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ABSTRACT
Tree automata (specifically, bottom-up and unranked) form
a powerful tool for querying and maintaining validity of
XML documents. XML with uncertain data can be modeled
as a probability space of labeled trees, and that space is often
represented by a tree with distributional nodes. This paper
investigates the problem of evaluating a tree automaton over
such a representation, where the goal is to compute the prob-
ability that the automaton accepts a random possible world.
This problem is generally intractable, but for the case where
the tree automaton is deterministic (and its transitions are
defined by deterministic string automata), an efficient al-
gorithm is presented. The paper discusses the applications
of this result, including the ability to sample and to eval-
uate queries (e.g., in monadic second-order logic) while re-
quiring a-priori conformance to a schema (e.g., DTD). XML
schemas also include attribute constraints, and the complex-
ity of key, foreign-key and inclusion constraints are studied
in the context of probabilistic XML. Finally, the paper dis-
cusses the generalization of the results to an extended data
model, where distributional nodes can repeatedly sample the
same subtree, thereby adding another exponent to the size
of the probability space.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems—Query process-
ing ; H.2.1 [Database Management]: Logical Design—
Data models; F.4.3 [Mathematical Logic and Formal
Languages]: Formal Languages
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1. INTRODUCTION
Many real-world scenarios involve uncertain data. To

store and manipulate such data, probabilistic databases have
been studied, e.g., [1, 5–7, 15, 16, 18, 19, 26, 29, 32]. A proba-
bilistic database is essentially a probability distribution over
ordinary databases (often called possible worlds), and it is
usually represented by annotating data items with proba-
bilities (or probabilistic events). Those representations, to-
gether with statistical assumptions such as probabilistic in-
dependence, can usually encode exponentially large proba-
bility spaces. Much of the research effort has been on adapt-
ing traditional concepts to probabilistic databases. For ex-
ample, when querying a probabilistic database, a common
approach [5–7, 18, 19, 29] is to associate with each tuple t
a level of confidence, which is the probability that t is in
the answer when the query is applied to a random possi-
ble world. This makes query evaluation significantly harder
than in ordinary databases. Even in the conceivably sim-
plest relational model, where each tuple has an independent
probability of existing, conjunctive queries are often highly
intractable [7].

The situation is better for probabilistic XML, where the
various proposed models1 [1, 5, 15, 16, 18, 19, 21, 26, 29, 32]
can be represented by means of a p-document [18], which is
essentially an XML tree with special types of nodes called
distributional. It was shown that when distributional nodes
are independent, twig patterns with projection can be eval-
uated efficiently [18, 19], even when constraints (involving
aggregate functions) are imposed on the data [5].

This paper is an important step towards the development
of theoretical foundations necessary to derive a powerful
database system for probabilistic XML. In particular, we ex-
plore fundamental issues that have been previously ignored.
For one, all previous results on efficient query evaluation over
probabilistic XML are for queries that do not consider order
and have an acyclic structure (and the techniques used for
obtaining these results are inherently based on this acyclic-
ity). Does tractability carry over beyond those queries? An-
other issue is that of schema (e.g., DTD) validation. Given

1For [15,16], this refers only to the “probabilistic instances”
that are tree-structured and use point probabilities. In [5],
the representation includes a set of constraints in addition
to the p-document.
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a probabilistic XML document and a schema, the following
problems are important from a practical point of view. Is
every possible world valid? Alternatively, is the probability
of invalidity negligible? Is the probabilistic document even
relevant to the schema in the sense that at least one possible
world is valid? Can one impose validity on the probability
space by querying under the a-priori condition that the ran-
dom instance is valid?

In Section 3, we devise the pTT model of probabilistic
XML, which generalizes all of the tractable models studied
in [18] by allowing distributional nodes to manipulate the
order of siblings. More particularly, pTTs are tree struc-
tures similar to the p-documents of [5, 18]. When using a
pTT to generate a random document, each distributional
node independently chooses, from a predefined distribution,
a subset of its children as well as an order over this sub-
set. In this model, the above fundamental issues reduce to
the acceptance problem. Namely, compute the probability
that a random instance of a given pTT is accepted by a
given (bottom-up) tree automaton. Section 4 presents an
efficient algorithm for this task. However, the algorithm
is correct only if both the automaton and the description
of its transitions are deterministic. Otherwise, the accep-
tance problem becomes intractable, but the algorithm can
still solve efficiently the relevancy problem. Section 4.3 de-
scribes consequences of our algorithm, including the follow-
ing. First, all Boolean queries in monadic second-order tree
logic have a tractable data complexity (and they are even
fixed-parameter tractable [9, 10]) over pTTs. Second, query-
ing and sampling a pTT remain tractable even if a schema
(given as a tree automaton) is imposed on the data.

The translation of a schema into an automaton does not
capture constraints on XML attributes, such as key, foreign-
key and inclusion constraints [11]. In Section 5, we show
that the above tractability does not carry over to these con-
straints (even if approximations are allowed), but one can
efficiently test whether all of the random instances of a pTT
satisfy a set of constraints. Finally, in Section 6, we study
the generalization of the pTT model by allowing a distribu-
tional node to repeatedly sample the same subtree. This ex-
tension adds another exponent to the size of the underlying
probability space and, as a result, the acceptance problem is
no longer tractable, since just representing the final answer
(as a rational number) may require exponentially many bits.
However, if the accuracy of the answer is limited to k-bit pre-
cision (for any k), the above algorithm can be adapted so
that it remains efficient.

2. PRELIMINARIES
This section describes the preliminary concepts and nota-

tion that are used throughout the paper.

2.1 Strings and String Automata
Let S be a set. By S∗ we denote the set of all finite strings

of elements of S, namely, the sequences s1 · · · sn where si ∈
S for all 1 ≤ i ≤ n. A language over S is a subset of S∗. We
use |s| to denote the length n of s. The symbol ε denotes
the empty string.

A nondeterministic finite automaton (NFA) M is a tuple
〈ΣM , SM , s0

M , FM , δM 〉 where ΣM is a finite alphabet, SM is
a finite set of states, s0

M ∈ SM is the initial state, FM ⊆ SM

is the set of accepting states and δM : SM × ΣM → 2SM

(i.e., δM (s, σ) is a subset of SM for all s ∈ SM and σ ∈

ΣM ) is the transition function. We consistently denote an
NFA by M (possibly with a superscript and/or a subscript).
Moreover, we implicitly assume that M is the automaton
〈ΣM , SM , s0

M , FM , δM 〉.
Let M be an NFA. A run of M on a string s = σ1 · · ·σn ∈

ΣM
∗ is a mapping ρ : {1, . . . , n} → SM , such that ρ(1) ∈

δM (s0
M , σ1) and ρ(i) ∈ δM (ρ(i−1), σi) for all 2 ≤ i ≤ n. The

run ρ is accepting if ρ(n) ∈ FM , and in this case M accepts
s. We denote by L(M) the language over ΣM comprising
the strings that are accepted by M .

A deterministic finite automaton (DFA) is an NFA M ,
such that the image of δM comprises singletons; that is,
|δM (s, σ)| = 1 for all s ∈ SM and σ ∈ ΣM . It is well-
known that NFAs and DFAs (as well as regular expressions)
recognize the same class of languages, called regular string
languages.

2.2 Trees and Hedges
We use trees that are ordered, unranked, and with labeled

nodes. XML documents (and their probabilistic counter-
parts) are modeled as such trees. When modeling an XML
document, the label corresponds either to the tag of an ele-
ment or to a textual value (PCDATA). In some cases (e.g.,
DTD validation), one might use the same label (e.g., #PC-
DATA) to represent all the textual nodes. Next, we define
how trees are represented as strings.

Definition 1. Let Σ be a (possibly infinite) alphabet of
labels. A Σ-tree is inductively defined as follows.

• If σ ∈ Σ then σ() is a Σ-tree.

• If σ ∈ Σ and t1, . . . , tn are Σ-trees, then σ(t1 · · · tn) is
a Σ-tree.

We use TreesΣ to denote the set of all Σ-trees. We often
omit the parentheses from σ() and write just σ.

A Σ-hedge is a sequence h = t1 · · · tn of Σ-trees (i.e., a
member of TreesΣ

∗). Note the following. First, every Σ-
tree is a Σ-hedge. Second, if h is a Σ-hedge and σ ∈ Σ, then
σ(h) is a Σ-tree. Finally, if h1 and h2 are Σ-hedges, then
h1h2 is the Σ-hedge that is obtained by concatenating the
two sequences of Σ-trees.

Obviously, there is a one-to-one correspondence between
the notion of hedges described above and the common rep-
resentation by means of nodes and edges. Each occurrence
of a label σ in a Σ-hedge h defines a unique node v. We
denote by V(h) the set of nodes of the hedge h. The label
associated with the node v is denoted by λ(v). A leaf of a
Σ-hedge is a node without children. The root of a Σ-tree t,
denoted root(t), is the node without a parent.

Consider a Σ-hedge h. If there is a path from node v1

to node v2 in h, then we say that v2 is a descendant of v1,
whereas v1 is an ancestor of v2. Note that every node is both
a descendant and an ancestor of itself. If v1 6= v2, then v2 is
a proper descendant of v1, which in turn is a proper ancestor
of v2. If v is a node of h, then hv

∆ denotes the subtree of h
that is rooted at v and induced by all the descendants of v.

2.3 Tree Automata
We define a (bottom-up, unranked) nondeterministic tree

automaton (NTA) A as a four-tuple 〈ΣA, QA, FA, δA〉, where
ΣA is a finite alphabet, QA is a finite set of states, FA ⊆ QA

is a set of accepting states and δA : QA × ΣA → 2QA
∗
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is a function, such that for all q ∈ QA and σ ∈ ΣA, the
set δA(q, σ) is a regular string language over the alphabet
QA. For distinction from NFAs, we use A (possibly with
a subscript and/or a superscript) to denote NTAs. More-
over, the NTA A is implicitly assumed to be the quadruple
〈ΣA, QA, FA, δA〉.

A run of an NTA A on a Σ-tree t is defined when t is a ΣA-
tree and, in that case, it is a mapping ρ : V(t) → QA, such
that for all nodes v ∈ V(t) with children u1 · · ·un (where
n ≥ 0), the string ρ(u1) · · · ρ(un) belongs to the language
δA(ρ(v), λ(v)). The run ρ is accepting if it maps the root to
an accepting state, i.e., ρ(root(t)) ∈ FA. The language L(A)
consists of all the ΣA-trees that are accepted by A, that is,
ΣA-trees t, such that an accepting run on t exists.

An NTA A is deterministic if for all symbols σ ∈ ΣA and
states q1, q2 ∈ QA, if q1 6= q2 then δA(q1, σ) ∩ δA(q2, σ) = ∅.
It is then called a deterministic tree automaton (DTA).

In terms of representation, classes of NTAs (and DTAs)
differ from one another in the way of specifying the regular
languages δA(q, σ). We focus on specifications by means of
NFAs (and, in particular, DFAs). We denote by NTAn

Σ

the class of all NTAs A, such that ΣA ⊆ Σ (where Σ can be
infinite) and A uses an NFA (as indicated by the superscript
“n”) to specify each δA(q, σ). We similarly define NTAd

Σ,
DTAn

Σ and DTAd
Σ. For example, an automaton of DTAd

Σ is
a DTA A such that ΣA ⊆ Σ and each δA(q, σ) is specified by
a DFA. From now on, we assume that δA(q, σ) is an NFA (or
a DFA) that accepts the desired language, rather than the
language itself. Note that NTAn

Σ is syntactically the most
general class, that is, each of NTAd

Σ, DTAn
Σ and DTAd

Σ is a
subset of NTAn

Σ. Similarly, DTAd
Σ is syntactically the most

restricted class. It was shown in [3] that NTAs and DTAs
recognize the same languages, which are called regular tree
languages. Thus, all four classes (and in particular NTAn

Σ

and DTAd
Σ) are equivalent in terms of expressiveness.

We now define the notion of a size bound for tree au-
tomata. Consider a tree automaton A ∈ NTAn

Σ and let
NA and NM be two positive integers. We say that A is
(NA, NM )-bounded if |QA| ≤ NA, and |SM | ≤ NM holds
for all NFAs M = δA(q, σ) where q ∈ QA and σ ∈ ΣA. In
other words, A has at most NA states and each NFA used
to represent a language of δA has at most NM states.

2.4 Finite Probability Spaces
A finite probability space (abbr. fp-space) is a pair F =

(Ω(F ), pF ), such that Ω(F ) is a finite set and pF : Ω(F ) →
(0, 1] is a function that satisfies

P
o∈Ω(F ) pF (o) = 1. We

say that the fp-space F is over a (possibly infinite) set O
if Ω(F ) ⊆ O. In the sequel, we implicitly assume that an
fp-space F is the pair (Ω(F ), pF ).

3. PROBABILISTIC DATA MODEL
The notion of probabilistic XML refers to a finite prob-

ability space over XML documents. Formally, we consider
fp-spaces over TreesΣ and, more generally, over TreesΣ

∗.
The fp-space is given in terms of some compact description
D̃. Usually, we do not distinguish between D̃ and the fp-
space it describes. That is, we treat D̃ as an fp-space, even
though it is actually a compact description thereof. Each ele-
ment of Ω(D̃) is a possible world (also called random instance

or sample) of D̃. Conventionally [1, 5, 16, 18, 19, 26, 29, 32],
a compact description is a tree that specifies probabilistic
junctions (alternatives) in addition to ordinary data. Thus,

b
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Figure 1: An {r, a, b}-pTT T̃1 and two samples

it describes the probabilistic process of generating a sample
rather than the explicit probability space. The compact de-
scription that we use here, called Σ-pTT, is an order-aware
generalization of the probabilistic XML denoted in [18] by

PrXML{exp}, which itself generalizes2 other models in the lit-
erature (e.g., [5, 16,19,21,26,32]).

Below, we actually define three variants of compact de-
scriptions, namely, Σ-pTT, Σ-pTH and Σ-pHH. In each
acronym, the first two letters are either pT or pH, and
they describe the structure of the compact description. The
meaning of pT and pH is probabilistic tree and probabilistic
hedge, respectively. The last letter is either T or H and it
means that the compact description is over an fp-space of
trees or hedges, respectively. For example, a Σ-pTT is a
probabilistic tree that describes a space of trees. Our model
of probabilistic XML uses only Σ-pTTs, but the other two
variants are needed for describing our results. We define the
three variants below.

Let n be a natural number. The set PSn comprises all the
fp-spaces π, such that the elements of π are permutations3

on subsets of {1, . . . , n} (i.e., sequences of distinct numbers
from {1, . . . , n}). By PS we denote the union ∪n∈NPSn.
We assume that a set of labels Σ is always disjoint from PS.

Definition 2. A Σ-pTH is a (Σ ∪ PS)-tree P̃, such that

for all nodes v ∈ V(P̃) with n children, λ(v) ∈ Σ ∪PSn. A

Σ-pHH is a sequence H̃ = P̃1 · · · P̃k of Σ-pTHs. A Σ-pTT
is a Σ-pTH T̃ , such that λ(root(T̃ )) ∈ Σ.

Observe that a Σ-pHH has one of the forms σ(P̃1 · · · P̃n),

π(P̃1 · · · P̃n) or P̃1 · · · P̃n, where σ ∈ Σ is a label, P̃1, . . . , P̃n

are Σ-pTHs, and π ∈ PSn is an fp-space. Note that every
Σ-hedge is a Σ-pHH.

A node of a Σ-pHH with a label of Σ is called ordinary,
and one with a label of PS is distributional. Note that every
node is either ordinary or distributional, but not both. Also
note that a Σ-pTT is a Σ-pTH with an ordinary root.

Example 1. The {r, a, b}-pTT T̃1 appears in Figure 1. The
nodes are numbered for easy reference, and we denote the
node numbered by i© as vi. The root v1 of T̃1 is an ordinary
node, and its only child v2 is a distributional node. For
distributional nodes, we use s1 : p1, . . . , sk : pk to denote
the fp-space that assigns the probability pi to the sequence
si. The tree rooted at v2 is an {r, a, b}-pTH, but not an
{r, a, b}-pTT (since v2 is distributional).

2See [18] for a study of the expressiveness relationships
among models of probabilistic XML.
3In Section 6, we consider the generalization of our results
to the case where duplicates are allowed.
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A Σ-pHH defines an fp-space over TreesΣ
∗. The proba-

bilistic process of generating a sample is similar to the one
described in [5,18,19] for “p-documents,” with two main dif-
ferences. First, the process is naturally adapted from trees
to hedges. Second, it takes into account the order among
trees and siblings. Next, we give the exact definition.

A sample is obtained from a Σ-pHH H̃ by the following
recursive randomized process, denoted by smpl(H̃). An im-
portant point is that different executions of smpl are proba-
bilistically independent.

1. If H̃ = P̃1 · · · P̃n, return smpl(P̃1) · · · smpl(P̃n).

2. If H̃ = σ(P̃1 · · · P̃n), return σ(smpl(P̃1) · · · smpl(P̃n)).

3. If H̃ = π(P̃1 · · · P̃n), then randomly choose a string
I = j1 · · · jk ∈ Ω(π) with probability pπ(I) and return

smpl(P̃j1) · · · smpl(P̃jk ).

Example 2. The {r, a, b}-trees t1 and t2 in Figure 1 are

possible worlds of T̃1. The probability of t1 being returned
in the sampling process is 0.5 × 0.7 × 0.6 = 0.21, as it can
be created only when the sequence 1 is chosen at v2, and
then when the sequences 1 and ε are chosen at v5 and v7,
respectively. The probability of t2 is (0.3 × 0.3 × 0.4) +
(0.2 × 0.3 × 0.4) = 0.06 where the sum in the calculation
comes from the two ways to generate t2. Note that a positive
probability for the empty string ε at a node v indicates that
the subtree of v is optional. Also observe that the choices of
children made by v5 and v7 are probabilistically independent
of each other, because v3 deterministically chooses both v5

and v7. This illustrates a general way (cf. [18]) of efficiently
representing independent branches.

Recall that a Σ-pTT T̃ is a Σ-pTH that has an ordinary
root. This means that a sample of T̃ is always a single
Σ-tree. Thus, Σ-pTTs define fp-spaces over TreesΣ, and
they constitute our main model of probabilistic XML. (In
Section 4.3, 5 and 6, additional models are considered.) We
denote by pTTsΣ the class of all Σ-pTTs.

In the sequel, the following conventions are used. First,
we may omit Σ from the terms Σ-pTH, Σ-pHH and Σ-pTT
when Σ is not necessary. For a clear distinction between
the three, we consistently use P̃, H̃ and T̃ to denote pTHs,
pHHs and pTTs, respectively. Recall that we often do not
distinguish between a compact description and the fp-space
that it induces. Thus, we treat Σ-pHHs and Σ-pTTs as
fp-spaces over TreesΣ

∗ and TreesΣ, respectively. In partic-
ular, Ω(H̃) denotes the set of all the possible worlds of the

Σ-pHH H̃.
We always use the tilde symbol in the notation D̃ of (a

compact description of) an fp-space over TreesΣ
∗ (note that

D̃ is not necessarily a Σ-pHH). We omit the tilde to denote
the random variable D that represents a possible world cho-
sen according to the probability distribution of D̃. For ex-
ample, Pr(T = t), where t is a Σ-tree, is the probability that

a randomly chosen possible world of T̃ is t. As another ex-
ample, if A is an NTA, then Pr(T ∈ L(A)) is the probability

that A accepts a random instance of the fp-space T̃ .
When representing a Σ-pHH, each fp-space π is given by

explicitly specifying the strings I of Ω(π) and their prob-
abilities. We assume that each pπ(I) is a rational number
that it is given as two integers: the numerator and the de-
nominator.

4. RUNNING AUTOMATA ON PTTS
In this section, we consider the complexity of computing

the probability of acceptance of a pTT by an NTA. We call
this problem probabilistic acceptance (abbr. p-acceptance).
A restricted version of this problem is that of relevancy,
namely, deciding whether at least one possible world is ac-
cepted by the automaton. We formally define these two
problems as follows.

Definition 3. Let A be a class of NTAs and PT be a class
of fp-spaces over TreesΣ. P-acceptance of PT by A is the
problem of computing Pr (D ∈ L(A)), given D̃ ∈ PT and
A ∈ A. Relevancy of PT to A is the problem of deciding
whether Pr (D ∈ L(A)) > 0.

The following theorem shows that p-acceptance is FP#P-
complete in the case of pTTsΣ and NTAn

Σ, even for a sin-
gleton alphabet, and even when some determinism is re-
quired. Recall that FP#P is the class of functions that are
efficiently computable using an oracle to some function in
#P. A function f is FP#P-hard if there is a polynomial-time
Turing reduction4 (or Cook reduction) from every function
in FP#P to f . The proofs of hardness are by reductions
from the problem of determining the number of satisfying
assignments of a positive 2-DNF formula, which is known to
be #P-complete [28], and membership in FP#P is shown by
adapting the techniques of [13].

Theorem 1. Let Σ be an alphabet. The problem of p-
acceptance of pTTsΣ by NTAn

Σ is FP#P-complete. In the
case of either NTAd

Σ or DTAn
Σ, it remains FP#P-hard even

when Σ is a singleton.

In contrast to the above intractability, we next show that
p-acceptance is tractable for tree automata of DTAd

Σ.

4.1 Algorithm for Probabilistic Acceptance
We now consider the problem of p-acceptance of Σ-pTTs

by tree automata of DTAd
Σ. The naive approach of solv-

ing this problem, given T̃ and A, is by enumerating all the
possible worlds of T̃ , running A over each of them and sum-
ming up the probabilities of all the possible worlds that are
accepted by A. Obviously, this approach is infeasible since
the number of possible worlds can be exponential in the size
of T̃ . Nevertheless, we show that this problem is tractable
(i.e., in polynomial time) even without bounding the size of
the alphabet Σ. Moreover, it can be solved by a rather fast
algorithm—polynomial in A and merely linear in T̃ . We fix
an infinite alphabet Σ that is used throughout this section.
We start with some notation.

4.1.1 Notation
Let M be an NFA and s, t ∈ SM be two states. We denote

by Ms;t the NFA that accepts all the strings of (ΣM )∗ that
enable M to move from state s to state t. That is, Ms;t is
the automaton M ′ with ΣM′ = ΣM , SM′ = SM , s0

M′ = s,
FM′ = {t} and δM′ = δM .

Let A be an NTA, M be an NFA over (QA)∗ and h =
t1 · · · tn be a ΣA-hedge. A run of A on h is a mapping
ρ : V(h) → QA, such that the restriction of ρ to each V(ti)
is a run of A on ti. The run ρ is accepting relative to M if
ρ(root(t1)) · · · ρ(root(tn)) is accepted by M . We use L(A |
4Using an oracle to a #P-hard (or FP#P-hard) function, one
can efficiently solve the entire polynomial hierarchy [31].
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M) to denote the set of all ΣA-hedges that are accepted by A
relative to M . Intuitively, the notion of accepting relative to
M implies a restriction as to the word formed by the states
assigned to the roots. This will be important when devising
an algorithm for p-acceptance.

Let t be a Σ-tree. Postorder traversal of the nodes of t
means traversal in a bottom-up, left-to-right order. That is,
if t = σ(t1 · · · tn), then we (recursively) traverse t1, t2, and
so on until tn, and then visit the root.

Let T̃ be a Σ-pTT. The lowest Σ-label at or above v, de-
noted by λ↑(v), is simply λ(v) if v is ordinary; otherwise, if
v is distributional, then it is the label of the lowest ordinary
ancestor of v. Note that λ↑(v) is always well-defined, since

T̃ is a Σ-pTT, and hence, every distributional node has an
ordinary ancestor (since the root is an ordinary node).

4.1.2 Data Structures
The algorithm RunTA of Figure 2 gets as input a pTT
T̃ and a DTA A ∈ DTAd

Σ, and returns (in Line 25) the
numeric value Pr(T ∈ L(A)). In this section, we describe
the data structures used by the algorithm. Essentially, the
algorithm incrementally constructs two arrays At and Ah

by dynamic programming. The values of At are used for
computing the values of Ah and vice versa. Finally, the
output of the algorithm is obtained from the entries of At .
Next, we describe these two arrays in detail.

An index of the array At consists of a subtree T̃ v
∆ of T̃ ,

such that v is ordinary (thus, T̃ v
∆ is a pTT), and a state

q ∈ QA. When the algorithm terminates, it holds that

At [T̃ v
∆, q] = Pr (T v

∆ ∈ L(Aq)) ,

where Aq is obtained from A by replacing FA with the sin-
gleton {q}. In other words, it is the probability that a run
of A on T v

∆ maps the root to q. In particular, the value
returned by the algorithm in Line 25 is the sum At [T̃ , q] for
all accepting states q of A. We now show that this is indeed
the required value. By definition,

Pr (T ∈ L(A)) = Pr

0
@ _

q∈FA

T ∈ L(Aq)

1
A .

Since A is a DTA, there is at most one run of A over a Σ-
tree t. Therefore, the events T ∈ L(Aq) (where q ∈ FA) are
pairwise disjoint. Thus,

Pr

0
@ _

q∈FA

T ∈ L(Aq)

1
A =

X
q∈FA

Pr (T ∈ L(Aq)) ,

as required.
In the second array, Ah , an index comprises a pHH H̃ and

two states s1 and s2 of a DFA M = δA(q, σ), where q ∈ QA

and σ ∈ Σ (see the precise definition below). We assume
that distinct DFAs of A have disjoint sets of states. For all
nodes v of T̃ , a simple sub-pHH of v is a pHH H̃ having one
of the following three forms.

1. T̃ u
∆, if u is a child of v,

2. A prefix P̃1 · · · P̃n, if T̃ v
∆ is the pTT σ(P̃1 · · · P̃n), and

3. A prefix of P̃m1 · · · P̃mk , when T̃ v
∆ is π(P̃1 · · · P̃n) and

m1 · · ·mk ∈ Ω(π).

Note that in each of 2 and 3, the prefix can be the empty
pHH. The entry Ah [H̃, s1, s2] is defined for all pHHs H̃ and

states s1 and s2, such that there exists a node v of T̃ and
a state q ∈ QA where H̃ is a simple sub-pHH of v and s1

and s2 are states of the DFA M = δA(q, σ) for σ = λ↑(v)
(namely, σ is the lowest Σ-label at or above v). When the
algorithm terminates, the following holds.

Ah [H̃, s1, s2] = Pr (H ∈ L(A |Ms1;s2))

Note that the right-hand side is the probability that H is
accepted by A relative to Ms1;s2 .

The next section describes how the values of At and Ah

are computed.

4.1.3 The Algorithm
We now describe the algorithm RunTA. Lines 4–24 are

executed for all nodes v of T̃ , in postorder, and states q
of A. For each v and q, the following is done. Let σv be
λ↑(v). If σv ∈ ΣA, then M is the DFA δA(q, σv). Otherwise,
δA(q, σv) is undefined and M is the DFA over (QA)∗ that
rejects every word (i.e., L(M) = ∅); this DFA is denoted

in Line 4 by MQA
∅ . The values Ah [H̃, s1, s2] are computed

for every simple sub-pHH of v and states s1, s2 ∈ M . In
addition, if v is ordinary, then At [T̃ v

∆, q] is also computed.
Lines 6–15 handle the case where v is ordinary, whereas a
distributional v is handled in Lines 17–24. In each of these
line segments, the algorithm iterates over all relevant H̃, s1

and s2, and the computation of Ah [H̃, s1, s2] is done by the

subroutine ProcPHH(H̃, M, s1, s2) (the DFA M is provided
since it is needed for the computation).

Lines 13–15 computeAt [T̃ v
∆, q] (for an ordinary v) for each

state q of A, as follows. Suppose that T̃ v
∆ is σv(H̃). Then

At [T̃ v
∆, q] is set to the sum of all the Ah [H̃, s0

M , s], where s is
an accepting state of M . Note that each of the components
of this sum has already been computed in Lines 6–12 of the
current iteration of Line 5. The correctness of this compu-
tation is explained as follows. From the definitions, we get
the following equality.

Pr (T v
∆ ∈ L(Aq)) = Pr (H ∈ L(A |M)) =

= Pr

0
@ _

s∈FM

H ∈ L(A |Ms0
M ;s)

1
A

Now, since A is a DTA, there exists at most one run of A
on a given Σ-hedge. Moreover, since M is a DFA, a specific
string of (QA)∗ can move M to exactly one state s ∈ FM .

Consequently, the events H ∈ L(A | Ms0
M ;s), where s ∈

FM , are pairwise disjoint. It thus follows that

Pr

0
@ _

s∈FM

H ∈ L(A |Ms0
M ;s)

1
A =

=
X

s∈FM

Pr
“
H ∈ L(A |Ms0

M ;s)
”

.

Next, we describe the subroutine ProcPHH. As explained
above, for s1, s2 ∈ SM , ProcPHH(H̃, M, s1, s2) computes

Ah [H̃, s1, s2]. Let H̃ = P̃1 · · · P̃n. The case where n = 0
is straightforwardly handled in Lines 3–4. (Recall that M
does not have empty transitions.) The case where n = 1 is
considered in Lines 6–7, and it is actually handled by a sep-
arate subroutine ProcPTH(P̃1, M, s1, s2) that is described
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Algorithm RunTA(T̃ , A)

1: for all nodes v of T̃ in postorder traversal do
2: σv ← λ↑(v)
3: for all q ∈ QA do
4: M ← δA(q, σv) or MQA

∅ if σv /∈ ΣA

5: if v is ordinary then
6: let T̃ v

∆ = σv(P̃1 · · · P̃n)
7: for j = 1 to n do
8: for all s1, s2 ∈ SM do
9: ProcPHH(P̃j , M, s1, s2)

10: for j = 0 to n do
11: for all s1, s2 ∈ SM do
12: ProcPHH(P̃1 · · · P̃j , M, s1, s2)
13: for all q ∈ QA do
14: H̃ ← P̃1 · · · P̃n

15: At [T̃ v
∆, q]←P

s∈FM
Ah [H̃, s0

M , s]
16: else
17: let T̃ v

∆ = π(P̃1 · · · P̃n)
18: for j = 1 to n do
19: for all s1, s2 ∈ SM do
20: ProcPHH(P̃j , M, s1, s2)
21: for all m1 · · ·mk ∈ Ω(π) do
22: for j = 0 to k do
23: for all s1, s2 ∈ SM do
24: ProcPHH(P̃m1 · · · P̃mj , M, s1, s2)

25: return
P

q∈FA
At [T̃ , q]

Subroutine ProcPHH(H̃, M, s1, s2)

1: let H̃ = P̃1 · · · P̃n

2: if n = 0 then
3: Ah [H̃, s1, s2] = 1 if s1 = s2 and 0 otherwise
4: return
5: if n = 1 then
6: ProcPTH(P̃1, M, s1, s2)
7: return
8: H̃- ← P̃1 · · · P̃n−1

9: Ah [H̃, s1, s2]←
P

s∈SM
Ah [H̃-, s1, s]·Ah [P̃n, s, s2]

Subroutine ProcPTH(P̃, M, s1, s2)

1: if root(P̃) is ordinary then
2: Q′ ← {q ∈ ΣM | s2 ∈ δM (s1, q)}
3: Ah [P̃, s1, s2]←

P
q∈Q′ At [P̃, q]

4: else
5: let P̃ = π(P̃1 · · · P̃n)

6: Ah [P̃, s1, s2]← 0
7: for all I = m1 · · ·mn ∈ Ω(π) do

8: H̃I ← P̃m1 · · · P̃mn

9: Ah [P̃, s1, s2] += pπ(I)×Ah [H̃I , s1, s2]

Figure 2: Computing Pr(T ∈ L(A))

below. The rest of the subroutine, in Lines 8–9, handles the
case where n > 2. Let H̃- be obtained from H̃ by removing
P̃n, namely, H̃- is the pHH P̃1 · · · P̃n−1. Observe that by
the flow of the algorithm RunTA, the values Ah [H̃-, s′1, s

′
2]

and Ah [P̃n, s′1, s
′
2] are already computed at this point for all

s′1, s
′
2 ∈ SM . Then, in Line 9, Ah [H̃, s1, s2] is set to the

sum
P

s∈SM
as1,s × bs,s2 , where as1,s = Ah [H̃-, s1, s] and

bs,s2 = Ah [P̃n, s, s2]. The reason for this assignment is the
equality below that follows from the definitions.

Pr (H ∈ L(A |Ms1;s2)) =

= Pr

0
@ _

s∈SM

H- ∈ L(A |Ms1;s) ∧ Pn ∈ L(A |Ms;s2)

1
A

Due to the arguments made above regarding the determin-
ism of both A and M , the events H- ∈ L(A | Ms1;s) of
different s are pairwise disjoint. Consequently, the above
probability is equal to the following sum.

X
s∈SM

Pr (H- ∈ L(A |Ms1;s) ∧ Pn ∈ L(A |Ms;s2))

We use the fact that H̃- and P̃n are independent to derive
that

X
s∈SM

Pr (H- ∈ L(A |Ms1;s) ∧ Pn ∈ L(A |Ms;s2)) =

=
X

s∈SM

Pr (H- ∈ L(A |Ms1;s))×

× Pr (Pn ∈ L(A |Ms;s2)) .

Finally, we describe the subroutine ProcPTH that com-
putes Ah [P̃, s1, s2], when given a pTH P̃, a DFA M and

s1, s2 ∈ SM . Lines 2–3 handle the case where P̃ is a pTT.
In this case, the random variable P is a single tree. Let Q′

be the set of all states q ∈ ΣM , such that s2 ∈ δM (s1, q).
Then, P is in L(A |Ms1;s2) if and only if a run of A on P
maps the root to a state q of Q′, i.e., P ∈ L(Aq). Moreover,
since A is deterministic, the events of two different q are
disjoint. Consequently, we get the following equality, which
explains the assignment of Line 3.

Pr (P ∈ L(A |Ms1;s2)) = Pr

0
@ _

q∈Q′
P ∈ L(Aq)

1
A =

=
X

q∈Q′
Pr (P ∈ L(Aq))

The flow of RunTA implies that the entries At [P̃, q] have
already been computed when Line 3 is executed. To see
why, suppose that P̃ is T̃ v

∆. Then ProcPTH(P̃, M, s1, s2) is
called when the parent of v is chosen in Line 1 of RunTA,
whereas the At [P̃, q] are computed when v is chosen.

Lines 5–9 handle the case where P̃ has a distributional
root (hence it is not a pTT). Suppose that P̃ is π(P̃1 · · · P̃n).

For a string I ∈ Ω(π), let H̃I be the pHH that corresponds
to I (i.e., the one of Line 8). Then, from the definition of a
pTH and the law of total probability, we get the following.

Pr (P ∈ L(A |Ms1;s2)) =

=
X

I∈Ω(π)

pπ(I)× Pr (HI ∈ L(A |Ms1;s2))

Observe that Ah [H̃I , s1, s2] has already been computed for

all I ∈ Ω(π) since, if P̃ is T̃ v
∆, then this computation took

place when v was chosen in Line 1 of RunTA (whereas the
current execution is made when the parent of v is chosen).
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4.1.4 Correctness and Efficiency
The next lemma states the correctness and efficiency of the

algorithm RunTA. For simplicity, an arithmetic operation
is assumed to have a fixed cost. Thus, our analysis takes
into account the number of arithmetic operations, but not
the actual cost of their execution.5 The size of a pTT T̃ ,
denoted by ‖T̃ ‖, is the sum of the number of ordinary nodes

of T̃ and all the sizes of the fp-spaces π ∈ PS that appear
in T̃ .

Lemma 1. For a Σ-pTT T̃ and an (NA, NM )-bounded

DTA A ∈ DTAd
Σ, RunTA(T̃ , A) returns Pr(T ∈ L(A)) in

O(‖T̃ ‖ ·N2
AN2

M ) time.

As a result, we get the following theorem.

Theorem 2. The problem of p-acceptance of pTTsΣ by
DTAd

Σ is in polynomial time.

4.2 Nondeterminism Revisited
Recall that Theorem 1 shows that for pTTsΣ (even when

Σ is fixed and very small), p-acceptance by either NTAn
Σ,

NTAd
Σ or DTAn

Σ is intractable. Obviously, one can de-
terminize the given NTA and then apply Theorem 2. The
running time is determined by the size of the resulting DTA.
The results6 of [22] and standard facts on determinization of
binary tree automata imply that an NTA of NTAn

Σ can be
converted into an equivalent DTA of DTAd

Σ at an exponen-
tial cost. (Note that an exponential blowup is unavoidable,
because it is already required for transforming an NFA to a
DFA [14].) Formally, if a given A ∈ NTAn

Σ is (NA, NM )-
bounded, then a (2NA , 2NANM )-bounded A′ ∈ DTAd

Σ with
L(A′) = L(A) is constructible in O(2NANM · |ΣA|) time.
Thus, we conclude the following.

Corollary 1. The problem of p-acceptance of pTTsΣ

by automata of NTAn
Σ can be solved in time that is expo-

nential in the NTA and linear in the pTT.

The important question of whether there are efficient rela-
tive (multiplicative) approximations7 remains open. As the
following argument shows, one way of proving their nonex-
istence could be by showing intractability of the relevancy
problem. To see why, observe that if it is intractable to
determine whether at least one possible world is accepted
by the NTA, then multiplicatively approximating the prob-
ability of acceptance is intractable as well. The reduction
of Theorem 1 does not show intractability of relevancy. In
fact, the next theorem shows that the contrary is true for the
whole class NTAn

Σ and, moreover, relevancy can be solved
by the algorithm RunTA.

Theorem 3. For T̃ ∈ pTTsΣ and A ∈ NTAn
Σ, it holds

that RunTA(T̃ , A) ≥ Pr(T ∈ L(A)), and the two numbers
are either both zero or both nonzero. Hence, relevancy of
pTTsΣ to NTAn

Σ is in polynomial time.

5Formally, taking the actual arithmetic operations into ac-
counts has a polynomial effect on the overall running time.
6In particular, we use the translation of [22] that converts
an NTA of NTAn

Σ into an equivalent non-deterministic step-
wise tree automaton.
7Observe that a randomized additive approximation can be
obtained by running the NTA over samples of the pTT (and
applying, e.g., Hoeffding inequality).

Theorem 3 is important in terms of optimization, namely,
before paying the cost of running an NTA over a pTT, one
can efficiently test whether the result is nonzero. In addi-
tion, since the output of RunTA(T̃ , A) is an upper bound
on Pr(T ∈ L(A)), we can use the returned value to prune
results with probabilities that are too low to be of interest.

4.3 Applications
We now discuss the application of the results of the pre-

vious section to some central aspects of managing proba-
bilistic XML, namely, querying (possibly in the presence of
constraints or a schema) and sampling.

4.3.1 Query Evaluation
The first application that we discuss is that of evaluat-

ing queries over probabilistic XML. A common approach
in querying probabilistic data [1, 5–7, 18, 26, 29] is to as-
sign a degree of confidence to each answer. More formally,
the result of applying a query Q comprises pairs (a, ca),
where a is a possible answer and ca (the confidence of a)
is the probability of obtaining a when querying a random
instance. In terms of data complexity [33], query evaluation
often (e.g., [5–7,18]) reduces to the computation of Boolean
queries, where the goal is to find the probability that the
query returns true. In [18], they show that Boolean twig
queries [4] are fixed-parameter tractable8 [9, 10] over their
model of probabilistic XML, and that result immediately
generalizes to pTTs. (For a formal definition of twig queries
see, e.g., [4, 5, 18].)

A language that is by far more expressive than twig queries
is that of monadic second-order logic (MSO) over Σ-trees9

(the exact definition can be found in, e.g., [25]). For a (pos-
sibly infinite) alphabet Σ, we denote by MSOΣ the set all
MSO formulae that use only labels of Σ. Let Σ be a finite
alphabet. It is known that every formula ϕ ∈MSOΣ can be
translated into an NTA Aϕ ∈ NTAn

Σ (and vice versa), such
that the Σ-trees that satisfy ϕ are precisely those that are
accepted by Aϕ [8,25,30]. Furthermore, it can be shown that
there is such a translation where Aϕ is (Kϕ, Kϕ)-bounded,
where Kϕ depends only on the size of ϕ and not on the size
of Σ. As a consequence, we get the following corollary of
Theorem 2, where Σ may be an infinite alphabet.

Corollary 2. Evaluation of MSOΣ formulae over Σ-
pTTs is fixed-parameter tractable.

4.3.2 Querying under Constraints
Tree automata can have various roles in data manage-

ment. As discussed above, they can represent queries. They
can also represent integrity or schema constraints, such as a
DTD or specialized DTD [27]. Previous work [5,20] studied
various sorts of a-priori assertion of constraints in proba-
bilistic databases, namely, restricting the possible worlds to
those in the sub-space consisting of all the Σ-trees that sat-
isfy the constraints. Formally, we consider fp-spaces D̃ over
TreesΣ, such that D̃ is represented by a pair (T̃ , Ac), where

T̃ ∈ pTTsΣ and Ac ∈ DTAd
Σ (e.g., Ac is a DTD). Semanti-

cally, D̃ is the fp-space such that Ω(D̃) = Ω(T̃ )∩L(Ac) and

8This is a stronger notion than polynomial data complexity.
9The twig queries in [5,18] allow for arbitrary conditions over
labels, but that can be incorporated in MSO quite easily.
Details are omitted due to a lack of space.
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for all t ∈ Ω(T̃ ) ∩ L(AC), the probability pD̃(t) is given by

pD̃(t) = Pr (T = t | T ∈ L(Ac)) =
Pr (T = t)

Pr (T ∈ L(Ac))
.

The fp-space D̃ is well defined only if the set Ω(T̃ ) ∩ L(Ac)
is nonempty. We denote by pTTsΣ|DTAd

Σ the class of all
such representations. The following corollary of Theorem 2
is due to the fact that given two DTAs A1, A2 ∈ DTAd

Σ,
one can efficiently construct a DTA A such that L(A) =
L(A1) ∩ L(A2).

Corollary 3. For pTTsΣ|DTAd
Σ, both testing well de-

finedness and p-acceptance by DTAd
Σ are in time that is

linear in the pTT and polynomial in the DTAs.

Applying Corollary 3 requires the query to be defined as
a DTA. As said above, this can be done for MSO. Unfor-
tunately, translating a formula ϕ of MSOΣ to a DTA is
highly expensive, namely, the running time is unlikely to be
bounded by an elementary function of ‖ϕ‖ [12, 23]. But for
twig queries, this translation can be bypassed. The next the-
orem states that there is a practically efficient evaluation of
twig queries over pTTsΣ|DTAd

Σ. The proof is by showing
how to merge, in a single scan of the pTT, two algorithms:
one is RunTA and the second is similar to the evaluation of
twigs in [18].

Theorem 4. Let D̃ ∈ pTTsΣ|DTAd
Σ be given by a pTT

T̃ ∈ pTTsΣ and an (NA, NM )-bounded A ∈ DTAd
Σ. Let

ξ be a Boolean twig query. Computing Pr(D̃ |= ξ) is in

O(4‖ξ‖ ·N2
AN2

M · ‖T̃ ‖) time.

4.3.3 Sampling under Constraints
The final application that we consider is that of sampling

under constraints. Let D̃ be an fp-space over TreesΣ. A
sampling algorithm for D̃ is a randomized process Sample(D̃)

that correctly simulates D̃, namely, it generates a random
Σ-tree so that for all t ∈ Ω(D̃), the following holds:

Pr
“
Sample(D̃) = t

”
= pD̃(t) .

Again, we consider the class pTTsΣ|DTAd
Σ. A naive al-

gorithm would repeatedly emulate the random process de-
fined by the given pTT until it gets a sample that is accepted
by the DTA. However, it is easy to come up with examples
where the expected running time of this algorithm is ex-
ponential in the pTT (even for fixed alphabet and DTA).
However, by a fairly easy adaptation of the sampling algo-
rithm given in [5], combined with the tractability result of
Theorem 2, we obtain the following.

Corollary 4. An fp-space of pTTsΣ|DTAd
Σ can be sam-

pled in polynomial time.

5. ATTRIBUTE CONSTRAINTS
As explained in the previous section, tree automata can

be used for analyzing the relationship between a pTT and
a DTD. More specifically, a DTD D without attribute spec-
ifications can be represented by a tree automaton. In that
case, one can efficiently test the probability that a random
instance of the Σ-pTT is valid w.r.t. D (and, in particu-
lar, whether each or none of the random instances is valid
w.r.t. D). However, DTDs also include constraints about the

attributes. In this section, we consider three kinds thereof,
namely, key, inclusion, and foreign-key constraints—all were
studied in [11]. We restrict the discussion to unary con-
straints (i.e., constraints involving a single attribute). First,
we enrich our data model with attributes.

We assume that V is a fixed infinite set of attribute values.
Let Σ be a set of labels. A Σ@-tree is a pair t@ = (t, α),
where t is a Σ-tree and α is a finite partial function from
V(t) × Σ to V. The function α specifies the attributes of a
node v of t and their values as follows. We say that ξ is an
attribute of v if α(v, ξ) is defined, and in this case, α(v, ξ) is
the value of ξ for v and is also denoted by v.ξ.

Let Σ be a set of labels and let t@ be a Σ@-tree. A key
constraint has the form σ.ξ → σ, where σ and ξ are labels of
Σ. The constraint σ.ξ → σ is satisfied by t@ if distinct nodes
with the label σ and the attribute ξ have different values for
ξ; that is, for all v, u ∈ V(t) it holds that

(λ(v) = λ(u) = σ ∧ v.ξ = u.ξ)→ v = u .

An inclusion constraint has the form σ1.ξ1 ⊆ σ2.ξ2, and it
is satisfied by t@ if for all nodes v1 with the label σ1 and
attribute ξ1, there exists a node v2 with the label σ2 and
attribute ξ2, such that v1.ξ1 = v2.ξ2. Finally, a foreign-key
constraint has the form σ1.ξ1 ⊆fk σ2.ξ2, and its meaning is
the conjunction of σ1.ξ1 ⊆ σ2.ξ2 and σ2.ξ2 → σ2. For a
constraint c, we use t@ |= c to denote that t@ satisfies c.

We now enrich pTTs with attributes. For simplifying the
presentation, our model does not allow the attributes them-
selves to be uncertain. Formally, a Σ@-pTT is a pair (T̃ , α),

where T̃ is a Σ-pTT and α is a finite partial function from
V(T̃ )×Σ to V; moreover, α is only defined over pairs (v, ξ)
such that v is an ordinary node. We naturally identify a
Σ@-pTT (T̃ , α) with the fp-space T̃ @, such that a random

instance (t, α′) of T̃ @ is obtained as follows. First, t is ob-

tained by sampling T̃ (in the usual way). Second, α′ is the

restriction of α to the ordinary nodes of T̃ that actually
appear in t. This instance is represented, as usual, by the
random variable T @.

Let T̃ @ be a Σ@-pTT. We would like to understand how
T̃ @ statistically relates to a given constraint, namely, to
know the probability that the constraint is satisfied. The
following theorem shows that computing this probability is
intractable (even for small alphabets); moreover, just test-
ing whether it is nonzero is NP-hard. Hence, an efficient rel-
ative approximation is unlikely to exist (unless RP=NP or
P=NP, depending on whether the approximation is random-
ized or not). NP-hardness and FP#P-hardness are proved
by reductions from the problem exact cover by 3-sets and
its counting10 version, respectively.

Theorem 5. Let Σ be an alphabet of four or more sym-
bols and let c be a key, inclusion, or foreign-key constraint.
It is FP#P-complete to compute Pr

`T @ |= c
´
, where the in-

put is a Σ@-pTT T̃ @. Moreover, it is NP-complete to decide
whether Pr

`T @ |= c
´

> 0.

Although one cannot efficiently compute the probability of
satisfying a constraint, the following proposition shows that
one can still efficiently test whether all the possible worlds
satisfy that constraint.

10The counting version is that of computing the number of
exact covers. This problem is known to be #P-complete
(see, e.g., [17]).
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Proposition 1. Let c be a key, inclusion, or foreign-key
constraint. Deciding whether Pr

`T @ |= c
´

= 1, given a Σ@-

pTT T̃ @, is in polynomial time.

A practically important consequence is the following. Sup-
pose that we are given (as input) a Σ@-pTT T̃ @, a DTD D
described as a DTA of DTAd

Σ, and a set C of (key, inclusion
and foreign-key) constraints on attributes. By Theorem 2

and Proposition 1, we can efficiently determine whether T̃ @

is always valid w.r.t. D and C; that is, whether all the possi-
ble worlds of T̃ @ satisfy both D and each of the constraints
of C.

6. DUPLICATING PTTS
We now consider a model that extends pTTs by allowing

branches of a distributional node to be sampled more than
once. We show that this model offers a greater compact-
ness than pTTs. Generalizing our results to this model is
discussed rather informally, due to a lack of space.

Recall from Definition 2 that in a Σ-pTT, the label of a
distributional node with n children is an element of PSn,
namely, an fp-space over permutations (duplicate-free se-
quences) on subsets of {1, . . . , n}. A duplicating Σ-pTT
(abbr. Σ-dpTT) is defined similarly to a Σ-pTT, except that
the label of a distributional node with n children can be any
fp-space over {1, . . . , n}∗. We may write just dpTT when Σ
is not needed. A sample of a dpTT is obtained exactly as
that of a pTT; in particular, when sampling the same sub-
tree more than once, different samples are probabilistically
independent (and, hence, they are not necessarily equal). By
dpTTsΣ we denote the class of all Σ-dpTTs. We similarly
generalize the notion of Σ@-pTT to Σ@-dpTT.

Generalizing pTTs to dpTTs might seem straightforward.
However, it is not! For one, the next example shows that
the fp-space of a dpTT T̃ can have (as a function of ‖T̃ ‖)
a double-exponential number of possible worlds, where each
possible world can be exponentially large.

Example 3. Let Σ = {a, b} and let π1|2 and π11 be the
fp-spaces over {1, 2}∗, such that π1|2 uniformly chooses be-
tween 1 and 2 (each with probability 0.5) and π11 always

chooses 11. Let P̃0 = π1|2(ab). Inductively, for k > 0, let

P̃k = π11(P̃k−1). Finally, let T̃m be the dpTT a(P̃m). For

example, T̃2 is a(π11(π11(π1|2(ab)))). Clearly, T̃m encodes
the uniform distribution over the Σ-trees a(s), where s is
in {a, b}∗ and its length is 2m. In particular, this fp-space

includes 22m

samples, each with 2m leaves and probability
2−2m

.

Consider a Σ-dpTT T̃ and a DTA A ∈ DTAd
Σ. Note that

the algorithm RunTA (Figure 2) can be applied as is to T̃
and A. This algorithm correctly computes Pr (T ∈ L(A)),

even though T̃ can represent a much larger fp-space than
a pTT of a similar size. Moreover, the running time is
polynomial, assuming that an arithmetic operation has a
fixed cost (e.g., as in the rational Blum-Shub-Smale com-
putational model [2]). Without this assumption (i.e., under
bit complexity), RunTA is still efficient for pTTs, but not for
dpTTs. The reason is that an exponential number of bits
may be needed for representing the computed numbers (i.e.,
the entries of At and Ah). This is a tight lower bound since
representing the output Pr (T ∈ L(A)) could require an ex-
ponential number of bits. For instance, consider the dpTT

T̃m of Example 3 and let Aa be the DTA that accepts the
set of all {a}-trees. Then Pr (Tm ∈ L(Aa)) = 2−2m

and it
requires 2m bits in a standard representation. In particular,
p-acceptance of dpTTsΣ by NTAn

Σ (or by DTAd
Σ) is not

in FP#P.
For the sake of efficiency, it is common to only require

that the output will have k-bit precision, for a given number
k. That is, an additive error of at most 2−k is tolerable.
Under this requirement, we can show that even for dpTTs,
the acceptance problem remains tractable in the following
sense. The algorithm RunTA guarantees k-bit precision if
its arithmetic operations are done with (k+q)-bit precision,
where q is polynomial in the input. The other tractability
results of the previous sections can be similarly generalized11

to dpTTs, with the only exception of Corollary 4 that is
discussed below. Moreover, k-bit precision is irrelevant to
the tractable decision problems, and they remain tractable
for dpTTs. That is, the following problems are solvable in
polynomial time.

• Relevancy of dpTTsΣ to NTAn
Σ.

• Deciding whether Pr
`T @ |= c

´
= 1, given a Σ@-dpTT

T̃ @ and a (key, inclusion, or foreign-key) constraint c.

One can always transform a given dpTT to an equiva-
lent pTT (that is, the dpTT and the pTT define the same
fp-space) by explicitly adding subtrees as required by the
duplication. This entails (in the worst case) an exponen-
tial blowup of the size.12 Thus, Corollary 4 implies that an
fp-space of dpTTsΣ|DTAd

Σ (which is defined similarly to
pTTsΣ|DTAd

Σ) can be sampled in exponential time, which
is worst-case optimal (since the sample itself can be expo-
nentially large).

7. CONCLUSIONS
The Σ-pTT model of probabilistic XML generalizes those

studied in [5,16,19,21,21,26,32] (as well as some of those in-
vestigated in [1,18]). It is the first model in which the order
among siblings (and not just their existence) is probabilis-
tic. We presented an efficient algorithm for p-acceptance of
a Σ-pTT by a DTA of DTAd

Σ, and showed that this problem
becomes intractable if either the tree automaton itself or the
description of its transitions is non-deterministic. We dis-
cussed the applications of our algorithm to common tasks,
such as validating and enforcing schema constraints (ex-
pressed as a DTA). In particular, evaluation of MSO queries
is fixed-parameter tractable.

We also investigated the application of common types
of attribute constraints that are not captured by tree au-
tomata, namely, key, inclusion and foreign-key constraints.
Although it is intractable to compute (or even multiplica-
tively approximate) the probability that a constraint (of
each of the three types) is satisfied, one can efficiently test
whether it holds in all of the possible worlds. Finally, we
showed how our results carry over to dpTTs, which are ex-
ponentially more compact than pTTs. In particular, our

11For generalizing Corollary 3 and Theorem 4, we assume
that the DTA describing the constraint accepts the dpTT
with a non-negligible probability (e.g., at least 2−k).

12Note that this transformation is actually efficient if there
is a fixed upper bound on the number of duplicating nodes
along a path from the root to a leaf.
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algorithm can be used to efficiently solve the acceptance
problem when the accuracy of the output is limited to k-bit
precision, for any k.

This work gives rise to various important future direc-
tions. In [24], the query language of efficient tree logic
(ETL) is proposed. This language is as expressive as MSO,
yet query evaluation is fixed-parameter tractable with only
an exponential (hence, elementary) dependence of the run-
ning time on the size of the query. So, a natural ques-
tion is whether ETL has a similar complexity over pTTs
(and dpTTs). A second direction is that of approximate
p-acceptance. Specifically, what is the complexity of eval-
uating an automaton of NTAn

Σ if one is satisfied with a
multiplicative approximation (possibly a randomized one)?
Another direction is regarding the complexity of sampling
an fp-space of dpTTsΣ|DTAd

Σ. We showed that sampling
is in exponential time, which is a tight worst-case analysis,
because the generated sample itself might have an exponen-
tial size. But it is yet unknown whether sampling can be
done in time that is polynomial in the combined size of the
input and the output, possibly while allowing the probabil-
ity of generating a sample to be an approximation of the
exact one. Finally, an important direction is to find natural
conditions that make it possible to efficiently compute the
probability that attribute constraints are satisfied by a pTT.
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