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Lecture 1 – Introduction and Gentle Start
Lecturer: Shai Shalev-Shwartz Scribe: Shai Shalev-Shwartz

Based on a book by Shai Ben-David and Shai Shalev-Shwartz (in preparation)

Lectures 1+2 from 2009.
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Lecture 2 – Bias Complexity Tradeoff
Lecturer: Shai Shalev-Shwartz Scribe: Shai Shalev-Shwartz

Based on a book by Shai Ben-David and Shai Shalev-Shwartz (in preparation)

Lecture 3 from 2009.
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Lecture 3(a) – MDL
Lecturer: Shai Shalev-Shwartz Scribe: Shai Shalev-Shwartz

Based on a book by Shai Ben-David and Shai Shalev-Shwartz (in preparation)

Lecture 4 from 2009.
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Lecture 3(b) – Validation
Lecturer: Shai Shalev-Shwartz Scribe: Shai Shalev-Shwartz

Based on a book by Shai Ben-David and Shai Shalev-Shwartz (in preparation)

Lecture 13 from 2009.
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Lecture 3(c) – Compression Bounds
Lecturer: Shai Shalev-Shwartz Scribe: Shai Shalev-Shwartz

Based on a book by Shai Ben-David and Shai Shalev-Shwartz (in preparation)

In the previous lectures we saw how to express prior knowledge by restricting ourselves to a finite hy-
pothesis classes or by defining an order over countable hypothesis classes. In this lecture we show how one
can learn even uncountable hypothesis classes by deriving compression bounds. Roughly speaking, we shall
see that if a learning algorithm can express the output hypothesis using a small subset of the training set, then
the error of the hypothesis on the rest of the examples estimates its generalization error.

To motivate the results, let us first consider the following learning protocol. First, we sample a sequence
of k examples denoted T . Based on these examples, we construct a hypothesis denoted hT . Now we would
like to estimate the performance of hT so we sample a fresh sequence of m − k examples, denoted V , and
calculate the error of hT on V . Since V and T are independent, we immediately get the following from
Bernstein’s inequality (as you saw in home exercise).
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Lemma 1 P
[
LD(hT )− LV (hT ) ≥

√
2LV (h) log(1/δ)

|V | + 4 log(1/δ)
|V |

]
≤ δ .

To derive the above bound, all we needed was independence between T and V . Therefore, we can
re-define the protocol as follows. First, we agree on a sequence of k indices I = (i1, . . . , ik) ∈ [m]k.
Then, we sample a sequence of m examples S = (x1, y1), . . . , (xm, ym). Now, define T = SI =
(xi1 , yi1), . . . , (xik , yik) and define V to be the rest of the examples in S. Note that this protocol is equivalent
to the protocol we defined before — hence Lemma 1 still holds.

Applying a union bound over the choice of the sequence of indices we obtain the following theorem.

Theorem 1 Let k be an integer and letB : (X ×Y)k → H be a mapping from a sequence of k examples into
a hypothesis. Let m ≥ 2k be a training set size and let A : (X × Y)m → H be a learning rule that receives
a training sequence S of size m and returns a hypothesis such that A(S) = B((xi1 , yi1), . . . , (xik , yik)) for
some (i1, . . . , ik) ∈ [m]k. Let V = ((xj , yj) : j /∈ (i1, . . . , ik)) be the sequence of examples which were not
selected for defining A(S). Then, with probability of at least 1− δ over the choice of S we have

LD(A(S)) ≤ LV (A(S)) +

√
LV (A(S))

4k log(m/δ)

m
+

8k log(m/δ)

m
.

Proof For any I ∈ [m]k let hI = B(xi1 , yi1), . . . , (xik , yik)). Let n = m − k. Combining Lemma 1 with
the union bound we have

P

[
∃I ∈ [m]k s.t. LD(hI)− LV (hI) ≥

√
2LV (hI) log(1/δ)

n
+

4 log(1/δ)

n

]

≤
∑

I∈[m]k

P

[
LD(hI)− LV (hI) ≥

√
2LV (hI) log(1/δ)

n
+

4 log(1/δ)

n

]
≤ mkδ .

Denote δ′ = mkδ. Using the assumption k ≤ 2m which implies that n = m − k ≥ m/2 the above implies
that with probability of at least 1− δ′ we have that

LD(A(S)) ≤ LV (A(S)) +

√
LV (A(S))

4k log(m/δ′)

m
+

8k log(m/δ′)

m
,

which concludes our proof.

As a direct corollary we obtain:

Corollary 1 Let k be an integer and letB : (X×Y)k → H be a mapping from a sequence of k examples into
a hypothesis. Let m ≥ 2k be a training set size and let A : (X × Y)m → H be a learning rule that receives
a training sequence S of size m and returns a hypothesis such that A(S) = B((xi1 , yi1), . . . , (xik , yik)) for
some (i1, . . . , ik) ∈ [m]k. Let V = ((xj , yj) : j /∈ (i1, . . . , ik)) be the sequence of examples which were not
selected for defining A(S) and assume that LV (A(S)) = 0. Then, with probability of at least 1− δ over the
choice of S we have

LD(A(S)) ≤ 8k log(m/δ)

m
.

We can also easily derive the following:

Theorem 2 Let k be an integer and let B : (X × Y)k → H be a mapping from a sequence of k examples
into a hypothesis. Let m ≥ 2k be a training set size. Let δ ∈ (0, 1) and assume that m/δ ≥ 42. Let
A : (X ×Y)m → H be a learning rule that receives a training sequence S of sizem and returns a hypothesis
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such that A(S) = B((xi1 , yi1), . . . , (xik , yik)) for some (i1, . . . , ik) ∈ [m]k. Then, with probability of at
least 1− δ over the choice of S we have

LD(A(S)) ≤ LS(A(S)) +

√
LS(A(S))

4k log(m/δ)

m
+

10k log(m/δ)

m
.

Proof For any hypothesis

LS(h) =
|V |LV (h) + |V̄ |LV̄ (h)

m

which implies

LV (h) =
m

|V |
LS(h)− m

|V̄ |
LV̄ (h) ≤ m

|V |
LS(h) =

|V |+ |V̄ |
|V |

LS(h) ≤ LS(h) +
|V̄ |

m− |V̄ |
≤ LS(h) +

2k

m
.

Combining this with the bound in Theorem 1, and using the inequality
√
a+ b ≤

√
a+
√
b we obtain:

LD(A(S)) ≤ LV (A(S)) +

√
LV (A(S))

4k log(m/δ)

m
+

8k log(m/δ)

m

≤ LS(A(S)) +

√
LS(A(S))

4k log(m/δ)

m
+

8k log(m/δ)

m
+

2k

m
+

2k

m

√
2 log(m/δ)

= LS(A(S)) +

√
LS(A(S))

4k log(m/δ)

m
+

2k

m

(
4 log(m/δ) +

√
2k log(m/δ) + 1

)
.

Finally, by our assumption on m/δ we have that the term in the parenthesis is at most 5 log(m/δ).

1 Examples
For simplicity, in all the examples we assume the realizable case. At the end of this section we describe what
to do in the unrealizable case.

1.1 Axis-aligned Rectangles
Note that this is an uncountable infinite class. We show that there’s a simple compression scheme. Consider
the algorithm A that works as follows: For each dimension, choose the two positive examples with extremal
values at this dimension. Define B to be the function that returns the minimal enclosing rectangle. Then:

• k = 2d

• In the realizable case, LV (A(S)) = 0

• Corollary 1 implies LD(A(S)) ≤ 16d log(m/δ)
m .

1.2 Halfspaces
Let X = Rd and consider the class x 7→ sign(〈w,x〉).
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A compression scheme: W.l.o.g. assume all labels are positive (otherwise, replace xi by yixi). Since the
data is linearly separable, the convex hull of {x1, . . . ,xm} does not contain the origin. Consider the point
in this convex hull closest to the origin. (This is a unique point which is the Euclidean projection of the
origin onto this convex hull.) Call this point w. We claim that w separates the data. To see this, assume by
contradiction that 〈w,xi〉 ≤ 0 for some i. Take w′ = (1− α)w + αxi for α = ‖w‖2

‖xi‖2+‖w‖2 ∈ (0, 1). Then
w′ is also in the convex hull and

‖w′‖2 = (1− α)2‖w‖2 + α2‖xi‖2 + 2α(1− α)〈w,xi〉
≤ (1− α)2‖w‖2 + α2‖xi‖2

=
‖xi‖4‖w‖2 + ‖xi‖2‖w‖4

(‖w‖2 + ‖xi‖2)2

=
‖xi‖2‖w‖2

‖w‖2 + ‖xi‖2

< ‖w‖2 ,

which leads to a contradiction.
We have thus shown that w is also an ERM. Finally, since w is in the convex hull of the examples, we

can apply Caratheodory’s theorem to obtain that w is also in the convex hull of a subset of d+ 1 points of the
polygon. Furthermore, the minimality of w implies that w must be on a face of the polygon and this implies
it can be represented as a convex combination of d points.

It remains to show that w is also the projection onto the polygon defined by the d+1 points. But, this must
be true: on one hand, the smaller polygon is a subset of the larger one, hence the projection onto the smaller
cannot be smaller in norm. On the other hand, w itself is a valid solution. The uniqueness of projection
concludes our proof.

1.3 Separating polynomials
Let X = Rd and consider the class x 7→ sign(p(x)) where p is a degree r polynomial.

Note that p(x) can be rewritten as 〈w, ψ(x)〉 where the elements of ψ(x) are all the monomials of x up
to degree r. Therefore, the problem of constructing a comrpession scheme for p(x) reduces to the problem
of constructing a compression scheme for Halfspaces in Rd′ where d′ = O(dr).

1.4 What to do in the unrealizable case?
A general solution: first, find an ERM. Then, throw all the examples on which the ERM hypothesis err. Now,
apply the compression scheme on the correct examples.
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Lecture 4 – Perceptron
Lecturer: Shai Shalev-Shwartz Scribe: Shai Shalev-Shwartz

Based on a book by Shai Ben-David and Shai Shalev-Shwartz (in preparation)

The class of linear separators — see Lecture 8(a) from last year. Previously, we saw a compression
scheme of size d for halfspaces in Rd. In this lecture we will introduce the Perceptron algorithm, and we will
show a compression scheme which is based on large margin separation of the data.
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2 Separation with margin
Given a training set S, we define the margin of S as

γ(S) = max
w:‖w‖2=1

min
(x,y)∈S

y〈w,x〉 .

Geometrically, for any x, the absolute value |〈w,x〉| is the distance between x and the hyperplane associated
with w. Additionally, if sign(〈w,x〉) = y then y〈w,x〉 = |〈w,x〉|. Therefore, γ(S) will be positive if S
is linearly separable by a halfspace, and the value of γ(S) captures how ”fat” we can make the hyperplane
while still separating the training set S.

Of course, one can increase the margin by scaling all the instances. To prevent this, we will assume from
now on that the instance space is the unit ball X = {x ∈ Rd : ‖x‖2 ≤ 1}.

An illustration is given in Figure 1.

Figure 1: Separation with margin

We will later show that if γ(S) > 0 then we have a compression scheme of size at most 1/γ(S)2 for the
class of Halfspaces. This is achievable by the Perceptron algorithm.

3 The Perceptron
In this section we present the Perceptron learning algorithm.

Algorithm 1 Perceptron
Input: A training set S = (x1, y1), . . . , (xm, ym)
Initialize: w = 0
While (∃(x, y) ∈ S s.t. y〈w,x〉 ≤ 0)
w = w + yx

Output: w

Theorem 3 Assume that γ(S) > 0. Then, the Perceptron algorithm stops after at most 1
γ(S)2 iterations.

Proof Let w? be a vector that achieves the maximum in the definition of γ(S). Denote wt to be the value
of w at the beginning of the tth iteration of the Perceptron and by (xt, yt) the example used to update wt.
We prove the theorem by monitoring the value of 〈w?,wt〉. At the first iteration, w1 = 0 and therefore
〈w?,w1〉 = 0. On iteration t, we have that

〈w?,wt+1 −wt〉 = y〈w?,x〉 ≥ γ(S) .

Therefore, after t iterations we have that 〈w?,wt+1〉 ≥ t γ(S). On the other hand, from Cauchy-Schwartz
inequality we have that

〈w?,wt+1〉 ≤ ‖w?‖ ‖wt+1‖ = ‖wt+1‖ .

4 – Perceptron-5



Next, we upper bound the value of ‖wt+1‖. Initially, ‖w1‖ = 0 and after each update we have

‖wt+1‖2 − ‖wt‖2 = 2yt〈wt,xt〉+ ‖xt‖2 ≤ 0 + ‖xt‖2 ≤ 1 .

Therefore,
‖wt+1‖ ≤

√
t . (1)

Overall, we have shown that
t γ(S) ≤ 〈w?,wt+1〉 ≤ ‖wt+1‖ ≤

√
t .

Rearranging the above we get that t ≤ 1/γ(S)2, which concludes our proof.

Corollary 2 For any training set S for which γ(S) > 0, there exists 1/γ(S)2 examples that determines a
Halfspace with zero training error.

Proof Simply run the Perceptron algorithm and note that its weight vector depends on at most 1/γ(S)2

examples.

Combining the above with a compression bound we obtain:

Corollary 3 Let D be a distribution over X × Y , where X is the unit ball of Rd and Y ∈ {±1}, such that
there exists a unit weight vector w? and a scalar γ > 0 with

P
(x,y)∼D

[y〈w?,x〉 ≥ γ] = 1 .

Then, with probability of at least 1 − δ over m ≥ 2/γ2 i.i.d. examples from D, if we run the Perceptron on
the examples it will return w such that

P
(x,y)∼D

[y 6= sign(〈w,x〉)] ≤ 8 log(m/δ)

γ2m
.

Proof Follows by combining a compression bound with the previous corollary.

4 The unseparable case – an inefficient solution
The analysis in the previous section holds for separable training sets. What if the data is not separable? As
in the ”agnostic PAC” model, we can replace separability assumption with a relative analysis, in which we
compare ourselves to the number of margin errors the best w? males on the training set.

The first solution we propose is the following algorithm. The idea of the algorithm is to first find a sub-
sequence of the training set of maximal size which is still separable with margin, and run the Perceptron on
this sub-sequence. The immediate disadvantage of this approach is its computational complexity, which can
grow like m1/γ2

.

Algorithm 2 Inefficient-Perceptron for the unseparable case
Parameter: γ > 0
Input: A training set S = (x1, y1), . . . , (xm, ym)
Find w? = argmaxw |{i : yi〈w,xi〉 ≥ γ}|
Let I = {i : yi〈w?,xi〉 ≥ γ}
Output: The output of Perceptron when running on the examples in I
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Theorem 4 Let γ > 0 be a margin parameter. For any S = (x1, y1), . . . , (xm, ym), let w? be as defined in
Algorithm 2 and let

Mγ(S) =
|{i : yi〈w?,xi〉 < γ}|

m

be the averaged number of margin mistakes made by w? on S. Then, with probability of at least 1 − δ over
a chose of S ∼ Dm, if we run the Inefficient-Perceptron algorithm its output satisfies

P
(x,y)∼D

[y 6= sign(〈w,x〉)] ≤Mγ(S) +

√
Mγ(S)

4 log(m/δ)

γ2m
+

8 log(m/δ)

γ2m
.

Proof This follows directly from the general compression bound by noting that LV (S) ≤ Mγ(S) and
k ≤ 1/γ2.

5 The unseparable case – an efficient approach
We now describe an efficient approach. The idea is to construct a new training set which is separable and
then run the original Perceptron on the new constructed training set. The i’th instance of the new constructed
training set is a concatenation of a scaled version of the original instance xi and a scaled version of the vector
ei, that is, the vector which is everywhere zero except 1 in the i’th element. We denote the concatenation by
x̃i = [axi ;

√
1− a2ei]. That is, the first d elements of x̃i are the vector xi scaled by a ∈ (0, 1) and the rest

of the elements are the vector ei scaled by
√

1− a2.

Algorithm 3 Efficient-Perceptron for the unseparable case
Parameter: a > 0
Input: A training set S = (x1, y1), . . . , (xm, ym)

For each i, let x̃i = [axi ;
√

1− a2 ei]
Output: Perceptron((x̃1, y1), . . . , (x̃m, ym))

Note that if ‖x‖ ≤ 1 then ‖x̃i‖ ≤ 1 as well. In addition, trivially, the new constructed training set is
separable — simply set the first d elements of w to zero and the rest m elements to 1/

√
m. But, this yields a

meaningless bound because the bound depends on 1/γ2 and in our case γ = 1/
√
m. The lemma below gives

another interpretation to the separability of the constructed training set.

Lemma 2 Let w? ∈ Rd be a unit vector and let γ > 0 be a margin parameter. For each i, let

`i = max{0, γ − yi〈w?,xi〉} ,

denote how much is the separation with margin requirement being violated. Then, the new constructed
training set (x̃1, y1), . . . , (x̃m, ym) is separable with margin of at least

γ′ =
a γ√

1 + a2

1−a2
∑
i `

2
i

Proof To simplify our notation denote b =
√

1− a2 and L =
∑
i `

2
i . Set

w =
[w?; ab (y1`1, . . . , ym`m)]√

1 + a2

b2 L
.
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By construction, ‖w‖ = 1. Additionally,

(

√
1 + a2

b2 L) yi〈w, x̃i〉 = ayi〈w?,xi〉+ a`i ≥ ayi〈w?,xi〉+ a(γ − yi〈w?,xi〉) = aγ .

Thus,
yi〈w, x̃i〉 ≥

aγ√
1 + a2

b2 L
=

aγ√
1 + a2

1−a2L
,

which concludes our proof.

We now discuss the implications of the above lemma and the compression bound given in Corollary 1 on
the performance of Algorithm 3. When running the Perceptron in the higher dimension space we know by
the lemma that we need at mostB = 1

γ′2 updates until the algorithm finds a separating hyperplane. Lets write
its final vector as [w, (ξ1, . . . , ξm)] and note that w is a function of a sequence of at most B examples. Next,
we show that the error of w on the rest of the examples is zero. Indeed, since the algorithm started with the
all zeros vector, and because of the structure of the constructed examples, it follows that at most B entries of
(ξ1, . . . , ξm) are non-zero. For each example on which ξi = 0 we have

ayi〈w,xi〉 > 0 ⇒ yi〈w,xi〉 > 0 .

Denoting V the set of examples on which we didn’t make an update, it follows that LV (w) = 0. The
conditions of the compression bound given in Corollary 1 thus holds1 and we obtain that

LD(w) ≤
8B log(mδ )

m
.

Plugging in the value of B we obtain that

LD(w) ≤ min
γ>0

min
w?:‖w?‖=1

8 log(mδ )

m

(
1

a2 γ2
+

1

1− a2

m∑
i=1

(
1
γ max{0, 1− yi〈w?,xi〉}

)2
)
.

(67577) Introduction to Machine Learning November 8, 2010

Lecture 5 – Perceptron with Kernels
Lecturer: Shai Shalev-Shwartz Scribe: Shai Shalev-Shwartz

Based on a book by Shai Ben-David and Shai Shalev-Shwartz (in preparation)

In the previous lectures we talked about the hypothesis class of Halfspaces. Seemingly, the expressive
power of Halfspaces is rather restricted – for example, it is impossible to explain the training set below by a
Halfspace hypothesis.

+

+

xx

In this lecture we present the concept of kernels, which makes the class of Halfspaces much more expressive.
The kernel trick has had tremendous impact on machine learning theory and algorithms over the past decade.

1Note that it is required that the size of the compression scheme, which is B in our case, will be smaller than m/2. But if this is not
the case, the right-hand side of the bound becomes greater than 1 so it holds trivially.
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6 Mapping to a feature space
To make the class of Halfspaces more expressive, we can first map the original instance space into another
space (possibly, of higher dimension) and then learn a Halfspace in that space. For example, consider the
example mentioned previously. Instead of learning a Halfspace in the original representation let us first define
a mapping ψ : R2 → R2 as follows:

ψ((x1, x2)) = (|x1|, |x2|) .

We use the term feature space to denote the range of ψ. After applying ψ the data can be easily explained
using a Halfspace:

Original space Feature space
ψ(x)

+ +

+

x xx

Of course, choosing a good ψ is part of our prior knowledge on the problem. But, there are some generic
mappings that enable to enrich the class of Halfspaces. One notable example is polynomial mappings.

Recall that with a standard Halfspace classifier, the prediction on an instance x is based on the linear
mapping x 7→ 〈w,x〉. We can generalize linear mappings to a polynomial mapping, x 7→ p(x), where p is
a polynomial of degree k. For simplicity, consider first the case in which x is 1 dimensional. In that case,
p(x) =

∑k
j=0 wjx

j , where w ∈ Rk+1 is the vector of coefficients of the polynomial we need to learn. We
can rewrite p(x) = 〈w, ψ(x)〉 where ψ : R→ Rk+1 is the mapping x 7→ (x0, x1, . . . , xk). That is, learning
a k-degree polynomial in R can be done by learning a linear mapping in the feature space, which is Rk+1 in
our case.

More generally, a degree k multivariate polynomial from Rn to R can be written as

p(x) =
∑

J∈[n]r:r≤k

wJ

r∏
i=1

xJi . (2)

As before, we can rewrite p(x) = 〈w, ψ(x)〉 where now ψ : Rn → Rd such that for each J ∈ [n]r, r ≤ k,
the coordinate of ψ(x) associated with J is the monomial

∏r
i=1 xJi .

Naturally, polynomials-based classifiers yield much richer hypotheses classes than Halfspaces. For ex-
ample, while the training set given in the beginning of this section cannot be explained by a Halfspace, it can
be explained by an ellipse, which is a degree 2 polynomial.

+

+

xx

So while the classifier is always linear in the feature space, it can have a highly non-linear behavior on the
original space from which instances were sampled.
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In general, we can choose any feature mapping ψ that maps the original instances into some Hilbert space
(namely, a complete2 inner-product space). The Euclidean space Rd is a Hilbert space for any finite d. But,
there are also infinite dimensional Hilbert space (see next section).

7 The Perceptron with the kernel trick
In the previous section we saw how to enrich the class of Halfspaces by first applying a non-linear mapping,
ψ, that maps the instance space into a feature space, and then learning a Halfspace in the feature space,
e.g. using the Perceptron algorithm. If the range of ψ is a high dimensional space we face a computational
problem since performing calculations in the high dimensional space might be too costly. In fact, even the
representation of the vector w in the feature space can be unrealistic.

In this section we show that in order to learn a Halfspace in the feature space efficiently, it suffices to be
able to efficiently calculate inner products in the feature space. Formally, let K(x,x′) = 〈ψ(x), ψ(x′)〉 be a
function that implements inner products in the feature space. We call K a kernel function. Additionally, let
G be an m×m matrix s.t. Gi,j = K(xi,xj). The matrix G is often called the Gram matrix. We now show
how to run the Perceptron algorithm in the feature space while only accessing the matrix G.

Algorithm 4 Kernelized-Perceptron
Input: A Gram matrix G, training set S = (x1, y1), . . . , (xm, ym)
Initialize: (α1, . . . , αm) = 0
While (∃i ∈ [m] s.t. yiGα ≤ 0)
αi = αi + yi

Output: The predictor h(x) = sign (
∑m
i=1 αiK(xi,x))

Exercise: prove that the output predictor of the Kernelized-Perceptron is the same as the output predictor
of the Perceptron algorithm when running on (ψ(x1), y1), . . . , (ψ(xm), ym).

Example 1 (Polynomial kernels) Consider the mapping ψ : Rn → Rd mapping x to all its monomial of
order at most k. That is, for any r ≤ k and J ∈ [n]r there exists a coordinate (ψ(x))J =

∏r
i=1 xJi .

This is the mapping corresponds to a degree k multivariate polynomial as given in Eq. (2). To implement
〈ψ(x), ψ(x′)〉 we note that

〈ψ(x), ψ(x′)〉 =
∑

J∈[n]r:r≤k

 r∏
j=1

xJj

 r∏
j=1

x′Jj

 =
∑

J∈[n]r:r≤k

r∏
j=1

(xJjx
′
Jj ) = (1 + 〈x,x′〉)k.

Therefore, we can learn a degree k multivariate polynomial by solving Eq. (13) with the kernel function

K(x,x′) = (1 + 〈x,x′〉)k .

Example 2 (Gaussian kernel) Let the original instance space be R and consider the mapping ψ where for

each non-negative integer n ≥ 0 there exists an element ψ(x)n which equals to 1√
n!
e−

x2

2 xn. Then,

〈ψ(x), ψ(x′)〉 =

∞∑
n=0

(
1√
n!
e−

x2

2 xn
) (

1√
n!
e−

(x′)2

2 (x′)n
)

= e−
x2+(x′)2

2

∞∑
n=0

(
(xx′)n

n!

)
= e−

‖x−x′‖2
2 .

2A space is complete if all Cauchy sequences in the space converge. A sequence, x1,x2, . . ., in a normed space is a Cauchy sequence
if for any ε > 0 there exists a large enough n such that for any i, j > n we have ‖xi − xj‖ < ε. The sequence converges to a point x
if ‖xn − x‖ → 0 as n → ∞. In our case, the norm ‖w‖ is defined by the inner product

√
〈w,w〉. The reason we require the range

of ψ to be in a Hilbert space is because projections in a Hilbert space are well defined. In particular, if M is a linear subset of a Hilbert
space, then every x in the Hilbert space can be written as a sum x = u+v where u ∈M and 〈v,w〉 = 0 for all w ∈M . We use this
fact in the proof of the Wahba’s representer theorem given in the next section.
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More generally, given a scalar σ > 0, the Gaussian kernel is defined to be

K(x,x′) = e−
‖x−x′‖2

2σ .

It is easy to verify that K implements an inner-product in a space in which for any n and any monomial of

order n there exists an element of ψ(x) that equals to 1√
n!
e−
‖x‖2

2
∏n
i=1 xji .

8 Kernels as a way to express prior knowledge*
As we have shown in the previous section, instead of specifying the feature mapping ψ, one can specify a
kernel function k such that k(x, x′) = 〈ψ(x), ψ(x′)〉. One can think of k as specifying similarity between
instances. As an example, consider the Gaussian kernel described previously.

Given a similarity function function of the form k : X ×X → R. Is it a valid kernel function? I.e. does it
represent an inner product between x and x′ in some feature space? The following lemma gives a sufficient
(and necessary) condition.

Lemma 3 A symmetric function k : X × X → R implements an inner product in some feature space if it
is positive semi-definite, namely, for all x1, . . . ,xm, the Gram matrix with Gi,j = k(xi,xj) is a positive
semi-definite matrix.

Proof Define the space of functions over X as RX = {f : X → R}. For each x ∈ X let ψ(x) be the
function x 7→ k(·,x). Define a vector space by taking all linear combinations of elements of the form k(·,x).
Define an inner product on this vector space to be

〈
∑
i

αik(·,xi),
∑
j

βjk(·,x′j)〉 =
∑
i,j

αiβjk(xi,x
′
j) .

This is a valid inner product since it is symmetric (because k is symmetric), it is linear (immediate), and it is
positive semi-definite. Clearly,

〈ψ(x), ψ(x′)〉 = 〈k(·,x), k(·,x)〉 = k(x,x′) ,

which concludes our proof.

(67577) Introduction to Machine Learning November 15, 2010

Lecture 6 – Convex Learning Problems
Lecturer: Shai Shalev-Shwartz Scribe: Shai Shalev-Shwartz

Based on a book by Shai Ben-David and Shai Shalev-Shwartz (in preparation)

In this lecture we will focus on convex learning problems. This is an important class of learning problems,
mainly because most of what we can learn efficiently falls into this class. Furthermore, in many cases we use
surrogate convex loss functions (instead of the original loss function) to facilitate an efficient solution.
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9 Convex learning problems
In convex learning problems, each hypothesis is parameterized by a vector w ∈W and the loss function can
be written as (with slight abuse of notation)

`(hw(x), y) = `(w, (x, y)) ,

where `(w, z) is convex with respect to w. To simplify the notation throughout this lecture, we use z as a
shorthand for (x, y). The learning problem is to minimize

LD(w) = E
z∼D

`(w, z) .

As in previous lectures, we only have an access to D by sampling i.i.d. examples out of it and we would
like to find an ε-accurate solution with high probability over the examples. For simplicity, throughout the
section we will only analyze the expected accuracy of our solutions, but high probability bounds can also be
obtained.

Example 3 (Linear regression with squared loss) Suppose that hw(x) = 〈w,x〉 and `(hw(x), y) =
(hw(x) − y)2. Then, set z = (x, y) and `(w, z) = (〈w,x〉 − y)2. This loss function is convex w.r.t.
w.

10 Surrogate loss functions
In previous lectures we mainly dealt with binary classification with the 0−1 loss. For the class of Halfspaces,
i.e. x 7→ sign(〈w,x〉), this amounts to the loss function (w.r.t. w)

`0−1(w, z) = 1[y〈w,x〉≤0] .

This loss function is not convex w.r.t. w and indeed solving the ERM problem w.r.t. the 0 − 1 loss in the
unrealizable case is known to be NP-hard.

To circumvent the hardness result, one popular approach is to upper bound the non-convex loss function
by a convex surrogate loss function. For example,

`0−1(w, z) ≤ `hinge(w, z)
def
= max{0, 1− y〈w,x〉} .

An illustration of the functions `0−1 and `hinge is given in Figure 2.

y〈w,x〉

`0−1

`hinge

1

1

Figure 2: An illustration of the 0− 1 loss and the hinge-loss as scalar functions of y〈w,x〉.

In the next sections we discuss several simple generic methods for solving convex learning problems.
But, first, we recall basic definitions from convex analysis.
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11 Convexity
A set A is convex if for any two vectors w1,w2 in A, all the line between w1 and w2 is also within A. That
is, for any α ∈ [0, 1] we have that αw1 + (1 − α)w2 ∈ A. A function f : A → R is convex if for all
u,v ∈ Rn and α ∈ [0, 1] we have

f(αu + (1− α)v) ≤ αf(u) + (1− α)f(v) .

It is easy to verify that f is convex iff its epigraph is a convex set, where epigraph(f) = {(x, α) : f(x) ≤ α}.
Throughout this lecture we focus on convex functions.

Gradient: The gradient of a differential function f : Rd → R at w is the vector of partial derivatives
of f w.r.t. its elements, namely, ∇f(w) =

(
∂f(w)
∂w1

, . . . , ∂f(w)
∂wd

)
. The gradient of f at w yields the first

order Taylor approximation of f around w by f(u) ≈ f(w) + 〈u − w,∇f(w)〉. When f is convex, this
approximation lower bounds f , that is,

f(u) ≥ f(w) + 〈u−w,∇f(w)〉 .

Sub-gradients: A vector λ is a sub-gradient of a function f at w if for all u ∈ A we have that

f(u)− f(w) ≥ 〈u−w,λ〉 .

The differential set of f at w, denoted ∂f(w), is the set of all sub-gradients of f at w. For scalar functions, a
sub-gradient of a convex function f at x is a slope of a line that touches f at x and is not above f everywhere.

Two useful properties of sub-gradients are given below:

1. If f is differentiable at w then ∂f(w) consists of a single vector which amounts to the gradient of
f at w and is denoted by ∇f(w). In this sense, the notion of sub-gradient generalizes the notion of
gradient.

2. If g(w) = maxi∈[r] gi(w) for r convex differentiable functions g1, . . . , gr, and j = arg maxi gi(u),
then the gradient of gj at u is a subgradient of g at u.

The following lemma gives useful ways to know if a function is convex:

Lemma 4 A function f is convex if one of the following holds

1. f is differentiable and all its gradient at each point is also a sub-gradient.

2. f is twice differentiable and its Hessian (matrix of second derivatives) at each point is positive semi-
definite.

3. f is a composition of a convex scalar function on a linear vector function.

4. f is a maximum of linear functions.

Proof

1. Follows immidiatly from the relation between the gradient and convexity defined above.

2. If f : Rd → R is twice differentiable then for every 2 points u,w ∈ Rd we can write :

f(u) = f(w) + 〈u−w,∇f(w)〉+ (u−w)THf (ξ)(u−w)

where ξ is some convex combination of u and w.
But since Hf is PSD then the right most expression is ≥ 0 and thus f(u) is always bigger than its first
order taylor approximation and thus f is convex.
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3. If f(w) = g(〈w, x〉) where g is convex, then :

f(αw + (1− α)u) = g(α〈w, x〉+ (1− α)〈u, x〉)

from the linearity of the inner product.
From the convexity of g we get :

≤ αg(〈w, x〉) + (1− α)g(〈u, x〉) = αf(w) + (1− α)f(u)

as required.

4. If f(w) = maxi∈[r] gi(w) for r linear functions g1, . . . , gr (i.e. gi(w) = 〈w, xi〉), then :

f(αw + (1− α)u) = max
i∈[r]

gi(αw + (1− α)u) = max
i∈[r]
〈αw + (1− α)u, xi〉

If we denote by x∗ the function where this expression obtains the maximum, than from the linearity of
the inner product we get :

= α〈w, x∗〉+ (1− α)〈u, x∗〉 ≤ αmax
i∈[r]
〈w, xi〉+ (1− α) max

i∈[r]
〈u, xi〉 = αf(w) + (1− α)f(u)

as required.

Example 4 (Logistic-loss) Recall that the logistic-loss is defined as `(w;x, y) = log(1 + e−y〈w,x〉). This
function is a composition of the scalar function log(1 + e−ax) with the linear function w 7→ y〈w,x〉.
Calculating the derivatives of the scalar function we get :

`′(x) =
e−ax ∗ −a
1 + e−ax

=
−a
eax

eax+1
eax

=
−a

eax + 1

and :
`′′(x) =

a

(eax + 1)2
∗ eaxa ≥ 0

hence ` is convex. Since this function is differentiable, a sub-gradient at w is the gradient at w, which using
the chain rule equals to

∇`(w;x, y) =
− exp(−y〈w,x〉)

1 + exp(−y〈w,x〉)
y x =

−1

1 + exp(y〈w,x〉)
y x .

Example 5 (Hinge-loss) Recall that the hinge-loss is defined as `(w;x, y) = max{0, 1 − y〈w,x〉}. This
is the maximum of two linear functions, hence it is convex. Additionally, using the two properties above
of sub-gradients we have that if 1 − y〈w,x〉 > 0 then −y x ∈ ∂`(w;x, y) and if 1 − y〈w,x〉 < 0 then
0 ∈ ∂`(w;x, y). Furthermore, it is easy to verify that

∂`(w;x, y) =


{−yx} if 1− y〈w,x〉 > 0

{0} if 1− y〈w,x〉 < 0

{−αyx : α ∈ [0, 1]} if 1− y〈w,x〉 = 0

the last case can be proved as follows :
Because `(w;x, y) = 0, so :

`(u;x, y)− `(w;x, y) = max{0, 1− y〈u,x〉}
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Because y〈w, x〉 = 1, for every u,

〈u− w,−αyx〉 = −α(y〈u, x〉 − y〈w, x〉) = α(1− y〈u, x〉)

but simply :
max{0, 1− y〈u,x〉} ≥ α(1− y〈u, x〉)

since α ∈ (0, 1) so we get
`(u;x, y)− `(w;x, y) ≥ 〈u− w,−αyx〉

which is the condition for the subgradient.

-1 1

1

Figure 3: An illustration of the hinge-loss function f(x) = max{0, 1 − x} and one of its sub-gradients at
x = 1.

Lipschitz functions: We say that f : A→ R is ρ-Lipschitz if for all u,v ∈ A

|f(u)− f(v)| ≤ ρ ‖u− v‖ .

An equivalent definition is that the `2 norm of all sub-gradients of f at points in A is bounded by ρ.

12 Gradient Descent
Let f(w) be a convex differentiable function which we would like to minimize. One of the simplest opti-
mization methods is called gradient descent. Gradient descent is an iterative method in which we start with
an initial vector w1 and on each iteration we update wt+1 = wt − ηt∇f(wt), where ηt is a scalar called
”step-size”. That is, we move from wt in the opposite direction of the gradient. The reason to update us-
ing the direction of the gradient is because locally, this is the best direction to take (recall the definition of
derivatives).

In the context of this lecture, our goal is to minimize the function LD(w). We cannot use the gradient
descent approach since we do not know how to calculate the gradient of LD(w) (since D is unknown).

13 Stochastic Gradient Descent
Similarly to gradient descent, stochastic gradient descent is an iterative method. The difference is that the
update is not based on the gradient of the function we would like to minimize but rather we update wt+1 =
wt − ηtvt, where vt is a random vector whose expected value is ∇f(wt) (or more generally, its expected
value is a sub-gradient of f at wt).

The importance of stochastic gradient descent in our context stems from the fact that we can easily apply
it to the function LD(w) as the following lemma shows.

Lemma 5 Let LD(w) = Ez∼D[`(w, z)]. For any w, define λ by first sampling z ∼ D and then setting
λ ∈ ∂`(w, z). Then, Ez[λ] ∈ ∂LD(w).
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Proof By definition of λ we have that for all z and all u, `(u, z)−`(w, z) ≥ 〈u−w,λ〉. Taking expectation
w.r.t. the choise of z on both sides we get that

E
z∼D

[〈u−w,λ〉] ≤ E
z∼D

[`(u, z)− `(w, z)]

which yields
〈u−w,E

z
[λ]〉 ≤ LD(u)− LD(w) .

But, this implies that Ez[λ] is a sub-gradient of LD(w) as required.

We next describe three variants of stochastic gradient descent.

13.1 Convex-Lipschitz functions

Algorithm 5 Stochastic sub-gradient descent (for Lipschitz-convex functions)
Goal: Solve minw∈A f(w)
Initialize: w1 = 0 ; Choose η1 ∈ R
for t = 1, . . . , T

Choose random vector vt s.t. E[vt] ∈ ∂f(wt)

Set ηt = η1/
√
t

Set w′t = wt − ηtvt
Set wt+1 = arg minw∈A ‖w −w′t‖2

end for
Output: w̄ = 1

T

∑T
t=1 wt

We now analyze the convergence of Algorithm 5 and show that the expected value of the objective at the
output of Algorithm 5 converges to the optimal value.

Theorem 5 Assume that f is convex and that E[‖vt‖2] ≤ ρ2. Let u ∈ argminw∈A f(w) be an optimal
solution and let U be s.t. sup{‖w − u‖ : w ∈ A} ≤ U . Then,

E[f(w̄)]− f(u) ≤ 1√
T

(
U2

2η1
+ ρ2 η1

)
,

where expectation is w.r.t. the randomness in choosing v1, . . . ,vT . In particular, setting η1 = U
ρ
√

2
gives

E[f(w̄)]− f(u) ≤ Uρ

√
2

T
.

Proof According to Jensen’s inequatlity :

f(w̄) ≤ 1
T

T∑
t=1

f(wt)

Taking expectations on both sides we get :

E[f(w̄)] ≤ E[ 1
T

T∑
t=1

f(wt)] = 1
T

T∑
t=1

E[f(wt)] .
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So, it suffices to prove that :

1
T

T∑
t=1

E[f(wt)]− f(u) ≤ 1√
T

(
U2

2η1
+ ρ2 η1

)
STEP 1 : If for every t :

E[f(wt)]− f(u) ≤ E
[
‖wt − u‖2 − ‖wt+1 − u‖2

2ηt

]
+
ηt
2
ρ2 .

then the bound holds.

PROOF STEP 1 :

Summing the former equation over t and rearranging we obtain

T∑
t=1

(E[f(wt)]− f(u)) ≤ E

[
‖w1 − u‖2 1

2η1
+

T∑
t=2

‖wt − u‖2
(

1
2ηt
− 1

2ηt−1

)
− ‖wT+1 − u‖2 1

2ηT

]
+ ρ2

2

T∑
t=1

ηt

Since (−‖wT+1 − u‖2 1
2ηT

) ≤ 0 we can drop it from the right hand side. Additionally, for every t, ‖wt −
u‖2 ≤ U2, and thus

≤ E

[
U2

(
1

2η1
+

T∑
t=2

(
1

2ηt
− 1

2ηt−1

))]
+ ρ2

2

T∑
t=1

ηt = U2

(
1

2η1
+

T∑
t=2

(
1

2ηt
− 1

2ηt−1

))
+ ρ2

2

T∑
t=1

ηt

Canceling out terms and using the definition ηt = η1√
t

we get :

= U2 1
2ηT

+ ρ2 η1
2

T∑
t=1

1√
t
≤ U2

√
T

2η1
+ ρ2 η1

√
T ,

where in the last transition we used
T∑
t=1

1√
t
≤
∫ T

0

dx√
x

= 2
√
T

Dividing both sides of the above by T we get the proof of STEP 1.

STEP 2 : For every t :

E[f(wt)]− f(u) ≤ E
[
‖wt − u‖2 − ‖wt+1 − u‖2

2ηt

]
+
ηt
2
ρ2 .

PROOF OF STEP 2:
We start with the following lemma.

Lemma 6 (Projection lemma) Let A be a convex set, let u ∈ A, and let v be the projection of w on A, i.e.

v = argmin
x∈A

‖w − x‖2 .

Then,
‖w − u‖2 − ‖v − u‖2 ≥ 0 .
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Proof Since the desired inequality measures relative distances between w,v,u we can translate everything
so that v will be the zero vector. If w ∈ A then the claim is trivial. Otherwise, the gradient of the objective
of the optimization problem in the definition of v must point inside the set A at the point v (the objective
function gets larger when moving inwards in A). Formally,

〈−(w − v),u− v〉 ≥ 0 .

i.e. the angle between the gradient and any vector pointing from v to a point in A should be ∈ [−900, 900].
This condition is true localy for every differentiable function and is true globaly for convex functions.
Thus,

‖w − u‖2 − ‖v − u‖2 = ‖w‖2 − ‖v‖2 − 2〈w − v,u〉 = ‖w‖2 − ‖v‖2 + 2〈−(w − v),u− v〉

Where the last transition is becasause v = ~0 and the linearity of the inner product. Now if we use the identity
above we get :

≥ ‖w‖2 − ‖v‖2 = ‖w‖2 ≥ 0 .

Where again the last transition is because v = ~0.

Now, we shall prove STEP 2 by analyzing the potential E[‖wt − u‖2]. Initially, ‖w1 − u‖2 = ‖u‖2.
Additionally,

‖wt − u‖2 − ‖wt+1 − u‖2 =
(
‖wt − u‖2 − ‖w′t − u‖2

)
+
(
‖w′t − u‖2 − ‖wt+1 − u‖2

)
.

The second summand is non-negative because of the projection lemma (wt+1 is the projection ”v” in the
lemma). For the first summand, we plugin the definition of w′t to get that

‖wt − u‖2 − ‖w′t − u‖2 = 2ηt〈wt − u,vt〉 − η2
t ‖vt‖2 .

Taking expectation of both sides and using the law of total expectation we get

E[‖wt − u‖2 − ‖w′t − u‖2] = E
v1,...,vt−1

[2ηt〈wt − u, E
vt

[vt]〉]− η2
t E[‖vt‖2] .

The fact that Evt
[vt] is a sub-gradient of f at wt implies that 〈wt − u,E[vt]〉 ≥ f(wt)− f(u). Therefore,

combining also the assumption E[‖vt‖2] ≤ ρ2 we get :

E[‖wt − u‖2 − ‖wt+1 − u‖2] ≥ 2ηt(E[f(wt)]− f(u))− η2
t ρ

2 .

Rearranging the above gives

E[f(wt)]− f(u) ≤ E
[
‖wt − u‖2 − ‖wt+1 − u‖2

2ηt

]
+
ηt
2
ρ2 .

As a corollary we obtain:

Corollary 4 Assume we run Algorithm 5 with f(w) = LD(w) and produces vt as in Lemma 5. Assume that
`(w, z) is convex and ρ-Lipschitz w.r.t. its first argument. Then,

E[LD(w̄)]− LD(u) ≤ Uρ

√
2

T
.

The above corollary gives us a learning algorithm for any convex-Lipschitz loss function. In particular, by
noting that the number of iterations is the number of examples we sample from the distribution, the corollary
implies that the sample complexity for learning the problem is

m ≥ 2ρ2U2

ε2
.
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13.2 Strongly-convex functions
In this section we show a faster convergence rate (which also implies a lower sample complexity) for learning
strongly-convex function. A function f is λ-strongly convex if

f(αu + (1− α)v) ≥ αf(u) + (1− α)f(v) +
α(1− α)λ

2
‖u− v‖2 .

This definition implies that for any w,u and v ∈ ∂f(w) we have

〈w − u,v〉 ≥ f(w)− f(u) + λ
2 ‖w − u‖2 .

Algorithm 6 Stochastic sub-gradient descent (for strongly-convex functions)
Goal: Solve minw∈A f(w)
Initialize: w1 = 0 ; Strong-convexity parameter λ
for t = 1, . . . , T

Choose random vector vt s.t. E[vt] ∈ ∂f(wt)
Set ηt = 1

λ t
Set w′t = wt − ηtvt
Set wt+1 = arg minw∈A ‖w −w′t‖2

end for
Output: w̄ = 1

T

∑T
t=1 wt

Lemma 7 Let f be a λ-strongly convex function. Assume that f is λ-strongly-convex and that E[‖vt‖2] ≤ ρ2.
Let u ∈ argminw∈A f(w) be an optimal solution. Then,

E[f(w̄)]− f(u)) ≤ ρ2

2λT
(1 + ln(T )) .

Proof Let∇t = E[vt]. Since f is strongly convex and∇t is in the sub-gradient set of f at wt we have that

〈wt − u,∇t〉 ≥ f(wt)− f(u) + λ
2 ‖wt − u‖2 . (3)

Next, we show that

〈wt − u,∇t〉 ≤
E[‖wt − u‖2 − ‖wt+1 − u‖2]

2 ηt
+ ηt

2 ρ
2 . (4)

Since wt+1 is the projection of w′t onto A, and u ∈ A we have that ‖w′t − u‖2 ≥ ‖wt+1 − u‖2. Therefore,

‖wt − u‖2 − ‖wt+1 − u‖2 ≥ ‖wt − u‖2 − ‖w′t − u‖2

= 2ηt〈wt − u,vt〉 − η2
t ‖vt‖2 .

Taking expectation of both sides, rearranging, and using the assumption E[‖vt‖2] ≤ ρ2 yields Eq. (4).
Comparing Eq. (3) and Eq. (4) and summing over t we obtain

T∑
t=1

(E[f(wt)]− f(u)) ≤

E

[
T∑
t=1

(
‖wt − u‖2 − ‖wt+1 − u‖2

2 ηt
+ λ

2 ‖wt − u‖2
)]

+
ρ2

2

T∑
t=1

ηt .
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Next, we use the definition ηt = 1/(λ t) and note that the first sum on the right-hand side of the above
equation collapses to −λ (T + 1) ‖wT+1 − u‖2 ≤ 0. Thus,

T∑
t=1

(E[f(wt)]− f(u)) ≤ ρ2

2λ

T∑
t=1

1

t
≤ ρ2

2λ
(1 + ln(T )) .

The theorem follows from the above using Jensen’s inequality.
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Lecture 7(a) – Stability and Regularization
Lecturer: Shai Shalev-Shwartz Scribe: Shai Shalev-Shwartz

Based on a book by Shai Ben-David and Shai Shalev-Shwartz (in preparation)

In this lecture we show that stable learning rules do not overfit. It follows that any hypothesis class for
which we can find an algorithm which is both approximately ERM and stable is learnable. Finally, we show
how regularization leads to stability.

14 Stable rules do not overfit
Let A be a learning algorithm and denote by A(S) its output hypothesis on a training sequence S =
(z1, . . . , zm). Let z′ be another example. For each i, let S(i) be the training sequence in which we replace
example zi with z′, namely, S(i) = (z1, . . . , zi−1, z

′, zi+1, . . . , zm).

Definition 1 We say that A is ε-replace-one-stable if for any S, i, and z′ we have

`(hS ; z′)− `(hS(i) ; z′) ≤ ε .

In words, A is replace-one-stable if a replacement of zi by z′ does not change the prediction of the output of
A on z′ by more than ε.

The following theorem shows that stable algorithms do not overfit.

Theorem 6 Let A be an ε-replace-one-stable algorithm. Then,

E
S∼Dm

[LD(A(S))− LS(A(S))] ≤ ε .

Proof To simplify notation, denote hS = A(S). To prove the theorem, we will show below that for two i.i.d.
sequences of examples S = (z1, . . . , zm) and S′ = (z′1, . . . , z

′
m) we have

E
S∼D

[LD(hS)− LS(hS)] =
1

m

m∑
i=1

E
S,S′∼D

[`(hS , z
′
i)− `(hS(i) , z′i)] . (5)

Indeed, for any i, since zi and z′i are both drawn i.i.d. from D, we have that

E
S∼Dm

[`(hS ; zi)] = E
S∼Dm,z′i∼D

[`(hS(i) ; z′i)] .
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Hence,

E
S∼Dm

[LS(hS)] = E
S∼Dm

[
1

m

m∑
i=1

`(hS ; zi)

]

=
1

m

m∑
i=1

E
S∼Dm

[`(hS ; zi)]

=
1

m

m∑
i=1

E
S∼Dm,z′i∼D

[`(hS(i) ; z′i)] .

Also note that LD(hS) = Ez′i∼D[`(hS ; z′i)] = 1
m

∑m
i=1 Ez′i∼D[`(hS ; z′i)]. This yields Eq. (5). Finally,

the assumption that the ERM rule is stable implies that the right-hand side of Eq. (5) is at most ε which
concludes our proof.

The next theorem shows that if an algorithm is both stable and is an approximately ERM algorithm, then
it approximately learnsH (in expectation over the training set).

Theorem 7 Let H be a hypothesis class, let D be a distribution over a domain Z, and let h? ∈ H be an
arbitrary hypothesis. Let A be an ε1-replace-one-stable learning rule that returns a hypothesis hS which is
ε2-approximately ERM, in particular,

LS(hS) ≤ LS(h?) + ε2 .

Then,
E

S∼Dm
[LD(hS)]− LD(h?) ≤ ε1 + ε2 .

Proof Since E[LS(hS)− LS(h?)] ≤ ε2 and E[LS(h?)− LD(h?)] = 0 we have

E[LD(hS)− LD(h?)] = E[LD(hS)− LS(hS) + LS(hS)− LS(h?) + LS(h?)− LD(h?)]

≤ E[LD(hS)− LS(hS)] + ε2 + 0 .

Combining the above with Theorem 6 concludes our proof.

15 Obtaining stability by Regularization
In the previous lecture we discussed convex-Lipschitz learning problems in which the loss function `(w, z) is
convex and Lipschitz w.r.t. w. We saw that such problems are learnable using Stochastic Gradient Descent.
We now show another route for learning such problems which is based on regularization and stability. The
idea is to use a regularized loss minimization approach, in which we minimize the empirical loss plus a
penalty term which aims at keeping the norm of the vector w to be small. The following theorem guarantees
that this scheme gives a stable algorithm.

Theorem 8 Let `(w, z) be a loss function which is convex and ρ-Lipschitz w.r.t. its first argument. Given
λ > 0, consider the learning rule:

A(S) = argmin
w

LS(w) + λ‖w‖2 .

Then, A is ε-replace-one-stable with ε = 2ρ2

λm .
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Proof To simplify our notation, denote w = A(S) and w′ = A(S(i)), where S(i) is obtained by replacing
example zi of S with example z′. We have,

LS(w′) + λ‖w′‖2 − (LS(w) + λ‖w‖2)

= LS(w′)− LS(w) + λ(‖w′‖2 − ‖w‖2)

= LS′(w
′)− LS′(w) +

`(w′, zi)− `(w, zi)
m

− `(w′, z′)− `(w, z′)
m

+ λ(‖w′‖2 − ‖w‖2)

≤ |`(w
′, zi)− `(w, zi)|

m
− |`(w

′, z′)− `(w, z′)|
m

≤ 2 ρ

m
‖w′ −w‖ ,

where the first inequality follows from the definition of w′ as minimizer of LS′(v) + λ‖v‖2 and the second
inequality follows from the assumption that ` is ρ-Lipschitz. Next, we use the fact that the function f(v) =
LS(v) + λ‖v‖2 is 2λ-strongly-convex and the minimality of w to get that

LS(w′) + λ‖w′‖2 − (LS(w) + λ‖w‖2) ≥ λ‖w′ −w‖2 .

Combining the two inequalities we get

‖w′ −w‖ ≤ 2ρ

λm
.

Combining this with the Lipschitz assumption on ` we conclude that

|`(w, z′)− `(w′, z′)| ≤ ρ‖w′ −w‖ ≤ 2ρ2

λm
,

which concludes our proof.

As a corollary, we obtain the following.

Theorem 9 Let `(w, z) be a loss function which is convex and ρ-Lipschitz w.r.t. its first argument. Given
λ > 0, consider the learning rule:

A(S) = argmin
w

LS(w) + λ‖w‖2 .

Then, for any w?,

E
S

[LD(A(S)]− LD(w?) ≤ 2ρ2

λm
+ λ‖w?‖2 .

Proof Denote w = A(S). For any w we have

LS(w) ≤ LS(w) + λ‖w‖2 ≤ LS(w?) + λ‖w?‖2

Combining the above, Theorem 8, and Theorem 7, we conclude our proof.
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In this lecture we discuss the Support Vector Machine (SVM) method. SVM is one of the most popular
machine learning algorithms. It combines many of the ideas we have already encountered: separation with
margin, the hinge-loss, regularization, and kernels.

16 Hard-SVM

x

x

Figure 4: Both the black and green hyperplanes separate the four examples. The black hyperplane separates
with the largest margin.

Let S be a linearly separable training set. There are many hyperplanes that can separate the data (see
Figure 4). Which one of them should we choose? One option we have discussed previously is choosing the
output of the Perceptron algorithm, since it depends on at most 1/γ(S)2 examples, and therefore we could
apply the compression bound. In Hard-SVM we choose the hyperplane which separates the training set with
the largest margin (see again Figure 4). Formally, this is the vector which achieves the maximum in the
definition of γ(S), that is,

w? = argmax
w:‖w‖2=1

min
(x,y)∈S

y〈w,x〉 .

The lemma below shows that w? can be obtained by solving a quadratic optimization problem (hence, can
be found efficiently).

Lemma 8 Define
w0 = arg min{‖w‖2 : ∀(x, y) ∈ S, y〈w,x〉 ≥ 1} . (6)

Then,
w0

‖w0‖
= argmax

w:‖w‖2=1

min
(x,y)∈S

y〈w,x〉 ,

that is, the normalization of w0 corresponds to the largest margin separating hyperplane.

Proof Define ŵ = w0

‖w0‖ and let w? be the largest-margin separating hyperplane. We need to show that

ŵ = w?. To do so, first note that the vector w?

γ(S) satisfies the constraints of the optimization problem given
in Eq. (6) and therefore ‖w0‖ ≤ ‖w?/γ(S)‖ = 1/γ(S). Therefore, for all (x, y) ∈ S

yi〈ŵ,xi〉 =
1

‖w0‖
yi〈w0,xi〉 ≥

1

‖w0‖
≥ γ(S) .

But since ‖ŵ‖ = 1 the above implies that ŵ = w?.
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16.1 Optimality conditions and ”Support Vectors”
The name ”Support Vector Machine” stems from the fact that w? is supported by (i.e. is in the linear span of)
the examples that are exactly at distance 1/‖w?‖ from the separating hyperplane. These vectors are therefore
called support vectors. To see this, we rely on Fritz John optimality conditions.

Definition 2 (Fritz John) Consider the problem:

min
w

f(w) s.t. ∀i ∈ [m], gi(w) ≤ 0 ,

where f, g1, . . . , gm are differentiable. Then, if w? is an optimal solution then there exists α ∈ Rm such that
∇f(w?) +

∑
i∈I αi∇gi(w?) = 0, where I = {i : gi(w

?) = 0}.

Applying Fritz John condition on Eq. (6) we obtain:

Corollary 5 Let w? be a minimizer of Eq. (6) and let I = {i : 〈w?,xi〉 = 1}. Then, there exist coefficients
αi such that

w? =
∑
i∈I

αixi .

16.2 Duality
Traditionally, many of the properties we will derive for SVM have been obtained by switching to the dual
problem. For completeness, we present below how to derive the dual of Eq. (6). We start by rewriting the
problem in an equivalent form as follows. Consider the function

g(w) = max
α∈Rm:α≥0

m∑
i=1

αi(1− yi〈w,xi〉) =

{
0 if ∀i, yi〈w,xi〉 ≥ 1

∞ otherwise
.

We can therefore rewrite Eq. (6) as
min
w
‖w‖22 + g(w) . (7)

Rearranging the above we obtain

min
w

max
α∈Rm:α≥0

1

2
‖w‖22 +

m∑
i=1

αi(1− yi〈w,xi〉) . (8)

We have therefore shown that the above problem is equivalent to the hard SVM problem given in Eq. (6).
Now suppose that we flip the order of min and max in the above equation. It is easy to verify that this can
only decrease the objective value, namely,

min
w

max
α∈Rm:α≥0

1

2
‖w‖22 +

m∑
i=1

αi(1− yi〈w,xi〉) ≥ max
α∈Rm:α≥0

min
w

1

2
‖w‖22 +

m∑
i=1

αi(1− yi〈w,xi〉) .

The above inequality is called weak duality. It turns out that in our case, strong duality also holds, namely,
the above inequality holds with equality. The right-hand side is called the dual problem, namely,

max
α∈Rm:α≥0

min
w

1

2
‖w‖22 +

m∑
i=1

αi(1− yi〈w,xi〉) . (9)

We can rewrite the dual problem by noting that once α is fixed, the optimization problem w.r.t. w is uncon-
strained and the objective is differentiable, thus, at the optimum, the gradient equals to zero:

w −
m∑
i=1

αiyixi = 0 ⇒ w =

m∑
i=1

αiyixi .
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This shows us that the solution must be in the linear span of the examples, a fact we will use later to derive
SVM with kernels. Plugging the above into Eq. (9) we obtain that the dual problem can be rewritten as

max
α∈Rm:α≥0

1

2

∥∥∥∥∥
m∑
i=1

αiyixi

∥∥∥∥∥
2

2

+

m∑
i=1

αi(1− yi〈
∑
j

αjyjxj ,xi〉) . (10)

Rearranging the above gives the problem

max
α∈Rm:α≥0

m∑
i=1

αi −
1

2

m∑
i=1

m∑
j=1

αiαjyiyj〈xj ,xi〉 . (11)

Note that the dual problem only involves inner products between vectors in the feature space and does not
require direct access to specific elements of the feature space. This enables to use SVM with kernels. We will
elaborate on this in later sections.

16.3 Bias term
SVM can be defined with non-homogenous hyperplane. That is, the classification rule is based on
sign(〈w,x〉 + b), where b is a scalar. For simplicity, we sticked to the homogenous hyperplane formula-
tion.

17 Soft-SVM
The Hard-SVM formulation assumes that the training set is linearly separable. This is a rather strong assump-
tion. A natural relaxation is to maximize the margin while minimizing the number of examples that violate
the margin constraint. However, this leads to a non-convex optimization problem which is hard to solve. As
we have shown in previous lectures, one way to circumvent the hardness result is by relying on surrogate
convex loss function. Indeed, SVM relies on the hinge-loss function. The Sotf-SVM optimization problem is
therefore

min
w

λ‖w‖2 +
1

|S|
∑

(x,y)∈S

max{0, 1− y〈w,x〉} , (12)

where λ is a parameter that controls the tradeoff between large margin (i.e. small norm of w) and fit to the
data (i.e. small hinge-loss).

17.1 Analyzing Sotf-SVM using stability
The loss function `(w, (x, y)) is convex and 1-Lipschitz w.r.t. its first argument. Therefore, using Theorem 9
we obtain that for any u, the solution of SVM, denoted A(S) satisfies

E
S

[LD(A(S)] ≤ LD(u) + λ‖u‖2 +
2ρ2

λm
,

where LD is the expected hinge-loss. Note that this bound is similar to the oracle inequalities we derived
using the MDL bound, with ‖u‖ taking the role of the description length of u.

18 SVM with kernels
Recall that in previous lectures we showed how to run the Perceptron algorithm with kernels. The idea was to
run the Perceptorn with feature vector ψ(xi), where the range of ψ can be very large, while only accessing a
kernel function that implements inner products in the feature space. We did it by showing that the Perceptron
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algorithm can be run while only calculating inner products, 〈ψ(x), ψ(x′)〉, without ever explicitly accessing
ψ(x). We now show that the kernel trick also works for SVM. To do so, first note that both soft and hard
SVM optimization problems are special cases of a general optimization problem of the form:

min
w

f(y1〈w, ψ(x1)〉, . . . , ym〈w, ψ(xm)〉) +R(‖w‖2) , (13)

where f : Rm → R is an arbitrary function and R : R+ → R is a monotonically non-decreasing function.
The following theorem tells us that there exists an optimal solution of Eq. (13) that lies in the span of the
examples.

Theorem 10 (Wahba’s Representer Theorem) Assume that ψ is a mapping from X to a Hilbert space.
Then, there exists a vector α ∈ Rm such that w =

∑m
i=1 αiψ(xi) is an optimal solution of Eq. (13).

Proof Let w? be an optimal solution of Eq. (13). Because w? is an element of a Hilbert space, we can
rewrite w? as

w? =

m∑
i=1

αiψ(xi) + u ,

where 〈u, ψ(xi)〉 = 0 for all i. Set w = w? − u. Clearly, ‖w?‖22 = ‖w‖22 + ‖u‖22, thus ‖w‖2 ≤ ‖w?‖2.
Since R is non-decreasing we obtain that R(‖w‖) ≤ R(‖w?‖). Additionally, for all i we have that

yi〈w, ψ(xi)〉 = yi〈w + u, ψ(xi)〉 = yi〈w?, ψ(xi)〉 ,

hence the value of f for w? and w will be the same. We have shown that the objective of Eq. (13) at w
cannot be larger than the objective at w? and therefore w is also an optimal solution, which concludes our
proof.

Based on the representer theorem we can optimize Eq. (13) w.r.t. the coefficients α instead of the coeffi-
cients w as follows. Writing w =

∑m
j=1 αjψ(xj) we have that for all i

〈w, ψ(xi)〉 = 〈
∑
j

αjψ(xj), ψ(xi)〉 =

m∑
j=1

αj〈ψ(xj), ψ(xi)〉 .

Similarly,

‖w‖22 = 〈
∑
j

αjψ(xj),
∑
j

αjψ(xj)〉 =

m∑
i,j=1

αiαj〈ψ(xi), ψ(xj)〉 .

Let K(x,x′) = 〈ψ(x), ψ(x′)〉 be a kernel function that implements inner products in the feature space.
Instead of solving Eq. (13) we can solve the equivalent problem

min
α∈Rm

f

y1

m∑
j=1

αjK(xj ,x1), . . . , ym

m∑
j=1

αjK(xj ,xm)

+R

√√√√ m∑
i,j=1

αiαjK(xj ,xi)

 . (14)

To solve the optimization problem given in Eq. (14), we do not need any direct access to elements in the
features space. The only thing we should know is how to calculate inner-products in the feature space, or
equivalently, to calculate the kernel function. In fact, to solve Eq. (14) we solely need to know the value of
the m×m matrix G s.t. Gi,j = K(xi,xj), which is often called the Gram matrix.

Once we learned the coefficients α we can calculate the prediction on a new instance by:

〈w, ψ(x)〉 =

m∑
j=1

αj〈ψ(xj), ψ(x)〉 =

m∑
j=1

αjK(xj ,x) .
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19 Solving Soft-SVM with Stochastic Gradient Descent
In Algorithm 6 we showed a general scheme for minimizing strongly convex functions using stochastic
gradient descent. We can rewrite the Soft-SVM objective function as

f(w) = E
(x,y)∼S

[
λ‖w‖2 + max{0, 1− y〈w,x〉}

]
. (15)

From this fact, we obtain the following algorithm for solving Soft-SVM.

Algorithm 7 Stochastic sub-gradient descent for solving Soft-SVM
Goal: Solve minw f(w) where f(w) is as in Eq. (15)
Initialize: w1 = 0
for t = 1, . . . , T

Choose example (x, y) uniformly at random from S
If y(〈wt,x〉 < 1)

Set wt+1 = (1− 1
t )wt + 1

λ tyx
Else

Set wt+1 = (1− 1
t )wt

end for
Output: w̄ = 1

T

∑T
t=1 wt
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20 The main theorem of statistical learning
Theorem 11 (Vapnik-Chervonenkis 1971, Blumer-Ehrenfeucht-Hausler-Warmuth 1989)
LetH be a class of binary classifiers. The following are equivalent:

1. H has the uniform convergence property
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2. The ERM generalizes

3. H is agnostic-PAC learnable

4. H is PAC learnable

5. VCdim(H) <∞

Proof 1 → 2 → 3 → 4 is trivial. 4 → 5 follows from the No-Free-Lunch theorem. The difficult part is to
show that 5 → 1. In the next section we show that 5 → 4 using ε-nets. A similar technique can show that
5→ 1.

21 ε-nets
Definition 3 (ε-net) Let X be a domain. S ⊂ X is ε-net for H ⊂ 2X with respect to a distribution D over
X if

∀h ∈ H : D(h) ≥ ε ⇒ h ∩ S 6= ∅ .

Theorem 12 LetH ⊂ 2X with VCdim(H) = d. Fix ε ∈ (0, 1), δ ∈ (0, 1/4) and let

m ≥ 8

ε

(
2d log

(
16e

ε

)
+ log

(
2

δ

))
.

Then, with probability of at least 1− δ over a choice of S ∼ Dm we have that S is an ε-net forH.

Proof Let
B = {S ⊂ X : |S| = m, ∃h ∈ H,D(h) ≥ ε, h ∩ S = ∅}

be the set of sets which are not ε-nets. We need to bound P[S ∈ B]. Define

B′ = {(S, T ) ⊂ X : |S| = |T | = m, ∃h ∈ H,D(h) ≥ ε, h ∩ S = ∅, |T ∩ h| > εm
2 } .

Claim 1 P[S ∈ B] ≤ 2P[(S, T ) ∈ B′].
Proof of Claim 1: Since S and T are chosen independently we can write

P[(S, T ) ∈ B′] = E
(S,T )∼D2m

[
1[(S,T )∈B′]

]
= E
S∼Dm

[
E

T∼Dm

[
1[(S,T )∈B′]

]]
.

Note that (S, T ) ∈ B′ implies S ∈ B and therefore 1[(S,T )∈B′] = 1[(S,T )∈B′] 1[S∈B] which gives

P[(S, T ) ∈ B′] = ES∼Dm E
T∼Dm

1[(S,T )∈B′] 1[S∈B]

= E
S∼Dm

1[S∈B] E
T∼Dm

1[(S,T )∈B′] .

Fix some S. Then, either 1[S∈B] = 0 or S ∈ B and then ∃hS such that D(hS) ≥ ε and |hS ∩ S| = 0. It
follows that a sufficient condition for (S, T ) ∈ B′ is that |T ∩ hS | > εm

2 . Therefore, whenever S ∈ B we
have

E
T∼Dm

1[(S,T )∈B′] ≥ P
T∼Dm

[|T ∩ hS | > εm
2 ] .

But, since we now assume S ∈ B we know that D(hS) = ρ ≥ ε. Therefore, |T ∩ hS | is a binomial random
variable with parameters ρ (probability of success for a single try) and m (number of tries). Chernoff’s
inequality implies

P[|T ∩ hS | ≤ ρm
2 ] ≤ e

− 2
mρ (mρ−mρ/2)2

= e−mρ/2 ≤ e−mε/2 ≤ e−d log(1/δ)/2 = δd/2 ≤ 1/2 .

Thus,
P[|T ∩ hS | > εm

2 ] = 1− P[|T ∩ hS | ≤ εm
2 ] ≥ 1− P[|T ∩ hS | ≤ ρm

2 ] ≥ 1/2 .

Combining all the above we conclude the proof of Claim 1.
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Claim 2 (Symmetrization): P[(S, T ) ∈ B′] ≤ e−εm/4 τH(2m) .
Proof of Claim 2: To simplify notation, let α = mε/2 and for a sequence A = (x1, . . . , x2m) let A0 =
(x1, . . . , xm). Using the definition of B′ we get that

P[A ∈ B′] = E
A∼D2m

max
h∈H

1[D(h)≥ε] 1[|h∩A0|=0] 1[|h∩A|≥α]

≤ E
A∼D2m

max
h∈H

1[|h∩A0|=0] 1[|h∩A|≥α] .

Now, let us define byHA the effective number of different hypotheses on A, namely,HA = {h∩A : h ∈ H.
It follows that,

P[A ∈ B′] ≤ E
A∼D2m

max
h∈HA

1[|h∩A0|=0] 1[|h∩A|≥α]

≤ E
A∼D2m

∑
h∈HA

1[|h∩A0|=0] 1[|h∩A|≥α]

Let J = {j ⊂ [2m] : |j| = m}. For any j ∈ J and A = (x1, . . . , x2m) define Aj = (xj1 , . . . , xjm).
Since the elements of A are chosen i.i.d., we have that for any j ∈ J and any function f(A,A0) it holds that
EA∼D2m [f(A,A0)] = EA∼D2m [f(A,Aj)]. Since this holds for any j it also holds for the expectation of j
chosen at random from J . In particular, it holds for the function f(A,A0) =

∑
h∈HA

1[|h∩A0|=0] 1[|h∩A|≥α].
We therefore obtain that,

P[A ∈ B′] ≤ E
A∼D2m

E
j∼J

∑
h∈HA

1[|h∩Aj|=0] 1[|h∩A|≥α]

= E
A∼D2m

∑
h∈HA

1[|h∩A|≥α] E
j∼J

1[|h∩Aj|=0] .

Now, fix some A s.t. |h ∩A| ≥ α. Then, Ej 1[|h∩Aj|=0] is the probability that when choosing m balls from a
bag with at least α red balls, we will never choose a red ball. This probability is at most

(1− α/(2m))m = (1− ε/4)m ≤ e−εm/4 .

We therefore get that

P[A ∈ B′] ≤ E
A∼D2m

∑
h∈HA

e−εm/4 ≤ e−εm/4 E
A∼D2m

|HA| .

Using the definition of the growth function we conclude the proof of Claim 2.
completing the proof: By Sauer’s lemma we know that τH(2m) ≤ (2em/d)d. Combining this with the

two claims we obtain that
P[S ∈ B] ≤ 2(2em/d)d e−εm/4 .

We would like that the right-hand-side of the above will be at most δ, that is,

2(2em/d)d e−εm/4 ≤ δ .

Rearranging, we obtain the requirement

m ≥ 4

ε
(d log(2em/d) + log(2/δ)) =

4d

ε
log(m) +

4

ε
(d log(2e/d) + log(2/δ) .

Using Lemma 10, a sufficient condition for the above to hold is that

m ≥ 16d

ε
log

(
8d

ε

)
+

8

ε
(d log(2e/d) + log(2/δ)
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A sufficient condition for the above is that

m ≥ 16d

ε
log

(
8d

ε

)
+

16

ε
(d log(2e/d) + 1

2 log(2/δ)

=
16d

ε

(
log

(
8d 2e

dε

))
+

8

ε
log(2/δ)

=
8

ε

(
2d log

(
16e

ε

)
+ log

(
2

δ

))
.

and this concludes our proof.

21.1 Two technical lemmas
Lemma 9 Let a > 0. Then: x ≥ 2a log(a) ⇒ x ≥ a log(x).

Proof Consider the function f(x) = x− a log(x). The derivative is f ′(x) = 1− a/x. Thus, for x > a the
derivative is positive and the function in increases. In addition,

f(2a log(a)) = 2a log(a)− a log(2a log(a))

= 2a log(a)− a log(a)− a log(2 log(a))

= a log(a)− a log(2 log(a)) .

Since a− 2 log(a) > 0 for all a > 0, the proof follows.

Lemma 10 Let a ≥ 1 and b > 0. Then: x ≥ 4a log(2a) + 2b ⇒ x ≥ a log(x) + b

Proof It suffices to prove that x ≥ 4a log(2a) + 2b implies that both x ≥ 2a log(x) and x ≥ 2b. Since we
assume a ≥ 1 we clearly have that x ≥ 2b. In addition, since b > 0 we have that x ≥ 4a log(2a) which
using Lemma 9 implies that x ≥ 2a log(x). This concludes our proof.

21.2 From ε-nets to PAC learnability
Theorem 13 Let H be a hypothesis class over X with VCdim(H) = d. Let D be a distribution over X
and let c ∈ H be a target hypothesis. Fix ε, δ ∈ (0, 1) and let m be as defined in Theorem 12. Then, with
probability of at least 1 − δ over a choice of m i.i.d. instances from X with labels according to c we have
that any ERM hypothesis has a generalization error of at most ε.

Proof Define the class Hc = {c
a
h : h ∈ H}, where c

a
h = (h \ c) ∪ (c \ h). It is easy to

verify that if some A ⊂ X is shattered by H then it is also shattered by Hc and vice versa. Hence,
VCdim(H) = VCdim(Hc). Therefore, using Theorem 12 we know that with probability of at least 1 − δ,
the sample S is an ε-net forHc. Note that LD(h) = D(h

a
c). Therefore, for any h ∈ H with LD(h) ≥ ε we

have that |(h
a
c)∩S| > 0, which implies that h cannot be an ERM hypothesis, which concludes our proof.
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