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Playing games with Hannan, Von-Neumann, and Blackwell

Handouts are jointly prepared by Shie Mannor and Shai Shalev-Shwartz

In this lecture we briefly review several concepts in game theory and present the relation to online learn-
ing.

1 Two-person zero-sum game
The game can be described as follows. Let L be an n × m matrix with |Li,j | ≤ 1 for all i, j. The game is
played by two players which we call a row player and a column player. The row player chooses a row index,
i, and the column player chooses a column index, j ∈ [m]. The outcome of the game is Li,j . The row player
thinks on Li,j as its loss, while the column player thinks on Li,j as its gain.1 The player are allowed to choose
a “mixed strategy” instead of a “pure strategy”. For the row player, this means that instead of choosing a row
i the player can choose a distribution p over [n]. Similarly, the column player can choose a distribution q over
[m]. In such a case, we measure the expected outcome of the round,

pᵀLq =
∑
i,j

piqjLi,j .

The best strategy of the row player is to choose p such that no matter which q the column player will play
we will have pᵀLq as small as possible. That is, to choose p that minimizes:

min
p∈∆n

max
q∈∆m

pᵀLq ,

where ∆n is the n-dimensional probability simplex. Similarly, the best strategy of the column player is

max
q∈∆m

min
p∈∆n

pᵀLq .

Von-Neumann proved that the two expressions are equal, namely,

min
p∈∆n

max
q∈∆m

pᵀLq = max
q∈∆m

min
p∈∆n

pᵀLq .

The common value is called the value of the game. There are many ways to prove Von-Neumann’s mini-max
theorem, e.g. using a strong duality argument. In the next section we will outline another proof that follows
from our low-regret strategies for online convex optimization.

2 Playing repeated games
A two-person repeated game is played repeatedly such that at each round t, the row player picks pt ∈ ∆n,
the column player picks qt ∈ ∆m, and the outcome of the round is pᵀ

t Lqt. The regret of the row player is
defined as

1
T

T∑
t=1

pᵀ
t Lqt −min

p

1
T

T∑
t=1

pᵀLqt .

We say that a strategy is Hannan consistent if the regret is o(1), regardless of how the column player behaves.
Note that for each t, the function gt(p) = pᵀLqt = 〈p, Lqt〉 is a linear (hence convex) function. Therefore, we
can apply online convex optimization procedures described in previous lectures to obtain a Hannan consistent
hypothesis.

1Hence the name “zero-sum”, which means that the loss minus gain is zero.
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Exercise: Use the existence of Hannan consistent strategies to prove Von-Neumann’s minimax theorem.

3 Blackwell’s approachability
Blackwell proposed a generalization of the problem of playing repeated two-player zero-sum games. The
difference is that now each loss, Li,j is a vector in the unit `2 ball of Rp rather than a scalar in [−1, 1]. As
before, we allow mixed strategies, for which the loss is

∑
i,j piqjLi,j ∈ Rp. We use the notation L(p, q) to

denote
∑

i,j piqjLi,j . For this general game, we define the regret of the row player with respect to a subset S
of the unit ball of Rp to be

d

(
1
T

T∑
t=1

L(pt, qt) , S

)
,

where d(u, S) = minv∈S ‖u− v‖.
A set S is approachable if the row player can guarantee an o(1) regret. Blackwell characterized which

convex sets are approachable.

Theorem 1 Let S be a closed and convex subset of the unit ball of Rp. Then, S is approachable if and only
if for all unit vector a ∈ Rp and scalar c ∈ R such that the halfspace H = {x : 〈a, x〉 ≤ c} contains S we
have

min
p∈∆n

max
q∈∆m

〈a, L(p, q)〉 ≤ c .

Proof First, assume that S is approachable. Then, exists v ∈ S such that ‖ 1
T

∑T
t=1 L(pt, qt)−v‖ ≤ ε, where

ε is arbitrarily small (for large T ). Take any H s.t. S ⊂ H . Then, 〈a, v〉 ≤ c. It follows that

c− ε ≥ 〈a, 1
T

T∑
t=1

L(pt, qt)〉 = 1
T

T∑
t=1

∑
i,j

pᵀ
t L̃qt

where L̃ is a matrix with L̃i,j = 〈a, Li,j〉. Since the above holds for any ε > 0 we get that there exists a
strategy for the row player in the scalar game such that its asymptotic average loss is bounded by c. It follows
that c upper bounds the value of the game, that is,

c ≥ min
p∈∆n

max
q∈∆m

pᵀL̃q ,

which implies the desired result by the definition of L̃.
Now, assume that for any unit vector a ∈ Rp and scalar c ∈ R such that the halfspace H = {x : 〈a, x〉 ≤

c} contains S we have
min
p∈∆n

max
q∈∆m

〈a, L(p, q)〉 ≤ c .

The row player will play the following strategy. Let ut = 1
t−1

∑
τ<t L(pτ , qτ ) and let πS(ut) be the point in

S closest to ut. If ut 6∈ S then the hyperplane defined by a = ut−πS(ut)
‖ut−πS(ut)‖ and c = 〈a, πS(ut)〉 contains S.

See illustration below:

S

πS(ut)

ut
L(pt, qt)
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So, if the player will play pt in
argmin

p∈∆n

max
q∈∆m

〈a, L(p, q)〉 ,

then no matter what the value of qt is, we will have 〈a, L(pt, qt)〉 ≤ c. Thus,

d(ut+1, S)2 = ‖ut+1 − πS(ut+1)‖2

≤ ‖ut+1 − πS(ut)‖2

= ‖ t−1
t ut + 1

t L(pt, qt)− πS(ut)‖2

= ‖ t−1
t (ut − πS(ut)) + 1

t (L(pt, qt)− πS(ut))‖2

= ( t−1
t )2d(ut, S)2 + 1

t2 ‖L(pt, qt)− πS(ut)‖2 + 2 t−1
t2 〈ut − πS(ut), L(pt, qt)− πS(ut)〉

≤ ( t−1
t )2d(ut, S)2 + 1

t2 ‖L(pt, qt)− πS(ut)‖2 .

Additionally, since everything is assumed to be in the unit ball we get that

d(ut+1, S)2 ≤ ( t−1
t )2d(ut, S)2 + 4

t2 .

The above inequality also holds if ut ∈ S because then,

d(ut+1, S)2 ≤ ‖ut+1 − ut‖2 = 1
t2 ‖ − ut + L(pt, qt)‖2 ≤ 4

t2 .

Multiplying by t2, summing over t, and rearranging, we obtain∑
t

(
t2d(ut+1, S)2 − (t− 1)2d(ut, S)2

)
≤ 4T .

The sum on the left side telescopes and becomes T 2d(uT+1, S)2. Thus,

d(uT+1, S)2 ≤ 4/T ,

which concludes our proof.

4 Exercises
1. Show that Von-Neumann’s minimax theorem follows from Blackwell’s approachability theorem.

2. Show that the existence of Hannan consistent strategies follows from Blackwell’s approachability the-
orem.
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