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@ Gradient-Based Learning

© Computation Graph and Backpropagation
© Expressiveness and Sample Complexity

@ Computational Complexity

© Convolutional Networks

@ Solving MNIST with LeNet using Tensorflow

@ Tips and Tricks
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Gradient-Based Learning

e Consider a hypothesis class which is parameterized by a vector § € R?
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Gradient-Based Learning

e Consider a hypothesis class which is parameterized by a vector § € R?
@ Loss function of hy on example (x,y) is denoted ¢(0; (x,y))
@ The true and empirical risks are

Lp(#) = (zg;lND[@(H; (z,y))] , Ls() = % ‘

Shai Shalev-Shwartz (Hebrew U) IML Deep Learning Neural Networks 3/38



Gradient-Based Learning

e Consider a hypothesis class which is parameterized by a vector § € R?
@ Loss function of hy on example (x,y) is denoted ¢(0; (x,y))
@ The true and empirical risks are

m

> 0(6; (i, 1))

i=1

In(6) = B _[6:@)] . Ls(®) =

@ Assumption: £ is differentiable w.r.t. 8 and we can calculate
Ve(0; (z,y)) efficiently
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Gradient-Based Learning

e Consider a hypothesis class which is parameterized by a vector § € R?
@ Loss function of hy on example (x,y) is denoted ¢(0; (x,y))
@ The true and empirical risks are

m

> 0(6; (i, 1))

i=1

In(6) = B _[6:@)] . Ls(®) =

@ Assumption: £ is differentiable w.r.t. 8 and we can calculate
Ve(0; (z,y)) efficiently

@ Minimize Lp or Lg with Stochastic Gradient Descent (SGD):
Start with (9 and update #¢+1) =01 — 7, V2(0D; (2, y))

@ SGD converges for convex problems. It may work for non-convex
problems if we initialize “close enough” to a “good minimum”
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Outline

© Computation Graph and Backpropagation

Shai Shalev-Shwartz (Hebrew U) IML Deep Learning Neural Networks 4 /38



Computation Graph

A computation graph for a one dimensional Least Squares

(numbering of nodes corresponds to topological sort).

Squared layer: s = r2]

1
?Subtract layer: r=p—y Input layer: y
(0]
Linear layer: p = wz Input layer: x
?Variable layer: w]
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Gradient Calculation using the Chain Rule

o Fix x,y and write ¢ as a function of w by

Uw) = s(ry(pa(w))) = (s 0 1y 0 pz)(w) -
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Gradient Calculation using the Chain Rule

o Fix x,y and write ¢ as a function of w by

Uw) = s(ry(pa(w))) = (s 0 1y 0 pz)(w) -

@ Chain rule:

@ Backpropagation: Calculate by a Forward-Backward pass over the
graph
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Computation Graph — Forward

@ Fort=0,1,..., 7T —1
e Layer[t]->output = Layer[t]->function(Layer[t]->inputs)

Squared layer: s = 72

?Subtract layer: r =p—y }4 Input layer: y
?Linear layer: p = wz}#nput layer: z}

Variable layer: w
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Computation Graph — Backward

o Recall: £'(w) = §'(ry(pz(w))) - 7 (pa(w)) - Pl (w)
o Layer[T-1]->delta = 1
e Fort=T-1,T-2,...,0
e For i in Layer[t]->inputs:
@ i->delta = Layer[t]->delta *
Layer [t]->derivative(i,Layer[t]->inputs)

Squared layer: s = 72

?Subtract layer: r=p—y }4 Input layer: y
?Linear layer: p = wz}#nput layer: z]
Variable layer: w
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Layers

@ Nodes in the computation graph are often called layers
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@ Each layer is a simple differentiable function

@ Layers can implement multivariate functions
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Nodes in the computation graph are often called layers
Each layer is a simple differentiable function

Layers can implement multivariate functions
Example of popular layers:
o Affine layer: O = WX +b1" where W € R™" 2 € R™¢ b € R™
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Nodes in the computation graph are often called layers
Each layer is a simple differentiable function

Layers can implement multivariate functions
Example of popular layers:
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o Unary layer: Vi, o; = f(x;) for some f: R — R e.g.
o Sigmoid: f(x) = (1 + exp(—=))~*
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Nodes in the computation graph are often called layers
Each layer is a simple differentiable function

Layers can implement multivariate functions
Example of popular layers:
o Affine layer: O = WX +b1" where W € R™" 2 € R™¢ b € R™
o Unary layer: Vi, o; = f(x;) for some f: R — R e.g.
o Sigmoid: f(x) = (1 + exp(—=))~*
o Rectified Linear Unit (ReLU): f(z) = max{0,x} (discuss: derivative?)
e Binary layer: Vi, o; = f(x;,y;) for some f : R? - R e.g.
o Add layer: f(z,y)=z+y
o Hinge loss: f(z,y) = [1 — yizi]+
o Logistic loss: f(x,y) = log(1 + exp(—y:z:))

Main message

Computation graph enables us to construct very complicated functions
from simple building blocks
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Backpropgation for multivariate layers

@ Recall the backpropagation rule:
e For i in Layer[t]->inputs:
@ i->delta = Layer[t]->delta *
Layer[t]->derivative(i,Layer [t]->inputs)
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Backpropgation for multivariate layers

@ Recall the backpropagation rule:
e For i in Layer[t]->inputs:
@ i->delta = Layer[t]->delta *
Layer[t]->derivative(i,Layer [t]->inputs)
e “delta” is now a vector (same dimension as the output of the layer)

@ ‘“derivative” is the Jacobian matrix:
The Jacobian of f: R” — R™ at x € R, denoted Jx(f), is the
m X n matrix whose 7, j element is the partial derivative of
fi : R™ — R w.r.t. its j'th variable at x.
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Backpropgation for multivariate layers

@ Recall the backpropagation rule:
e For i in Layer[t]->inputs:
@ i->delta = Layer[t]->delta *
Layer[t]->derivative(i,Layer [t]->inputs)

e “delta” is now a vector (same dimension as the output of the layer)
@ ‘“derivative” is the Jacobian matrix:

The Jacobian of f: R” — R™ at x € R, denoted Jx(f), is the

m X n matrix whose 7, j element is the partial derivative of

fi : R™ — R w.r.t. its j'th variable at x.
@ The multiplication is matrix multiplication

@ The correctness of the algorithm follows from the multivariate chain
rule

Jw(f © g) = Jg(w) (f)Jw(g)
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Jacobian — Examples

o If f : R™ — R" is element-wise application of ¢ : R — R then
Ju() = diag((o/(21), .., o' (20))-

Shai Shalev-Shwartz (Hebrew U) IML Deep Learning Neural Networks 11 /38



Jacobian — Examples

o If f : R™ — R" is element-wise application of ¢ : R — R then
To(£) = diag((0” (1), .., (an))).
o Let f(x,w,b) = w'x + b for w,x € R?, b € RL. Then:

JE)=w' | J.E)=x" | JB()=1
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Jacobian — Examples

o If f : R™ — R" is element-wise application of ¢ : R — R then
To(£) = diag((0” (1), .., (an))).
o Let f(x,w,b) = w'x + b for w,x € R?, b € RL. Then:

JE)=w' | J.E)=x" | JB()=1

o Let f(W,x) = Wx. Then:

x' 0 0

0 x! 0
LE) =W , Jy(f) = _

0 0 x"
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Outline

© Expressiveness and Sample Complexity
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Sample Complexity

o If we learn d parameters, and each one is stored in, say, 32 bits, then
the number of hypotheses in our class is at most 232¢. It follows that
the sample complexity is order of d.
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Sample Complexity

o If we learn d parameters, and each one is stored in, say, 32 bits, then
the number of hypotheses in our class is at most 232¢. It follows that
the sample complexity is order of d.

@ Other ways to improve generalization is all sort of regularization
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Expressiveness

@ So far in the course we considered hypotheses of the form
rw'z4b
@ Now, consider the following computation graph, known as “one

hidden layer network™ :
?Loss Iayer]«#nput layer: y]
?Variable layer: W) ]JAfFine layer: p = W@rM 4 p2 ]JVariable layer: b(2)]
TReLU layer: h(1) = [a(l)]+]
?Variable layer: W) ]—»olAffine layer: a® = Wz 4 p(V) }—OlVariable layer: b<1>]
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Expressiveness of “One Hidden Layer Network”

e Claim: Every Boolean function f: {£1}" — {£1} can be expressed
by a one hidden layer network.
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o Show that for integer = we have sign(z) = 2([x + 1]+ — [z]4+) — 1
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o Show that sign(z"u; — (n — 1)) is an indicator to (z == u;)

o Conclude that we can adjust the weights so that yp(z) > 1 for all
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@ Theorem: For every n, let s(n) be the minimal integer such that
there exists a one hidden layer network with s(n) hidden neurons that
implements all functions from {0,1}" to {0,1}. Then, s(n) is
exponential in n.
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Expressiveness of “One Hidden Layer Network”

e Claim: Every Boolean function f: {£1}" — {£1} can be expressed
by a one hidden layer network.

@ Proof:
o Show that for integer = we have sign(z) = 2([x + 1]+ — [z]4+) — 1
o Show that any f can be written as f(x) = V;(z == u;) for some
vectors uy, ..., U
o Show that sign(z"u; — (n — 1)) is an indicator to (z == u;)

o Conclude that we can adjust the weights so that yp(z) > 1 for all
examples (z,y)

@ Theorem: For every n, let s(n) be the minimal integer such that
there exists a one hidden layer network with s(n) hidden neurons that
implements all functions from {0,1}" to {0,1}. Then, s(n) is
exponential in n.

@ Proof: Think on the VC dimension ...

@ What type of functions can be implemented by small size networks?

Shai Shalev-Shwartz (Hebrew U) IML Deep Learning Neural Networks 15 / 38



Geometric Intuition

@ One hidden layer networks can express intersection of halfspaces
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Geometric Intuition

@ Two hidden layer networks can express unions of intersection of
halfspaces
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What can we express with T-depth networks ?

@ Theorem: Let T': N — N and for every n, let F,, be the set of
functions that can be implemented using a Turing machine using
runtime of at most T'(n). Then, there exist constants b, ¢ € R such
that for every n, there is a network of depth at most 7" and size at
most ¢T'(n)? + b such that it implements all functions in F;,.
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What can we express with T-depth networks ?

@ Theorem: Let T': N — N and for every n, let F,, be the set of
functions that can be implemented using a Turing machine using
runtime of at most T'(n). Then, there exist constants b, ¢ € R such
that for every n, there is a network of depth at most 7" and size at
most ¢T'(n)? + b such that it implements all functions in F;,.

@ Sample complexity is order of number of variables (in our case
polynomial in T)

@ Conclusion: A very weak notion of prior knowledge suffices — if we
only care about functions that can be implemented in time T'(n), we
can use neural networks of depth T" and size O(T(n)?), and the
sample complexity is also bounded by polynomial in T'(n) !

Shai Shalev-Shwartz (Hebrew U) IML Deep Learning Neural Networks 18 / 38



The ultimate hypothesis class

use prior knowl-
edge to con- deep  net-
struct ¢(z) and works

learn (w, p(x))

expert system

~

less prior knowledge
more data

No Free Lunch
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Outline

@ Computational Complexity
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Runtime of learning neural networks

@ Theorem: It is NP hard to implement the ERM rule even for one
hidden layer networks with just 4 neurons in the hidden layer.
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@ But, maybe ERM is hard but some improper algorithm works ?
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Runtime of learning neural networks

@ Theorem: It is NP hard to implement the ERM rule even for one
hidden layer networks with just 4 neurons in the hidden layer.

@ But, maybe ERM is hard but some improper algorithm works ?

@ Theorem: Under some average case complexity assumption, it is hard
to learn one hidden layer networks with w(log(d)) hidden neurons
even improperly
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How to train neural network 7

@ So, neural networks can form an excellent hypothesis class, but it is
intractable to train it.
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How to train neural network ?

@ So, neural networks can form an excellent hypothesis class, but it is
intractable to train it.

@ How is this different than the class of all Python programs that can
be implemented in code length of b bits ?

Shai Shalev-Shwartz (Hebrew U) IML Deep Learning Neural Networks 22 /38



How to train neural network ?

@ So, neural networks can form an excellent hypothesis class, but it is
intractable to train it.

@ How is this different than the class of all Python programs that can
be implemented in code length of b bits ?

@ Main technique: Gradient-based learning (using SGD)

Shai Shalev-Shwartz (Hebrew U) IML Deep Learning Neural Networks 22 /38



How to train neural network ?

@ So, neural networks can form an excellent hypothesis class, but it is
intractable to train it.

@ How is this different than the class of all Python programs that can
be implemented in code length of b bits ?

@ Main technique: Gradient-based learning (using SGD)
@ Not convex, no guarantees, can take a long time, but:
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How to train neural network ?

@ So, neural networks can form an excellent hypothesis class, but it is
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How to train neural network ?

@ So, neural networks can form an excellent hypothesis class, but it is
intractable to train it.

@ How is this different than the class of all Python programs that can
be implemented in code length of b bits ?

@ Main technique: Gradient-based learning (using SGD)

@ Not convex, no guarantees, can take a long time, but:
o Often (but not always) still works fine, finds a good solution
e Easier than optimizing over Python programs ...

o Need to apply some tricks (initialization, learning rate, mini-batching,
architecture), and need some luck
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Outline

© Convolutional Networks
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Deep Learning Golden age in Vision

*2012-2014 Imagenet results: CNN
non-CNN

* 2015 results: MSRA under 3.5% error. (using a CNN with |50 layers!)

figures from Yann LeCun’s CVPR’I 5 plenary
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Convolution Layer

@ Input: C images
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Convolution Layer

@ Input: C images
@ Output: C’ images
o Calculation:

C—1k-1k-1
ol W, w'] =b") + W e, hyw] X[e,h + B w4 w']
¢=0 h=0w=0

?r
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Convolution Layer

@ Input: C images
@ Output: C’ images

o Calculation:

?r

C—1k-1k-1
ol W, w'] =b") + W e, hyw] X[e,h + B w4 w']
c=0 h=0w=0

o Observe: equivalent to an Affine layer with weight sharing
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Convolution Layer

Input: C' images

@ Output: C’ images
e Calculation:
C—-1k—1k-1
ol W, w'] =b") + W e, hyw] X[e,h + B w4 w']
c=0 h=0w=0
o Observe: equivalent to an Affine layer with weight sharing

Observe: can be implemented as a combination of Im2Col layer and
Affine layer
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Im2Col Layer

@ Im2Col for 3 x 3 convolution
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Im2Col Layer

@ Im2Col for 3 x 3 convolution with 2 input channels
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Parameters of Convolutions layer

o Kernel height and kernel width
@ Stride height and stride width
@ zero padding (True or False)
@ Number of output channels

Neural Networks 28 / 38
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Pooling Layer

o Input: Image of size H x W
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Pooling Layer

o Input: Image of size H x W

e Output: Image of size (H/k) x (W/k)

@ Calculation: Divide input image to k x k windows and for each such
window output the maximal value (or average value)
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Pooling Layer

Input: Image of size H x W

Output: Image of size (H/k) x (W/k)

Calculation: Divide input image to k x k& windows and for each such
window output the maximal value (or average value)

Observe: equivalent to Im2Col + reduce operation

Discuss: how to calculate derivative ?
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Outline

@ Solving MNIST with LeNet using Tensorflow
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Example: LeNet for MNIST

@ The task: Handwritten digits recognition
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@ The task: Handwritten digits recognition
o Input space: X = {0,1,...,255}28%28
o Output space: Y ={0,1,...,9}
@ Multiclass categorization:
o We take hypotheses of the form h : X — R
o We interpret h(z) as a vector that gives scores for all the labels
o The actual prediction is the label with the highest score: argmax; h;(z)
e Network architecture:  — Conv(5x5,1x1,no-pad,20) — Pool(2x2) —
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Affine(10).
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Example: LeNet for MNIST

@ The task: Handwritten digits recognition
o Input space: X = {0,1,...,255}28%28
o Output space: Y ={0,1,...,9}

@ Multiclass categorization:

o We take hypotheses of the form h : X — R
o We interpret h(z) as a vector that gives scores for all the labels
o The actual prediction is the label with the highest score: argmax; h;(z)
e Network architecture:  — Conv(5x5,1x1,no-pad,20) — Pool(2x2) —
Conv(5x5,1x1,no-pad,50) — Pool(2x2) — Affine(500) — ReLU —
Affine(10).
@ Logistic loss for multiclass categorization:
S — _exp(hi(z))
e SoftMax: Vi, p; = 5, exp(h; ()
o Logloss: If the correct label is y then the loss is

—log(p,) = log (Zj exp(h;(z) — hz(m)))
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Outline

@ Tips and Tricks
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Reduction Layers

@ The complexity of convolutional layers is Ci, X Cout X H x W
@ A “reduction layer” is a 1 x 1 convolution aiming at reducing Cj,

@ It can greatly reduce the computational complexity (less time) and
sample complexity (fewer parameters)
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Inception modules

(b) Inception module with dimensionality reduction

Figure 2: Inception module

o Szegedy et al (Google)
@ Won the ImageNet 2014 challenge (6.67% error)
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Residual Networks

X
Y
weight layer
.F(x) "rem
weight layer
F(x) +x

X
identity

Figure 2. Residual learning: a building block.

@ He, Zhang, Ren, Sun (Microsoft)

@ Won the ImageNet 2015 challenge with a 152 layers network (3.57%

error)
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Some Training Tricks

@ Input normalization: divide each element of x by 255 to make sure it
is in [0, 1]
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Some Training Tricks

@ Input normalization: divide each element of x by 255 to make sure it
is in [0, 1]

@ Initialization is important: One trick that works well in practice is to
initialize the bias to be zero and initialize the rows of W to be
random in [—1/y/n,1/y/n]

@ Mini-batches: At each iteration of SGD we calculate the average loss
on k random examples for k > 1. Advantages:

o Reduces the variance of the update direction (w.r.t. the full gradient),
hence converges faster
e We don't pay a lot in time because of parallel implementation
@ Learning rate: Choice of learning rate is important. One way is to
start with some fixed 7 and decrease it by 1/2 whenever the training
stops making progress.

@ Variants of SGD: There are plenty of variants that work better than
vanilla SGD.
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Failures of Deep Learning

Parity of more than 30 bits
Multiplication of large numbers

Matrix inversion
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@ Deep Learning can be used to construct the ultimate hypothesis class
@ Worst-case complexity is exponential

@ ...but, empirically, it works reasonably well and leads to
state-of-the-art on many real world problems
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