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Gradient-Based Learning

Consider a hypothesis class which is parameterized by a vector θ ∈ Rd

Loss function of hθ on example (x, y) is denoted `(θ; (x, y))

The true and empirical risks are

LD(θ) = E
(x,y)∼D

[`(θ; (x, y))] , LS(θ) =
1

m

m∑
i=1

`(θ; (xi, yi))

Assumption: ` is differentiable w.r.t. θ and we can calculate
∇`(θ; (x, y)) efficiently

Minimize LD or LS with Stochastic Gradient Descent (SGD):
Start with θ(0) and update θ(t+1) = θ(t) − ηt∇`(θ(t); (x, y))
SGD converges for convex problems. It may work for non-convex
problems if we initialize “close enough” to a “good minimum”
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Computation Graph

A computation graph for a one dimensional Least Squares
(numbering of nodes corresponds to topological sort):

Variable layer: w

2

Linear layer: p = wx

3

Input layer: x

0

Subtract layer: r = p− y
4

Input layer: y

1

Squared layer: s = r2
5
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Gradient Calculation using the Chain Rule

Fix x, y and write ` as a function of w by

`(w) = s(ry(px(w))) = (s ◦ ry ◦ px)(w) .

Chain rule:

`′(w) = (s ◦ ry ◦ px)′(w)
= s′(ry(px(w))) · (ry ◦ px)′(w)
= s′(ry(px(w))) · r′y(px(w)) · p′x(w)

Backpropagation: Calculate by a Forward-Backward pass over the
graph
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Computation Graph — Forward

For t = 0, 1, . . . , T − 1

Layer[t]->output = Layer[t]->function(Layer[t]->inputs)

Variable layer: w

2

Linear layer: p = wx

3

Input layer: x

0

Subtract layer: r = p− y
4

Input layer: y

1

Squared layer: s = r2
5
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Computation Graph — Backward

Recall: `′(w) = s′(ry(px(w))) · r′y(px(w)) · p′x(w)
Layer[T-1]->delta = 1

For t = T − 1, T − 2, . . . , 0
For i in Layer[t]->inputs:

i->delta = Layer[t]->delta *

Layer[t]->derivative(i,Layer[t]->inputs)

Variable layer: w

2

Linear layer: p = wx

3

Input layer: x

0

Subtract layer: r = p− y
4

Input layer: y

1

Squared layer: s = r2
5
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Layers

Nodes in the computation graph are often called layers

Each layer is a simple differentiable function

Layers can implement multivariate functions

Example of popular layers:

Affine layer: O =WX + b 1> where W ∈ Rm,n, x ∈ Rn,c, b ∈ Rm

Unary layer: ∀i, oi = f(xi) for some f : R→ R e.g.

Sigmoid: f(x) = (1 + exp(−x))−1

Rectified Linear Unit (ReLU): f(x) = max{0, x} (discuss: derivative?)

Binary layer: ∀i, oi = f(xi, yi) for some f : R2 → R e.g.

Add layer: f(x, y) = x+ y
Hinge loss: f(x, y) = [1− yixi]+
Logistic loss: f(x, y) = log(1 + exp(−yixi))

Main message

Computation graph enables us to construct very complicated functions
from simple building blocks
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Backpropgation for multivariate layers

Recall the backpropagation rule:
For i in Layer[t]->inputs:

i->delta = Layer[t]->delta *

Layer[t]->derivative(i,Layer[t]->inputs)

“delta” is now a vector (same dimension as the output of the layer)

“derivative” is the Jacobian matrix:
The Jacobian of f : Rn → Rm at x ∈ Rn, denoted Jx(f), is the
m× n matrix whose i, j element is the partial derivative of
fi : Rn → R w.r.t. its j’th variable at x.

The multiplication is matrix multiplication

The correctness of the algorithm follows from the multivariate chain
rule

Jw(f ◦ g) = Jg(w)(f)Jw(g)
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Jacobian — Examples

If f : Rn → Rn is element-wise application of σ : R→ R then
Jx(f) = diag((σ′(x1), . . . , σ

′(xn))).

Let f(x,w, b) = w>x+ b for w,x ∈ Rn, b ∈ R1. Then:

Jx(f) = w> , Jw(f) = x> , Jb(f) = 1

Let f(W,x) =Wx. Then:

Jx(f) =W , JW (f) =


x> 0 · · · 0
0 x> · · · 0
...

...
. . .

...
0 0 · · · x>

 .
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Sample Complexity

If we learn d parameters, and each one is stored in, say, 32 bits, then
the number of hypotheses in our class is at most 232d. It follows that
the sample complexity is order of d.

Other ways to improve generalization is all sort of regularization
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Expressiveness

So far in the course we considered hypotheses of the form
x 7→ w>x+ b

Now, consider the following computation graph, known as “one
hidden layer network”:

Input layer: x

0

Affine layer: a(1) =W (1)x+ b(1)
6

Variable layer: W (1)

2

Variable layer: b(1)
3

ReLU layer: h(1) = [a(1)]+

7

Affine layer: p =W (2)h(1) + b(2)
8

Variable layer: W (2)

4

Variable layer: b(2)
5

Loss layer

9

Input layer: y

1
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Expressiveness of “One Hidden Layer Network”

Claim: Every Boolean function f : {±1}n → {±1} can be expressed
by a one hidden layer network.

Proof:

Show that for integer x we have sign(x) = 2([x+ 1]+ − [x]+)− 1
Show that any f can be written as f(x) = ∨i(x == ui) for some
vectors u1, . . . , uk
Show that sign(x>ui − (n− 1)) is an indicator to (x == ui)
Conclude that we can adjust the weights so that yp(x) ≥ 1 for all
examples (x, y)

Theorem: For every n, let s(n) be the minimal integer such that
there exists a one hidden layer network with s(n) hidden neurons that
implements all functions from {0, 1}n to {0, 1}. Then, s(n) is
exponential in n.

Proof: Think on the VC dimension ...

What type of functions can be implemented by small size networks?
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Geometric Intuition

One hidden layer networks can express intersection of halfspaces
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Geometric Intuition

Two hidden layer networks can express unions of intersection of
halfspaces
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What can we express with T -depth networks ?

Theorem: Let T : N→ N and for every n, let Fn be the set of
functions that can be implemented using a Turing machine using
runtime of at most T (n). Then, there exist constants b, c ∈ R+ such
that for every n, there is a network of depth at most T and size at
most c T (n)2 + b such that it implements all functions in Fn.

Sample complexity is order of number of variables (in our case
polynomial in T )

Conclusion: A very weak notion of prior knowledge suffices — if we
only care about functions that can be implemented in time T (n), we
can use neural networks of depth T and size O(T (n)2), and the
sample complexity is also bounded by polynomial in T (n) !
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The ultimate hypothesis class

less prior knowledge
more data

expert system

use prior knowl-
edge to con-
struct φ(x) and
learn 〈w, φ(x)〉

deep net-
works

No Free Lunch
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Runtime of learning neural networks

Theorem: It is NP hard to implement the ERM rule even for one
hidden layer networks with just 4 neurons in the hidden layer.

But, maybe ERM is hard but some improper algorithm works ?

Theorem: Under some average case complexity assumption, it is hard
to learn one hidden layer networks with ω(log(d)) hidden neurons
even improperly
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How to train neural network ?

So, neural networks can form an excellent hypothesis class, but it is
intractable to train it.

How is this different than the class of all Python programs that can
be implemented in code length of b bits ?

Main technique: Gradient-based learning (using SGD)

Not convex, no guarantees, can take a long time, but:

Often (but not always) still works fine, finds a good solution
Easier than optimizing over Python programs ...
Need to apply some tricks (initialization, learning rate, mini-batching,
architecture), and need some luck
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Deep Learning Golden age in Vision
• 2012-2014 Imagenet results: 

• 2015 results: MSRA under 3.5% error. (using a CNN with 150 layers!)

CNN
non-CNN

figures from Yann LeCun’s CVPR’15 plenary
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Convolution Layer

Input: C images

Output: C ′ images

Calculation:

O[c′, h′, w′] = b(c
′) +

C−1∑
c=0

k−1∑
h=0

k−1∑
w=0

W (c′)[c, h, w]X[c, h+ h′, w + w′]

Observe: equivalent to an Affine layer with weight sharing

Observe: can be implemented as a combination of Im2Col layer and
Affine layer
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Im2Col Layer

Im2Col for 3× 3 convolution
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Im2Col Layer

Im2Col for 3× 3 convolution with 2 input channels
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Parameters of Convolutions layer

Kernel height and kernel width

Stride height and stride width

zero padding (True or False)

Number of output channels
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Pooling Layer

Input: Image of size H ×W

Output: Image of size (H/k)× (W/k)

Calculation: Divide input image to k × k windows and for each such
window output the maximal value (or average value)

Observe: equivalent to Im2Col + reduce operation

Discuss: how to calculate derivative ?
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Example: LeNet for MNIST

The task: Handwritten digits recognition

Input space: X = {0, 1, . . . , 255}28×28
Output space: Y = {0, 1, . . . , 9}

Multiclass categorization:

We take hypotheses of the form h : X → R|Y|
We interpret h(x) as a vector that gives scores for all the labels
The actual prediction is the label with the highest score: argmaxi hi(x)

Network architecture: x→ Conv(5x5,1x1,no-pad,20) → Pool(2x2) →
Conv(5x5,1x1,no-pad,50) → Pool(2x2) → Affine(500) → ReLU →
Affine(10).

Logistic loss for multiclass categorization:

SoftMax: ∀i, pi =
exp(hi(x))∑
j exp(hj(x))

LogLoss: If the correct label is y then the loss is

− log(py) = log
(∑

j exp(hj(x)− hi(x))
)
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Reduction Layers

The complexity of convolutional layers is Cin × Cout ×H ×W
A “reduction layer” is a 1× 1 convolution aiming at reducing Cin

It can greatly reduce the computational complexity (less time) and
sample complexity (fewer parameters)
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Figure 2: Inception module

ber of filters in the previous stage. The merging of output
of the pooling layer with outputs of the convolutional lay-
ers would lead to an inevitable increase in the number of
outputs from stage to stage. While this architecture might
cover the optimal sparse structure, it would do it very inef-
ficiently, leading to a computational blow up within a few
stages.

This leads to the second idea of the Inception architec-
ture: judiciously reducing dimension wherever the compu-
tational requirements would increase too much otherwise.
This is based on the success of embeddings: even low di-
mensional embeddings might contain a lot of information
about a relatively large image patch. However, embed-
dings represent information in a dense, compressed form
and compressed information is harder to process. The rep-
resentation should be kept sparse at most places (as required
by the conditions of [2]) and compress the signals only
whenever they have to be aggregated en masse. That is,
1⇥1 convolutions are used to compute reductions before
the expensive 3⇥3 and 5⇥5 convolutions. Besides being
used as reductions, they also include the use of rectified lin-
ear activation making them dual-purpose. The final result is
depicted in Figure 2(b).

In general, an Inception network is a network consist-
ing of modules of the above type stacked upon each other,
with occasional max-pooling layers with stride 2 to halve
the resolution of the grid. For technical reasons (memory

efficiency during training), it seemed beneficial to start us-
ing Inception modules only at higher layers while keeping
the lower layers in traditional convolutional fashion. This is
not strictly necessary, simply reflecting some infrastructural
inefficiencies in our current implementation.

A useful aspect of this architecture is that it allows for
increasing the number of units at each stage significantly
without an uncontrolled blow-up in computational com-
plexity at later stages. This is achieved by the ubiquitous
use of dimensionality reduction prior to expensive convolu-
tions with larger patch sizes. Furthermore, the design fol-
lows the practical intuition that visual information should
be processed at various scales and then aggregated so that
the next stage can abstract features from the different scales
simultaneously.

The improved use of computational resources allows for
increasing both the width of each stage as well as the num-
ber of stages without getting into computational difficulties.
One can utilize the Inception architecture to create slightly
inferior, but computationally cheaper versions of it. We
have found that all the available knobs and levers allow for
a controlled balancing of computational resources resulting
in networks that are 3 � 10⇥ faster than similarly perform-
ing networks with non-Inception architecture, however this
requires careful manual design at this point.

5. GoogLeNet
By the“GoogLeNet” name we refer to the particular in-

carnation of the Inception architecture used in our submis-
sion for the ILSVRC 2014 competition. We also used one
deeper and wider Inception network with slightly superior
quality, but adding it to the ensemble seemed to improve the
results only marginally. We omit the details of that network,
as empirical evidence suggests that the influence of the ex-
act architectural parameters is relatively minor. Table 1 il-
lustrates the most common instance of Inception used in the
competition. This network (trained with different image-
patch sampling methods) was used for 6 out of the 7 models
in our ensemble.

All the convolutions, including those inside the Incep-
tion modules, use rectified linear activation. The size of the
receptive field in our network is 224⇥224 in the RGB color
space with zero mean. “#3⇥3 reduce” and “#5⇥5 reduce”
stands for the number of 1⇥1 filters in the reduction layer
used before the 3⇥3 and 5⇥5 convolutions. One can see
the number of 1⇥1 filters in the projection layer after the
built-in max-pooling in the pool proj column. All these re-
duction/projection layers use rectified linear activation as
well.

The network was designed with computational efficiency
and practicality in mind, so that inference can be run on in-
dividual devices including even those with limited compu-
tational resources, especially with low-memory footprint.

Szegedy et al (Google)

Won the ImageNet 2014 challenge (6.67% error)
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Residual Networks
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Figure 2. Residual learning: a building block.

are comparably good or better than the constructed solution
(or unable to do so in feasible time).

In this paper, we address the degradation problem by
introducing a deep residual learning framework. In-
stead of hoping each few stacked layers directly fit a
desired underlying mapping, we explicitly let these lay-
ers fit a residual mapping. Formally, denoting the desired
underlying mapping as H(x), we let the stacked nonlinear
layers fit another mapping of F(x) := H(x)�x. The orig-
inal mapping is recast into F(x)+x. We hypothesize that it
is easier to optimize the residual mapping than to optimize
the original, unreferenced mapping. To the extreme, if an
identity mapping were optimal, it would be easier to push
the residual to zero than to fit an identity mapping by a stack
of nonlinear layers.

The formulation of F(x)+x can be realized by feedfor-
ward neural networks with “shortcut connections” (Fig. 2).
Shortcut connections [2, 34, 49] are those skipping one or
more layers. In our case, the shortcut connections simply
perform identity mapping, and their outputs are added to
the outputs of the stacked layers (Fig. 2). Identity short-
cut connections add neither extra parameter nor computa-
tional complexity. The entire network can still be trained
end-to-end by SGD with backpropagation, and can be eas-
ily implemented using common libraries (e.g., Caffe [19])
without modifying the solvers.

We present comprehensive experiments on ImageNet
[36] to show the degradation problem and evaluate our
method. We show that: 1) Our extremely deep residual nets
are easy to optimize, but the counterpart “plain” nets (that
simply stack layers) exhibit higher training error when the
depth increases; 2) Our deep residual nets can easily enjoy
accuracy gains from greatly increased depth, producing re-
sults substantially better than previous networks.

Similar phenomena are also shown on the CIFAR-10 set
[20], suggesting that the optimization difficulties and the
effects of our method are not just akin to a particular dataset.
We present successfully trained models on this dataset with
over 100 layers, and explore models with over 1000 layers.

On the ImageNet classification dataset [36], we obtain
excellent results by extremely deep residual nets. Our 152-
layer residual net is the deepest network ever presented on
ImageNet, while still having lower complexity than VGG
nets [41]. Our ensemble has 3.57% top-5 error on the

ImageNet test set, and won the 1st place in the ILSVRC
2015 classification competition. The extremely deep rep-
resentations also have excellent generalization performance
on other recognition tasks, and lead us to further win the
1st places on: ImageNet detection, ImageNet localization,
COCO detection, and COCO segmentation in ILSVRC &
COCO 2015 competitions. This strong evidence shows that
the residual learning principle is generic, and we expect that
it is applicable in other vision and non-vision problems.

2. Related Work

Residual Representations. In image recognition, VLAD
[18] is a representation that encodes by the residual vectors
with respect to a dictionary, and Fisher Vector [30] can be
formulated as a probabilistic version [18] of VLAD. Both
of them are powerful shallow representations for image re-
trieval and classification [4, 48]. For vector quantization,
encoding residual vectors [17] is shown to be more effec-
tive than encoding original vectors.

In low-level vision and computer graphics, for solv-
ing Partial Differential Equations (PDEs), the widely used
Multigrid method [3] reformulates the system as subprob-
lems at multiple scales, where each subproblem is respon-
sible for the residual solution between a coarser and a finer
scale. An alternative to Multigrid is hierarchical basis pre-
conditioning [45, 46], which relies on variables that repre-
sent residual vectors between two scales. It has been shown
[3, 45, 46] that these solvers converge much faster than stan-
dard solvers that are unaware of the residual nature of the
solutions. These methods suggest that a good reformulation
or preconditioning can simplify the optimization.

Shortcut Connections. Practices and theories that lead to
shortcut connections [2, 34, 49] have been studied for a long
time. An early practice of training multi-layer perceptrons
(MLPs) is to add a linear layer connected from the network
input to the output [34, 49]. In [44, 24], a few interme-
diate layers are directly connected to auxiliary classifiers
for addressing vanishing/exploding gradients. The papers
of [39, 38, 31, 47] propose methods for centering layer re-
sponses, gradients, and propagated errors, implemented by
shortcut connections. In [44], an “inception” layer is com-
posed of a shortcut branch and a few deeper branches.

Concurrent with our work, “highway networks” [42, 43]
present shortcut connections with gating functions [15].
These gates are data-dependent and have parameters, in
contrast to our identity shortcuts that are parameter-free.
When a gated shortcut is “closed” (approaching zero), the
layers in highway networks represent non-residual func-
tions. On the contrary, our formulation always learns
residual functions; our identity shortcuts are never closed,
and all information is always passed through, with addi-
tional residual functions to be learned. In addition, high-

2

He, Zhang, Ren, Sun (Microsoft)

Won the ImageNet 2015 challenge with a 152 layers network (3.57%
error)
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Some Training Tricks

Input normalization: divide each element of x by 255 to make sure it
is in [0, 1]

Initialization is important: One trick that works well in practice is to
initialize the bias to be zero and initialize the rows of W to be
random in [−1/√n, 1/√n]
Mini-batches: At each iteration of SGD we calculate the average loss
on k random examples for k > 1. Advantages:

Reduces the variance of the update direction (w.r.t. the full gradient),
hence converges faster
We don’t pay a lot in time because of parallel implementation

Learning rate: Choice of learning rate is important. One way is to
start with some fixed η and decrease it by 1/2 whenever the training
stops making progress.

Variants of SGD: There are plenty of variants that work better than
vanilla SGD.
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Failures of Deep Learning

Parity of more than 30 bits

Multiplication of large numbers

Matrix inversion

...
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Summary

Deep Learning can be used to construct the ultimate hypothesis class

Worst-case complexity is exponential

. . . but, empirically, it works reasonably well and leads to
state-of-the-art on many real world problems
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