EUROGRAPHICS 2019/ P. Alliez and F. Pellacini Volume 38 (2019), Number 2
(Guest Editors)

Object Partitioning for Support-Free 3D-Printing

E. Karasik, R. Fattal, M. Werman

Hebrew University of Jerusalem, Israel

Figure 1: An object requiring support when printed by an FDM printer. Two left images show the object with support structures and after
their removal by a craft knife. Removal marks are clearly seen despite the elaborate effort put. Partitioning the object by a single plane of
a precise location and angle results in two printable subparts. Gluing the two results in a cleaner surface, 20 minutes shorter printing-time,
and saves 70cm of filament.

Abstract

Fused deposition modeling based 3D-printing is becoming increasingly popular due to it’s low-cost and simple operation and
maintenance. While it produces rugged prints made from a wide range of materials, it suffers from an inherent printing limitation
where it cannot produce overhanging surfaces of non-trivial size. This limitation can be handled by constructing temporary
support-structures, however this solution involves additional material costs, longer print time, and often a fair amount of labor
in removing it.

In this paper we present a new method for partitioning general solid objects into a small number of parts that can be printed
with no support. The partitioning is computed by applying a sequence of cutting-planes that split the object recursively. Unlike
existing algorithms, the planes are not chosen at random, rather they are derived from shape analysis routines that identify and
resolve various commonly-found geometric configurations. In addition, we guide this search by a revised set of conditions that
both ensure the objects’ printability as well as realistically model the printing capabilities of the printer at hand.

Evaluation of the new method demonstrates its ability to efficiently obtain support-free partitionings typically containing fewer
parts compared to existing methods that rely on support-structures.

CCS Concepts
e Computing methodologies — Shape analysis; Mesh models;

(© 2019 The Author(s)
Computer Graphics Forum (©) 2019 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

E. Karasik & R. Fattal & M. Werman / Object Partitioning for Support-Free 3D-Printing

1. Introduction

Until the end of the last decade, 3D-printing was primarily used
in the manufacturing industry, mainly for rapid prototyping of new
products. The expiration of the Fused Deposition Modeling (FDM)
printing process patents in 2009 led to a revolution in which this
inexpensive technology reached the masses. By now FDM print-
ers are an extremely popular tool among enthusiastic home users,
makers, artists, small labs and production facilities where they are
used for personalized production, architectural depiction, medical
replacements, hobby recreation, and many other applications.

The FDM technology consists of extruding strands of a melted
thermoplastic through a narrow nozzle and accurately depositing
them side by side, and layer on top of layer. These deposits fuse
together as they solidify and result in a 3D solid object. This print-
ing technology can be implemented at very low cost, as low as
a hundred US dollars, it supports a wide range of materials such
as industrial ABS, environmentally-friendly Polylactic Acid, flex-
ible nylon, hard polycarbonate, and wood- and metal-filled poly-
mers, and it does not require additional materials (powders) or post-
solidification processes. Consequently, FDM-based 3D-printers are
by far the most popular non-industrial printers.

The FDM’s layered operation results in a non-smooth object sur-
face that reveals the printed layers. This anisotropy also leads to a
structural weakness along the vertical (printing) axis. Nevertheless,
the main shortcoming of this printing technology is its inability
to form overhangs—portions of the object with no material sup-
porting them from beneath, such as bridges and steep protrusions.
While this can be partially solved by printing temporary support
structures, this option is not entirely satisfactory as it involves spe-
cialized costly materials, generates excessive waste, leaves marks
behind, increases the printing time, as well as increases the printer’s
complexity and cost when an additional hotend is used.

In practice users often avoid these problems by splitting the ob-
ject into parts that do not contain overhangs, which are printed sep-
arately and glued together. This simple solution is quite effective
and can be executed with minimal aesthetic and structural com-
promises. Nevertheless, breaking an object into printable subparts
becomes an exponentially intricate task as the object complexity
increases, requiring a good 3D geometrical imagination as well as
fair knowledge in CAD software, which is not always the case as
many users rely on existing art. Indeed, it was shown that this de-
composition is NP-hard in [EMO1] under a conservative definition
of overhangs. Figure[I] shows the option of partitioning versus the
use of support structures.

These difficulties motivated the development of automated ob-
ject partitioning methods. Hu et al. [HLZCO14]] decompose an ob-
ject into approximately pyramidal subparts that can be printed with
minimal support material. The restriction to pyramidal hulls leads
to a higher number of subparts than needed as existing printers are
capable of printing protrusions with a slope up to 150°. Wei et
al. [WQZ" 18] concentrate on shell models and derive a randomized
skeleton-based algorithm that is applicable to locally-cylindrical
objects. Yu et al. [YYT"17] operate on general meshes by also
searching the partitioning via a randomized search. As we show
random search requires longer running times and results in more
parts than an object-analysis based search.

In this paper we describe a new method for partitioning general
3D models into a small number of subparts that can each be printed
with no additional support structure. The algorithm identifies com-
mon non-printable geometric patterns in the object and separates
them into printable or simpler subparts. The partitioning is based
on a local and global object analysis that extracts geometry-specific
separating planes efficiently. In order to fully decompose an ob-
ject, a sequence of these partitioning steps is found by a stochastic
search that minimizes the number of resulting subparts. This search
is performed according to a new, complete and realistic printabil-
ity criterion that takes into account the printing capabilities of a
given printer. Evaluation of our algorithm demonstrates the effec-
tiveness of our analysis-based partitioning to achieve optimal or
near-optimal solutions faster than existing alternatives.

2. Previous Work

The recent growth in the popularity of 3D-printers gave rise to var-
ious computational fabrication problems that drew the attention of
computer graphics researchers. We start with a brief review of this
heterogeneous literature and then focus on works related to object
partitioning.

Computational Fabrication. The trade-off between object
strength and material cost has been the topic of several works.
Stava et al. [SVB*12] describe a system that detects and cor-
rects structural weaknesses by modifying the object’s in-fill den-
sity and inserting struts. A simulation-aided shape editing system
that integrates structural analysis and geometric design is described
in [XXY*15]. Lu et al. [LSZ"14] introduce hollow honeycomb-
cells to optimize the objects’ strength-to-weight ratio. Wang et
al. [WWY™13] also use struts in order to convert 3D solid objects
into stable skin-frame approximate structures to reduce material
cost. Similarly, Vanek et al. [VGB™14b] minimize both the mate-
rial and printing time by converting the object into an outer shell
and segmenting it so that an optimal packing with minimal support
material is obtained. Zehnder et al. [ZCT16] describe a computa-
tional tool for designing structurally-sound and printable ornamen-
tal curve networks. A method for gradual construction of stable
masonry model that reduces the material and construction costs is
described in [DPW™14]. Zhang et al. [ZXW " 15| propose a method
for designing the internal supporting frame of 3D objects. Finally,
Hornus and Lefebvre [HL17] describe a method for carving large
self-supporting cavities inside an object.

Several works addressed the print-size limit of existing consumer
FDM printers. Luo et al. [LBRM12]| and Jadoon et al. [JWL* 18]
decompose large objects into smaller ones that fit into the printer’s
volume while considering their number, assemblability, and struc-
tural soundness. Song et al. [SELE15] avoid the need for glue or
special connectors and propose printing interlocking parts that al-
low repeated assembly and disassembly.

Additional works augment the object design process and its ex-
pressiveness. Prévost et al. [PWLSH13] introduce minimal defor-
mations to the object volume and shape in order to properly balance
it. Cali et al. [CCA*12] describe a framework for converting static
models into ones with functional articulation containing joints with
internal friction that do not require assembly.

(© 2019 The Author(s)
Computer Graphics Forum (©) 2019 The Eurographics Association and John Wiley & Sons Ltd.

E. Karasik & R. Fattal & M. Werman / Object Partitioning for Support-Free 3D-Printing

160° 155° 150° 145’

Figure 2: Left illustrations show an object with internal angles be-
low 135°. While this object is printable via today’s FDM printers,
its pyramidal decomposition consists of three parts. Right image
shows an actual print of a benchmark model designed for estimat-
ing the maximal printing angle supported. The test shows a suc-
cessful operation at angles up to 150°. In this test we used a Print-
rbot Simple Metal with a E3D v6 hotend, printing a natural PLA at
185° Celsius through a 0.4mm nozzle.

Unlike the conservative layer-by-layer support structures created
by standard slicing software, several works take a geometric ap-
proach to construct more effective support structures. Dumas et
al. [DHL14]] exploit the fact that FDM printing has some toler-
ance to short bridges and incorporate a scaffolding structure com-
posed of horizontal bridges and vertical pillars to support the ob-
ject. Vanek et al. [VGBI4a] describe a geometry-based approach
that minimizes the support material by finding the orientation re-
quiring the least amount of support area and minimize the num-
ber of points needed to support overhangs. Most recently, Dai et
al. [DWW " 18] propose a robotic printing system equipped with a
multi-axis motion designed in order to reduce the need for support-
ing structures.

In FDM printing the object orientation affects the anisotropies
it creates. Hildebrand et al. [HBA13] account for the anisotropies
and find the best print direction for each part of the object in terms
of build speed, tensile strength and strain. Zhang et al. [ZLP™15]]
determine the printing orientations such that the residual remains
of the support structures are not in perceptually significant regions.

Object Partitioning for 3D Printing. Partitioning an object in
order to achieve printability by existing FDM printers is the topic
of several recent works. We mention here the ones that are more
relevant to our settings, and refer the reader to Oh et al. [OZB18|
for a more comprehensive survey of the topic.

Decomposing an object into geometrically restricted subparts is
a valid approach to achieve printability. Indeed, both pyramidal ob-
ject decompositions and convex decompositions result or are proxy
to achieving printable parts. However, obtaining such exact decom-
positions is NP-hard to compute [TM84}(Cha84, EMO1]. Neverthe-
less, Hu et al. [HLZCO14]] showed that the pyramidal decompo-
sition is more likely to result in fewer printable parts, and conse-
quently proposed an approximate pyramidal decomposition. Their
method joins fine object subunits to form larger primitives through
a series of clustering steps guided by the agreement on a printing
base. While the resulting subparts are not guaranteed to be pyrami-
dal shapes, being almost restricted to their pyramidal hull implies
a saving in support material. As noted above, existing FDM print-
ers tolerate non-trivial protrusions and hence the over conservative
pyramidal condition often leads to an unnecessarily large number
of subparts and post-printing labor. Figure[2]portrays such an exam-

(© 2019 The Author(s)
Computer Graphics Forum (© 2019 The Eurographics Association and John Wiley & Sons Ltd.

ple. The method we derive here is based on a more realistic print-
ability condition taking into account the maximal protrusion angle
the printer at hand supports.

Wang et al. [WZK16] propose a decomposition in which the sur-
face normals are as perpendicular as possible to the printing direc-
tion in order to improve the surface quality and reduce the support
needed.

Demir et al. [DABIS]] also describe a method that decom-
poses the object into near-convex components by means of energy-
minimization segmentation. The resulting subparts are then packed
together to make the printing process more efficient in terms of ma-
terial usage, printing times, and object fidelity. Similarly to pyrami-
dal decomposition, the near-convex objective used in this method
results in unnecessarily large number of parts and laborious assem-
bly.

Wei et al. [WQZ™ 18] focus on locally-cylindrical shell-models
which they model as a graph based on the object skeleton that they
compute. Partitioning is then found through a stochastic search in
which a random vertex in the graph is selected and a planar cut per-
pendicular to its edges is considered. The partitioning is finally ob-
tained based on the skeleton’s printability. Unlike this restricted ge-
ometric interpretation of the object as a collection of cylinders, we
search and support multiple and more general geometric constella-
tions. Moreover, our method ensures the meshes resulting from our
partitioning are fully printable.

Finally, Yu et al. [YYT"17] do not make geometrical assump-
tions on the object shape and do not attempt to analyze it. Instead,
they perform a randomized genetic search for a binary space parti-
tioning tree that defines the object partitioning. The total overhang-
ing area and the number of cuts define the objective function being
minimized. Thus, some support material may be needed. In contrast
to this fully-randomized search, our method analyses the object ge-
ometry and suggests cutting planes that resolve the non-printable
portions of the object.

3. Printability Condition

The printability criterion plays a critical role in any method that
computes a support-free decomposition. An over-stringent condi-
tion leads to too many subparts, whereas an incomplete set of cri-
teria may lead to serious printing artifacts or even failure.

As noted above, the FDM printing process lays every layer on
top of the previous one, which provides the support needed. How-
ever, the strong adhesion between successive layers and the rapid
solidification of the newly deposited strands allow this process to
tolerate a partial support where newly deposited layers are allowed
to push the perimeter outwards to a certain extent. In other words,
a reliable print of protruding faces is possible as long as the partial
inter-layer support is sufficient. This extent is defined by the inner
angle formed between the base and face planes [VGB14all. We de-
note the maximal printing angle by 6. and refer to it as the critical
protrusion angle (CPA). The CPA gives raise to a necessary print-
ability condition that requires all the object faces to form an angle
less than 6, with respect to a given base-plane.

We note that while 0, may slightly vary between printers and

E. Karasik & R. Fattal & M. Werman / Object Partitioning for Support-Free 3D-Printing

ARIEgA

- -y,

k

Figure 3: Top-row shows illustrations of concave arches with faces
that form an internal angle above the CPA (critical protrusion an-
gle) on the left, and below the CPA on the right (internal angles are
shown in dashed lines). In both cases, the CPA condition alone pre-
dicts correctly the printability. Bottom-row shows convex arches,
where at the left the faces exceed the CPA, and at the right the faces
angles fall below the CPA. Nevertheless, the latter configuration
cannot be printed as the vertex from which these faces originate
has no support.

<

print settings, current consumer FDM printers can sustain up to
Ocrit = 150°, see [JSXZI8]. The restriction to a pyramidal hull
in [HLZCOT4] corresponds to a CPA condition of . = 90°,
which is considerably more stringent than what is needed in prac-
tice. The method in [WQZ* 18] ensures that each skeletal edge
meets the CPA condition, however, the mesh associated with the
edge is made of a variety of faces, some of which may still exceed
Ocric- Yu et al. [YYT"17] also use a coarser representation of the
mesh which may also miss CPA-violating faces.

The CPA condition applies on faces and ensures that every layer
is properly supported by the previous one and, as noted above, was
used to define printability in prior works. There are cases, however,
where there is no supporting geometry in the previous layer while
the CPA condition is not violated. A convex arch, as shown in Fig-
ure[3] is an example of a non-printable case whose faces satisfy the
CPA condition. In this shape the faces around the lowest tip point
of the ceiling are above it and do not support it. In order to avoid
such singularities, we add the supporting face (SF) condition re-
quiring that every vertex or open edge belonging to a face, pointing
towards the base, must have support from bellow.

Claim: The CPA and SF conditions are necessary and sufficient
for object printability. The following proof shows that these condi-
tions correctly predict whether every point of the object has suffi-
cient support or not.

Proof: Sufficiency. Let p be a non-printable point of the object
with minimal height from the base. Any point in an object is either
an inner point, inside an open face, inside an open edge, or a vertex.
The point p cannot be an inner point of the solid object since it will
have supporting matter below it. Similarly, p cannot be an inner
point of a face since the CPA condition ensures the printability of
all its points.

If p is on an open edge of a face, it is adjacent to two faces.
Since it is non-printable, both of them must not have an inner point
below p supporting it, which violates the SF condition. If the non-
printable p is a vertex, it cannot belong to a face with points below
it, which again, violates the SF condition.

We thus showed that a non-printable point in the object will nec-
essarily be detected by either the CPA or SF conditions and hence
the two provide a sufficient condition for printability.

Necessity. If there is a face not obeying the CPA condition, by its
definition, the different levels (points) in this face do not provide a
sufficient support for it to be printable. In case the SF condition is
not met, the vertex or edge does not have support from below and
can not be printed. An example of a violation of SF is portrayed in
the final object in Figure[3| which is not printable.

The shape analysis procedures we use in our algorithm, and de-
scribe next, use these conditions as their printability criterion.

4. New Method

Fekete and Mitchell [FMO1] show that the problem of deciding
whether a polyhedra is decomposable into k pyramidal polyhedra
is NP-hard. As we explain below, the restriction to pyramidal poly-
hedra corresponds to a special case in terms of the printability con-
dition we use, namely a critical printing angle of 90°. The proof
in [EMO1] is rather elaborate but gives no reason to suspect this
problem becomes any easier for higher, more realistic, critical an-
gles that we use in practice.

In order to cope with this NP-hard problem we use a divide-and-
conquer approach in which we recursively split the object into sub-
parts as long as a non-printable part is encountered. Unlike previous
approaches [WQZ™18,[YYT"17] that perform a fully-randomized
search of the cutting-planes, we apply shape analysis procedures
that look for different geometric configurations in the object and
suggest planes that extract printable or greatly simplified subparts.
Randomness enters in the choice of the analysis procedure applied
at each level of the recursion and its internal initialization. In Sec-
tion |§] we show this analysis-based approach achieves lower num-
bers of subparts at lower running times.

We start by a brief description of each of the three shape analysis
procedures that we use in this recursion.

e Base Extraction. Identifies planar surfaces of the object that can
act as a printing-base for a large portion of its volume.

e Tip Extraction. Detects protruding narrow regions of the object,
such as tips, whose faces are less likely to serve as useful bases.
The procedure creates a new base within the object opposite to
the tip that supports it.

e T-Junction Splitting. Is an object simplification procedure that
attempts to separate between distinct primitives in the object.

The rest of the section provides a more detailed description of
each of these procedures.

(© 2019 The Author(s)
Computer Graphics Forum (©) 2019 The Eurographics Association and John Wiley & Sons Ltd.

E. Karasik & R. Fattal & M. Werman / Object Partitioning for Support-Free 3D-Printing

(@) (b) (©)

Figure 4: Base Extraction steps. The first iteration (a) encounters
a non-printable edge (with red). The second step (b) corrects the
angle and increase the printable volume. The third step (c) in-
creases the printable subpart up to the point where the cutting-
plane reaches 0.,i; and will produce non-printable faces if rotated
any further.

4.1. Base Extraction

Thingiverse and other online shared design repositories suggest that
a large portion of 3D-printed objects are designed by CAD soft-
ware. These objects as well as ones created by other means often
contain large planar surfaces with a potential to serve as a print-base
for a substantial portion of the object. Moreover, at each level of
the recursion our partitioning algorithm performs a planar cut that
adds planar surfaces to the object. The procedure we describe here
detects these potential bases and greedily searches for the largest
printable parts they can print.

Since planar surfaces may be tessellated into multiple faces, we
start by detecting these surfaces using a breadth-first search (BFS)
in which we group together adjacent faces with identical normals.
Note that any two adjacent planes forming an angle greater than
0.1t between them violate the CPA condition with respect to one
another and hence cannot serve as printing bases. Thus, we scan
the list of potential bases for such pairs and remove them. In ad-
dition we exclude surfaces that cannot serve as bases since part of
the object is below them. As a first and efficient step we exclude
bases that have a neighbouring face beneath them. Cases with a
more global obstruction are eliminated later. We re-generate this
list of candidate base planes at each level of the recursion, allowing
previously-eliminated planes to serve as a base later in the recur-
sion.

To avoid considering the same surface multiple times at the same
level of the recursion, we compute the list of potential bases once
and store it in a stack from which every surface will be popped
once. Since the area of a base correlates with the amount of volume
it can support, we order the surfaces in the stack according to their
area. However, the stacks of two consecutive levels are likely to
share many surfaces in common and give rise to the exploration of
similar sequences of bases. We widen this search space by adding
some randomness to the sorting by area. In particular, we sample

a uniform random variable u; ~ U0, 1], for each surface i, and sort

Qmax /@i

the surfaces according to the order of u; , where a; are their

areas.
Next, given a base popped from the stack we perform a two-step

iterative optimization to find the largest printable subpart that can

(© 2019 The Author(s)
Computer Graphics Forum (© 2019 The Eurographics Association and John Wiley & Sons Ltd.

Algorithm 1 Base Extraction
procedure EXTRACTBASE(part, base)
y=15°
N + base.normal
while / <base.n0rmal,ﬁ) < B¢t and y > 0.1° do

PQ < () (priority by distance to base plane)

PQ.add(base)

while PQ # () and Printable(PQ.top(), base) do
top <= PQ.pop()
PQ.add(top.neighbors())

if PQ = () then return printable

v <— u €PQ.top() closest to base

subpart <— part N HalfSpace(v, N)

¢ < avg(part N Plane(v, K’))

N « RotateTowards(N ,C— V)

¥/ =2

return subpart, part \ subpart

be isolated from the object by a planar cut. In the first step we as-
sume the cutting-plane is parallel to the base-plane and construct a
priority queue containing faces neighboring the base, i.e., that share
an edge or a vertex. The faces are sorted according to their minimal
distance from the base plane. We then extract the first face from
the queue, verify that it can be printed from the base and if so, re-
move it and add its new neighbors to the queue. As this process
advances, the ring of faces in the priority queue gets farther from
the base in a synchronized manner and the minimal distance in the
queue increases. Once an unprintable face is encountered, the pro-
cess stops and the minimal distance found so far is the distance of
the cutting-plane from the base-plane. Since the printability of all
the faces below it was verified during this process, the subpart ex-
tracted by this cutting-plane is printable. The faces and the polyline
resulting from this intersection are stored and used in the next step.
The intersection of the object with a cutting-plane is restricted to
the connected-component containing the feature we started from,
the base surface in this case.

At the second step of this procedure, we attempt to increase the
volume printable from the base. We find the center ¢ of the cut’s
polyline, and v, the vertex closest to the base in the non-printable
face encountered in the first step. We then rotate the cutting-plane’s
normal towards v around c. We repeat the optimization starting
from this rotated cutting-plane.

If a new limiting face is encountered in the first step, we run
another attempt with half the rotation angle previously used. This
iterative process stops once the rotation angle falls below a thresh-
old of 0.1° or the rotated cutting-plane itself reaches the CPA, 0,
where it will start generating non-printable faces. Algorithm[T]sum-
marizes this base extraction procedure. Finally, since all the sub-
parts extracted in this iterative scheme were tested for printability
with respect to the same base and are all connected to one another,
their union is also printable. Therefore this procedure outputs their
union and the remaining portion of the object.

E. Karasik & R. Fattal & M. Werman / Object Partitioning for Support-Free 3D-Printing

7N
‘ |

g - —— -
!

. N N — O

i /| S A
4TI TITIT4T74 |

Figure 5: Three examples showing the printable subpart found by
the tip extraction procedure. Assuming 0.,; < 135°, each of these
solutions are optimal, or appear in the optimal solution.

4.2. Tip Extraction

Another class of geometric features commonly found in organic
and CAD-based objects are protrusions which may be smooth,
spiky or rectangular. We collectively refer to these features as tips.
Being relatively narrow parts of the object, their faces are less likely
to serve as useful bases, and in many cases the optimal approach is
to print them from the opposite direction (beneath). FigureE] shows
several examples of objects containing tips and their optimal parti-
tioning.

The procedure described here detects tips and searches for
the farthest base-plane inside the object from which they can be
printed. The detection is done by running a multi-scale tip template
matching over a voxelized grid representation of the object (1003
voxels in our implementation). We use 26, 3x3x3 binary templates
where the center voxel and one other voxel are set to 1, and the rest
to —2/25. These zero-sum templates do not respond to constant
regions, i.e., away from object boundary.

When convolved with a voxelization of the object where object
is 1 and empty-space is -1, local maxima are expected at very fine
tips. Larger scale tips are detected by running an 4 trous multi-scale
hierarchy in which 2! zeros are inserted at the I-th level in between
every pair of values of the templates [HT90]. These stretched tem-
plates respond to larger tips, yet contain the same number of non-
zero elements and remain efficient to compute. We run a 3x3x3
non-maximum suppression over the 26 thresholded responses (1.6
in our implementation). The remaining non-zero points are poten-
tial tips. The orientations of the tips are obtained from the index of
the specific template that showed a maximal response (recall that
each template is associated with a different tip orientation).

Similarly to the base-extraction procedure described above, we
store the tips found in the current recursion step in a stack and do
not pick the same tip twice at the same recursion level. However,
they are randomly ordered in this case.

Given a suspected tip, we search for the cutting-plane, which is
also the base-plane in this case, in two steps. In the first step, the
tip’s location and orientation are used to initialize this plane and the
queue is fed with the face closest to the tip. The queue is prioritized
according to the distance above this initial plane.

The repeated updates of the queue are identical to the ones per-
formed in the base extraction and the ring of faces together with the
base evolves away from the tip until it encounters a limiting non-
printable face. The process is illustrated in Figure [] This process

Algorithm 2 Tip Extraction

procedure PRINTABLEPART(part, tip_face, 1_\7)
point <— centroid(tip_face)
PQ <« () (priority by distance to Plane(point,N))
PQ.add(tip_face)
while PQ = 0 and Printable(PQ.top(), N) do
top < PQ.pop()
PQ.add(top.neighbors())
subpart <— part N HalfSpace(PQ.top(), N)
overhang_normal <— PQ.top().normal
return subpart, overhang_normal
procedure EXTRACTTIP(part, tip_face)
fori«+ 1,...,30do
N« sample spherical cap(tip_face.normal, 60°)
sub, 0= PrintablePart(part, tip_face, K’)
for 5 best results do
fori=1,...,5do
rotation < min (Z (Kl, 5) — Ocrit 15°>
N« RotateTowards(N ,0, rotation)
sub, 0= PrintablePart(part, tip_face, N)
result <— sub with largest volume
return result, part \ result

(a) (®) (©)

Figure 6: Tip Extraction steps. The first iteration (a) encounters a
non-printable face (marked in red). The second step (b) brings the
cutting-plane’s normal closer (as shown by green arrow) to that of
the limiting face (red), and thereby increases the printable volume.
The resulting parts are printable as shown in (c). For this example
to be realistic assume Oy = 135°.

has the capacity to extract multiple tips as long as they are printable
from the same base, as shown in Figure[7]

The base-extraction procedure exploited the fact that portions of
the object can be printed starting from its boundary faces. Here,
we are creating a new base plane, and hence have the opportunity
to explore additional plane orientations around the tip’s direction.
We carry this out by performing the search above multiple times,
starting from 30 planes whose normals sample a spherical cap of
60° around the tip’s orientation. We pick the five bases extracting
the highest volume for further refinement.

The search of each of these bases encountered a limiting face,
that forms a mutual angle ® greater than 6. Nevertheless, a local
refinement in the plane’s orientation, towards this face, may enable
its printability and extract a larger printing volume.

(© 2019 The Author(s)
Computer Graphics Forum (© 2019 The Eurographics Association and John Wiley & Sons Ltd.

E. Karasik & R. Fattal & M. Werman / Object Partitioning for Support-Free 3D-Printing

(@) () (c)

Figure 7: Priority queue progression showing its ability to consider
faces behind the cutting-plane once reached. The procedure was
initiated from the tip shown by the red circle on the left. In the
subsequent steps: (a) the priority queue visited the all faces of the
index finger. Once it reaches the faces below this finger, (b) the
queue processed all four fingers, and (c) the same took place once
it reached the thumb.

‘ %

a) b) (©) (d

Figure 8: T-junction Splitting steps. At first, (a) the center of the
T-junction is detected, then (b) an initial cut is made at the narrow
connected-component. Then, (c) a base extraction is applied on the
subpart containing the wider component. This procedure removes
the remaining narrow geometry it contains. This cut separates the
two primitives and the initial cut is abandoned, as shown in (d). The
detected connected-components at this regions are indicated by the
dashed red lines. Note the example shape shown here is a part of a
larger shape where the tip-extraction step is not applicable.

We do this by rotating the plane by min{® — 6., 15° } such that
it either enables the printability of the limiting face, or moves to-
wards this configuration when the angle is large. After changing
the plane’s orientation, we must recompute the extractable portion
from the start, and repeat the process above starting from a queue
containing the tip’s closest face. Finally, we output the plane yield-
ing the maximal volume. Algorithm [2] summarizes this tip extrac-
tion procedure.

4.3. T-junction Splitting

Many complicated and non-printable objects were created by join-
ing simpler primitives, e.g., when using a union operation in CAD-
based software. In such cases, simplifying the object by breaking it
into not-necessarily-printable subparts can lead to a better solution
compared to the greedy procedures described above. In this pro-
cedure we attempt to detect such cases by searching and splitting
T-junctions in the object.

Locally, T-junctions can be identified as regions in which the in-
tersection of the object with the surface of a cube contains two (or
more) connected components, as depicted in Figure[8[a). We detect

(© 2019 The Author(s)
Computer Graphics Forum (© 2019 The Eurographics Association and John Wiley & Sons Ltd.

these regions by applying a graph-based detector over a graph con-
structed by voxelizing the object. Specifically, voxels inside the ob-
ject are the vertices and neighbouring object voxels are connected
by an edge.

We check whether a vertex is in the vicinity of a T-junction by
analyzing the shape of the object around it. This is done by consid-
ering all the vertices of a certain distance k from this center vertex.
As shown in Figure Eka), when the center vertex is at the vicin-
ity of T-junctions, this set is expected to consist of two or more
connected-components. While multiple connected-components can
be found in other shapes, such as a cylinder, T-junctions are char-
acterized by having a large and one or more smaller connected-
components. We search for such cases by gradually increasing k
and halting either when a large ratio is found between the com-
ponents (3 in our implementation) or when we reach a maximal
distance of 20. We apply this search at a sub-sampled grid of the
graph, at every fifth voxel along each axis.

Once a T-junction is found, we separate it into the two geometric
entities with the following two steps. We start with an initial split-
ting biased towards the narrow component so that the wider side
contains residual geometry from the narrow side. Specifically, we
calculate the centers of masses of both the narrow ¢, and wide ¢,
components and define the cutting-plane as the one perpendicular
to their offset, ¢, — ¢y, and passing though cj.

In the second step we execute the base extraction procedure over
the subpart containing the wider component, with the base set to
the newly-created plane produced by the initial cut. This procedure
is expected to advance towards the wider component and separate
it from the remaining geometry of the narrow primitive in this sub-
part. We then undo the initial cut done in at the first step and end
up only with the parts produced by the last tip extraction step. A
detailed depiction of these steps is given in Figure[§]

Note that when this procedure is successfully applied, the surface
produced by the cut creates a viable potential tip at the subpart con-
taining the narrow component. Similarly, in case the subpart con-
taining the wider component was planar at the interface, with the
narrow arm removed this separation may recover a potential base.
Such cases, if they exist, are likely to be explored in the subsequent
levels of the recursion.

4.4. Randomized Recursive Search

The randomized search for the best possible object partitioning
uses these three splitting procedures recursively, over the remain-
ing non-printable parts of the object. Once all the resulting parts are
printable, a candidate solution is reached. The stopping criterion
of this search is a predefined limit on the number of total cutting-
plane operations n¢yrs performed. This value controls the trade-off
between optimality and running time of the algorithm. Algorithm 3]
describes this recursive search.

In addition to the randomness taking place inside the splitting
procedures, the search randomly picks which and how many pro-
cedures to use at each recursion level. As we show in Section [3]
the probability of these different actions has a significant effect on
overall performance. Therefore, we learn the probabilities to pick

E. Karasik & R. Fattal & M. Werman / Object Partitioning for Support-Free 3D-Printing

the base extraction Py, tip extraction Fy;p, T-junction splitting Pr,
procedures and the probability of calling an additional procedure
within a level, quca”, which decreases at rate g as a function of the
recursion depth d. This is carried out for different stopping condi-
tions ncurs. In Section [we describe the results obtained by using
different ncyuss values.

Additionally we do not allow the recursion depth to exceed dmax,
initialized to 15, and update it every time a fully-printable partition
is found. Thus, in case of an “easy" object, dmax Will decrease early
in the search (even if the optimal solution is yet to be found).

Algorithm 3 Search
procedure RECURSIVESEARCH (Parts, depth)
Bases, Tips, Ts = DetectPrimitives(Parts)
while 75 > 0 and depth < dipax do
part <— non-printable part from Parts
NewParts <— Parts \ part
r < random(0,1)
if r < Pyy5. then
NewParts U = ExtractBase(part, Bases.pop())
else if r < P50 + Prip then
NewParts U = ExtractTip(part, Tips.pop())
else
NewParts U = SplitT(part, Ts.pop())
Heuts < Neurs — 1
if Vpart € NewParts printable then
if [NewParts| < best_n then
best_n < |[NewParts|
Result <— NewParts
dmax < depth

else
RecursiveSearch(NewParts, depth + 1)
if random(0,1) > P,y - ¢P"* then break
procedure SEARCH(object, ncurs)
Result <), best_n < 00, dmax + 15
RecursiveSearch({object}, 0)
return Result

4.5. Post Processing

The printable partitions found by our recursive search may be over
fragmented. To remain efficient, we do not search for alternative
bases besides the ones found so far, and for a full solution simply
check whether pairs of interfacing parts can be printed from one of
their already found bases and if so merge them.

Finally, the greedy nature of the tip and base extraction steps may
result in partitions containing excessively small subparts which are
fragile and hard to glue, e.g., the small triangular residue in Fig-
ure [6] As a simple solution, we scan the cuts made in a reverse
order and retract the extracted tip- and base-planes along their nor-
mal by a few millimeters ensuring sufficient material strength (2
millimeters in our implementation) as long as all the subparts re-
main printable.

. | |
a

B 8

_\ g g g

06 07 08 09

q

Figure 9: Optimizing Probabilities. Left graph show the optimiza-
tion landscape of Pyse, Prip and Pr, where Prapg = 1 — Pyage —
Piip — Pr. A well defined global optimum can be observed in the
optimal planes shown. Right graph shows the landscape of P4y
and q, that shows a trade-off between the two. The colors represent
the average number of subparts in the training set.

These graphs were obtained for the case of . = 135° with 1k
cuts limit.

CPA | Rcuts | Peant q Prip Pase Pr Prana | AN

135 1k | 0995 0.68 0.5 03 01 01 | 724
135 3k | 0985 0.76 0.5 02 02 0.1 5.9
135 5k | 0995 08 06 03 0.1 5.54

0

150 1k | 0965 0.72 06 03 0.1 0 4.21
150 | 3k 099 0.68 0.7 02 0.1 0 3.93
150 | 5k | 0995 08 06 03 0.1 0 3.88

Table 1: The optimal parameters found over the training set and
the average number (AN) of subparts they achieve. The learning
procedure was carried out for two different critical protrusion an-
gles 135° and 150°.

5. Results

We implemented our method in C++, using the Computational Ge-
ometry Algorithms Library (CGAL). Timings were measured on
an Intel (R) i5-6600 3.5GHz CPU with 16GB of RAM. Our im-
plementation assumes watertight closed mesh that represents the
boundary of the object to be printed. Before discussing the eval-
uation and comparison of our method against the state-of-the-art
methods, let us describe the parameter learning process and the
conclusions it brings.

Learning the Probabilities. The algorithm presented in Sec-
tion[d]contains a number of hyper-parameters, mostly ones that de-
termine the number of operations done in each splitting procedure.
‘While we used some trial and error to set these values, their influ-
ence is counterbalanced, to a large extent, by the number of times
these procedures are executed, i.e., the more search effort is put
inside a procedure, the less it needs be called at each level of the
recursion, and vice versa. Consequently, we obtained the optimal
balance between the algorithm operations by learning the probabil-
ities to perform a certain action at each level of the recursion such
that the lowest number of printable subparts per number of object-
plane cutting operations is attained.

More specifically, we learned the probabilities to select each pro-
cedure, Pyage, Prip, Pr, as well as a fourth option of randomly sam-

(© 2019 The Author(s)
Computer Graphics Forum (©) 2019 The Eurographics Association and John Wiley & Sons Ltd.

E. Karasik & R. Fattal & M. Werman / Object Partitioning for Support-Free 3D-Printing

pling a cutting-plane P,,,;, and performing additional calls within
a recursion level, P.,; and g. This fourth option is added for the
purpose of comparing our geometry-derived planes with the ran-
dom planes current methods use [YYT* 17, WQZ*18|. We make
this sampling more cost-effective by limiting the distribution of the
planes offset to the objects extents (while their orientation is uni-
formly sampled from the unit sphere).

The search alternated between finding the best Py, Prip, Pr, and
P,4na given P, and g in one step, and the other way around in
the second. The search for Pyuge, Prip,Pr, and Prnq Was exhaus-
tively done in a 0.1 grid spacing sampling [0, 1}4, whereas we used
a spacing of 0.005 in [0.95,1] for P, and 0.04 in [0.6,1] for ¢.
We used a heterogeneous training set containing 40 models with
variable complexity (requiring 2-13 cuts), face count (3k to 30k),
and sources (scanned organic objects and CAD-based models). The
objects were from multiple sources; the ThingilOK dataset [ZJ16]],
AIM @SHAPE shape repository [SMKFO04], and Stanford 3D scan-
ning repository [TL96].

Figure [9] shows the optima found in the optimization landscape
computed in this exhaustive search, and Table|[I|reports the optimal
values found. The procedure selection probabilities Pyyge, Prip, Pr»
and P,y do not show dependence on the number of cuts permitted
nor the critical protrusion angle. Based on these probabilities, it is
clear that the optimal strategy favors the base- and tip-extraction
procedures over the T-junction and random plane splitting. The
low Pr can be explained by the sparsity of T-junctions in objects,
however the low P,,,, indicates that our approach of deriving the
cutting-planes from geometric analyses is more beneficial than ran-
domly sampling them, despite the higher in-procedure computa-
tional costs.

The table also shows that the parameters of the probability to
perform additional procedure calls within a recursion level, P,y
and ¢, increase as the number of permitted cut operations increases.
This finding is expected since these parameters control the mean
exit time of the uninterrupted recursion.

Finally, the table also indicates that our algorithm is sensitive
to the specified CPA and results in more subparts when a more
stringent angle of 135° is used, compared to the 150° case.

Evaluation. We compared our method with the methods
in [HLZCOT14, [WQZ*18,[YYT*17|] which are the closest works to
ours. However, each of these works defines its goals somewhat dif-
ferently, and hence the comparison is done carefully, with these
differences in mind.

The method in [HLZCO14] sets a stringent printing condition of
0.t = 90°, however, its decomposition is approximate and hence
its goal in practice is to minimize the amount of support-material
needed. In contrast, our method searches for support-free decompo-
sitions. Table 2] shows that our method offers a significant speedup
of x10 compared to this method, and although it generates fully
support-free partitions it results in a small increase in the number
of subparts it generates (15% on average). We believe this increase
is justifiable since our approach altogether eliminates the need for
expensive support-material or specialized hardware such as an ad-
ditional extruder.

The method in [YYT*17] minimizes the support-material

(© 2019 The Author(s)
Computer Graphics Forum (© 2019 The Eurographics Association and John Wiley & Sons Ltd.

Model #Faces 135° 150° 160° Comp.
[WQZ*18]], 160°
Airplane 31k 0:32,2 0:25,2 0:26,2 1:57,7
Armadillo 69k 10:52,9 5:01,6 6:40,4 7:09, 10
Bearing 3k 0:17,3 0:06,3 0:17,3 3:48, 10
Deer 18k 4:51,4 0:42,3 0:27,2 1:45,6
Gargoyle 50k 2:52,5 2:46,3 2:06,2 4:18, 5
Knot 6k 1] 0:30, 13 0:52, 8 1:39, 14
Octopus 2.6k 0:44,8 0:23,7 0:23,5 1:48, 8
Sculpture 12k 0:49,7 0:38,4 0:20,3 1:23, 10
Tree 23k 1:51,3 0:23,2 0:24,2 3:22,8
[HLZCO14], 90°
Inuksuk 25k 3:10,3 0:19,2 0:25,2 10:00, 3
Lamp 10k 1:52,6 0:19,4 0:16,3 10:00,4,RS
Helix 3.5k 0:57,8 0:30,5 0:17,4 16:00,5,RS
Hands 23k 2:25,3 1:10,2 1:02,2 11:00,5,RS
Genus-3 13k 0:37,3 0:22,3 0:31,2 10:00, 3, RS
[YYT*17], 135°
Dolphin 16.5k 0:57,3 0:35,2 0:26,2 10:38, 3
Homer 10k 0:25,2 0:07,2 0:12,2 1:12,2
Horse 16k 0:32,3 0:25,2 0:23,2 7:25,3
Fertility 24k 4:39,5 1:29,4 1:13,4 8:11,2,RS

Table 2: Comparison with other methods. Columns 3-5 show
the running-time (minutes:seconds) and number of subparts pro-
duced by our method for different ... Last column shows the
numbers produced by [WQZ" 18] on an i7 3.6GHz machine with
Ocrir = 160°, by [HLZCOI4] on an i7 3.4GHz with 0., = 90°,
and by [|[YYT"17] on an i7 3.4GHz machine with 0., = 135°.
We labeled the non-printable results by Require Support (RS). The
stop criteria was 3k cuts for O = 135°, and 1k cuts for for
0.ir = 150,160°. Optimal probabilities were chosen according to
the search above (for O,y = 160°, we use the same parameters
as Ocrir = 150°). The maximum search depth was 15. Under these
parameters, no result was found for the knot model at 8,;; = 135°.

Partitioned Supported

Model Time Material Time Material
Bearing 1:15 6335 1:20 6598
Sculpture 1:32 3284 1:54 3897
Hands 1:41 3924 1:58 4766
Fertility 2:02 6455 2:20 7104
Tree 1:20 3249 1:37 4318
Genus 2:32 8412 2:40 11066

Table 3: Time and material added when printing the objects with
a support material. The time is hour and minutes, and the filament
length is in millimeters. We used the popular Slic3r object slicing
software to generate the support. 0. = 150°

E. Karasik & R. Fattal & M. Werman / Object Partitioning for Support-Free 3D-Printing

' 4

Figure 10: 3D printed objects. Different PLA colors are used for revealing the different subparts, which are shown before gluing on the right.

A critical angle of 0.,y = 150° was used in these examples.

if

Figure 11: Rendered images of partitions produced by our method.
Objects on the top were partitioned with 0.,;; = 135° and the bot-
tom ones with 0.y = 150. The different subparts are encoded with
distinct colors.

needed by conducting an evolutionary randomized search in which
cutting-planes are generated randomly. This method often results in
support-free object partitioning. Table 2] shows that, when it comes
to fully-printable solutions, our method generates the same or a
smaller number of subparts, as well as operates significantly faster.
T

The method in guarantees the printability of the de-
composed skeleton, however this method also focuses on printing
shell models. The latter leads to an increase in the geometric com-
plexity of the models, and hence this method produces a higher
object count. Assuming the material saving in low-density in-fills
is sufficient, our method offers both a lower number of subparts as
well as operates faster.

In comparison to both these works, our method performs con-
siderably less plane-cuts, which is the most time-consuming step.
Wei et al. explore 8k skeletal partitions, and to evaluate
each one, do many plane-cuts. Yu et al. carry out 2.5k
fitness evaluations, each consisting of a few object-plane cuts. Our
method performs 1k-3k object-plane cuts, and reuses many of these
operations during the recursion.

Figure shows actual 3D-printed objects produced by our
method. The subpart extracted from the right side of the Sitting
Sculpture model has two separate contact areas with the base-plane.
This resulting partitioning is unique to our method. Despite the par-
ticular cuts needed to minimize the number of subparts, no printing
or gluing issues were encountered. Figure [TT]shows additional ob-
ject decompositions produced by our method.

Table [3] reports the printing-time as well as the amount of ma-
terial consumed when printing the objects with support structures
versus our partitioned solution. This tests shows a speedup of more
than 15% and a saving of more than 10% filament on average. Fig-
ure[T2]visually compares these two alternatives in terms of the sur-
face quality they produce. The regions directly attached to the sup-
port structures show a noticeable amount of scratches and support
leftovers despite our considerable effort in removing them using a
sharp craft knife. The seams between the subparts in our results are
apparent, but are somewhat less conspicuous thanks to the fact that
the seams are typically aligned with the printing layers.

(© 2019 The Author(s)
Computer Graphics Forum (© 2019 The Eurographics Association and John Wiley & Sons Ltd.

E. Karasik & R. Fattal & M. Werman / Object Partitioning for Support-Free 3D-Printing

Figure 12: A visual comparison showing the region where the sup-
port structures were removed, next to the glued seam appearing in
our result.

6. Discussion

We presented a new method for partitioning objects in order to en-
able their support-free 3D printing. The method searches various
geometric constellations commonly found in objects and resolves
them either by extracting a printable subpart, or by lowering the
object’s complexity. These object splitting procedures are carefully
designed to cope with general geometry and operate efficiently. In
addition, we defined a complete set of criteria for the printability
of an object and showed its completeness. These criteria take into
account the specific printer’s ability to cope with sloped surfaces.
Evaluation of the method shows that it results in similar or lower
number of subparts and runs faster than state-of-the-art methods.

Unlike several existing methods, our method is geared towards

(© 2019 The Author(s)
Computer Graphics Forum (©) 2019 The Eurographics Association and John Wiley & Sons Ltd.

generating fully support-free partitions. This strategy alleviates the
need for specialized support-material or additional printing and
post-printing hardware.

The main limitation of our method stems from the NP-hardness
of the problem it tackles. Indeed, the solutions it computes may
have more parts than the optimal solution, and in case of very large
and complicated shapes it may require long running times in order
to come-up with a solution. As shown in the the previous section, it
offers attractive running times and number of parts on benchmark
objects.

7. Acknowledgments

The authors would like to thank the anonymous reviewers for their
valuable feedback. This work was partially funded by the European
Research Council, ERC Starting Grant 337383 "Fast-Filtering".

References

[CCA*12] CALI J., CALIAN D. A., AMATI C., KLEINBERGER R.,
STEED A., KAUTZ J., WEYRICH T.: 3d-printing of non-assembly, ar-
ticulated models. ACM Trans. Graph. 31, 6 (Nov. 2012), 130:1-130:8.

[Cha84] CHAZELLE B.: Convex partitions of polyhedra: A lower bound
and worst-case optimal algorithm. SIAM J. Comput. 13, 3 (1984), 488—
507.

[DAB18] DEMIR I., ALIAGA D. G., BENES B.: Near-convex decompo-
sition and layering for efficient 3d printing. Additive Manufacturing 21
(2018), 383 — 394.

[DHL14] DuMAS J., HERGEL J., LEFEBVRE S.: Bridging the gap: Au-
tomated steady scaffoldings for 3d printing. ACM Trans. Graph. 33, 4
(July 2014), 98:1-98:10.

[DPW*14] DEUSS M., PAN0OZZz0O D., WHITING E., L1U Y., BLOCK P.,
SORKINE-HORNUNG O., PAULY M.: Assembling self-supporting struc-
tures. ACM Trans. Graph. 33, 6 (Nov. 2014), 214:1-214:10.

[DWW*18] DAI1C., WANG C. C. L., Wu C., LEFEBVRE S., FANG G.,
Liu Y.-J.: Support-free volume printing by multi-axis motion. ACM
Trans. Graph. 37,4 (July 2018), 134:1-134:14.

[FMO1] FEKETE S. P., MITCHELL J. S. B.: Terrain decomposition and
layered manufacturing. International Journal of Computational Geome-
try & Applications 11, 06 (2001), 647-668.

[HBA13] HILDEBRAND K., BICKEL B., ALEXA M.: Smi 2013: Or-
thogonal slicing for additive manufacturing. Comput. Graph. 37, 6 (Oct.
2013), 669-675.

[HL17] HORNUS S., LEFEBVRE S.: Iterative carving for self-supporting
3D printed cavities. Research Report RR-9083, Inria Nancy - Grand Est,
July 2017.

[HLZCO14] Hu R., L1 H., ZHANG H., COHEN-OR D.: Approximate
pyramidal shape decomposition. ACM Transactions on Graphics, (Proc.
of SIGGRAPH Asia 2014) 33, 6 (Nov. 2014), 213:1-213:12.

[HT90] HOLSCHNEI]?ER M., TCHAMITCHIAN P.: Les ondelettes en
1989. P.G. Lemarie IA (Ed.) (1990).

[JSXZ18] JIANGJ., STRINGER J., XU X., ZHONG R. Y.: Investigation
of printable threshold overhang angle in extrusion-based additive manu-
facturing for reducing support waste. International Journal of Computer
Integrated Manufacturing 31, 10 (2018), 961-969.

[JWL*18] JADOONA.K.,WuC.,Liv Y., HEY., WANG C. C. L.: In-
teractive partitioning of 3d models into printable parts. IEEE Computer
Graphics and Applications (2018), 1-1.

[LBRM12] Luo L., BARAN I., RUSINKIEWICZ S., MATUSIK W.:
Chopper: Partitioning models into 3d-printable parts. ACM Trans.
Graph. 31, 6 (Nov. 2012), 129:1-129:9.

E. Karasik & R. Fattal & M. Werman / Object Partitioning for Support-Free 3D-Printing

[LSZ*14] Lu L., SHARF A., ZHAO H., WEI Y., FAN Q., CHEN X.,
SAVOYE Y., Tu C., COHEN-OR D., CHEN B.: Build-to-last: Strength
to weight 3d printed objects. ACM Trans. Graph. 33, 4 (July 2014),
97:1-97:10.

[OZB18] OH Y., ZHOU C., BEHDAD S.: Part decomposition and
assembly-based (re) design for additive manufacturing: A review. Ad-
ditive Manufacturing 22 (2018), 230 — 242.

[PWLSH13] PREVOST R., WHITING E., LEFEBVRE S., SORKINE-
HORNUNG O.: Make it stand: Balancing shapes for 3d fabrication. ACM
Trans. Graph. 32, 4 (July 2013), 81:1-81:10.

[SFLF15] Sonc P., FuZ., Liu L., Fu C.-W.: Printing 3d objects with
interlocking parts. Comput. Aided Geom. Des. 35, C (May 2015), 137-
148.

[SMKFO04] SHILANE P., MIN P., KAZHDAN M., FUNKHOUSER T.: The
Princeton shape benchmark. Shape Modeling International (June 2004),
167-178.

[SVB*12] STAVA O., VANEK J., BENES B., CARR N., MECH R.: Stress
relief: Improving structural strength of 3d printable objects. ACM Trans.
Graph. 31,4 (July 2012), 48:1-48:11.

[TL96] TURK G., LEVOY M.: The stanford 3d scanning repository, 1996.

[TM84] ToR S. B., MIDDLEDITCH A. E.: Convex decomposition of
simple polygons. ACM Trans. Graph. 3,4 (Oct. 1984), 244-265.

[VGB14a] VANEK J., GALICIA J. A. G., BENES B.: Clever support:
Efficient support structure generation for digital fabrication. Comput.
Graph. Forum 33,5 (Aug. 2014), 117-125.

[VGB*14b] VANEKJ., GALICIA J. A. G., BENES B., MECH R., CARR
N., STAVA O., MILLER G. S.: Packmerger: A 3d print volume opti-
mizer. Comput. Graph. Forum 33, 6 (Sept. 2014), 322-332.

[WQZ*18] WEIX., QiU S.,ZHU L., FENG R., TIAN Y., X1 J., ZHENG
Y.: Toward support-free 3d printing: A skeletal approach for partitioning
models. IEEE Transactions on Visualization and Computer Graphics 24,
10 (Oct 2018), 2799-2812.

[WWY*13] WANG W., WANG T. Y., YANG Z., L1U L., TONG X.,
TONG W., DENG J., CHEN F., L1U X.: Cost-effective printing of 3d ob-
jects with skin-frame structures. ACM Trans. Graph. 32, 6 (Nov. 2013),
177:1-177:10.

[WZK16] WANG W., ZANNI C., KOBBELT L.: Improved Surface Qual-
ity in 3D Printing by Optimizing the Printing Direction. Computer
Graphics Forum (2016).

[XXY*15] XIE Y., XU W., YANG Y., GUO X., ZHOU K.: Agile struc-
tural analysis for fabrication-aware shape editing. Comput. Aided Geom.
Des. 35, C (May 2015), 163-179.

[YYT*17] YUE. A., YEOM J., TuTtuM C. C., VOUGA E., MIIKKU-
LAINEN R.: Evolutionary decomposition for 3d printing. In Proceedings
of the Genetic and Evolutionary Computation Conference (New York,
NY, USA, 2017), GECCO ’17, ACM, pp. 1272-1279.

[ZCT16] ZEHNDER J., COROS S., THOMASZEWSKI B.: Designing
structurally-sound ornamental curve networks. ACM Trans. Graph. 35,
4 (July 2016), 99:1-99:10.

[ZJ16] ZHOU Q., JACOBSON A.: ThingilOk: A dataset of 10, 000 3d-
printing models. CoRR abs/1605.04797 (2016).

[ZLP*15] ZHANG X., LE X., PANOTOPOULOU A., WHITING E.,
WANG C. C. L.: Perceptual models of preference in 3d printing di-
rection. ACM Trans. Graph. 34, 6 (Oct. 2015), 215:1-215:12.

[ZXW*15] ZHANG X., XIA Y., WANG J., YANG Z., Tu C., WANG
W.: Medial axis tree-an internal supporting structure for 3d printing.
Computer Aided Geometric Design 35-36 (2015), 149 — 162. Geometric
Modeling and Processing 2015.

(© 2019 The Author(s)
Computer Graphics Forum (©) 2019 The Eurographics Association and John Wiley & Sons Ltd.

	Introduction
	Previous Work
	Printability Condition
	New Method
	Base Extraction
	Tip Extraction
	T-junction Splitting
	Randomized Recursive Search
	Post Processing

	Results
	Discussion
	Acknowledgments
	References

