
Advanced Course in Machine Learning Spring 2010

Learning DNF Formulas

Handouts are jointly prepared by Shie Mannor and Shai Shalev-Shwartz

Much of computational learning theory deals with an algorithmic problem: Given random labeled exam-
ples from an unknown function f : {0, 1}n → {0, 1}, try to find a hypothesis h : {0, 1}n → {0, 1} which is
good at predicting the label of future examples.

Returning to the classical PAC model of Valiant [84], we identify a learning problem with a “concept
class” C, which is a set of functions (“concepts”) f : {0, 1}n → {0, 1}. Nature/adversary chooses one
particular f ∈ C and a probability distribution on inputs D. The learning algorithm now takes as inputs ε and
δ, and also gets random examples 〈x, f(x)〉 with x drawn from D.

The goal: with probability 1− δ, output a hypothesis h which satisfies Prx∼D[h(x) 6= f(x)] < ε.
The emphasis in computational learning theory is on efficiency: running time of algorithm, counting time

1 for each example, is hopefully poly(n, 1/ε, 1/δ).
For example consider the problem of learning the concept class of conjunctions, i.e., C is the set of all

AND functions. The following algorithm is due to Valiant [84].

• Start with the hypothesis h = x1 ∧ x2 ∧ . . . ∧ xn

• draw O((n/ε2) log(1/δ)) examples: whenever you see a positive example; e.g., 〈11010110, 1〉, you
know that the zero coordinates (in this case, x3, x5, x8) cant be in the target AND; delete them from
the hypothesis

It is not hard to show this algorithm actually works (exercise).

Probably the most important concept class we would like to learn is DNF formulas: e.g., the set of all
functions like

f = (x1 ∧ x2 ∧ x6) ∨ (x1 ∧ x3) ∨ (x4 ∧ x5 ∧ x7 ∧ x8).

(We actually mean poly-sized DNF: the number of terms should be nO(1), where n is the number of variables.)
Why so important?

• Natural form of knowledge representation for people

• Historical reasons: considered by Valiant, who called the problem “tantalizing” and “apparently [sim-
ple]” yet has proved a great challenge over the last 25 years

• Useful for machine learning - e.g., learning decision trees or decision lists.

Before we dive in, let me emphasize the problem with the PAC learning model: PAC-learning DNF
formulas appears to be very hard. The fastest known algorithm, due to Klivans and Servedio, runs in time
exp(n1/3 log2 n).

Technique: They show that for any DNF formula, there is a polynomial in x1, . . . , xn of degree at most
n1/3 log n which is positive whenever the DNF is true and negative whenever the DNF is false. Linear
programming can be used to find a hypothesis consistent with every example in time exp(n1/3 log2 n).

The more natural model, more difficult than PAC, in which the learner is forced to output a hypothesis
which itself is a DNF. In this case, the problem is NP-hard.

Learning DNF Formulas-1

0.1 Uniform Distribution
In 1990, Verbeugt [Ver90] observed that, under the uniform distribution, any term in the target DNF which is
longer than log(n/ε) is essentially always false, and thus irrelevant. This fairly easily leads to an algorithm
for learning DNF under uniform in quasipolynomial time: roughly nlog n.

In the next section we will see a powerful and sophisticated method of learning under the uniform dis-
tribution based on Fourier analysis. Fourier analysis proved very important for subsequent learning of DNF
under the uniform distribution.

1 Fourier Analysis
We are interested in approximating and representing Boolean functions of the form f : {0, 1}n → {−1, 1}.
Let S ⊆ {1, 2, . . . , n} be a set of indices and let χS : {0, 1}n → {−1, 1} be a parity function (i.e., a XOR of
all indices in S). Then:

f(x) =
∑

S⊆{1,2,...,n}

f̂(S)χS(x), ∀x.

The coefficients f̂(S) are known as the “Fourier” coefficients. (Such coefficients exist because the parity
functions form a basis.)

The inner product in this function space can now be defined as:

〈f, g〉 =
1
2n

∑
x∈{0,1}n

f(x)g(x),

with induced norm: ‖f‖ =
√
〈f, f〉.

It is not hard to show that the 2n − 1 basis functions χS form an orthonormal basis. We therefore have
that:

f̂(S) = 〈f, χS〉 = E x∼{0,1}n [f(x)χS(x)].

where the expectation is w.r.t. the uniform distribution over x.
We can easily write an expression for the covariance of two Boolean functions:

E x[f(x)g(x)] = E x

[(∑
S1

f̂(S1)χS1

)(∑
S2

f̂(S2)χS2

)]

= E x

∑
S1,S2

f̂(S1)f̂(S2)χS1χS2

=
∑
S

f̂(S1)f̂(S2) E x[χ2
S]

=
∑
S

f̂(S1)f̂(S2),

where we used the orthonormality of the basis.
We obtain using the above result the well known Persival’s Theorem:

‖f‖2 = E x[f2(x)] =
∑
S

f̂2(s) = 1.

We now show by example one of the main features of Fourier analysis. Suppose we are looking for
the Fourier representation of an AND function. So let us consider the AND of elements in T for some

Learning DNF Formulas-2

T ⊂ {1, 2, . . . , n}. Suppose we start from T = {1, 2, . . . , 8} for the sake of discussion.

f̂({x1, x2, . . . , x9}) =
1
2n

∑
x∈{0,1}n

AND(x1, . . . , x9)χ{x1,...,x9}

=
1
2n

∑
x∈{0,1}8×{0,1}n−9

AND(x1, . . . , x9)(χ{x1,...,0} + χ{x1,...,1}) = 0.

A similar proof shows that if T ⊂ S we have that f̂(S) = 0. So we only need to consider S ⊂ T .
Representing AND by:

AND(x1, . . . , x8) =
8∏

i=1

1− χ{xi}

2

we obtain that f̂(s) = −1|S|/28 if S ⊂ T and 0 if T ⊂ S.

1.1 Approximating a function by its spectrum
Suppose that a function f has a few large Fourier coefficients. In that case, getting a good approximation is
possible as f can be approximated efficiently.

Suppose that f is a Boolean function and g is defined as:

g(x) =
∑
t⊂T

f̂(t)χt(x)

Lemma 1 Take h = sign(g). Then the following inequality holds:

E x[f(x) 6= h(x)] ≤
∑

S⊂{1,2,...n}

(f̂(S)− ĝ(S))2.

Proof Let I be the indicator function, i.e., I(f(x) 6= h(x)) = 1 and I(f(x) = h(x)) = 0. Then I(f(x) 6=
h(x)) ≤ |f(x)− g(x)|. So that

I(f(x) 6= h(x)) ≤ |f(x)− g(x)|2.

Taking the expectation:
E [I(f(x) 6= h(x))] ≤ E[|f(x)− g(x)|2].

Which means:

Pr x(f(x) 6= h(x)) ≤ E[|f(x)− g(x)|2]

≤
∑

S⊂{1,2,...n}

(f̂(S)− ĝ(S))2.

In particular, if the set T contains most of the coefficients, we have a good quality approximation.
In light of the above, it would be simpler to say that a Boolean function f(x) is ε approximated by another

Boolean function g(x) if the squared expected error E[(f(x)− g(x))2] ≤ ε.

Learning DNF Formulas-3

1.2 Computing the Fourier coefficients from samples
A trivial algorithm is to sample x1, . . . , xm and output

as =
1
m

m∑
i=1

f(xi)χS(xi)

as the estimate of 〈f, χS〉 or Ex[fχS]. (This is done independently for every S.)
An immediate application of the Chernoff bound yields the following corolary.

Corollary 1 If m > 2 ln(2/δ)/λ2 then as is within λ of f̂(s) with probability 1− δ.

We proceed to propose two approximations under additional assumptions on f .

1.2.1 Low degree f

We say that f has (α, d) degree if ∑
|S|≤d

f̂2(S) ≥ 1− α.

If a function has (α, d) degree there exists an nO(d) algorithm for learning f with accuracy of at least
1 − α. Basically, we can enumerate over the subsamples and sample. (We omit some details here as this is
not the focus of the lecture.)

1.2.2 Sprase f

We say that f is t-sparse if f has at most t non-zero Fourier coefficients. We will show below how to learn
such functions using membership queries (but still assume we are under the uniform distribution).

2 Learning sparse functions
We first reduce the problem of finding a sparse function that closely approximates the target function f to
finding all the large Fourier coefficients of f . We then describe an algorithm that finds these coefficients in
polynomial time with probability 1 − δ of success. Then we show that if a function has a small L1 norm, it
can be approximated by sparse function and polynomial sized decision tree is such a function. Therefore, we
can learn a function that approximates a decision tree in polynomial time with probability 1− δ.

Theorem 1 If f is ε approximated by a t-sparse function g, then there exists a t-sparse function h such that:
(1) |ĥ(s)| ≥ ε/t for all the Fourier coefficients of h, and (2) f is ε + ε2/t approximated by h

Proof Assume w.l.o.g. that ĝ(si) = f̂(si) for the t non-zero coefficient of ĝ. Let A = {s : ĝ(s) 6= 0} and let
A′ = A ∩ {s|f̂(s) ≥ ε/t}. We let h =

∑
s∈A′ f̂(s)χs. Since f is ε approximated by g we have that:∑

s 6∈A

f̂(s)2 = ε.

Each element in A \ A′ has a magnitude less than ε/t and |A \ A′| ≤ t since g is t sparse. So that∑
s∈A\A′ f̂(s)2 > t(ε/t)2. By construction:

E[|f − h|2] =
∑
s 6∈A

f̂(s)2 +
∑

s∈A\A′

f̂(s)2 = ε + t(ε/t)2 = ε + ε2/t.

Learning DNF Formulas-4

The above theorem reduced the problem of finding t-sparse function to ε-approximate f into the prob-
lem of finding all coefficients of f that are greater than a threshold such that the t-sparse function O(ε)
approximates f . We denote the threshold by θ.

We now consider another useful property of Fourier spectrum. For a fixed string α of length k we define:

fα(x) =
∑

z∈{0,1}n−k

f̂(αz)χz(x),

where αz is the concatenation of the strings α and z. The function fα can be thought of as the spectrum when
α is fixed.

The following result shows that it is possible to estimate fα efficiently.

Theorem 2 For any function f , 1 ≤ k ≤ n− 1, α ∈ {0, 1}k, x ∈ {0, 1}n−k and y ∈ {0, 1}k,

fα(x) = E y[f(yx)χα(y)]

Proof The proof is left as an exercise.

Before providing the algorithm for finding sparse approximations we give two needed lemmas:

Lemma 2 At most 1/θ2 values of z satisfy |f̂(z)| ≥ θ for 0 < θ < 1.

Proof From Parseval’s Theorem
∑

z f̂(z)2 = E[f2] = 1. So that at most 1/θ2 values of z can satisfy
|f̂(z)| ≥ θ.

Lemma 3 At most 1/θ2 functions fα satisfy E[f2
α] ≥ θ2 for α ∈ {0, 1}k (1 ≤ k < n).

Proof From the definition of fα we have:

E[fα(x)2] = E
[∑

z1∈{0,1}n−k

f̂(αz1)χz1(x)
∑

z2∈{0,1}n−k

f̂(αz2)χz2(x)
]

=
∑

z1∈{0,1}n−k

∑
z2∈{0,1}n−k

f̂(αz1)f̂(αz2) E[χz1(x)χz2(x)]

=
∑

z1∈{0,1}n−k

f̂(αz1)2.

Therefore, if f̂(αz1) > θ for some z1 ∈ {0, 1}n−k it follows that E[f2
α] > θ2 by Paseval’s Theorem. The

conclusion follows as before: there are at most 1/θ2 value of α for which E[f2
α] ≥ θ2.

We can now introduce an algorithm due to Kushilevitz and Mansour to find coefficients f̂(z) such that
|f̂(z)| ≥ θ.

KM(α)
if length (α) = n then

output α
else if E[f2

α] ≥ θ2 then
KM(α0)
KM(α1)

else output previous α

Learning DNF Formulas-5

The KM algorithm is first run with KM(∅) and then increases the length of α by growing its suffix as long as
|f̂(s)| ≥ θ. The argument in Lemma 3 shows that if |f̂(αz)| ≥ θ for some z ∈ {0, 1}n−k, then E[f2

α] ≥ θ2.
Therefore the condition E[f2

α] ≥ θ2 insures that the right coefficients will be output. Since at most 1/θ2 of
the fα satisfy E[f2

α] ≥ θ2, the algorithm will make at most 2n/θ recursive calls.

Approximating E[f2
α].

The KM algorithm above assumes that we can compute E[f2
α] in O(1). In general we have to use sampling

for that. We know we can sample fα = Ey[f(yx)χα(y)] and then sample again to estimate E[f2
α]. A standard

application of Chernoff bound leads to a number of samples that is polynomial in 1/θ, log n and log 1/δ. We
cite the theorem from Kushilevitch and Mansour:

Theorem 3 There exists a randomized algorithm that outputs a list of strings αi ∈ {0, 1}n for any Boolean
function f : {0, 1}n → {−1, 1}, any δ and θ, where 0 < δ, θ < 1, such that

1. with probability 1− δ the algorithm outputs |f̂(αi) ≥ θ| for every string αi in the output list and there
is no strings α for which |f(α)| ≤ θ/2. The maximum length of the list is 4/θ; and

2. the algorithm runs in time polynomial in n, 1/θ, and log 1/δ.

Applying Theorem 1, if f can be ε-approximated by a t-sparse function, then we need to find all the
coefficients larger than θ = ε/t to O(ε)-approximate f . The running time of the algorithm will then a
polynomial in n, t, 1/θ, and log 1/δ.

2.1 Function with small L1 norm
Define the L1 norm of a Boolean function f (also written as L1(f)) to be

∑
s |f̂(s)|. The following lemma

shows that functions with small L1 norm can be approximated by sparse functions.

Lemma 4 For any Boolean function f , there exists a Boolean function h such that h is L1(f)2/ε-sparse and
E[(f − h)2] ≤ ε.

Proof Consider the set A = {s : |f̂(s)| ≥ ε/L1(f)}. There are at most L1(f)/(ε/L1(f)) = L1(f)2/ε

elements in A. Let h =
∑

s∈A f̂(s)χs(x), which is L1(f)2/ε-sparse. Then,

E[(f − h)2] =
∑
s 6∈A

f̂(s)2

≤ max
s 6∈A

|f̂(s)|
∑

s

|f̂(s)|

≤ ε

L1(f)
L1(f) = ε.

.
From this lemma and Theorem 3 we can obtain the following conclusion:

Corollary 2 If a Boolean function f has L1 norm that is polynomial in n, then a function h that ε-
approximates f is learnable in polynomial time (in n, 1/ε, and log 1/δ) with probability 1− δ.

3 Approximating Decision Trees with Queries
If we can bound the L1 norm of decision trees to some polynomial of n, then from Corollary 2, we can learn
a function that approximates the decision tree in polynomial time 1− δ of the time.

Learning DNF Formulas-6

Consider decision tree with m leafs, where m is polynomial in n. It follows that the size of the tree is
also polynomial in n. Define the function ANDb1,...,bd

as the and of b1, b2, . . . , bd. We are going to find
L1(ANDb1,...,bd

). We start with the following observations for bounding the L1 norm of functions:

Lemma 5 L1(f + g) ≤ L1(f) + L2(g).

Lemma 6 L1(f · g) ≤ L1(f) · L2(g).

Writing

ANDb1,...,bd
(x1, x2, . . . , xd) =

d∏
i=1

1 + (−1)biχi(x)
2

,

where χi(x) = 1 if xi = 0 and -1 if xi = 1. From Lemma 6 we have that:

L1(ANDb1,...,bd
) ≤

d∏
i=1

L1

(
1 + (−1)biχi(x)

2

)
≤ 1.

But on the other hand since ANDb1,...,bd
(b1, . . . , bd) = 1 (we have a value of 1 for the assignment of ones)

we must have L1(ANDb1,...,bd
) ≥ 1 so that L1(ANDb1,...,bd

) = 1.
We now consider a decision tree of depth d. A path of length d − 1 from the root node to a leaf can be

expressed as b = (b1, . . . , bd), where b1, . . . , bd are the assignment of the variables along the path. Therefore,
if ANDb1,...,bd

(x1, . . . , xd) = 1, the decision tree will output the value of the leaf. A decision tree DT :
{0, 1}d → {0, 1} can therefore be expressed as the sum of all the paths that returns 1 at the leaf. Let this set
of paths be P . Since there are m leafs, |P | ≤ m. By Lemma 5 and since L1(AND) = 1, we have

L1(DT) = L1(
∑
b∈P

ANDb) ≤ m.

We conclude that the L1 norm of a decision tree with m leaves is at most m, which is polynomial in n.
By Corollary 2, polynomial sized decision tree can be approximated in polynomial time with queries with
probability 1− δ.

4 Conclusion
A still open problem in DNF learning is whether DNF can be learned in polynomial time under the uniform
distribution. One might ask, What is the current stumbling block? Why can’t we seem to do better than nlog n

time? We are stuck even on what seems like a much simpler problem: the junta-learning problem.
A k-junta is a function on n bits which happens to depend on only k bits. (All other n− k coordinates are

irrelevant.)
Since every boolean function on k bits has a DNF of size 2k, it follows that the set of all log n-juntas is a

subset of the set of all polynomial-size DNF formulas. Thus to learn DNF under uniform in polynomial time,
we must be able to learn log(n)-juntas under uniform in polynomial time.

There is an extremely naive algorithm running in time nk essentially, test all possible sets of k variables
to see if they are the junta. Much work has to be spent to give an algorithm for learning k-juntas under
the uniform distribution which runs in time n.704k. The technique involves trading off different polynomial
representations of boolean functions (Mossel et al, 03). This is not much of an improvement for the important
case of k = log n. However at least it we know that nk can be improved.

The open problem (cash prize!) called the junta-learning problem is described below and seems like a
major step on the way of solving the DNF learning problem.

An unknown and arbitrary function f : {0, 1}n → {0, 1} is selected, which depends only on some k
of the bits. The algorithm gets access to uniformly randomly chosen examples, 〈x, f(x)〉. With probability
1 − δ the algorithm should output at least one bit (equivalently, all k bits) upon which f depends. The
algorithms running time is considered to be of the form nαpoly(n, 2k, 1/δ), and α is the important measure
of complexity. Our goal is to get α << k.

Learning DNF Formulas-7

