
Advanced Course in Machine Learning Spring 2010

Games Against Nature

Handouts are jointly prepared by Shie Mannor and Shai Shalev-Shwartz

In the previous lectures we talked about experts in different setups and analyzed the regret of the algorithm
by comparing its performance to the performance of the best fixed experts (and later the best shifting expert).
In this lecture we consider the game theory connection and present games against Nature. Along the way, we
present one of the most common tools to analyze prediction problems: approachability theory.

The setup in today’s lecture is that of full information. The next lecture will be devoted to the partial
information setup. We start from a more general model for the game and then show how to apply it to
different online learning setups.

1 The Model
The model is comprised of a single player playing against “Nature.” The game is repeated in time, and at
stage t the decision maker has to choose an action at ∈ A and Nature chooses (simultaneously) an action
bt ∈ B. As a result the decision maker obtains a reward rt ≈ R(at, bt) (that is, the reward can be stochastic:
we will only need finite second moments). The game continues ad infinitum. We let the average reward be
denoted by

r̂t =
1
t

t∑
τ=1

rτ .

Note: There is no reward for Nature, therefore this is not a game in the standard sense of the word (or,
one can say this is a zero-sum game).

The decision maker keeps track of the rewards and of Nature’s actions. We consider the empirical fre-
quency of Nature’s actions as:

qt(b) =
1
t

t∑
τ=1

1{bt = b}

and note that qt ∈ ∆(B), the set of distributions over B.

1.1 The stationary case
If Nature is stationary (i.e., the actions are generated from an IID source q∗) then:

qt → q∗ a.s.

(In fact, we have exponentially fast convergence: Pr(‖qt − q∗‖ > ε) ≤ C exp(−C ′tε2).) In that case, one
can hope to obtain a reward as high as the best response reward:

r∗(q) = max
p

∑
a,b

q(a)p(b)r(a, b) = max
a

∑
b

q(b)r(a, b).

By obtaining we mean:
r̂t → r∗(q∗) a.s.

Here is a simple fictitious play algorithm that obtains that:
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1. Observe bt and for an estimate:

qt =
1
t

t∑
τ=1

1{bt = b}.

2. Play at ∈ arg max r(a, qt).

This algorithm is also based on the celebrated certainty equivalence scheme.

Theorem 1 The Fictitious Play algorithm satisfies that r̂t → r∗(q∗) a.s.

But what happens if Nature is not stationary?

1.2 Arbitrary source
Suppose now that the sequence b1, b2, . . . is generated by an arbitrary process. Arbitrary here means not
necessarily stochastic. Clearly, we cannot assume that qt converges. Our objective of having the average
reward converge to r∗(q∗) is not well defined anymore since q∗ may not exist.

We can define the average regret as:
Rt = r∗(qt)− r̂t.

This is a random variable. Randomness is determined by randomness in the algorithm.
The basic questions is therefore: Can we find an algorithm such that

lim supRt ≤ 0 a.s. ?

If such an algorithm exists we call it 0-regret (we will later call such an algorithm 0 external regret, but this
is sufficient for now). This is, of course, the same notion from the previous two lectures where we consider
the average regret as opposed to the cumulative regret.

Nature models.

1. Oblivious. Nature writes down the sequence of b1, b2, . . . at time 0 (not disclosing them).

2. Non-oblivious. Nature is adversarial and it tries to maximize the regret. Nature may even be aware of
any randomization the decision maker does (but not the value of private coin tosses).

Observations:

1. An non-oblivious opponent is a very strong model: it encompasses a worst case view on disturbances
in many systems and it generalizes play against an adversary.

2. Fictitious play would fail since randomization is needed. Fictitious play is called here “follow the
leader” (FtL).

3. If the leader does not change (asymptotically), FtL does have 0 regret.

More interestingly, as long as there are not many switches, FtL “works.” More precisely, we say that FtL
switches from action a to a′ at time t if at−1 = a and at = a′. We let the number of switches be Nt. We say
that FtL exhibits infrequent switches along a history if for every ε > 0 there exists T such that Nt/t < ε for
all t ≥ T .

Theorem 2 If FtL exhibits infrequent switches along a history it satisfies lim supt→∞ Rt ≤ 0 along that
history.

Proof: Home exercise. (Note that we do not use almost sure quantifiers since clearly FtL is not optimal for
every history.)
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1.3 A generalized notion of regret
In general, regret can be defined as the difference between the obtained (cumulative reward) and the reward
that would have been obtained by the best strategy in a reference set. That is:

Rt = sup
strategy σ

r(σ, history)− r̂t,

where r(σ, history) is an estimate of the average reward if playing σ. This is not always well defined or
achievable. In the example above, the set of strategies is simply the set of stationary strategies. One can
easily think of other sets of strategies such as the set of strategies that depend on the last observation from
Nature. In that case: the set of strategies is identified with pt ≈ p(a|bt−1) ∈ ∆(A)|B| and the reward as a
function of history is defined as:

r(σ, history) =
1
t

t∑
τ=1

∑
a

p(a|bt−1)r(a, bt),

where b0 is defined is one of the members of B. We observe that this comparison class is richer than the
comparison class we considered above which can be identified with p(a) ∈ ∆(A). We will show later that
there is an asymptotical 0-regret strategy against this particular comparison class.

2 Blackwell’s Approachability
We now introduce a useful tool in the analysis of repeated games against Nature called Blackwell’s approach-
ability theory.

Let us define a vector-valued two-player game. We call the players P1 and P2 to distinguish them from
the decision makers above.

We consider a two player vector-valued repeated game where both P1 and P2 choose actions as before
from finite sets A and B. The reward is now a k-dimensional vector, m(a, b) ∈ Rk. As before, the stage
game reward is mt ≈ m(at, bt) (the reward can be a random vector).

The average reward is

m̂t =
1
t

t∑
τ=1

mt.

P1’s task is to approach a target set T , namely to ensure convergence of the average reward vector to
this set irrespectively of P2’s actions. Formally, let T ⊂ Rk denote the target set. In the following, d is the
Euclidean distance in Rk. The set-to-point distance between a point x and a set T is d(x, T ) = infy∈T d(x, y).
(We let Pπ,σ denote the probability measure when P1 plays the policy π and P2 plays policy σ.)

Definition 1 A policy π∗ of P1 approaches a set T ⊂ Rk if

lim
n→∞

d(m̂n, T ) = 0 Pπ∗,σ-a.s., for every σ ∈ Σ .

A policy σ∗ ∈ Σ of P2 excludes a set T if for some δ > 0,

lim inf d(m̂n, T ) > δ Pπ,σ∗ -a.s. for every π ∈ Π ,

The policy π∗ (σ∗) will be called an approaching (excluding) policy for P1 (P2). A set is approachable if
there exists an approaching policy. Noting that approaching a set and its topological closure are the same, we
shall henceforth suppose that the set T is closed.

The notion of approachability and excludability assumes uniformity with respect to time (and the strategy
of P2 (approachability) or P1 (excludability).
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2.1 The projected game
Let u be a unit vector in the reward space Rk. We often consider the projected game in direction u as the
zero-sum game with the same dynamics as above, and scalar rewards rn = mn · u. Here “·” stands for the
standard inner product in Rk. Denote this game by Γ(u).

2.2 The Basic Approachability Results
For any x 6∈ T , denote by Cx a closest point in T to x, and let ux be the unit vector in the direction of Cx−x,
which points from x to the goal set T . The following theorem requires, geometrically, that there exists a
(mixed) action p(x) such that the set of all possible (vector-valued) expected rewards is on the other side of
the hyperplane supported by Cx in direction ux.

Theorem 3 Assume that for every point x 6∈ T there exists a strategy p(x) such that:

(m(p(x), q)− Cx) · ux ≥ 0 , ∀q ∈ ∆(B) . (1)

Then T is approachable by P1. An approaching policy is given as follows: If m̂n 6∈ T , play p(m̂n), otherwise,
play arbitrarily.

Proof Let yn = Cm̂n and denote by Fn the filtration generated by the history up to time n. We further let
dn = ‖m̂n − yn‖. We want to prove that dn → 0 a.s.. We have that:

IE(d2
n+1|Fn) = IE(‖m̂n+1 − yn+1‖2

∣∣∣Fn)

≤ IE(‖m̂n+1 − yn‖2
∣∣∣Fn)

= IE(‖m̂n+1 − m̂n + m̂n − yn‖2
∣∣∣Fn)

= ‖m̂n − yn‖2 + IE(‖m̂n+1 − m̂n‖2|Fn) + 2IE((m̂n − yn) · (m̂n+1 − m̂n)|Fn).

Now, since m̂n+1 − m̂n = mn+1/(n + 1)− m̂n/(n + 1) we have that:

IE(d2
n+1|Fn) ≤ d2

n +
C

n2
+ 2IE((m̂n − yn) · (m̂n+1 − m̂n)|Fn).

Expanding the last term we obtain:

(m̂n − yn) · (m̂n+1 − m̂n) = (m̂n − yn) · (mn+1/(n + 1)− m̂n/(n + 1))
= (m̂n − yn) · (yn/n + 1− m̂n/(n + 1) + mn+1/(n + 1)− yn/(n + 1))

= −d2
n/(n + 1) +

1
n + 1

(m̂n − yn) · (mn+1/(n + 1)− yn/(n + 1))

Now, the expected value of the last term is negative so we obtain:

IE(d2
n+1|Fn) ≤ (1− 2

n + 1
)d2

n +
c

n2
.

It follows by Lemma 1 that dn → 0 almost surely. �

Remarks:

1. Convergence Rates. The convergence rate of the above policy is O(
√

T ) and is independent of the di-
mension. The only dependence kicks in through the magnitude of the randomness (the second moment,
to be exact).
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2. Complexity. There are two distinct elements to computing an approaching strategy as in Theorem
3. The first is finding the closest point Cx and the second is solving the projected game. Solving the
projected 0-sum game can be easily done using linear programming (or other methods) with polynomial
dependence on the number of actions of both players. Finding Cx, however, can be in general a very
hard problem as finding the closest point in a non-convex set is NP-hard. There are, however, some
easy instances such as the case where T is convex and described in some compact form. In fact, it is
enough to assume that a convex T has a separation oracle (i.e., we can query in polytime if a point
belongs to T or not).

3. Is a set approachable? In general, it is NP-hard even to determine if a point is approachable where
hardness here is measured in the dimension (if the dimension is fixed it is not hard to decide if a point
is approachable).

4. The game theory connection. The above result generalizes the celebrated min-max theorem. To
observe that, take a one dimensional problem. In that case the approachable set is the segment [v,∞].

For convex target sets, the condition of the last theorem turns out to be both sufficient and necessary.
Moreover, this condition may be expressed in a simpler form, which may be considered as a generalization

of the minimax theorem for scalar games. Given a stationary policy q ∈ ∆(B) for P2, let Φ(A, q)
a

=
co({m(p, q)}p∈∆(A)), where co is the convex hull operator. The Euclidean unit sphere in Rk is denoted by
IBk. The following theorem is characterizes convex approachable sets in an elegant way.

Theorem 4 Let T be a closed convex set in Rk.

(i) T is approachable if and only if Φ(A, q) ∩ T 6= ∅ for every stationary policy q ∈ ∆(B).

(ii) If T is not approachable then it is excludable by P2. In fact, any stationary policy q that violates (i) is
an excluding policy.

(iii) T is approachable if and only if val Γ(u) ≥ infm∈T u ·m for every u ∈ IBk, where val is the value of
the (scalar) 0-sum game.

Condition (i) in Theorem 4 is sometimes very easy to check, as we see below.

3 Back to regret
We are now ready to use approachability for proving we can minimize the regret.

Consider the following vector-valued game. When the decision maker plays a and Nature plays b and a
reward rt is obtained the vector-valued reward is mt = (rt, eb) where eb is a vector of zeros except for the
b-th entry which is one. It holds that:

m̂t = (r̂t, qt).

Now, define the following target set T ⊆ R×∆(B):

T = {(r, q) : r ≥ r∗(q), q ∈ ∆(B)}.

We claim that T is convex. Indeed, it follows that r∗(q) is convex as a maximum of linear functions. The set
T is convex as the epigraph of a convex function.

We now claim that T is approachable. By Theorem 4, a necessary and sufficient condition is that
Φ(A, q) ∩ T 6= ∅ for every q. Fix some q and let p∗ ∈ ∆(A) be a member of the argmax of r, that is:
p∗ ∈ arg max r(p, q). But this is easy to show since m(p∗, q) ∈ Φ(A, q) and m(p∗, q) ∈ T . This means that
by using approachability we have that d(m̂t, T ) → 0.

What is left is to argue that approaching T implies that r̂t − r∗(qt) ≤ 0 asymptotically. This holds since
r∗ is a uniformly continuous function (it is convex, continuous and on a compact domain).

We have thus proved:
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Theorem 5 There exists a strategy that guarantees that

lim sup r̂t − r∗(qt) ≥ 0 a.s.

In fact, we have proved that the convergence rate is O(
√

T ).
We now return to the problem where we considered generalized regret. We claim a 0-regret strategy does

exist. Indeed, consider the target set of the form:

T = {(r, π) ∈ R×∆(B2) : r ≥ max
p∈∆(A)B

∑
b,b′∈B

π(b, b′)p(a|b)r(a, b′)},

where we identify p with a conditional probability of choosing an action given the past observation (note that
it suffices to choose a pure action). It is easy to see that T is convex as an epigraph of a convex function.
Now, we need to define the game: when P1 chooses a, P2 chooses b′ and the previous action chosen by P2
was b the reward is a vector whose entries are r(a, b′) in the first coordinate and the remaining coordinates
are zero except for one at the b × B + b′ coordinate. It remains an easy exercise to show that the set T
is approachable. (We note that a slight extension of approachability is needed: see “The Empirical Bayes
Envelope and Regret Minimization in Competitive Markov Decision Processes.” MOR 28(1):327-345, S.
Mannor and N. Shimkin.)

4 Calibration
The definition of calibration and a very easy proof using approachability is provided in the attached note.

A Appendix
Lemma 1 Assume et is a non-negative random variable, measurable according to the sigma algebra Ft

(Ft ⊂ Ft+1) and that
IE(et+1|Ft) ≤ (1− dt)et + cd2

t . (2)

Further assume that
∑∞

t=1 dt = ∞, dt ≥ 0, and that dt → 0. Then et → 0 P-a.s.

Proof First note that by taking the expectation of Eq. (2) we get:

IEet+1 ≤ (1− dt)IEet + cd2
t .

According to Bertsekas and Tsitsiklis (Neuro-dynamic programming, page 117) it follows that IEet → 0.
Since et is non-negative it suffices to show that et converges. Fix ε > 0, let

V ε
t

a

= max{ε, et}.

Since dt → 0 there exists T (ε) such that cdt < ε for t > T . Restrict attention to t > T (ε). If et < ε then

IE(V ε
t+1|Ft) ≤ (1− dt)ε + cd2

t ≤ ε ≤ V ε
t .

If et > ε we have:
IE(V ε

t+1|Ft) ≤ (1− dt)et + dtet ≤ V ε
t .

V ε
t is a super-martingale, by a standard convergence argument we get V ε

t → V ε
∞.

By definition V ε
t ≥ ε and therefore IEV ε

t ≥ ε. Since IE [max(X, Y )] ≤ IEX + IEY it follows that
IEV ε

t ≤ IEet + ε. So that IEV ε
∞ = ε. Now we have a positive random variable, with expectation ε which is

above ε with probability 1. It follows that V ε
∞ = ε.

To summarize, we have shown that for every ε > 0 with probability 1:

lim sup
t→∞

et ≤ lim sup
t→∞

V ε
t = lim

t→∞
V ε

t = ε .

Since ε is arbitrary and et non-negative it follows that et → 0 almost surely.
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