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In this section we describe an algorithm, proposed by Eyal Kushilevitz and Yishay Mansour in 1992, that
learns decision trees in polynomial time in the membership queries model, assuming uniform distribution
over the instances (and realizability). In the membership queries model, the learner can query the correct
label of each instance. This is similar to active learning, except that in active learning we assumed that the
learner can only query the label of instances appearing in an unlabeled sample.

The class we consider is all decision trees over n Boolean variables with m = poly(n) leaves. The
calculation starts at the root node, and at each internal node we move to the left child iff xi = 1 for some
variable i ∈ [n]. 1

The algorithm is derived based on the following ideas:

1. We can think on each Boolean function as a vector in a 2d-dimensional space.

2. Applying Fourier transform on this vector space, it turns out that any decision tree function can be
represented as a vector with small L1 norm (i.e., the sum of the absolute values of the coefficients in
the Fourier representation of the function is small). This is not true for any DNF formula but is true
for decision trees, where the property we use is that in decision trees the number of satisfied clauses is
either 0 or 1 (but no more than 1).

3. Any vector with low L1 norm can be approximated by a sparse vector, such that all the non-zero
coefficients of the sparse vector are relatively large.

4. Each large Fourier coefficient can be identified and approximated in polynomial time by using mem-
bership queries.

Combining the above, we obtain a polynomial time algorithm for learning decision trees. We now de-
scribe each of the steps in details.

1 Fourier transform of Boolean functions
Let f : {0, 1}n → {−1, 1} be a Boolean function. We can think on f as a vector in {−1, 1}2n

where
elements are indices by strings x ∈ {0, 1}n. Define an inner product between two Boolean functions to be

〈f, g〉 =
1
2n

∑
x∈{0,1}n

f(x)g(x) = E
x∼U(n)

[f(x)g(x)] .

Now, for each z ∈ {0, 1}n define the function χz : {0, 1}n → {−1, 1} defined by

χz(x) = (−1)
P

i zixi .

That is, χz is the parity of those bits in x corresponding to the set of active bits in z. Observe that for any
z, z′, x, the value of χz(x)χz′(x) will be 1 iff χz(x) = χz′(x). This will happen iff χz⊕z′(x) = 1. Therefore,

〈χz, χz′〉 = E
x∼U(n)

[χz(x)χz′(x)] = E
x∼U(n)

[χz⊕z′(x)] = 1[z=z′] .

1In fact, the algorithm of Kushilevitz and Mansour can learn a more powerful form of decision trees, in which at each node a xor of
several variables can determine the next node.
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It follows that {χz : z ∈ {0, 1}n} is an orthonormal basis of R2n

. This is called the Boolean Fourier basis.
The Fourier coefficients are defined by projections onto this basis, that is,

f̂(z) = 〈f, χz〉 .

From the orthogonality of the basis it follows that 〈f, g〉 = 〈f̂ , ĝ〉 and in particular ‖f‖ = ‖f̂‖, which is
known as Parseval’s theorem. In particular, if the range of f is {±1} then 1 = ‖f‖ = ‖f̂‖.

We now show one of the main features of Fourier analysis that we will use in the next section. Suppose
we are looking for the Fourier representation of an AND function. That is, f : {0, 1}n → {0, 1} is defined
by a set I ⊂ [n] as f(x) =

∏
i∈I xi. Then,

2n f̂(z) =
∑

x

f(x)χz(x) =
∑

xi:i∈I

f(x)
∑

xi:i/∈I

χz(x) .

Now, if the support of z is not in I , it follows by symmetry that f̂(z) = 0. Otherwise, |f̂(z)| = 2−‖z‖1 .

2 The L1 norm of the spectrum of decision trees

We have shown that the L2 norm of any Boolean function is 1, hence the L2 norm of f̂ is also 1. But, what
about the L1 norm of f̂ , namely, ‖f̂‖1 =

∑
z |f̂(z)|? In a general d-dimensional Euclidean space, the L1

norm of a vector can be as large as
√

d times the L2 norm of the vector. In our case, d = 2n which is
exponential in n. We now show that if f is associated with a decision tree with m leaves then ‖f̂‖1 ≤ m. In
later section we shall see that it is possible to learn efficiently the class of functions with ‖f̂‖1 = poly(n),
which will imply that we can efficiently learn the class of decision trees with poly(n) leaves.

Lemma 1 Let f : {0, 1}n → {±1} be a function that can be implemented by a decision tree with m leaves.
Than, ‖f̂‖1 ≤ m.

Proof As mentioned in the proof, the key observation we make is that a decision tree can be written as a
DNF formula, (f(x) + 1)/2 = T1(x) + . . . + Tk(x), where k ≤ m and each Ti(x) is an AND function from
{0, 1}n to {0, 1}. That is, for each Ti exists some set Si ⊂ [n] such that Ti(x) =

∏
j∈Si

xj . This equality
does not hold for any DNF and uses a special property of decision trees—for each x either f(x) = −1 and
thus Ti(x) = 0 for all i or f(x) = 1 and then exactly one of the clauses is satisfied. The rest of the proof is
left as an exercise. Hint: Analyze the L1 norm of an AND function and show it is at most 1. Then, use the
linearity of the Fourier transform.

3 From low L1 norm vector to sparse vector

The following lemma shows that any function with low ‖f̂‖1 can be approximated by a function with a sparse
spectrum.

Lemma 2 For any Boolean function f , there exists a Boolean function h such that ‖ĥ‖0 ≤ ‖f̂‖2
1/ε and

E[(f − h)2] ≤ ε.
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Proof Consider the set A = {s : |f̂(s)| ≥ ε/‖f̂‖1}. There are at most ‖f̂‖1/(ε/‖f̂‖1) = ‖f̂‖2
1/ε elements

in A. Let h =
∑

s∈A f̂(s)χs(x), which is ‖f̂‖2
1/ε-sparse. Then,

E[(f − h)2] =
∑
s 6∈A

f̂(s)2

≤ max
s 6∈A

|f̂(s)|
∑

s

|f̂(s)|

≤ ε

‖f̂‖1

‖f̂‖1 = ε.

4 Identifying the large Fourier coefficients using membership queries
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