Advanced Course in Machine Learning Spring 2010

Playing games with Hannan, Von-Neumann, and Blackwell

Handouts are jointly prepared by Shie Mannor and Shai Shalev-Shwartz

In this lecture we briefly review several concepts in game theory and present the relation to online learn-
ing.

1 Two-person zero-sum game

The game can be described as follows. Let L be an n x m matrix with |L; ;| < 1 for all ¢, j. The game is
played by two players which we call a row player and a column player. The row player chooses a row index,
i, and the column player chooses a column index, j € [m]. The outcome of the game is L; ;. The row player
thinks on L; ; as its loss, while the column player thinks on L; ; as its gain.! The player are allowed to choose
a “mixed strategy” instead of a “pure strategy”. For the row player, this means that instead of choosing a row
i the player can choose a distribution p over [n]. Similarly, the column player can choose a distribution ¢ over
[m]. In such a case, we measure the expected outcome of the round,

pTLg = ZpinLi,j .
irj

The best strategy of the row player is to choose p such that no matter which ¢ the column player will play
we will have pT Lq as small as possible. That is, to choose p that minimizes:
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where A" is the n-dimensional probability simplex. Similarly, the best strategy of the column player is

in T
max min pTLq .
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Von-Neumann proved that the two expressions are equal, namely,

min max pTLg = max min pTLq .
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The common value is called the value of the game. There are many ways to prove Von-Neumann’s mini-max
theorem, e.g. using a strong duality argument. In the next section we will outline another proof that follows
from our low-regret strategies for online convex optimization.

2 Playing repeated games

A two-person repeated game is played repeatedly such that at each round ¢, the row player picks p;, € A",
the column player picks ¢; € A™, and the outcome of the round is p] Lg;. The regret of the row player is
defined as

1 & 1 &
— TLg, — min — TLq, .
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We say that a strategy is Hannan consistent if the regret is o(1), regardless of how the column player behaves.
Note that for each t, the function g;(p) = pT Lg; = (p, Lg:) is a linear (hence convex) function. Therefore, we
can apply online convex optimization procedures described in previous lectures to obtain a Hannan consistent
hypothesis.

'Hence the name “zero-sum”, which means that the loss minus gain is zero.

Playing games with Hannan, Von-Neumann, and Blackwell-1



Exercise: Use the existence of Hannan consistent strategies to prove Von-Neumann’s minimax theorem.

3 Blackwell’s approachability

Blackwell proposed a generalization of the problem of playing repeated two-player zero-sum games. The
difference is that now each loss, L; ; is a vector in the unit 5 ball of R” rather than a scalar in [—1, 1]. As
before, we allow mixed strategies, for which the loss is ZZ ; Did; L; ; € RP. We use the notation L(p, ¢) to
denote Y 0.5 Pidy L; ;. For this general game, we define the regret of the row player with respect to a subset .S

of the unit ball of R? to be
d <’11"ZL(ptaQt)v S> )

t=1

where d(u, S) = min,eg ||Ju — v||.
A set S is approachable if the row player can guarantee an o(1) regret. Blackwell characterized which
convex sets are approachable.

Theorem 1 Let S be a closed and convex subset of the unit ball of RP. Then, S is approachable if and only
if for all unit vector a € R? and scalar ¢ € R such that the halfspace H = {x : (a,x) < ¢} contains S we
have

i a L <ec.
Jmin max (a, L(p,q)) < c

Proof First, assume that S is approachable. Then, exists v € S such that || % Z?:l L(pt, qt) —v|| < e, where
¢ is arbitrarily small (for large T'). Take any H s.t. S C H. Then, (a,v) < c. It follows that

T
c—e>{a, %Y Lpna)) =%> > plla
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where L is a matrix with L; ; = (a, L, ;). Since the above holds for any ¢ > 0 we get that there exists a
strategy for the row player in the scalar game such that its asymptotic average loss is bounded by c. It follows
that ¢ upper bounds the value of the game, that is,

¢ > min max p'Lq,
pGA" qEA'rn

which implies the desired result by the definition of L.
Now, assume that for any unit vector a € R? and scalar ¢ € R such that the halfspace H = {z : (a,z) <
¢} contains S we have
i L <c.
Duin qrg%(a, (p,q) <c
The row player will play the following strategy. Let u; = 25 > <+ L(pr, q-) and let 75 (u;) be the point in

U«t*ﬂ'S(’U«t)
lue—ms (ue)l

S closest to u;. If uy & S then the hyperplane defined by a =
See illustration below:

and ¢ = (a, mg(u)) contains S.
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So, if the player will play p; in
aﬁgglgn Inax {a, L(p. q)) ,
then no matter what the value of ¢; is, we will have (a, L(p;, ¢;:)) < c. Thus,
d(ugi1,59)? = g1 — ms(uer) |
< s — ms () |2
= |5 ue + $L(pey ar) — ms (ue) |2
= 5% (ue — s () + $(L(pe, a1) — s (ur)) |
= (552)%d(ur, 8)% + g L(pes ae) — s (we)[I* + 25 (we — w5 (we), Lpe, qe) — 75 (we))
< (59)%d(ur, ) + 5 | L(pes ar) — ms(ue) | -
Additionally, since everything is assumed to be in the unit ball we get that

d(ues1,9)? < (52)%d(ug, S)° + & .

t

The above inequality also holds if u; € S because then,

d(ut+1>S)2 < |luwgg1r — Ut||2 = ,%2” —ug + L(Pt7Qt)||2 < % .

Multiplying by 2, summing over ¢, and rearranging, we obtain

> (Pd(uig, 8)* = (t = 1)%d(ur, §)*) < AT .

t

The sum on the left side telescopes and becomes T2d(ur41,S)?. Thus,
d(urs1,5)* < 4/T,

which concludes our proof. |

4 Exercises

1. Show that Von-Neumann’s minimax theorem follows from Blackwell’s approachability theorem.

2. Show that the existence of Hannan consistent strategies follows from Blackwell’s approachability the-
orem.
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