Introduction to Machine Learning (67577)

Shai Shalev-Shwartz

School of CS and Engineering, The Hebrew University of Jerusalem

Deep Learning

Outline

- Gradient-Based Learning
- 2 Computation Graph and Backpropagation
- 3 Expressiveness and Sample Complexity
- 4 Computational Complexity
- Convolutional Networks
- 6 Solving MNIST with LeNet using Tensorflow
- Tips and Tricks

ullet Consider a hypothesis class which is parameterized by a vector $heta \in \mathbb{R}^d$

- ullet Consider a hypothesis class which is parameterized by a vector $heta \in \mathbb{R}^d$
- Loss function of h_{θ} on example (x,y) is denoted $\ell(\theta;(x,y))$

- ullet Consider a hypothesis class which is parameterized by a vector $heta \in \mathbb{R}^d$
- Loss function of h_{θ} on example (x,y) is denoted $\ell(\theta;(x,y))$
- The true and empirical risks are

$$L_{\mathcal{D}}(\theta) = \underset{(x,y)\sim\mathcal{D}}{\mathbb{E}}[\ell(\theta;(x,y))] , \quad L_{S}(\theta) = \frac{1}{m} \sum_{i=1}^{m} \ell(\theta;(x_{i},y_{i}))$$

- ullet Consider a hypothesis class which is parameterized by a vector $heta \in \mathbb{R}^d$
- Loss function of h_{θ} on example (x,y) is denoted $\ell(\theta;(x,y))$
- The true and empirical risks are

$$L_{\mathcal{D}}(\theta) = \underset{(x,y)\sim\mathcal{D}}{\mathbb{E}}[\ell(\theta;(x,y))] , \quad L_{S}(\theta) = \frac{1}{m} \sum_{i=1}^{m} \ell(\theta;(x_{i},y_{i}))$$

• Assumption: ℓ is differentiable w.r.t. θ and we can calculate $\nabla \ell(\theta;(x,y))$ efficiently

- ullet Consider a hypothesis class which is parameterized by a vector $heta \in \mathbb{R}^d$
- Loss function of h_{θ} on example (x,y) is denoted $\ell(\theta;(x,y))$
- The true and empirical risks are

$$L_{\mathcal{D}}(\theta) = \underset{(x,y)\sim\mathcal{D}}{\mathbb{E}}[\ell(\theta;(x,y))] , \quad L_{S}(\theta) = \frac{1}{m} \sum_{i=1}^{m} \ell(\theta;(x_{i},y_{i}))$$

- Assumption: ℓ is differentiable w.r.t. θ and we can calculate $\nabla \ell(\theta;(x,y))$ efficiently
- Minimize $L_{\mathcal{D}}$ or L_S with Stochastic Gradient Descent (SGD): Start with $\theta^{(0)}$ and update $\theta^{(t+1)} = \theta^{(t)} \eta_t \nabla \ell(\theta^{(t)}; (x,y))$

- ullet Consider a hypothesis class which is parameterized by a vector $heta \in \mathbb{R}^d$
- Loss function of h_{θ} on example (x,y) is denoted $\ell(\theta;(x,y))$
- The true and empirical risks are

$$L_{\mathcal{D}}(\theta) = \underset{(x,y)\sim\mathcal{D}}{\mathbb{E}}[\ell(\theta;(x,y))] , \quad L_{S}(\theta) = \frac{1}{m} \sum_{i=1}^{m} \ell(\theta;(x_{i},y_{i}))$$

- Assumption: ℓ is differentiable w.r.t. θ and we can calculate $\nabla \ell(\theta;(x,y))$ efficiently
- Minimize $L_{\mathcal{D}}$ or L_S with Stochastic Gradient Descent (SGD): Start with $\theta^{(0)}$ and update $\theta^{(t+1)} = \theta^{(t)} - \eta_t \nabla \ell(\theta^{(t)}; (x, y))$
- SGD converges for convex problems. It may work for non-convex problems if we initialize "close enough" to a "good minimum"

Outline

- Gradient-Based Learning
- 2 Computation Graph and Backpropagation
- 3 Expressiveness and Sample Complexity
- 4 Computational Complexity
- Convolutional Networks
- Solving MNIST with LeNet using Tensorflow
- Tips and Tricks

Computation Graph

A computation graph for a one dimensional Least Squares

(numbering of nodes corresponds to topological sort):

Gradient Calculation using the Chain Rule

• Fix x, y and write ℓ as a function of w by

$$\ell(w) = s(r_y(p_x(w))) = (s \circ r_y \circ p_x)(w) .$$

Gradient Calculation using the Chain Rule

ullet Fix x,y and write ℓ as a function of w by

$$\ell(w) = s(r_y(p_x(w))) = (s \circ r_y \circ p_x)(w) .$$

Chain rule:

$$\ell'(w) = (s \circ r_y \circ p_x)'(w)$$

$$= s'(r_y(p_x(w))) \cdot (r_y \circ p_x)'(w)$$

$$= s'(r_y(p_x(w))) \cdot r'_y(p_x(w)) \cdot p'_x(w)$$

Gradient Calculation using the Chain Rule

• Fix x, y and write ℓ as a function of w by

$$\ell(w) = s(r_y(p_x(w))) = (s \circ r_y \circ p_x)(w) .$$

Chain rule:

$$\ell'(w) = (s \circ r_y \circ p_x)'(w)$$

$$= s'(r_y(p_x(w))) \cdot (r_y \circ p_x)'(w)$$

$$= s'(r_y(p_x(w))) \cdot r'_y(p_x(w)) \cdot p'_x(w)$$

Backpropagation: Calculate by a Forward-Backward pass over the graph

Computation Graph — Forward

- For $t = 0, 1, \dots, T 1$
 - Layer[t]->output = Layer[t]->function(Layer[t]->inputs)

Computation Graph — Backward

- Recall: $\ell'(w) = s'(r_y(p_x(w))) \cdot r_y'(p_x(w)) \cdot p_x'(w)$
- Layer[T-1]->delta = 1
- For $t = T 1, T 2, \dots, 0$
 - For i in Layer[t]->inputs:
 - i->delta = Layer[t]->delta *
 Layer[t]->derivative(i,Layer[t]->inputs)

• Nodes in the computation graph are often called layers

- Nodes in the computation graph are often called layers
- Each layer is a simple differentiable function

- Nodes in the computation graph are often called layers
- Each layer is a simple differentiable function
- Layers can implement multivariate functions

- Nodes in the computation graph are often called layers
- Each layer is a simple differentiable function
- Layers can implement multivariate functions
- Example of popular layers:

- Nodes in the computation graph are often called layers
- Each layer is a simple differentiable function
- Layers can implement multivariate functions
- Example of popular layers:
 - Affine layer: $O = WX + b \, 1^{\top}$ where $W \in \mathbb{R}^{m,n}, x \in \mathbb{R}^{n,c}, b \in \mathbb{R}^m$

- Nodes in the computation graph are often called layers
- Each layer is a simple differentiable function
- Layers can implement multivariate functions
- Example of popular layers:
 - Affine layer: $O = WX + b \, 1^{\top}$ where $W \in \mathbb{R}^{m,n}, x \in \mathbb{R}^{n,c}, b \in \mathbb{R}^m$
 - Unary layer: $\forall i, \ o_i = f(x_i)$ for some $f: \mathbb{R} \to \mathbb{R}$ e.g.

- Nodes in the computation graph are often called layers
- Each layer is a simple differentiable function
- Layers can implement multivariate functions
- Example of popular layers:
 - Affine layer: $O = WX + b \mathbf{1}^{\top}$ where $W \in \mathbb{R}^{m,n}, x \in \mathbb{R}^{n,c}, b \in \mathbb{R}^m$
 - Unary layer: $\forall i,\ o_i = f(x_i)$ for some $f: \mathbb{R} \to \mathbb{R}$ e.g.
 - Sigmoid: $f(x) = (1 + \exp(-x))^{-1}$

- Nodes in the computation graph are often called layers
- Each layer is a simple differentiable function
- Layers can implement multivariate functions
- Example of popular layers:
 - Affine layer: $O = WX + b \mathbf{1}^{\top}$ where $W \in \mathbb{R}^{m,n}, x \in \mathbb{R}^{n,c}, b \in \mathbb{R}^m$
 - Unary layer: $\forall i,\ o_i = f(x_i)$ for some $f: \mathbb{R} \to \mathbb{R}$ e.g.
 - Sigmoid: $f(x) = (1 + \exp(-x))^{-1}$
 - Rectified Linear Unit (ReLU): $f(x) = \max\{0, x\}$ (discuss: derivative?)

- Nodes in the computation graph are often called layers
- Each layer is a simple differentiable function
- Layers can implement multivariate functions
- Example of popular layers:
 - Affine layer: $O = WX + b \mathbf{1}^{\top}$ where $W \in \mathbb{R}^{m,n}, x \in \mathbb{R}^{n,c}, b \in \mathbb{R}^m$
 - Unary layer: $\forall i, \ o_i = f(x_i)$ for some $f: \mathbb{R} \to \mathbb{R}$ e.g.
 - Sigmoid: $f(x) = (1 + \exp(-x))^{-1}$
 - Rectified Linear Unit (ReLU): $f(x) = \max\{0, x\}$ (discuss: derivative?)
 - Binary layer: $\forall i,\ o_i = f(x_i,y_i)$ for some $f:\mathbb{R}^2 \to \mathbb{R}$ e.g.

- Nodes in the computation graph are often called layers
- Each layer is a simple differentiable function
- Layers can implement multivariate functions
- Example of popular layers:
 - Affine layer: $O = WX + b \mathbf{1}^{\top}$ where $W \in \mathbb{R}^{m,n}, x \in \mathbb{R}^{n,c}, b \in \mathbb{R}^m$
 - Unary layer: $\forall i, \ o_i = f(x_i)$ for some $f: \mathbb{R} \to \mathbb{R}$ e.g.
 - Sigmoid: $f(x) = (1 + \exp(-x))^{-1}$
 - Rectified Linear Unit (ReLU): $f(x) = \max\{0, x\}$ (discuss: derivative?)
 - ullet Binary layer: $orall i,\ o_i=f(x_i,y_i)$ for some $f:\mathbb{R}^2 o \mathbb{R}$ e.g.
 - Add layer: f(x,y) = x + y

- Nodes in the computation graph are often called layers
- Each layer is a simple differentiable function
- Layers can implement multivariate functions
- Example of popular layers:
 - Affine layer: $O = WX + b \mathbf{1}^{\top}$ where $W \in \mathbb{R}^{m,n}, x \in \mathbb{R}^{n,c}, b \in \mathbb{R}^m$
 - Unary layer: $\forall i, \ o_i = f(x_i)$ for some $f: \mathbb{R} \to \mathbb{R}$ e.g.
 - Sigmoid: $f(x) = (1 + \exp(-x))^{-1}$
 - Rectified Linear Unit (ReLU): $f(x) = \max\{0, x\}$ (discuss: derivative?)
 - ullet Binary layer: $orall i,\ o_i=f(x_i,y_i)$ for some $f:\mathbb{R}^2 o \mathbb{R}$ e.g.
 - Add layer: f(x,y) = x + y
 - Hinge loss: $f(x,y) = [1 y_i x_i]_+$

- Nodes in the computation graph are often called layers
- Each layer is a simple differentiable function
- Layers can implement multivariate functions
- Example of popular layers:
 - Affine layer: $O = WX + b \mathbf{1}^{\top}$ where $W \in \mathbb{R}^{m,n}, x \in \mathbb{R}^{n,c}, b \in \mathbb{R}^m$
 - Unary layer: $\forall i, \ o_i = f(x_i)$ for some $f: \mathbb{R} \to \mathbb{R}$ e.g.
 - Sigmoid: $f(x) = (1 + \exp(-x))^{-1}$
 - Rectified Linear Unit (ReLU): $f(x) = \max\{0, x\}$ (discuss: derivative?)
 - Binary layer: $\forall i,\ o_i = f(x_i,y_i)$ for some $f:\mathbb{R}^2 \to \mathbb{R}$ e.g.
 - Add layer: f(x,y) = x + y
 - Hinge loss: $f(x,y) = [1 y_i x_i]_+$
 - Logistic loss: $f(x,y) = \log(1 + \exp(-y_i x_i))$

- Nodes in the computation graph are often called layers
- Each layer is a simple differentiable function
- Layers can implement multivariate functions
- Example of popular layers:
 - Affine layer: $O = WX + b \mathbf{1}^{\top}$ where $W \in \mathbb{R}^{m,n}, x \in \mathbb{R}^{n,c}, b \in \mathbb{R}^m$
 - Unary layer: $\forall i, \ o_i = f(x_i)$ for some $f: \mathbb{R} \to \mathbb{R}$ e.g.
 - Sigmoid: $f(x) = (1 + \exp(-x))^{-1}$
 - Rectified Linear Unit (ReLU): $f(x) = \max\{0, x\}$ (discuss: derivative?)
 - Binary layer: $\forall i,\ o_i = f(x_i,y_i)$ for some $f:\mathbb{R}^2 \to \mathbb{R}$ e.g.
 - Add layer: f(x,y) = x + y
 - Hinge loss: $f(x,y) = [1 y_i x_i]_+$
 - Logistic loss: $f(x,y) = \log(1 + \exp(-y_i x_i))$

- Nodes in the computation graph are often called layers
- Each layer is a simple differentiable function
- Layers can implement multivariate functions
- Example of popular layers:
 - Affine layer: $O = WX + b \mathbf{1}^{\top}$ where $W \in \mathbb{R}^{m,n}, x \in \mathbb{R}^{n,c}, b \in \mathbb{R}^m$
 - Unary layer: $\forall i, \ o_i = f(x_i) \text{ for some } f: \mathbb{R} \to \mathbb{R} \text{ e.g.}$
 - Sigmoid: $f(x) = (1 + \exp(-x))^{-1}$
 - Rectified Linear Unit (ReLU): $f(x) = \max\{0, x\}$ (discuss: derivative?)
 - Binary layer: $\forall i, \ o_i = f(x_i, y_i) \text{ for some } f: \mathbb{R}^2 \to \mathbb{R} \text{ e.g.}$
 - Add layer: f(x,y) = x + y
 - Hinge loss: $f(x,y) = [1 y_i x_i]_+$
 - Logistic loss: $f(x,y) = \log(1 + \exp(-y_i x_i))$

Main message

Computation graph enables us to construct very complicated functions from simple building blocks

- Recall the backpropagation rule:
 - For i in Layer[t]->inputs:
 - i->delta = Layer[t]->delta *
 Layer[t]->derivative(i,Layer[t]->inputs)

- Recall the backpropagation rule:
 - For i in Layer[t]->inputs:
 - i->delta = Layer[t]->delta *
 Layer[t]->derivative(i,Layer[t]->inputs)
- "delta" is now a vector (same dimension as the output of the layer)

- Recall the backpropagation rule:
 - For i in Layer[t]->inputs:
 - i->delta = Layer[t]->delta *
 Layer[t]->derivative(i,Layer[t]->inputs)
- "delta" is now a vector (same dimension as the output of the layer)
- "derivative" is the Jacobian matrix: The Jacobian of $\mathbf{f}: \mathbb{R}^n \to \mathbb{R}^m$ at $\mathbf{x} \in \mathbb{R}^n$, denoted $J_{\mathbf{x}}(\mathbf{f})$, is the $m \times n$ matrix whose i, j element is the partial derivative of $f_i: \mathbb{R}^n \to \mathbb{R}$ w.r.t. its j'th variable at \mathbf{x} .

- Recall the backpropagation rule:
 - For i in Layer[t]->inputs:
 - i->delta = Layer[t]->delta *
 Layer[t]->derivative(i,Layer[t]->inputs)
- "delta" is now a vector (same dimension as the output of the layer)
- "derivative" is the Jacobian matrix: The Jacobian of $\mathbf{f}: \mathbb{R}^n \to \mathbb{R}^m$ at $\mathbf{x} \in \mathbb{R}^n$, denoted $J_{\mathbf{x}}(\mathbf{f})$, is the $m \times n$ matrix whose i,j element is the partial derivative of $f_i: \mathbb{R}^n \to \mathbb{R}$ w.r.t. its j'th variable at \mathbf{x} .
- The multiplication is matrix multiplication

- Recall the backpropagation rule:
 - For i in Layer[t]->inputs:
 - i->delta = Layer[t]->delta *
 Layer[t]->derivative(i,Layer[t]->inputs)
- "delta" is now a vector (same dimension as the output of the layer)
- "derivative" is the Jacobian matrix: The Jacobian of $\mathbf{f}: \mathbb{R}^n \to \mathbb{R}^m$ at $\mathbf{x} \in \mathbb{R}^n$, denoted $J_{\mathbf{x}}(\mathbf{f})$, is the $m \times n$ matrix whose i, j element is the partial derivative of $f_i: \mathbb{R}^n \to \mathbb{R}$ w.r.t. its j'th variable at \mathbf{x} .
- The multiplication is matrix multiplication
- The correctness of the algorithm follows from the multivariate chain rule

$$J_{\mathbf{w}}(\mathbf{f} \circ \mathbf{g}) = J_{g(\mathbf{w})}(\mathbf{f})J_{\mathbf{w}}(\mathbf{g})$$

Jacobian — Examples

• If $\mathbf{f}: \mathbb{R}^n \to \mathbb{R}^n$ is element-wise application of $\sigma: \mathbb{R} \to \mathbb{R}$ then $J_{\mathbf{x}}(\mathbf{f}) = \mathrm{diag}((\sigma'(x_1), \ldots, \sigma'(x_n)))$.

Jacobian — Examples

- If $\mathbf{f}: \mathbb{R}^n \to \mathbb{R}^n$ is element-wise application of $\sigma: \mathbb{R} \to \mathbb{R}$ then $J_{\mathbf{x}}(\mathbf{f}) = \mathrm{diag}((\sigma'(x_1), \ldots, \sigma'(x_n)))$.
- Let $\mathbf{f}(\mathbf{x}, \mathbf{w}, b) = \mathbf{w}^{\top} \mathbf{x} + b$ for $\mathbf{w}, \mathbf{x} \in \mathbb{R}^n, b \in \mathbb{R}^1$. Then:

$$J_{\mathbf{x}}(\mathbf{f}) = \mathbf{w}^{\top}$$
 , $J_{\mathbf{w}}(\mathbf{f}) = \mathbf{x}^{\top}$, $J_b(\mathbf{f}) = 1$

Jacobian — Examples

- If $\mathbf{f}: \mathbb{R}^n \to \mathbb{R}^n$ is element-wise application of $\sigma: \mathbb{R} \to \mathbb{R}$ then $J_{\mathbf{x}}(\mathbf{f}) = \mathrm{diag}((\sigma'(x_1), \ldots, \sigma'(x_n)))$.
- Let $\mathbf{f}(\mathbf{x}, \mathbf{w}, b) = \mathbf{w}^{\top} \mathbf{x} + b$ for $\mathbf{w}, \mathbf{x} \in \mathbb{R}^n, b \in \mathbb{R}^1$. Then:

$$J_{\mathbf{x}}(\mathbf{f}) = \mathbf{w}^{\top}$$
, $J_{\mathbf{w}}(\mathbf{f}) = \mathbf{x}^{\top}$, $J_b(\mathbf{f}) = 1$

• Let $f(W, \mathbf{x}) = W\mathbf{x}$. Then:

$$J_{\mathbf{x}}(\mathbf{f}) = W \quad , \quad J_W(\mathbf{f}) \ = \begin{pmatrix} \mathbf{x}^\top & 0 & \cdots & 0 \\ 0 & \mathbf{x}^\top & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \mathbf{x}^\top \end{pmatrix} \quad .$$

Outline

- Gradient-Based Learning
- 2 Computation Graph and Backpropagation
- 3 Expressiveness and Sample Complexity
- 4 Computational Complexity
- Convolutional Networks
- 6 Solving MNIST with LeNet using Tensorflow
- Tips and Tricks

Sample Complexity

• If we learn d parameters, and each one is stored in, say, 32 bits, then the number of hypotheses in our class is at most 2^{32d} . It follows that the sample complexity is order of d.

Sample Complexity

- If we learn d parameters, and each one is stored in, say, 32 bits, then the number of hypotheses in our class is at most 2^{32d} . It follows that the sample complexity is order of d.
- Other ways to improve generalization is all sort of regularization

Expressiveness

- So far in the course we considered hypotheses of the form $x \mapsto w^{\top}x + b$
- Now, consider the following computation graph, known as "one hidden layer network":

• Claim: Every Boolean function $f: \{\pm 1\}^n \to \{\pm 1\}$ can be expressed by a one hidden layer network.

- Claim: Every Boolean function $f: \{\pm 1\}^n \to \{\pm 1\}$ can be expressed by a one hidden layer network.
- Proof:

- Claim: Every Boolean function $f: \{\pm 1\}^n \to \{\pm 1\}$ can be expressed by a one hidden layer network.
- Proof:
 - Show that for integer x we have $sign(x) = 2([x+1]_+ [x]_+) 1$

- Claim: Every Boolean function $f: \{\pm 1\}^n \to \{\pm 1\}$ can be expressed by a one hidden layer network.
- Proof:
 - Show that for integer x we have $sign(x) = 2([x+1]_+ [x]_+) 1$
 - Show that any f can be written as $f(x) = \vee_i (x == u_i)$ for some vectors u_1, \ldots, u_k

- Claim: Every Boolean function $f: \{\pm 1\}^n \to \{\pm 1\}$ can be expressed by a one hidden layer network.
- Proof:
 - Show that for integer x we have $sign(x) = 2([x+1]_+ [x]_+) 1$
 - Show that any f can be written as $f(x) = \vee_i (x == u_i)$ for some vectors u_1, \ldots, u_k
 - Show that $\operatorname{sign}(x^{\top}u_i (n-1))$ is an indicator to $(x == u_i)$

- Claim: Every Boolean function $f: \{\pm 1\}^n \to \{\pm 1\}$ can be expressed by a one hidden layer network.
- Proof:
 - Show that for integer x we have $sign(x) = 2([x+1]_+ [x]_+) 1$
 - Show that any f can be written as $f(x) = \vee_i (x == u_i)$ for some vectors u_1, \ldots, u_k
 - Show that $\operatorname{sign}(x^{\top}u_i (n-1))$ is an indicator to $(x == u_i)$
 - \bullet Conclude that we can adjust the weights so that $yp(x) \geq 1$ for all examples (x,y)

- Claim: Every Boolean function $f: \{\pm 1\}^n \to \{\pm 1\}$ can be expressed by a one hidden layer network.
- Proof:
 - Show that for integer x we have $sign(x) = 2([x+1]_+ [x]_+) 1$
 - Show that any f can be written as $f(x) = \vee_i (x == u_i)$ for some vectors u_1, \ldots, u_k
 - Show that $\operatorname{sign}(x^{\top}u_i (n-1))$ is an indicator to $(x == u_i)$
 - Conclude that we can adjust the weights so that $yp(x) \ge 1$ for all examples (x,y)
- Theorem: For every n, let s(n) be the minimal integer such that there exists a one hidden layer network with s(n) hidden neurons that implements all functions from $\{0,1\}^n$ to $\{0,1\}$. Then, s(n) is exponential in n.

- Claim: Every Boolean function $f: \{\pm 1\}^n \to \{\pm 1\}$ can be expressed by a one hidden layer network.
- Proof:
 - Show that for integer x we have $sign(x) = 2([x+1]_+ [x]_+) 1$
 - Show that any f can be written as $f(x) = \vee_i (x == u_i)$ for some vectors u_1, \ldots, u_k
 - Show that $\operatorname{sign}(x^{\top}u_i (n-1))$ is an indicator to $(x == u_i)$
 - Conclude that we can adjust the weights so that $yp(x) \ge 1$ for all examples (x,y)
- Theorem: For every n, let s(n) be the minimal integer such that there exists a one hidden layer network with s(n) hidden neurons that implements all functions from $\{0,1\}^n$ to $\{0,1\}$. Then, s(n) is exponential in n.
- Proof: Think on the VC dimension ...

- Claim: Every Boolean function $f: \{\pm 1\}^n \to \{\pm 1\}$ can be expressed by a one hidden layer network.
- Proof:
 - Show that for integer x we have $\operatorname{sign}(x) = 2([x+1]_+ [x]_+) 1$
 - Show that any f can be written as $f(x) = \vee_i (x == u_i)$ for some vectors u_1, \ldots, u_k
 - Show that $\operatorname{sign}(x^{\top}u_i (n-1))$ is an indicator to $(x == u_i)$
 - \bullet Conclude that we can adjust the weights so that $yp(x) \geq 1$ for all examples (x,y)
- Theorem: For every n, let s(n) be the minimal integer such that there exists a one hidden layer network with s(n) hidden neurons that implements all functions from $\{0,1\}^n$ to $\{0,1\}$. Then, s(n) is exponential in n.
- Proof: Think on the VC dimension ...
- What type of functions can be implemented by small size networks?

Neural Networks

Geometric Intuition

• One hidden layer networks can express intersection of halfspaces

Geometric Intuition

 Two hidden layer networks can express unions of intersection of halfspaces

What can we express with T-depth networks?

• Theorem: Let $T: \mathbb{N} \to \mathbb{N}$ and for every n, let \mathcal{F}_n be the set of functions that can be implemented using a Turing machine using runtime of at most T(n). Then, there exist constants $b, c \in \mathbb{R}_+$ such that for every n, there is a network of depth at most T and size at most $cT(n)^2 + b$ such that it implements all functions in \mathcal{F}_n .

What can we express with T-depth networks?

- Theorem: Let $T: \mathbb{N} \to \mathbb{N}$ and for every n, let \mathcal{F}_n be the set of functions that can be implemented using a Turing machine using runtime of at most T(n). Then, there exist constants $b, c \in \mathbb{R}_+$ such that for every n, there is a network of depth at most T and size at most $cT(n)^2 + b$ such that it implements all functions in \mathcal{F}_n .
- Sample complexity is order of number of variables (in our case polynomial in T)

What can we express with T-depth networks?

- Theorem: Let $T: \mathbb{N} \to \mathbb{N}$ and for every n, let \mathcal{F}_n be the set of functions that can be implemented using a Turing machine using runtime of at most T(n). Then, there exist constants $b,c\in\mathbb{R}_+$ such that for every n, there is a network of depth at most T and size at most $cT(n)^2+b$ such that it implements all functions in \mathcal{F}_n .
- Sample complexity is order of number of variables (in our case polynomial in T)
- Conclusion: A very weak notion of prior knowledge suffices if we only care about functions that can be implemented in time T(n), we can use neural networks of depth T and size $O(T(n)^2)$, and the sample complexity is also bounded by polynomial in T(n)!

The ultimate hypothesis class

Outline

- Gradient-Based Learning
- 2 Computation Graph and Backpropagation
- Secondary Secondary States (Secondary)
 Secondary Secondary
 <p
- 4 Computational Complexity
- **(5)** Convolutional Networks
- 6 Solving MNIST with LeNet using Tensorflow
- Tips and Tricks

Runtime of learning neural networks

• Theorem: It is NP hard to implement the ERM rule even for one hidden layer networks with just 4 neurons in the hidden layer.

Runtime of learning neural networks

- Theorem: It is NP hard to implement the ERM rule even for one hidden layer networks with just 4 neurons in the hidden layer.
- But, maybe ERM is hard but some improper algorithm works?

Runtime of learning neural networks

- Theorem: It is NP hard to implement the ERM rule even for one hidden layer networks with just 4 neurons in the hidden layer.
- But, maybe ERM is hard but some improper algorithm works?
- Theorem: Under some average case complexity assumption, it is hard to learn one hidden layer networks with $\omega(\log(d))$ hidden neurons even improperly

 So, neural networks can form an excellent hypothesis class, but it is intractable to train it.

- So, neural networks can form an excellent hypothesis class, but it is intractable to train it.
- How is this different than the class of all Python programs that can be implemented in code length of b bits?

- So, neural networks can form an excellent hypothesis class, but it is intractable to train it.
- How is this different than the class of all Python programs that can be implemented in code length of b bits?
- Main technique: Gradient-based learning (using SGD)

- So, neural networks can form an excellent hypothesis class, but it is intractable to train it.
- How is this different than the class of all Python programs that can be implemented in code length of b bits?
- Main technique: Gradient-based learning (using SGD)
- Not convex, no guarantees, can take a long time, but:

- So, neural networks can form an excellent hypothesis class, but it is intractable to train it.
- How is this different than the class of all Python programs that can be implemented in code length of b bits?
- Main technique: Gradient-based learning (using SGD)
- Not convex, no guarantees, can take a long time, but:
 - Often (but not always) still works fine, finds a good solution

- So, neural networks can form an excellent hypothesis class, but it is intractable to train it.
- How is this different than the class of all Python programs that can be implemented in code length of b bits?
- Main technique: Gradient-based learning (using SGD)
- Not convex, no guarantees, can take a long time, but:
 - Often (but not always) still works fine, finds a good solution
 - Easier than optimizing over Python programs ...

- So, neural networks can form an excellent hypothesis class, but it is intractable to train it.
- How is this different than the class of all Python programs that can be implemented in code length of b bits?
- Main technique: Gradient-based learning (using SGD)
- Not convex, no guarantees, can take a long time, but:
 - Often (but not always) still works fine, finds a good solution
 - Easier than optimizing over Python programs ...
 - Need to apply some tricks (initialization, learning rate, mini-batching, architecture), and need some luck

Outline

- Gradient-Based Learning
- 2 Computation Graph and Backpropagation
- 3 Expressiveness and Sample Complexity
- 4 Computational Complexity
- **5** Convolutional Networks
- 6 Solving MNIST with LeNet using Tensorflow
- Tips and Tricks

Deep Learning Golden age in Vision

• 2012-2014 Imagenet results:

CNN non-CNN

				110	JII-CI VI V
2012 Teams	%error	2013 Teams	%error	2014 Teams	%error
Supervision (Toronto)	15.3	Clarifai (NYU spinoff)	11.7	GoogLeNet	6.6
ISI (Tokyo)	26.1	NUS (singapore)	12.9	VGG (Oxford)	7.3
VGG (Oxford)	26.9	Zeiler-Fergus (NYU)	13.5	MSRA	8.0
XRCE/INRIA	27.0	A. Howard	13.5	A. Howard	8.1
UvA (Amsterdam)	29.6	OverFeat (NYU)	14.1	DeeperVision	9.5
INRIA/LEAR	33.4	UvA (Amsterdam)	14.2	NUS-BST	9.7
		Adobe	15.2	TTIC-ECP	10.2
		VGG (Oxford)	15.2	XYZ	11.2
		VGG (Oxford)	23.0	UvA	12.1

• 2015 results: MSRA under 3.5% error. (using a CNN with 150 layers!)

figures from Yann LeCun's CVPR'15 plenary

Convolution Layer

ullet Input: C images

Convolution Layer

ullet Input: C images

ullet Output: C' images

Convolution Layer

• Input: C images

• Output: C' images

Calculation:

$$O[c', h', w'] = b^{(c')} + \sum_{c=0}^{C-1} \sum_{h=0}^{k-1} \sum_{w=0}^{k-1} W^{(c')}[c, h, w] X[c, h + h', w + w']$$

Convolution Layer

Input: C images

• Output: C' images

Calculation:

$$O[c', h', w'] = b^{(c')} + \sum_{c=0}^{C-1} \sum_{h=0}^{k-1} \sum_{w=0}^{k-1} W^{(c')}[c, h, w] X[c, h + h', w + w']$$

Observe: equivalent to an Affine layer with weight sharing

Convolution Layer

- Input: C images
- Output: C' images
- Calculation:

$$O[c', h', w'] = b^{(c')} + \sum_{c=0}^{C-1} \sum_{h=0}^{k-1} \sum_{w=0}^{k-1} W^{(c')}[c, h, w] X[c, h + h', w + w']$$

- Observe: equivalent to an Affine layer with weight sharing
- Observe: can be implemented as a combination of Im2Col layer and Affine layer

Im2Col Layer

• Im2Col for 3×3 convolution

0	1	2	3	4
5	6	7	8	9
10	11	12	13	14
15	16	17	18	19
20	21	22	23	24

Im2Col Layer

ullet Im2Col for 3×3 convolution with 2 input channels

Parameters of Convolutions layer

- Kernel height and kernel width
- Stride height and stride width
- zero padding (True or False)
- Number of output channels

 \bullet Input: Image of size $H\times W$

ullet Input: Image of size $H \times W$

 \bullet Output: Image of size $(H/k)\times (W/k)$

- Input: Image of size $H \times W$
- ullet Output: Image of size $(H/k) \times (W/k)$
- Calculation: Divide input image to $k \times k$ windows and for each such window output the maximal value (or average value)

- Input: Image of size $H \times W$
- ullet Output: Image of size $(H/k) \times (W/k)$
- Calculation: Divide input image to $k \times k$ windows and for each such window output the maximal value (or average value)
- Observe: equivalent to Im2Col + reduce operation

- Input: Image of size $H \times W$
- Output: Image of size $(H/k) \times (W/k)$
- Calculation: Divide input image to $k \times k$ windows and for each such window output the maximal value (or average value)
- Observe: equivalent to Im2Col + reduce operation
- Discuss: how to calculate derivative ?

Outline

- Gradient-Based Learning
- 2 Computation Graph and Backpropagation
- Second Sample Complexity
- 4 Computational Complexity
- Convolutional Networks
- 6 Solving MNIST with LeNet using Tensorflow
- Tips and Tricks

• The task: Handwritten digits recognition

- The task: Handwritten digits recognition
 - Input space: $\mathcal{X} = \{0, 1, \dots, 255\}^{28 \times 28}$

- The task: Handwritten digits recognition
 - Input space: $\mathcal{X} = \{0, 1, \dots, 255\}^{28 \times 28}$
 - \bullet Output space: $\mathcal{Y} = \{0, 1, \dots, 9\}$

- The task: Handwritten digits recognition
 - Input space: $\mathcal{X} = \{0, 1, \dots, 255\}^{28 \times 28}$
 - Output space: $\mathcal{Y} = \{0, 1, \dots, 9\}$
- Multiclass categorization:

- The task: Handwritten digits recognition
 - Input space: $\mathcal{X} = \{0, 1, \dots, 255\}^{28 \times 28}$
 - Output space: $\mathcal{Y} = \{0, 1, \dots, 9\}$
- Multiclass categorization:
 - ullet We take hypotheses of the form $h:\mathcal{X}
 ightarrow \mathbb{R}^{|\mathcal{Y}|}$

- The task: Handwritten digits recognition
 - Input space: $\mathcal{X} = \{0, 1, \dots, 255\}^{28 \times 28}$
 - Output space: $\mathcal{Y} = \{0, 1, ..., 9\}$
- Multiclass categorization:
 - ullet We take hypotheses of the form $h:\mathcal{X} o \mathbb{R}^{|\mathcal{Y}|}$
 - We interpret h(x) as a vector that gives scores for all the labels

- The task: Handwritten digits recognition
 - Input space: $\mathcal{X} = \{0, 1, \dots, 255\}^{28 \times 28}$
 - Output space: $\mathcal{Y} = \{0, 1, ..., 9\}$
- Multiclass categorization:
 - ullet We take hypotheses of the form $h:\mathcal{X} o \mathbb{R}^{|\mathcal{Y}|}$
 - ullet We interpret h(x) as a vector that gives scores for all the labels
 - ullet The actual prediction is the label with the highest score: $rgmax_i h_i(x)$

- The task: Handwritten digits recognition
 - Input space: $\mathcal{X} = \{0, 1, \dots, 255\}^{28 \times 28}$
 - Output space: $\mathcal{Y} = \{0, 1, ..., 9\}$
- Multiclass categorization:
 - ullet We take hypotheses of the form $h:\mathcal{X} o \mathbb{R}^{|\mathcal{Y}|}$
 - ullet We interpret h(x) as a vector that gives scores for all the labels
 - \bullet The actual prediction is the label with the highest score: $\operatorname{argmax}_i h_i(x)$
- Network architecture: $x \to \mathsf{Conv}(5\mathsf{x}5,1\mathsf{x}1,\mathsf{no-pad},20) \to \mathsf{Pool}(2\mathsf{x}2) \to \mathsf{Conv}(5\mathsf{x}5,1\mathsf{x}1,\mathsf{no-pad},50) \to \mathsf{Pool}(2\mathsf{x}2) \to \mathsf{Affine}(500) \to \mathsf{ReLU} \to \mathsf{Affine}(10).$

- The task: Handwritten digits recognition
 - Input space: $\mathcal{X} = \{0, 1, \dots, 255\}^{28 \times 28}$
 - Output space: $\mathcal{Y} = \{0, 1, ..., 9\}$
- Multiclass categorization:
 - ullet We take hypotheses of the form $h:\mathcal{X} o \mathbb{R}^{|\mathcal{Y}|}$
 - We interpret h(x) as a vector that gives scores for all the labels
 - \bullet The actual prediction is the label with the highest score: $\operatorname{argmax}_i h_i(x)$
- Network architecture: $x \to \mathsf{Conv}(5\mathsf{x}5,1\mathsf{x}1,\mathsf{no-pad},20) \to \mathsf{Pool}(2\mathsf{x}2) \to \mathsf{Conv}(5\mathsf{x}5,1\mathsf{x}1,\mathsf{no-pad},50) \to \mathsf{Pool}(2\mathsf{x}2) \to \mathsf{Affine}(500) \to \mathsf{ReLU} \to \mathsf{Affine}(10).$
- Logistic loss for multiclass categorization:

- The task: Handwritten digits recognition
 - Input space: $\mathcal{X} = \{0, 1, \dots, 255\}^{28 \times 28}$
 - Output space: $\mathcal{Y} = \{0, 1, ..., 9\}$
- Multiclass categorization:
 - ullet We take hypotheses of the form $h:\mathcal{X} o \mathbb{R}^{|\mathcal{Y}|}$
 - ullet We interpret h(x) as a vector that gives scores for all the labels
 - \bullet The actual prediction is the label with the highest score: $\operatorname{argmax}_i h_i(x)$
- Network architecture: $x \to \mathsf{Conv}(5\mathsf{x}5,1\mathsf{x}1,\mathsf{no-pad},20) \to \mathsf{Pool}(2\mathsf{x}2) \to \mathsf{Conv}(5\mathsf{x}5,1\mathsf{x}1,\mathsf{no-pad},50) \to \mathsf{Pool}(2\mathsf{x}2) \to \mathsf{Affine}(500) \to \mathsf{ReLU} \to \mathsf{Affine}(10).$
- Logistic loss for multiclass categorization:
 - SoftMax: $\forall i, p_i = \frac{\exp(h_i(x))}{\sum_j \exp(h_j(x))}$

- The task: Handwritten digits recognition
 - Input space: $\mathcal{X} = \{0, 1, \dots, 255\}^{28 \times 28}$
 - Output space: $\mathcal{Y} = \{0, 1, ..., 9\}$
- Multiclass categorization:
 - ullet We take hypotheses of the form $h:\mathcal{X} o \mathbb{R}^{|\mathcal{Y}|}$
 - We interpret h(x) as a vector that gives scores for all the labels
 - \bullet The actual prediction is the label with the highest score: $\operatorname{argmax}_i h_i(x)$
- Network architecture: $x \to \mathsf{Conv}(5\mathsf{x}5,1\mathsf{x}1,\mathsf{no-pad},20) \to \mathsf{Pool}(2\mathsf{x}2) \to \mathsf{Conv}(5\mathsf{x}5,1\mathsf{x}1,\mathsf{no-pad},50) \to \mathsf{Pool}(2\mathsf{x}2) \to \mathsf{Affine}(500) \to \mathsf{ReLU} \to \mathsf{Affine}(10).$
- Logistic loss for multiclass categorization:
 - SoftMax: $\forall i, p_i = \frac{\exp(h_i(x))}{\sum_j \exp(h_j(x))}$
 - \bullet LogLoss: If the correct label is y then the loss is

$$-\log(p_y) = \log\left(\sum_j \exp(h_j(x) - h_i(x))\right)$$

Outline

- Gradient-Based Learning
- 2 Computation Graph and Backpropagation
- Second Sample Complexity
- 4 Computational Complexity
- Convolutional Networks
- 6 Solving MNIST with LeNet using Tensorflow
- Tips and Tricks

Reduction Layers

- The complexity of convolutional layers is $C_{\rm in} \times C_{\rm out} \times H \times W$
- ullet A "reduction layer" is a 1 imes 1 convolution aiming at reducing $C_{
 m in}$
- It can greatly reduce the computational complexity (less time) and sample complexity (fewer parameters)

Inception modules

Figure 2: Inception module

- Szegedy et al (Google)
- Won the ImageNet 2014 challenge (6.67% error)

Residual Networks

Figure 2. Residual learning: a building block.

- He, Zhang, Ren, Sun (Microsoft)
- Won the ImageNet 2015 challenge with a 152 layers network (3.57% error)

• Input normalization: divide each element of x by 255 to make sure it is in $\left[0,1\right]$

- Input normalization: divide each element of x by 255 to make sure it is in [0,1]
- Initialization is important: One trick that works well in practice is to initialize the bias to be zero and initialize the rows of W to be random in $[-1/\sqrt{n},1/\sqrt{n}]$

- Input normalization: divide each element of x by 255 to make sure it is in $\left[0,1\right]$
- Initialization is important: One trick that works well in practice is to initialize the bias to be zero and initialize the rows of W to be random in $[-1/\sqrt{n},1/\sqrt{n}]$
- Mini-batches: At each iteration of SGD we calculate the average loss on k random examples for k > 1. Advantages:

- Input normalization: divide each element of x by 255 to make sure it is in $\left[0,1\right]$
- Initialization is important: One trick that works well in practice is to initialize the bias to be zero and initialize the rows of W to be random in $[-1/\sqrt{n},1/\sqrt{n}]$
- Mini-batches: At each iteration of SGD we calculate the average loss on k random examples for k > 1. Advantages:
 - Reduces the variance of the update direction (w.r.t. the full gradient), hence converges faster

- Input normalization: divide each element of x by 255 to make sure it is in $\left[0,1\right]$
- Initialization is important: One trick that works well in practice is to initialize the bias to be zero and initialize the rows of W to be random in $[-1/\sqrt{n},1/\sqrt{n}]$
- Mini-batches: At each iteration of SGD we calculate the average loss on k random examples for k > 1. Advantages:
 - Reduces the variance of the update direction (w.r.t. the full gradient), hence converges faster
 - We don't pay a lot in time because of parallel implementation

- Input normalization: divide each element of x by 255 to make sure it is in $\left[0,1\right]$
- Initialization is important: One trick that works well in practice is to initialize the bias to be zero and initialize the rows of W to be random in $[-1/\sqrt{n},1/\sqrt{n}]$
- Mini-batches: At each iteration of SGD we calculate the average loss on k random examples for k > 1. Advantages:
 - Reduces the variance of the update direction (w.r.t. the full gradient), hence converges faster
 - We don't pay a lot in time because of parallel implementation
- Learning rate: Choice of learning rate is important. One way is to start with some fixed η and decrease it by 1/2 whenever the training stops making progress.

- Input normalization: divide each element of x by 255 to make sure it is in $\left[0,1\right]$
- Initialization is important: One trick that works well in practice is to initialize the bias to be zero and initialize the rows of W to be random in $[-1/\sqrt{n},1/\sqrt{n}]$
- Mini-batches: At each iteration of SGD we calculate the average loss on k random examples for k > 1. Advantages:
 - Reduces the variance of the update direction (w.r.t. the full gradient), hence converges faster
 - We don't pay a lot in time because of parallel implementation
- Learning rate: Choice of learning rate is important. One way is to start with some fixed η and decrease it by 1/2 whenever the training stops making progress.
- Variants of SGD: There are plenty of variants that work better than vanilla SGD.

Failures of Deep Learning

- Parity of more than 30 bits
- Multiplication of large numbers
- Matrix inversion
- ...

Summary

- Deep Learning can be used to construct the ultimate hypothesis class
- Worst-case complexity is exponential
- ... but, empirically, it works reasonably well and leads to state-of-the-art on many real world problems