activation function of the neuron
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E.g., σ is a sigmoidal function
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Neural Networks

A neural network is obtained by connecting many neurons together

We focus on feedforward networks, formally defined by a directed
acyclic graph G = (V,E)

Input nodes: nodes with no incoming edges

Output nodes: nodes without out going edges

weights: w : E → R
Calculation using breadth-first-search (BFS), where each neuron
(node) receives as input:

a[v] =
∑

u→v∈E
w[u→ v]o[u]

and output
o[v] = σ(a[v])

Shai Shalev-Shwartz (Hebrew U) IML Lecture 10 Neural Networks 4 / 31



Neural Networks

A neural network is obtained by connecting many neurons together

We focus on feedforward networks, formally defined by a directed
acyclic graph G = (V,E)

Input nodes: nodes with no incoming edges

Output nodes: nodes without out going edges

weights: w : E → R
Calculation using breadth-first-search (BFS), where each neuron
(node) receives as input:

a[v] =
∑

u→v∈E
w[u→ v]o[u]

and output
o[v] = σ(a[v])

Shai Shalev-Shwartz (Hebrew U) IML Lecture 10 Neural Networks 4 / 31



Neural Networks

A neural network is obtained by connecting many neurons together

We focus on feedforward networks, formally defined by a directed
acyclic graph G = (V,E)

Input nodes: nodes with no incoming edges

Output nodes: nodes without out going edges

weights: w : E → R
Calculation using breadth-first-search (BFS), where each neuron
(node) receives as input:

a[v] =
∑

u→v∈E
w[u→ v]o[u]

and output
o[v] = σ(a[v])

Shai Shalev-Shwartz (Hebrew U) IML Lecture 10 Neural Networks 4 / 31



Neural Networks

A neural network is obtained by connecting many neurons together

We focus on feedforward networks, formally defined by a directed
acyclic graph G = (V,E)

Input nodes: nodes with no incoming edges

Output nodes: nodes without out going edges

weights: w : E → R
Calculation using breadth-first-search (BFS), where each neuron
(node) receives as input:

a[v] =
∑

u→v∈E
w[u→ v]o[u]

and output
o[v] = σ(a[v])

Shai Shalev-Shwartz (Hebrew U) IML Lecture 10 Neural Networks 4 / 31



Neural Networks

A neural network is obtained by connecting many neurons together

We focus on feedforward networks, formally defined by a directed
acyclic graph G = (V,E)

Input nodes: nodes with no incoming edges

Output nodes: nodes without out going edges

weights: w : E → R

Calculation using breadth-first-search (BFS), where each neuron
(node) receives as input:

a[v] =
∑

u→v∈E
w[u→ v]o[u]

and output
o[v] = σ(a[v])

Shai Shalev-Shwartz (Hebrew U) IML Lecture 10 Neural Networks 4 / 31



Neural Networks

A neural network is obtained by connecting many neurons together

We focus on feedforward networks, formally defined by a directed
acyclic graph G = (V,E)

Input nodes: nodes with no incoming edges

Output nodes: nodes without out going edges

weights: w : E → R
Calculation using breadth-first-search (BFS), where each neuron
(node) receives as input:

a[v] =
∑

u→v∈E
w[u→ v]o[u]

and output
o[v] = σ(a[v])

Shai Shalev-Shwartz (Hebrew U) IML Lecture 10 Neural Networks 4 / 31



Multilayer Neural Networks

Neurons are organized in layers: V = ·∪Tt=0Vt, and edges are only
between adjacent layers
Example of a multilayer neural network of depth 3 and size 6
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Neural Networks as a Hypothesis Class

Given a neural network (V,E, σ, w), we obtain a hypothesis
hV,E,σ,w : R|V0|−1 → R|VT |

We refer to (V,E, σ) as the architecture, and it defines a hypothesis
class by

HV,E,σ = {hV,E,σ,w : w is a mapping from E to R} .

The architecture is our “Prior knowledge” and the learning task is to
find the weight function w

We can now study
estimation error (sample complexity)
approximation error (expressivenss)
optimization error (computational complexity)
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Sample Complexity

Theorem: The VC dimension of HV,E,sign is O(|E| log(|E|)).

Theorem: The VC dimension of HV,E,σ, for σ being the sigmoidal
function, is Ω(|E|2).

Representation trick: In practice, we only care about networks where
each weight is represented using O(1) bits, and therefore the VC
dimension of such networks is O(|E|), no matter what σ is

We can further decrease the sample complexity by many kinds of
regularization functions (this is left for an advanced course)
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What can we express with neural networks ?

For simplicity, lets focus on boolean inputs and sign activation
functions.

What type of functions from {±1}n to {±1} can be implemented by
HV,E,sign ?

Theorem: For every n, there exists a graph (V,E) of depth 2, such
that HV,E,sign contains all functions from {±1}n to {±1}
Theorem: For every n, let s(n) be the minimal integer such that
there exists a graph (V,E) with |V | = s(n) such that the hypothesis
class HV,E,sign contains all the functions from {0, 1}n to {0, 1}.
Then, s(n) is exponential in n.

What type of functions can be implemented by networks of small size
?
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What can we express with neural networks ?

Theorem: Let T : N→ N and for every n, let Fn be the set of
functions that can be implemented using a Turing machine using
runtime of at most T (n). Then, there exist constants b, c ∈ R+ such
that for every n, there is a graph (Vn, En) of size at most c T (n)2 + b
such that HVn,En,sign contains Fn.

Conclusion: A very weak notion of prior knowledge suffices — if we
only care about functions that can be implemented in time T (n), we
can use neural networks of size O(T (n)2), and the sample complexity
is also bounded by O(T (n)2) !
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The ultimate hypothesis class

less prior knowledge
more data

expert system

use prior knowl-
edge to con-
struct φ(x) and
learn 〈w, φ(x)〉

deep neural
networks

No Free Lunch
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Geometric Intuition

2 layer networks can express intersection of halfspaces

Shai Shalev-Shwartz (Hebrew U) IML Lecture 10 Neural Networks 13 / 31



Geometric Intuition

3 layer networks can express unions of intersection of halfspaces
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Runtime of learning neural networks

ERM problem:

ERM(S) = argmin
h∈HV,E,σ

LS(h) = argmin
w

LS(hV,E,σ,w)

Theorem: It is NP hard to implement the ERM rule with respect to
HV,E,sign even for networks with a single hidden layer that contain
just 4 neurons in the hidden layer.

But, maybe ERM is hard but some improper algorithm works ?

Theorem: Under some average case complexity assumption, it is hard
to learn neural networks of depth 2 and size ω(log(d)) even improperly
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How to train neural network ?

So, neural networks can form an excellent hypothesis class, but it is
intractable to train it.

How is this different than the class of all Python program that can be
implemented in code length of b bits ?

Main technique: Stochastic Gradient Descent (SGD)

Not convex, no guarantees, can take a long time, but:

Often still works fine, finds a good solution
Easier than optimizing over Python programs ...
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SGD for Neural Networks

Main skeleton:

Random initialization: rule of thumb, w[u→ v] ∼ U [−c, c] where
c =

√
3/|{(u′, v) ∈ E}|

Update step with Nesterov’s momentum:

wt+1 = µtwt − ηt∇̃LD(θt + µtwt)

θt+1 = θt + wt+1

where:
µt is momentum parameter (e.g. µt = 0.9 for all t)
ηt is learning rate (e.g. ηt = 0.01 for all t)
∇̃LD is an estimate of the gradient of LD based on a small set of
random examples (often called a “minibatch”)

It is left to show how to calculate the gradient
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Back-Propagation

The back-propagation algorithm is an efficient way to calculate
∇`(hw(x), y) using the chain rule

Recall: the Jacobian of f : Rn → Rm at w ∈ Rn, denoted Jw(f), is
the m× n matrix whose i, j element is the partial derivative of
fi : Rn → R w.r.t. its j’th variable at w. E.g.

If f(w) = Aw then Jw(f) = A.
If σ : Rn → Rn is element-wise application of σ : R→ R then
Jθ(σ) = diag((σ′(θ1), . . . , σ′(θn))).

Chain rule:
Jw(f ◦ g) = Jg(w)(f)Jw(g)

Let `y : Rk → R be the loss function given predictions θ ∈ Rk and
label y.
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label y.

Shai Shalev-Shwartz (Hebrew U) IML Lecture 10 Neural Networks 19 / 31



Back-Propagation

It’s convenient to describe the network as a sequence of simple layer
functions:

Input layer: o0 = x

Linear layer: o1 = f1(o0) = W (1)o0

Activation layer: o2 = f2(o1) = σ(o1)

Linear layer: o3 = f3(o2) = W (3)o2

Loss layer: o4 = f4(o3) = `y(o3)
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Back-Propagation

Can write `(hw, (x, y)) = (fT+1 ◦ . . . ◦ f3 ◦ f2 ◦ f1)(x)

Denote Ft = fT+1 ◦ . . . ◦ ft+1 and δt = Jot(Ft), then

δt = Jot(Ft) = Jot(Ft−1 ◦ ft+1)

= Jft+1(ot)(Ft−1)Jot(ft+1) = Jot+1(Ft−1)Jot(ft+1)

= δt+1Jot(ft+1)

Note that

Jot(ft+1) =

{
W (t+1) for linear layer

diag(σ′(ot)) for activation layer

Using the chain rule again we obtain

JW (t)(`(hw, (x, y))) = δto
>
t−1
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Back-Propagation: Pseudo-code

Forward:

set o0 = x and for t = 1, 2, . . . , T set

ot = ft(ot−1) =

{
W (t)ot−1 for linear layer

σ(ot−1) for activation layer

Backward:

set δT+1 = ∇`y(oT ) and for t = T, T − 1, . . . , 1 set

δt = δt+1Jot(ft+1) = δt+1 ·

{
W (t+1) for linear layer

diag(σ′(ot)) for activation layer

For linear layers, set the gradient w.r.t. the weights in W (t) to be the
elements of the matrix δto

>
t−1
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Convolutional Networks

Designed for computer vision problems

Three main ideas:

Convolutional layers: use the same weights on all patches of the image
Pooling layers: decrease image resolution (good for translation
invariance, for higher level features, and for runtime)
Contrast normalization layers: let neurons “compete” with adjacent
neurons
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Convolutional and Pooling

Layers are organized with three dimensional arrays, corresponding to
width, height, and channel. E.g., in the first layer, if we have an RGB
image of width 40 and heigh 80 than we have three channels, each of
which is a 40x80 image

Weight sharing: Each “neuron” maps the previous layer into a new
image by convolving the previous layer with a “kernel”

o+(h,w, c) =
∑
c′

kh∑
i=1

kw∑
j=1

W (c, i, j, c′)o(h+ i, w + j, c′) + b(c)

A pooling layer reduces the resolution of each image in the previous
layer
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Y LeCun
MA Ranzato

Convolutional Network (ConvNet)

Non-Linearity: half-wave rectification, shrinkage function, sigmoid
Pooling: average, L1, L2, max
Training: Supervised (1988-2006), Unsupervised+Supervised (2006-now)

input

83x83

Layer 1

64x75x75 Layer 2

64@14x14

Layer 3

256@6x6 Layer 4

256@1x1
Output

101

9x9

convolution

(64 kernels)

9x9

convolution

(4096 kernels)

10x10 pooling,

5x5 subsampling
6x6 pooling

4x4 subsamp
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Neural Networks as Feature Learning

“Feature Engineering” approach: expert constructs feature mapping
φ : X → Rd. Then, apply machine learning to find a linear predictor
on φ(x).

“Deep learning” approach: neurons in hidden layers can be thought of
as features that are being learned automatically from the data

Shallow neurons corresponds to low level features while deep neurons
correspond to high level features
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Neural Networks as Feature LearningMulti-Layer Feature Learning

Taken from Yan LeCun’s deep learning tutorial
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Multiclass/Multitask/Feature Sharing/Representation
learning

Neurons in intermediate layers are shared by different tasks/classes

Only last layer is specific to task/class

Sometimes, network is optimized for certain classes, but the
intermediate neurons are used as features for a new problem. This is
called transfer learning. The last hidden layer can be thought of as a
representation of the instance.
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Neural Networks: Current Trends

ReLU activation: σ(a) = max{0, a}. This helps convergence, but do
not hurt expressiveness

Very large networks: often, the number of parameters is very large,
even much larger than the number of examples. This might lead to
overfitting, which is (partially) avoided by many types of
regularization

Regularization: besides norm regularization, early stopping of SGD
also serves as a regularizer

Dropout: this is another form of regularization, in which some
neurons are “muted” at random during training

Weight sharing (convolutional networks)

SGD tricks: momentum, Nesterov’s acceleration, other forms of
second order approximation

Training on GPU
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Historical Remarks

1940s-70s:
Inspired by learning/modeling the brain (Pitts, Hebb, and others)
Perceptron Rule (Rosenblatt), Multilayer perceptron (Minksy and
Papert)
Backpropagation (Werbos 1975)

1980s – early 1990s:
Practical Back-prop (Rumelhart, Hinton et al 1986) and SGD (Bottou)
Initial empirical success

1990s-2000s:
Lost favor to implicit linear methods: SVM, Boosting

2006 –:
Regain popularity because of unsupervised pre-training (Hinton,
Bengio, LeCun, Ng, and others)
Computational advances and several new tricks allow training HUGE
networks. Empirical success leads to renewed interest
2012: Krizhevsky, Sustkever, Hinton: significant improvement of
state-of-the-art on imagenet dataset (object recognition of 1000
classes), without unsupervised pre-training
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Summary

Neural networks can be used to construct the ultimate hypothesis
class

Computationally, it’s impossible to train neural networks

. . . but, empirically, it works reasonably well

Leads to state-of-the-art on many real world problems

Biggest theoretical question: When does it work and why ?

Shai Shalev-Shwartz (Hebrew U) IML Lecture 10 Neural Networks 32 / 31


	Neural networks
	Sample Complexity
	Expressiveness of neural networks
	How to train neural networks ?
	Computational hardness
	SGD
	Back-Propagation

	Convolutional Neural Networks (CNN)
	Feature Learning

