
Advanced Course in Machine Learning Spring 2010

Selective Sampling

Handouts are jointly prepared by Shie Mannor and Shai Shalev-Shwartz

In supervised learning we typically assume that training and test samples are drawn from the same IID
distribution. In this paradigm the learner is passive and has no effect on the information it receives. In the
query paradigm, the learner is given the power to ask questions. We will ask the question what does the
learner gain from this additional power?

The selective sampling paradigm that we study here is also known as the “query filtering paradigm.” The
idea is that the learner has access to a stream of inputs drawn at random from the input distribution. The
learner sees every input and then has to decide if to query a teacher for the correct label. One can easily
imagine application in speech processing or web page labelling where a human teacher can be queried, but at
a cost.

The problem of selecting the optimal examples for learning is closely related to the problem of experi-
mental design in statistics. Experimental design is the analysis of methods for selecting sets of experiments,
which correspond to membership queries in the context of learning theory. The goal of a good design is to
select experiments in a way that their outcomes, which correspond to labels, give sufficient information for
constructing a hypothesis that maximizes some criterion of accuracy.

In today’s lecture we will describe and analyze a very simple and natural algorithm for the selective
sampling problem. The algorithm is called QBC (query by committee). The results we present today are
restricted to a rather limited set of learning problems: concepts are assumed to be deterministic and noiseless

1 Setup
We work in a Bayesian model of concept learning. As in the PAC model, we denote by X an arbitrary sample
space over which a distribution D is defined. For simplicity we assume that X is a Euclidean space Rd. Each
concept is a mapping c : X → {0, 1} and a concept class C is a set of concepts.

Bayesian model The Bayesian model differs from the PAC model in that we assume that the target
concept is chosen according to a prior distribution P over C and that this distribution is known to the learner.
We shall use the notation Prx∈D(·) to denote the probability of an event when x is chosen at random from
X according to D.

We assume that the learning algorithm has access to two oracles: Sample and Label. A call to Sample
returns an unlabelled example x ∈ X , chosen according to (the unknown) D. A call to Label with input x,
returns c(x), the label of x according to the target concept.

After making some calls to the two oracles, the learning algorithm is required to output a hypothesis
h : X → {0, 1}. We define the expected error of the learning algorithm as the probability that h(x) 6= c(x),
where the probability is taken with respect to:

1. D over the choice of x,

2. the distribution P over c; and

3. any random choices made as part of the learning algorithm or of the calculation of the hypothesis h.

We shall usually denote the number of calls that the algorithm makes to Sample by m and the number
of calls to Label by n. Our goal is to give algorithms that achieve accuracy ε after making O(1/ε) calls to
Sample and O(log 1/ε) calls to Label.

bf Some notations: We denote the sequence of unlabeled examples by X = {x1, x2, . . .}, and use
〈X, c(X)〉 = {x1, c(x1), x2, c(x2), . . .} to denote the sequence of labeled examples that is generated by

Selective Sampling-1

applying c to each x ∈ X . We use X1...m to denote the sequence of the first m elements in X . The version
space generated by the sequence of labeled examples 〈X1...m, c(X1...m)〉 is the set of concepts c ∈ C that are
consistent with c on X (i.e., c(xi) = c′(xi) for all 1 ≤ i ≤ m). We denote the version space that corresponds
to the first i labeled examples by Vi = V (〈X1...i, c(X...i)〉). The initial version space, V0 = V (∅), is equal to
C. The version space is a representation of the information contained in the set of labeled examples observed
by the learning algorithm. A natural measure of the progress of the learning process is the rate at which the
size of the version space decreases.

Information: The instantaneous information gain from the i-th labeled example in a particular sequence
of examples is defined to − log PrP P (Vi)/ PrP(Vi−1). Summing the instantaneous information gains over
a complete sequence of examples we get the cumulative information gain, which is defined as

I(〈(x1, c(x1), . . . (xm, c(xm))〉) := −
m∑

i=1

log
PrP P (Vi)
PrP(Vi−1)

= − log PrPP (Vm).

A natural measure of the information that we expect to gain from the label of an unlabeled example is the
expected instantaneous information gain taken with respect to the probability that each one of the two labels
occurs. Let p0 be the probability that the label of xm is 0, given that c ∈ Vm−1 and let V 0

m be the version
space that results from the label xm being 0. Let p1 and V 1

m be similar for the case c(xm) = 1. The expected
information gain of xi, given Vi−1 is:

G(xi|Vi−1) = −p0 log
PrP P (V 0

i)
PrP(Vi−1)

− p1 log
PrP P (V 1

i)
PrP(Vi−1)

a= −p0 log p0 − (1− p0) log(1− p0) = H(p0),

where a follows by the Bayesian estimate and where H is the Shannon Information for binary variables (we
will use log to denote log base 2). The information gain is a reasonable measure of the gain that can be
expected from asking Label for the label of an example. But it does not tell the whole story as we show
below.

Gibbs prediction: The “Gibbs prediction rule is to predict rule is to predict the label of a new example
x by picking a hypothesis h at random from the version space and labelling x according to it. The random
choice of h is made according to the prior distribution P restricted to the version space. (Exercise: The
expected error of this prediction error is at most twice larger than the expected error of the optimal prediction
rule which is the Bayes rule.) We assume that our learning algorithm has access to an oracle, denoted Gibbs,
that can compute the Gibbs prediction for a given example x ∈ X and version space V ⊂ C. Note that two
calls to Gibbs with the same V and x can result in different predictions.

2 Two simple examples
Consider the following concept class. Let X = [0, 1], and let the associated probability distribution D be the
uniform distribution. Let the concept class C, consist of all functions of the form cw(x) = 1{w≤x} (we let 1
denote the indicator function) where w ∈ [0, 1]. We define the prior distribution of concepts, P to be the one
generated by choosing w uniformly from [0, 1].

The version space defined by the examples 〈(x1, c(x1)), . . . (xm, c(xm))〉 is (essentially) the segment
Vi = [max(xi|c(xi) = 0),min(xj |c(xj) = 1)]. Let us denote by ξi the ratio of the probabilities of the
version space before and after observing the ith example, i.e., ξi = PrP V i/ PrP Vi−1. The instantaneous in-
formation gain of the example (xi, c(xi)) is− log ξi. Given an unlabeled example, the expected instantaneous
information gain from xi is H(ξi). Examples that fall outside the segment have zero expected information
gain, while the example that divides the segment into two equal parts obtains the highest possible expected
information gain of one bit. This agrees with our intuition because the labels of examples that fall outside the
segment are already completely determined by previous labeled examples, while the label of the example that
falls in the middle of the version space interval is least predictable. It is easy to show that the probability of
a prediction error for the Gibbs prediction rule is equal to the length of the segment divided by three. Thus,

Selective Sampling-2

if the learner asks for the label of the example located in the middle of the segment, it is guaranteed to halve
the error of the Gibbs prediction rule. In this case we see that asking the Label to label the example that
maximizes the expected information gain guarantees an exponentially fast decrease in the error of the Gibbs
prediction rule. In contrast, the expected prediction error after asking for the labels of n randomly chosen
examples is O(1/n).

The question is whether constructing queries according to their expected information gain is a good
method in general, i.e. whether it always guarantees that the prediction error decreases exponentially fast
to zero. The answer to this question is negative leading to the conclusion that expected information gain
of an unlabeled example is not a very useful criterion for constructing good queries. The essential problem
is that the distribution over the examples is completely ignored by this criterion, as the following example
demonstrates.

Let the sample space be the set of pairs in which the first element, i, is either 1 or 2, and the second
element, z, is a real number in the range [0, 1], i.e., x ∈ X = {1, 2}× [0, 1]. Let D be the distribution defined
by picking both i and z independently and uniformly at random. Let the concept class be the set of functions
of the form cw(i, z) = 1{wi≤z}, where w ∈ [0, 1]2. The prior distribution over the concepts is the one
generated by choosing w uniformly at random from [0, 1]2. Each example corresponds to either a horizontal
or a vertical half plane, and the version space, at each stage of learning, is a rectangle. There are always two
examples that achieve maximal information gain, one horizontal and the other vertical. Labeling each one of
those examples reduces the volume of the version space by a factor of two. However, the probability that the
Gibbs rule makes an incorrect prediction is proportional to the perimeter of the rectangular version space, and
not to its volume. Thus, if the learner always constructs queries of the same type (say, horizontal), only one
of the dimensions of the rectangle is reduced, and the perimeter length stays larger than a constant implying
that the prediction error also stays larger than a constant.

3 Query by Committee
The algorithm proceeds in iterations. In each iteration it calls Sample to get a random instance x. It then calls
Gibbs twice, and compares the two predictions for the label of x. If the two predictions are equal, it proceeds
to the next iteration. If the two predictions differ, it calls Label with input x, and adds the labeled example to
the set of labeled examples that define the version space. It then proceeds to the next iteration. We consider
a batch learning scenario, in which the learning algorithm is tested only after it has finished observing all
of the training examples and has fixed its prediction hypothesis. (Alternative online learning algorithms are
possible too.)

Termination rule: To avoid infinite processing of the above rule, we define a termination condition on
the iterative process described above. The termination condition is satisfied if a large number of consecutive
instances supplied by Sample have all equal predictions.

Success criterion: Since we work in a Bayesian setting we cannot use a PAC learning setup and instead
use its Bayesian counterpart. We say that the learning algorithm is “successful” if its expected error is small,
when trained on a typical sequence of instances. More precisely, we define two parameters, an accuracy
parameter 1 > ε > 0 and a confidence parameter 1 > δ > 0. For each choice of the hidden concept, we allow
a set of training histories that has probability δ to be marked as atypical training histories. Our requirement is
that the expected error over the set of typical training histories is smaller than ε. The parameters ε and δ are
provided to the learning algorithm as input and are used to define the termination criterion.

The QBC algorithm

Input :

• ε > 0 – the maximal tolerable prediction error.

• δ > 0 – the desired reliability.

Selective Sampling-3

• Gibbs– an oracle that computes Gibbs predictions.

• Sample– an oracle that generates unlabeled examples.

• Label– an oracle that generates the correct label of an example.

Initialize n - the counter of calls to Label to 0, and set the initial version space, V0, to be the complete
concept class C.
Repeat until more than tn consecutive examples are rejected. Where

tn =
1
ε

ln
π2(n + 1)2

3δ
,

and n is the number of examples that have been used as queries so far.

1 Call Sample to get an unlabeled example x ∈ X drawn at random according to D.

2 Call Gibbs(Vn, x) twice, to get two predictions for the label of x.

3 If the two predictions are equal then reject the example and return to the beginning of the loop.
(step 1)

4 Else call Label(x) to get c(x), increase n by 1, and set Vn to be all concepts c′ ∈ Vn−1 such that
c′(x) = c(x).

Output as the prediction hypothesis Gibbs(V n, x).

Remark: It is important to notice that the termination condition depends only on ε and δ, and not of any
properties of the concept class. While the performance of the algorithm does depend on such properties, the
algorithm can be used without prior knowledge of these properties.

It is easy to show that if QBC ever stops, then the error of the resulting hypothesis is small with high
probability. That is because it is very unlikely that the algorithm stops if the probability of error is larger
than ε. The harder question is whether QBC ever stops, and if it does, how many calls to Sample and to
Label does it make before stopping? As we shall show in the following two sections, there is a large class
of learning problems for which the algorithm will stop, with high probability, after O(1/ε log 1/δε) calls to
Sample, and O(log 1/ε) calls to Label.

It is instructive to consider the QBC algorithm from an information perspective. Let us normalize the
probability of the version space to one and assume that an example x partitions the version space into two
parts with probabilities F and 1 − F , respectively. The probability of accepting the example x as a query
is 2F (1 − F) and the information gain from an example is H(F). Both of these functions are maximized
at F = 0.5 and decrease symmetrically to zero when F is increased to one or decreased to zero. Thus, the
queries of QBC have a higher expected information gain than random examples. However, it is not true in
general that the expected information gain of the queries will always be larger than a constant. The proof of
the performance of QBC consists of two parts. In the first part we show that a lower bound on the information
gain of the queries does guarantee a fast decrease in the prediction error of QBC. In the second part we show
that the expected information gain of the queries of QBC is guaranteed to be higher than a constant in some
important cases.

4 Analysis of the Query by Committee Algorithm
More notations: We treat runs of the algorithm as initial segments of infinite runs that would have been
generated had there been no termination criterion on the execution of the main loop in QBC. We denote by
X the infinite sequence of unlabeled examples that would have been generated by calls to Sample. We use
an infinite sequence of integer numbers I = {1 ≤ i1 < i2 < · · · } to refer to the sequence of indices of
those examples that are used as queries to Label. This set of examples is denoted XI . We denote by M the

Selective Sampling-4

sequence of integers from 1 to m, and use XM to denote the first m examples in X . We use In to denote the
first n elements of I . Finally, XIn indicates the first n examples that are used as queries, and XI∩M indicates
the queries that are chosen from the first m unlabeled examples.

Probabilistic structure: We now present the probabilistic structure underlying the query process. A
point in the sample space is a triple c,X, I . The probability distribution over this space is defined as follows:

1. The target concept c is chosen according to P .

2. Each component in the infinite sequence X is chosen independently according to D.

3. Fixing c and X , we define the distribution of the first n elements of I according to the probability
that algorithm QBC calls Label on the iterations indexed by In. The distribution on I is the limiting
distribution for n →∞ (Exercise: why does it exist?)

We denote the distribution we have defined on the triplets c,X, I by ∆ and use Pr∆ and E∆ to indicate
the probability and the expectation taken with respect to this distribution.

We say that the expected information gain of queries made by QBC for the learning problem of con-
cept class C,concept distribution P , and input distribution D, is uniformly lower bounded by g > 0 if the
distribution generated by QBC satisfies that:

Pr ∆

(
E
[
Gxin+1 |V (〈XIn , c(XIn)〉)

∣∣XIn , c(XIn)
]

> g
)

= 1.

(In words: For any version space that can be reached by QBC with non-zero probability, the expected infor-
mation gain from the next query of QBC is larger than g.)

The following is the main theorem concerning the analysis of QBC.

Theorem 1 If a concept class C has VC-dimension 0 < d < ∞ and the expected information gain of queries
made by QBC is uniformly lower bounded by g > 0 bits, then the following holds with probability larger than
1− δ over the random choice of the target concept, the sequence of examples, and the choices made by QBC:

• The number of calls to Sample that QBC makes is smaller than

m0 = max

{
4d

eδ
,
160(d + 1)

ge
max

(
6, ln

80(d + 1)
εδ2g

)2
}

.

• The number of calls to Label that QBC makes is smaller than

n0 =
10(d + 1)

g
ln

4m0

δ
.

• The probability that the Gibbs prediction algorithm that uses the final version space of QBC makes a
mistake in its prediction is smaller than ε.

A conclusion from the theorem is that an exponentially small fraction of the number of calls to Sample
are used for Label.

We now provide an outline of the proof which we make formal later.
QBC terminates. Two contradicting trends: 1. After observing many labeled examples the conditional
distribution of the labels of new examples is highly biased to one of the two labels— information gained
from knowing the label of a random example is small. This, in turn, means that the increase in the cumulative
information from a sequence of random examples becomes slower and slower as the sequence gets longer.
2. Since information gained from the queries of QBC is lower bounded by a constant, then the cumulative
information gain from the sequence of queries increases linearly with the number of queries. The only way in
which both rates of increase can hold without violating this simple inequality is if the number of examples that
are rejected between consecutive queries increases with the number of queries. As a result the termination

Selective Sampling-5

criterion of QBC will hold, and the algorithm will output its final prediction rule after a reasonably small
number of queries.

QBC returns a “good” rule. The prediction rule that is output is the Gibbs prediction rule, using the final
version space that is defined by all the labeled examples seen so far. The probability of making a prediction
error using this rule is, by definition, equal to the probability of a disagreement between a hypothesis that
is randomly chosen according to the prior distribution restricted to the version space and a concept that is
independently chosen according to the same distribution. This probability is also equal to the probability of
accepting a random example as a query when using this version space. The termination condition is fulfilled
only if a large number of random examples are not accepted as queries, which implies that the probability of
accepting a query or making a prediction mistake when using the final version space is small.

The proof follows from the following lemmata:

Lemma 1 If the expected instantaneous information gain of the query algorithm is uniformly lower bounded
by g > 0 bits, then

Pr
∆

(I(〈XIn
, c(XIn

)〉) < g
n

2
) < exp{−gn/10}.

Proof Define
Yi = I(〈XIi , c(XIi)〉 − I(〈XIi−1 , c(XIi−1)〉 − g.

It follows that −g ≤ Yi ≤ 1− g (since information is between 0 and 1) and that Yi is a sub-martingale. From
Hoeffdings bound on the tails of bounded step sub-martingales from which we know that for any ε > 0

Pr

(
n∑

i=1

Yi ≤ −εn

)
≤

[(
g

g + ε

)g+ε(1− g

1− g − ε

)1−g−ε
]n

Taking ε = λg and then λ = 1/2 and some algebra yields the bound.

Lemma 2 The probability that the predictions made by QBC are wrong (after its main loop has terminated)
is smaller than ε with probability larger than 1− δ/2.

Proof Assume that the probability of a wrong prediction is larger than ε. This implies that the probability of
accepting a random example as a query with the final version space, is also larger than ε. It thus remains to
show that the probability that QBC stops when the probability of accepting a query is larger than ε is smaller
than δ/2. The termination condition of QBC is that all tn examples tested after the nth query are rejected. If
the probability of accepting a random example is larger than ε, then this probability is smaller than (1?ε)tn .
From the definition of tn we get that:

(1− ε)
1
ε ln(π2 (n+1)2

3δ) ≤ e− ln(π2 (n+1)2

3δ) =
3δ

π2(n + 1)2
.

Summing this probability over all possible values of n from zero to infinity we get the statement of the lemma.

Lemma 3 Assume a concept c is chosen at random from a concept class with VC dimension d. Fix a sequence
of examples X and recall that Xm denotes the first m examples. Then

PrP (I (〈Xm, c(Xm)〉) ≥ (d + 1) log(em/d)) ≤ d

em
.

Proof Recall from From Sauers Lemma the number of different labelings created by m examples is at most
(em/d)d the expected cumulative information gain equals the base 2 entropy of the distribution of the labels
and is maximized when all the possible labelings have equal probability. This gives an upper bound of
d log(em/d) on the expected cumulative information gain. Labelings that have cumulative information gain
larger than a this expected value, must have probability that is smaller by 2a than the labels in the equipartition
case. As the number of possible labelings remains the same, the total probability of all concepts that give rise
to such labelings is at most 2−a. Choosing a = log(em/d) yields get the bound.

Selective Sampling-6

Proof of Theorem 1
We consider a randomly chosen element of the event space c,X, I. We consider the first m0 random samples
presented to QBC and the first n0 samples it queries Label. We denote the number of queries that QBC
makes during the first m0 examples by n. The claim of the theorem is that, with probability at least 1 −
δ, the algorithm halts before testing the m + 1 example, the number of queries it makes, n, is smaller
than n0, and the hypothesis it outputs upon halting has error smaller than ε. We shall enumerate a list of
conditions that guarantee that all of these events occur for a particular random choice of examples and of
internal randomization in QBC. By showing that the probability of each of those conditions to fail is small
we get the statement of the theorem. The conditions are:

1. The cumulative information content of the first n0 queries is at least gn0/2. From Lemma 1 we get
that in order for this condition to hold with probability larger than 1?δ/4 it is sufficient to require that
n0 ≥ 10/g ln(4/δ).

2. The cumulative information content from the first m0 examples is at most (d+1)(log(em0/d)). From
Lemma 3 we get that in order for this condition to hold with probability larger than 1 − δ/4 it is
sufficient to require that m0 ≥ 4d

eδ .

3. The number of queries made during the first m0 examples, n, is smaller than n0. The condition follows
from conditions 1 and 2 if

I(〈XIn0
, c(XIn0

)〉) ≥ I(〈XIn0
, c(XIn0

)〉)

(When n ≥ n0 the information gained from the queries asked during the first m0 examples is larger
than the total information gained from the m0 examples, which is impossible. We need n0 > 2(d +
1)/g log(em0/d) for the information inequality to hold.

4. The number of consecutive rejected examples guarantees that the algorithm stops before testing the
m0 + 1 example. There are mn − n rejected examples so that the length of the shortest run of rejected
examples is at least (m0 − n)/(n + 1). Requiring that this expression is larger than tn and using the
fact that n < n0 we need that

m0 ≥
2(n0 + 1)

ε
ln
[
π2

3δ
(n0 + 1)2

]
.

5. The Gibbs prediction hypothesis that is output by the QBC has probability smaller than ε of making a
mistaken prediction. This is straightforward from Lemma 2 and happens with probability smaller than
δ/2.

The result follows from combining the above and some algebra. Note that we accumulate the error of the
above conditions.

5 So when does QBC work?
The main issue with Theorem 1 is that we require high information gain by queries. It is by no means trivial
that one can guarantee high information gain by queries. The following paragraph describes a geometric case
where, surprisingly, information gain can be guaranteed.

Define the domain, X , to be the set of all pairs of the form (x, t), where x is a vector in Rd whose length
is 1, which we refer to as the “direction of the example, and t is a real number in the range [?1,+1], to which
we refer as the offset. Assume that D is uniform. The concept class, C, is defined to be a set of binary
functions over X , parameterized by vectors w in Rd that are defined as follows:

cw(x, t) = 1{w·x≥t}.

Selective Sampling-7

Note that t is also an input to the concept so this is not a standard linear classifier. The information gain
from random examples vanishes as the dimensions grows. The reason for this is that in high dimension, the
volume of the sphere is concentrated near the equator. A typical random example will cut the sphere some
distance away from the equator, in which case the sphere will fall into two pieces of very unequal volume. The
piece containing the equator will contain almost all of the volume. Query by committee solves this problem
by choosing two random points in the sphere. Since these two points are likely to be near the equator, an
example that separates them is likely to be near the equator. For this reason, query by committee can attain
an information gain that remains bounded away from 0 in high dimensions.

It is possible to prove that the information gain from every query to QBC is bounded from below by a
constant. The proof is based on variational analysis and is not provided here.

For perceptrons we can obtain a similar bound under certain conditions on the prior and the distribution.
Recall that a perception can be defined by:

cw(x) = 1{w·x≥0},

where x,w in Rd and ‖w‖ ≤ 1.
In order to obtain a lower bound on the information gain we need to require some regularity properties on

the D and P . We say that a density D is within λ of D′ if for every measurable set A, we have that

λ ≤ Pr D(A)/ Pr D′(A) ≤ 1/λ.

It is possible to prove that the information gain is bounded from below when the prior distribution is within
λP of uniform and the input distribution is within λD of uniform, is at least bounded from below (and depends
on λP and λD).

To prove that there exists a lower bound on the information gain of the queries of QBC we need to assume
that the initial version space is not the complete unit sphere, but is restricted to be within a cone. That is,
there has to exist a unit vector w0 such that for any w ∈ V0, the dot product w · · ·w0is larger than some
constant α > 0. To guarantee that this condition holds we can use an initial learning phase, prior to the use of
QBC, that does not use filtering but rather queries on all the random instances supplied by Sample. Standard
results provide the number of training examples that are needed to guarantee that the prediction error of an
arbitrary consistent hypothesis is small (with high probability). As the distribution of the instances is close to
uniform, a small prediction error implies that the hypothesis vector is within a small angle of the vector that
corresponds to the target concept. We conclude with the formal result for perceptrons:

Theorem 2 For any α > 0, let Cα be the d dimensional perceptron concept class restricted to those concepts
cw, such that w0 ·w > α for some unit vector w0. Let the prior distribution over Cα be within λP of uniform
and the input distribution be within λD from uniform. Then the expected information gain of the queries of
QBC is larger than 0.672α5dλ4

P λ4
D.

Selective Sampling-8

	Setup
	Two simple examples
	Query by Committee
	Analysis of the Query by Committee Algorithm
	So when does QBC work?

