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Image Smoothing and Segmentation by
Multiresolution Pixel Linking: Further
Experiments and Extensions

TSAI-HONG HONG, K. A. NARAYANAN, SHMUEL PELEG, AZRIEL ROSENFELD, FELLOW, IEEE,
AND TERESA SILBERBERG

Abstract—A recently developed method of image smoothing and seg-
mentation makes use of a “pyramid” of images at successively lower
resolutions. It establishes links between pixels at successive levels of the
pyramid; the subtrees of the pyramid defined by these links yield a
segmentation of the image into regions over which the smoothing takes
place. This paper investigates several variations on the basic linking
process with regard to such factors as initialization, criteria for linking, and
iteration scheme used. It also studies generalizations in which the links are
weighted rather than forced, and in which interactions among the pixels at
a given level are also allowed. Finally, it extends the approach to links
based on more than one feature of a pixel, e.g., on color components or
local property values.

I. INTRODUCTION

UPPOSE that an image is composed of a few types of
regions each having approximately constant gray tone.
In principle, the image can be segmented into these regions
by gray tone thresholding, i.e., by slicing the grayscale into
intervals, and classifying each pixel according to the inter-
val in which its gray tone lies. However, if the image is
noisy, this pixel-by-pixel segmentation process may make
many errors, since the noise will cause some of the pixels
belonging to one type of region to have gray tones lying in
the intervals corresponding to another type. Segmentation
could become more reliable if we first smoothed the image
to reduce its noisiness.
An image can be smoothed by local averaging, i.e.,
averaging the gray tone of each pixel with the gray tones of
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a set of its neighbors. However, this process will blur the
boundaries between the regions, since a pixel near such a
boundary has neighbors lying in both its own region and
the adjacent region. If we knew which neighbors belonged
to the same region as the pixel, we could use only these
neighbors in the average. In other words, the quality of the
smoothing process would be improved if we could first
segment the image into the appropriate regions, so that
smoothing could be performed within the regions only, not
across their borders.

These remarks suggest that it might be preferable to
perform smoothing and segmentation concurrently, using
some type of cooperative process. An example is the com-
bined smoothing and neighbor linking process defined in
[1]. Here weights are assigned to the links between a pixel
and its neighbors based on their similarity; the image is
smoothed by weighted averaging of each pixel with its
highest weighted neighbors; concurrently, the weights are
adjusted as the similarities between neighbors change. The
process is iterated, with weighted averaging and weight
adjustment alternating. Note that this process does not
involve classification of the pixels, but does yield a seg-
mentation of the image into regions based on the con-
nectedness relation defined by the links, if we threshold
their weights.

This paper deals with another approach to concurrent
smoothing and segmentation based on linking, using ver-
sions of the image at different resolutions and defining
links between overlapping “pixels” at successive resolu-
tions. In a low-resolution image, the pixels interior to
regions have gray tones that are less noisy, since a pixel at
low resolution represents an average and is thus less vari-
able. On the other hand, the lower the resolution, the less
likely it is that a pixel is contained in a single region; most
pixels will overlap two or more regions. The approach
considered here, which was first described in [2], takes
advantage of both high and low resolutions by using a
cooperative process in which the images of successive reso-
lutions interact. A description of this approach will now be
given; see [2] for further details.

II. MULTIRESOLUTION PIXEL LINKING

Let the size of the original image be 2" by 2". To define
the reduced-resolution versions of the image, we make use
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of an exponentially tapering “pyramid” of arrays of sizes
2" lpy2" =1 2" 2by 2" 2... 4by4,2by2, sothat the
kth level has size 2" ~* by 2" ¥, To avoid border effects,
all these arrays are regarded as cyclically closed, i.e., the
first column is regarded as lying to the right of the last
column, and the top row below the bottom row. The
elements of each array will be called pixels or nodes. Many
different schemes can be defined for constructing such
pyramids [3], but in our experiments we used only the
simple scheme that will now be described.

We will assign gray tones to the nodes at each level
(k > 0) by taking (weighted) averages of the gray tones of
4-by-4 blocks of nodes at the level below it. The blocks
corresponding to adjacent nodes overlap by 50 percent;
this is why the reduction in area from level to level is by a
factor of four, not a factor of 16. For example, suppose
node (i, j) at level k > 0 corresponds to the block of nodes

(u, )

(u+1,0)
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change the links as necessary, then recompute the averages,
then change the links again, and so on.

The relinking process at any given level of the pyramid
has the effect of shifting pixels from one class (= father) to
another, where pixel P shifts from class 4 to class B only if
its value is closer to the mean -of class B than to that of
class 4. From this viewpoint, we see that relinking is a
special case of the well-known ISODATA clustering algo-
rithm in one dimension, and it can be shown [4] that this
process is guaranteed to converge. In fact, in our experi-
ments, the relinking process always stabilized after a few
iterations.

To see what this process does, let us define the base of a
node as the set of pixels on the lowest level (i.e., in the
original image) that are linked (through as many inter-
mediate stages as necessary) to that node. Thus initially the

(u,o—1) (u+1,0v-1) (u+2,0—-1) (u+3,0-1)

(u,v0-2) (u+1,0-2) (u+2,0-2)
(u,v-3) (u+1,v-3) (u+2,0-23)

(u+2,0) (u+3,0)
(u+3,0-2)
(u+3,0-3)

at level k — 1 (where (u, v) = (2i — 2,2 + 1)). Then node (i + 1, j) corresponds to the block

(u+2,0) (u+3,0)
(u+2,0-1) (u+3,0-1)
(u+2,0-2) (u+3,0-2)
(u+2,0-3) (u+3,0-23)

where all additions and subtractions are modulo 2% ~!. It is
easily seen that any node (u, v) below the top level (i.e.,
k < n — 1) belongs to four blocks corresponding to nodes
on the level above it—in our example, the nodes (i, j),
(i—-1,)), (i,j+ 1), and (i — 1, j + 1). [Note that only
for the last of these nodes does (u, v) belong to the center
2-by-2 portion of its block; for the other three, (u, v) is a
border point of their blocks.] The level £ — 1 nodes in the
block corresponding to a given node at level k& will be
called its sons, and the level k nodes to whose blocks a
given node at level k — 1 belongs will be called its fathers.
Thus every node at level > 0 has 16 sons, and every node
at level < n — 1 has four fathers. Note that since there are
only 16 nodes at level n — 2, each of them is a son of all
four nodes at level n — 1, so that every node in the
pyramid is a descendant of every one of these “top” nodes.

The node linking process is as follows: the reduced
resolution images are initially defined by unweighted aver-
aging of the gray tones in each block. The value (gray tone)
of each node is then compared with the values of its four
fathers, and a link is established between the node and its
most similar father, i.e., the father whose value is closest to
the node’s value. After this has been done at every level, we
recompute the value of each father by averaging only those
sons that are linked to it. (If no sons are linked to a father,
we give it the value zero.) Based on these new averages, a
node’s most similar father may have changed, so we next

(u+4,0) (u+5,0)
(u+4,0-1) (u+50-1)
(u+4,0-2) (u+50-2)
(u+4,0-3) (u+50-3)

base of every node is a square block of image pixels. If the
base of a node initially lies mostly inside a region, the node
is most likely to become linked to nodes on the level above
that also lie (mostly) in that region; thus its recomputed
average will become closer to the region average. As the
process is iterated, nodes at relatively high levels acquire
values that approach the average values of regions, even
though they are too large to fit into a region. Slight initial
biases in the node averages at high levels will result in
high-level nodes being driven toward values that corre-
spond closely with the averages of regions or sets of similar
regions in the image. For further discussion of the process,
see [2].

Suppose that there are not more than four types of
regions in the image. For each type, there should be at least
one node at the top level of the pyramid whose value
converges to the average gray tone of the regions of that
type. This node will be linked to nodes which are linked to
nodes. .. which are linked to the pixels belonging to these
regions. In other words, this node becomes the root of a
tree whose leaves are the pixels that lie in regions of the
given type. If there are fewer than four types of regions,
there may be two such trees corresponding to the same
region type, representing different subsets of the pixels in
these regions. If we know how many region types there are
supposed to be, we can suppress some of the nodes at the
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top level (i.e., forbid anyone to link to them), keeping only
as many top-level nodes as there are types. (Alternatively,
we can “merge” some of the top-level nodes together,
averaging together their values and using this average as
the value for each of them.) In this way, we can insure that
the number of trees (having distinct values) is the same
as the desired number of region types. The method breaks
down if there are more than four types of regions; pixels
belonging to two or more types would then be forced to
belong to the same tree.

In summary, the iterative linking and averaging process
is defined as follows.

a) Initialize the node values by simple block averaging
of each node’s 16 sons.

b) Link each node to that one of its four fathers whose
value is closest to its own.

¢) Recompute the node values by averaging the values
of only those sons that are linked to the node.

d) Change the links in accordance with these new values.

e) Repeat steps c)—d) as many times as desired. Typi-
cally, there is little change after the first few itera-
tions.

At any stage of this process, the links define a set of (up to
four) trees rooted at the top level of the pyramid, and we
associate with each pixel the value at the root of its tree.
Thus the process smooths the image to an extreme degree,
giving each pixel its tree average as a smoothed gray tone.
At the same time, it segments the image into (up to four)
subsets, where each subset consists of the pixels which are
the leaves of one of the trees.

The smoothing and segmentation accomplished by this
process can be compared with those achieved by the pixel
linking process of [1]. In [1] the links are all at the pixel
level, and the smoothing is local. Even if the link strengths
all converged to values of one (within a region) and zero
(between regions), many iterations would be required to
obtain the global average of each region at each pixel of
the region, since it takes O (region diameter) iterations for
information to propagate across the region. In the process
described here, on the other hand, the links are between
levels, and information can propagate “across” a region in
O (log region diameter) iterations, since nodes comparable
in size to the region are only (log region diameter) levels
above the pixel level. Moreover, in our process smoothing
can take place even over sets of nonconnected regions of
the same type, whereas the process of [1] can smooth only
within a connected region.

The concept of linking each node with its most similar
father can also be compared with the smoothing processes
described in [5]-[6], where a set of neighborhoods lying on
various sides of a pixel are examined, and the pixel’s value
is replaced by the average of the least variable of these
neighborhoods (since this neighborhood presumably lies
almost entirely within the pixel’s region). A generalization
[7] fits linear functions to the neighborhoods, and uses the
neighborhood for which the fit is best; the pixel’s value is
then replaced by the value of that neighborhood’s linear
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(a) (b) (©)
Three images used in experiments. (a) Tank. (b) Blood cells. (c)
Chromosomes.

Fig:" 1.

function at the pixel’s position. These methods all use
neighborhoods of only a single size, which limits the speed
with which the smoothing can propagate, as already men-
tioned. Note also that in our approach, we have used the
most similar neighborhood (i.e., the one whose average is
closest to the pixel’s gray tone), rather than the least
variable neighborhood.

III. VARIATIONS

In the experiments described in this section, several
variations on the basic pyramid linking process were tried.
These variations were concerned with how to initialize the
node values; how to choose the father to which a node is
linked, and in particular what to do in case of ties; and
how the iteration process is sequenced. In the following
paragraphs we describe the variations, and then show the
results obtained by using combinations of these variations
on a standard set of images (which were also used in [2]):
an infrared image of a tank, a portion of a blood smear,
and a portion of a chromosome spread. These images are
shown in Fig. 1. All results are shown for a stage at which
the iteration process has stabilized; this is usually after
about ten iterations.

a) Initialization: In the method used in [2], the value of
each node was initialized by averaging the values of all 16
of its sons. An alternative, which (as we shall see) seems to
give better results, is to initialize by averaging the values
for only four of the sons, namely those whose positions in
the image are closest to that of the node. (The position of a
node is understood to be at the center of its block.) Note
that in this alternative scheme, the initial averages are all
nonoverlapping.

b) Father Selection: In the method of [2], each node is
linked to the father closest in value to the node. A more
general idea is to take into account both closeness in value
and closeness in position. We can compute link strengths
based on a formula such as A(D + s), choosing the father
for which A(D + s) is smallest, where A is the difference in
value, D is the Euclidean distance between positions, and s
is a parameter which is used to vary the effect of the D
contribution (for large s, differences in D have little effect).
There is no obvious basis for choosing the value of s;
various values were tried in our experiments.

b’) Ties: If two fathers have the same link merits, we
resolve the tie based on any arbitrary ordering of the
fathers, e.g. NW, NE, SE, SW. The choice of this ordering
should not significantly affect the results.

¢) Sequencing: In [2], links are determined for all levels;
then averages are recomputed for all levels; and this pro-
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cess is repeated. An alternative is to iterate level by level:
as soon as the links from the nodes at level k are redefined,
the averages at level £ + 1 are recomputed, and the links
from level k + 1 are then redefined based on these new
averages. This alternative seems to be more reasonable;
when we have new values at level 1 based on the links
between levels 0 and 1, we should use these new values as
inputs to the new values at level 2, and so on.

d) Top Level Nodes: The number (< 4) of nodes used at
the top level should be the same as the desired number of
region types—2 for the tank and chromosomes, 3 for the
bloodcells. We can insure that only two or three nodes at
the top level are used by initializing the values of the
remaining node(s) to a very high number, thus insuring
that no nodes will ever link to them. As a refinement, we
can fix the top-level nodes that we do use to have values
that represent estimates of the expected region averages;
we will show some examples using this variation. We will
also show examples of results obtained when we use all
four nodes at the top level, even though the desired number
of region types is less than four. As we shall see, the
process then tends to create somewhat artificial discrimina-
tions within the regions.

We first show the results obtained when we use the
desired number of nodes at the top level, but do not
attempt to set the values of those nodes to the expected
region averages. Fig. 2 (top two rows) shows these results
for the four combinations of initialization and sequencing
schemes. We see that in the chromosome case (Fig. 2(c)),
four-son initialization gives better results; when 16-son
initialization is used, some of the small chromosomes are
lost, probably because too much of the background is
initially averaged with them, so that they link to a top-level
node whose value converges to the background value rather
than to the chromosome value. The initialization scheme
has little effect on the results for the other two images, and
the iteration sequencing scheme has little effect on any of
the images. The order used for tie-breaking also has little
effect, as we see from the bottom left pictures in Fig. 2
(which use the same initialization and sequencing schemes
as the top left pictures). Finally, the bottom right pictures
in Fig. 2 show what happens when we give some weight to
Euclidean distance (s = 5) in choosing the links (otherwise,
same as top left); note that this too improves the results in
the chromosome case, and has little effect in the other two
cases. It seems from these results that four-son initializa-
tion is preferable to 16-son initialization, and that it may
also be preferable to give some weight to Euclidean dis-
tance in choosing links; but the other variations make little
difference. The exact shapes of the tank and cell nucleus
are somewhat sensitive to variations because the correct
links for blocks near the borders of these regions will be
somewhat ambiguous, due to the noisiness or texturedness
of the regions.

Fig. 3 shows analogous results when the top-level nodes
are given estimates of the average region gray levels as
fixed values. Again, the variations make little difference for
the tank and cell images, but they are significant for the

(a)

(b)

©

Fig. 2. Effects of varying the initialization, sequencing, tie-breaking
rule, and linking criterion. In all cases, the number of nodes used at the
top level is equal to the desired number of region types. Top row:
initialization using averages of 16 sons (left: iteration for all levels at
once; right: iteration level by level). Middle row: analogous, but
initializing using averages of the four sons closest in position. Bottom
left: same as top left, but using a different tie-breaking order. Bottom
right: same as top left, but using a linking criterion that depends on
Euclidean distance as well as on difference in value.

chromosome image. The loss of the small chromosome has
now become dependent on the iteration sequence and even
on the tie-breaking order (!); and when we use the four-son
initialization method, a large chromosome is lost (!). Ap-
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(b)

(c)
Analogous to Fig. 2, but initializing the top-level nodes with
estimates of the region averages.

Fig. 3.

parently, attempting to fix the values of the top-level nodes
as equal to the estimated region averages can actually
degrade the performance of the pyramid linking process.
Fig. 4 gives analogous results when all four top-level
nodes are used, so that the process tries to find four region
types in each image.' The resulting artifacts are especially

'If the input image contains fewer than four gray tones (e.g., if we
threshold the chromosome or tank image into two levels or the cell image
into three), the process (after convergence) turns out to yield an image
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(a)

(b)

(©)

Fig. 4. Analogous to Fig. 2, but using all four nodes at the top level.

apparent for the chromosome image, where the back-
ground gets segmented into three subregions that differ
appreciably in average gray tone. Here again, when we use
16-son initialization, the small chromosomes become part
of the background, but this does not happen when four-son
initialization is used, nor when weight is given to Euclidean
distance in choosing links. The other variations have little

with only two or three gray tones, even though all four top-level nodes are
used.
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Fig. 5. Analogous to the top left and bottom right pictures in Fig. 2, but
breaking ties randomly.

effect, and all of the effects are minor for the cell and tank
images (the tank region splits up into “noisy” subregions
in various ways, but does not get badly confused with the
background). Thus these results support the conclusions
derived from Fig. 2.

When the process is applied to a perfectly regular input
pattern such as a checkerboard, it breaks down and fails to
segment the pattern into two region types, unless ties are
broken randomly. Fig. 5 shows results analogous to those in
Fig. 4 (left column corresponds to Fig. 4 top left, and right
column to bottom right), but using random tie-breaking;
the results are quite similar.

The smoothing effect of the process as we follow the
links from level to level can be assessed by constructing
histograms corresponding to each level’s view of the image.
Suppose that, for a given k, we give each pixel a gray tone
equal to the value of the node at level k to which it is
linked. When we do this for k = 0,1,2,---, we obtain a
sequence of successively smoother and simpler images,
whose histograms become successively more spiky, until
finally, the histogram obtained from the top level consists
of (at most) four spikes. Such histograms for the three
images, after one iteration of the linking and reaveraging
process, are shown in Fig. 6 for levels 0, 1,2, 3,4. (16-son
initialization was used, and links were chosen based on
value similarity only.) If we did not want to rely on the
iterative process to converge to a good segmentation, we
could still consider using a single iteration of the process to
improve the separation of the histogram peaks, so that
segmentation by thresholding based on the histogram would
be easier.

Fig. 7 shows how the process performs on a synthetic
image composed of disk-shaped regions having different
normal distributions of gray tones. In this image the ob-
jects and background have (approximately) normally
distributed gray tones with standard deviation 5 (on a
grayscale of 0—63); the mean object gray tone is 15 in every
case, and the mean background gray tone its 50, 45, 40, 35,
30, and 25, respectively, in the six parts of the figure (top
to bottom). The left column shows the input image, the

(a)

(b)

©

Fig. 6. Histograms obtained, after one iteration of linking and reaverag-
ing, when the node values at a given level are assigned to the pixels

having those nodes as ancestors, for levels 3 4
;358052

center column its histogram, and the right column shows
the results using the basic linking process of [2], with two
classes. We see that even in the last case, where the input
histogram is unimodal, the process (noisily) extracts the
objects.

A basis for quantitatively evaluating the results of the
pyramid linking process (or any other image smoothing
process) is suggested by the work of Martelli and Montanari
[8]. They point out that a good smoothing process should
yield an image that is both smooth and similar to the
original image. This suggests that we can evaluate smooth-
ing results in terms of a cost function that measures the
“roughness” of the smoothed image (e.g., by the sum of its
absolute gradient magnitudes) and its discrepancy from the
original image (e.g., by the sum of their absolute pointwise
differences). Table I shows the values of these cost compo-
nents for the images in Fig. 7 (the gradient magnitudes are
estimated using the Sobel operator). As we might expect
from visual inspection of Fig. 7, the roughness decreases in
all cases, while the discrepancy is not large, so that even
the sum of roughness and discrepancy decreases (the
discrepancy is initially zero). Note that the linking pro-
cess was not specifically designed to minimize the cost
function; we are using the function only as an ad hoc
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Results of applying the basic process of [2] to a set of synthetic
images (see text). Left column: input images; center column: their
histograms; right column: outputs (each pixel displayed with the gray
tone at the root of its tree).

Fig. 7.

TABLEI
ROUGHNESS AND DISCREPANCY VALUES FOR THE CASES IN FIG. 7.
Output
Background Input Output Roughness
Mean Roughness Roughness Discrepancy  + Discrepancy
50 95986 19635 16334 35969
45 95801 19167 16377 35544
40 95211 18726 16373 35099
35 94202 21261 16332 37593
30 92369 32605 16408 49013
25 89370 58502 14799 73301

evaluation measure. It should be pointed out that the
object /background edges influence the roughness measure
(note the decline in input roughness value as the contrast at
these edges decreases), but we have ignored this fact since
only a small fraction of the pixels lie on edges.

IV. WEIGHTED LINKING

The construction of the linked pyramid as described up
to now involves forced choices; each node is required to
link to one of its candidate father nodes on the level about
it, namely the one to which it is most similar (and/or
closest). An alternative would be to use weighted links,
where the link weights between a node and its candidate
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fathers depend on their degrees of similarity. As we shall
now see, when the link weighting function is appropriately
defined, the weighted linking process causes the weights to
converge to values of zero and one, thus yielding a seg-
mentation of the image (based on the trees of linked nodes)
similar to that obtained in the forced choice scheme.
Another possibility is to use horizontal interactions of
nodes within each pyramid level to adjust the link weights;
this also yields good results, as will be seen in the next
section.

Initially, as in the basic method, a value g(i, j, /) is
assigned to each node (i, j) at level / by unweighted
averaging of the values of its sons, i.e.,

A eigir
g(l’ J’l)=EZg(l ,.]91_ 1)'

The pyramid is built up to level / = N — 1, which is 2 X 2.

Weights are assigned to the four fathers of each node
depending on their similarity to that node. For k = 1,2, 3, 4,
let d(k) be the absolute difference between the values of
the node and its kth father; then we define the link weight
w(k) between the node and that father by

w(k) = L0 2 e
Zi-ilyd(h)

Note that these weights are nonnegative and their sum is 1.
If any d(k) is zero, we set w(k) =1, and w(h) = 0 for
h = k; if more than one d(k) is zero, we use an arbitrary
tie-breaking rule.

After the link weights have been computed, the node
values are recomputed as weighted averages, i.e.,

Zw(i,’ Isds j)g(i,’ fol= 1)
xw(i’,j', i, j)

where w(i’, j’, i, j) is the link weight between node (i’, j,
/ — 1) and its potential father node (7, j, /). We can now
recompute the difference (d(i’, j’, i, j) = |g(i, j, 1) —
g(i’, j', 1 — 1)|) and the weights, then recompute the val-
ues using these new weights, then recompute the weights
again, and so on.

Since there are four nodes (2 X 2) at the top level of the
pyramid, four trees of high-weight links tend to be formed,
yielding a segmentation of the input image into four classes.
If we know the desired number of classes (< 4), we can
eliminate some of these top nodes (e.g., by fixing their
values to something very dissimilar to the gray levels in the
image, so that the weights of links to these nodes will be
very weak), thus yielding a segmentation into fewer classes.

Fig. 8 (bottom row) shows the results of applying 11
iterations of this iterated weighted linking process to the
three test images (top row). Two nodes were used on the
top level for the tank and chromosome images, and three
for the blood cell image, thus yielding segmentations into
two and three classes, respectively. Fig. 9 (top row) shows
results when all four nodes are used on the top level; this
yields four classes for each image, but these classes are
compatible with the desired segmentation. The second and
third rows of Fig. 9 show the results of variations on the

g(i, j,1)=
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Fig. 8. Three test images (top row) and the results of 11 iterations of
weighted linking, using two nodes at the top level (three, for the blood
cell image). 3

Fig. 9. Results using all four nodes at the top level (top row), giving
weight to difference in position as well as difference in value (middle
row), and using a different sequencing of the iteration process (bottom
row).

node difference computations (giving some weight to dif-
ference in position as well as to difference in value) and on
the sequencing of the iteration process, as in Section III;
the results are very similar to those in the top row.

These results show that the weighted linking process is
not sensitive to the variations investigated in Section III, at
least for these test images. A more critical issue is the
choice of the weighting function itself. Our results were
obtained using the inverse quadratic weighting function
w(k) = d(k)*/Ld(h)>. If we use an inverse linear func-
tion, w(k) = d(k)/2d(h), the weights do not converge to
zeros and ones; rather, they all tend to become equal, so
that the images do not get segmented, and they become
smoothed into a uniform shade of gray. (This can be
overcome if we fix the values of the top-level nodes to the
mean values of the classes expected from the segmentation;
but as was seen in Section III, when this is done, the
process becomes sensitive to noise, and in particular some
of the chromosomes merge into the background.) In the
next section we will see that good results can be obtained
even from inverse linear weighting if we use a within-level
node interaction process to adjust the weights.

The quadratic weighting is more forced-choice-like than
the linear function, in the sense that it tends to exaggerate

slight differences in link weights. Evidently, if we used
sufficiently high powers of the differences, the results would
be tantamount to forced choice: the smallest difference
would dominate over the others. In our implementation,
which used weights of limited precision (7 bits), this effect
was further strengthened, since the reciprocals of large
differences were truncated to zero. We have no rigorous
proof that any particular weighted linking scheme must
converge; but in our examples, we always did obtain
convergence.

V. WITHIN-LEVEL INTERACTION

In the (weighted) pyramid linking process, all interac-
tions between nodes are “ vertical,” between nodes at con-
secutive levels; there is no direct interaction between nodes
at the same level. There seems to be some advantage in
allowing such interactions. For example, as we shall now
see, good results can be obtained using inverse-linear link
weighting if within-level interaction is used to adjust the
link weights or the node values.

The basis for using within-level interaction is that, par-
ticularly at the lower levels of the pyramid, neighboring
nodes often belong to the same region of the image. Thus
we may be able to obtain more accurate node values or
link weights by using some type of smoothing that favors
neighboring nodes which belong to the same region as the
given node.

Two well-known smoothing methods that favor neigh-
bors belonging to the same region are median filtering and
selective averaging. In median filtering, the value at a point
is replaced by the median of the neighbors’ values. If the
point P lies in the interior of a region, the median is close
to the mean; while if it lies near the border of a region, the
median tends to come from one of the neighbors that
belongs to the same region as P. In selective averaging [9],
the value at P is averaged with the values of its  neighbors
whose values are closest to P’s (we used r = 2 and 4 in our
experiments). These r neighbors tend to belong to the same
region as P, even if P lies near a region border; thus this
process too tends to smooth within regions without blur-
ring their borders.

Fig. 10 shows the results of using selective averaging
with r = 2 to smooth the node values before each iteration
of the (inverse-linear) weighted linking process. This was
done at levels 0 through / for / = 0, 1, 2, 3, 4. The results for
the tank and blood cell images are generally good; but the
chromosome results are somewhat sensitive to the number
of levels to which the smoothing was done (they are best
for [ = 2, though the chromosomes are distinguished from
the background for / = 3,4 also). Fig. 11 shows analogous
results for selective averaging with r =4 and /=0, 1,2;
here again, the chromosome results are best for /= 2.
(When r = 4 is used, the results deteriorate for / > 2; this
is because at higher levels, it is unlikely that a node has as
many as four neighbors that belong to the same region that
it does.) Fig. 12 shows analogous results for median filter-
ing (/ =0 only); they are not very good for the chro-
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(a)

(b)

(¢)

Fig. 10. Results using two-neighbor selective averaging to smooth the
node values before each iteration of weighted linking, at each of levels 0
through /, where / = 0, 1,2, 3,4.

Fig. 11. Results using four-neighbor selective averaging for / = 0, 1, 2.

mosome image, and they get worse for / > 0 (for similar
reasons).

Similar results are obtained if we use within-level node
interaction to smooth the link weights, rather than the
node values. Here, in adjusting the weight of the link
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Fig. 12. Results using median filtering (/ = 0 only).

(a)
(b)

(©)

Results using two-neighbor selective averaging to smooth the
link weights rather than the node values (/ = 0, 1,2, 3,4).

Fig. 13.

between a node P and one of its candidate fathers, we
consider only those neighbors of P that have the same
candidate father. For example, to smooth the link weight
from node P to candidate father Q by selective averaging,
we examine the neighbors of P that also have father Q;
pick the r of these neighbors P,,- - -, P, whose values are
closest to that of P; and average the link weight from P to
Q with the link weights from P,,---, P. to Q. (Note that
when this is done, the link weights from P to its four
candidate fathers may no longer sum to one, and must be
renormalized.) Fig. 13 shows the results of doing this for
r =2 (at levels 0 through /, for /= 0,1,2,3,4) at each
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iteration of the inverse-linear weighted linking process. The
chromosome results are now somewhat more stable, but
the tank and blood cell results begin to deteriorate at / = 4.

Other smoothing methods, e.g., those described in [5]-[7],
could have been used in place of selective averaging or
median filtering; for small values of /, these would proba-
bly have given better results, since they tend to smooth
more strongly.

VI. MULTIBAND LINKING

The linking process need not be based on average gray
tone. We can use any property that can be computed for
the pixels of the image, and extend this property to the
higher levels of the pyramid by averaging. If desired, we
can begin the process by dividing the image into blocks,
computing a property (e.g., a textural property) for each
block, and building a pyramid starting from the resulting
array of property values; linking in this pyraiuid yields a
(blocky) segmentation of the image into (at most four)
textured regions [10].

The linking process need not be based on a single
property; we can compute a property vector for each pixel
(or block) and extend it to the higher levels of the pyramid
by componentwise averaging. This section illustrates this
generalization with some simple examples of pyramid link-
ing based on properties other than gray tone and on pairs
of properties. Intuitively, pairs of properties should be
capable of producing more refined segmentations than
single properties. When we apply the linking process to a
pair (or k-tuple) of properties, we use city block distance to
measure the difference between a node and its father—i.e.,
if the property values are g and 4 for the node, G and H for
the father, we use |g — G| + |h — H|.

Our first example uses color components as properties.
Fig. 14(a) shows the red, green, and blue bands of a color
image of part of a house, showing sunlit and shadowed
brick, bushes, and grass. Fig. 14(b) shows the results of the
pyramid linking process (10 iterations) applied to each
band separately, where each pixel is given the value at the
root of its tree. When we examine the sets of pixels
belonging to each tree, we find that the red segmentation
does not distinguish bushes from shadowed brick; the
green segmentation breaks the bushes up into a grass-like
and a shadow-like part; and the blue segmentation is quite
noisy. (Fig. 15(b) shows the four classes of each segmenta-
tion using four distinct gray tones.) Fig. 14(c) shows results
when we use two colors at a time, displayed as follows:

br rg gb
rg gb br

Here, e.g., br means that the pair of colors was (blue, red),
and that the displayed gray tone for each pixel is the red
component of the value at the root of the pixel’s tree. Fig.
15(c) shows the four classes for the segmentations using the
pairs of colors gb, br, and rg, where each class is displayed
using a distinctive gray tone. We see that the (blue, red)
segmentation does discriminate (most of) the bushes from
the shadow. Quantitatively, Table II shows that the rough-

() (b) (©

Fig. 14. (a) House image: red, green, and blue components. (b) Results
of pyramid linking applied to each band separately; each pixel dis-
played with the value at the root of its tree. (c) Results of using pairs of
bands: each pixel displayed with one component of the value at the
root of its tree (see text).

Fig. 15. (a) House image: red, green and blue components (same as Fig.
14(a)). (b) Results of pyramid linking applied to each band separately:
each class displayed with a distinctive gray tone. (c) Results using pairs
of bands: green /blue, blue/red, red /green.

ness measures are usually lower when we use two colors
(especially when one of them is blue), while the discrepan-
cies remain about the same.

Our second example involves a local property that mea-
sures the variability of the gray tones in the neighborhood
of each pixel. Fig. 16(a) shows such a local “busyness”
measure computed for each pixel of the red, green, and
blue images. For the 3-by-3 neighborhood

R UK
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this measure is defined by
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TABLE II
SINGLE-BAND VERSUS MULTIBAND PYRAMID LINKING
Output
Case Roughness Discrepancy
r 79322 466641
g 91289 349669
b 96978 261291
br 78309 472484
rg 83924 472220
rg 70945 350320
gb 74485 351298
gb 58858 260814
br 61326 261378

Fig. 16. (a) “Busyness” values in the three bands. (b) Results of pyra-
mid linking applied to these values. (c) Results using (intensity, busy-
ness) feature pair in each band.

Here the min is used to decrease the response to step edges,
while retaining a high response in isotropic “busy” regions,
so that the measure represents “busyness” rather than
“edgeness.” Fig. 16(b) shows segmentation results (each
class displayed with a distinctive gray tone) based on
busyness alone; the green result, in particular, gives fair
discrimination between the bushes and the other regions,
but the other regions themselves—as should be
expected—are not distinguished. When we use two fea-
tures, gray tone (in the given band) and busyness, the
segmentations obtained (Fig. 16(c)) are not as useful,
though that for the green image does yield the brick (both
sunlit and shadowed) as a single class.

VII. CONCLUDING REMARKS

13

In Section II of this paper we defined a “pyramid
linking” process for image smoothing and segmentation,
and discussed its relationship with several previously de-
scribed smoothing processes. Pyramid linking is basically a
heuristically motivated process; we gave plausibility argu-
ments indicating how it should perform, and we pointed
out that it belongs to a family of ISODATA-like algo-
rithms and is guaranteed to converge, but we have not
given a theoretical model for the class of situations in
which it performs “correctly” (such a model would involve
relationships among the sizes and average gray tones of
approximately constant-valued regions in the image, and
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probably has no simple formulation). But in spite of its
mathematical ill-definedness, the process seems to be of
some practical value.

In Section III we investigated a number of variations on
the basic pyramid linking process. The results suggest the
following tentative conclusions.

a) It appears to be preferable to use schemes in which
some weight is given to the relative positions of nodes,
both in initializing their values and in choosing links,
especially in cases involving regions that consist of many
small connected components. Apparently, when we take
relative positions into account, we have a better chance of
preserving the integrity of small regions.

b) It is desirable to specify the desired number of region
types (i.e., pixel classes), by allowing only that number of
nodes at the top level to be “active.” Otherwise, the process
tends to split some of the classes artificially. On the other
hand, using estimates of the average gray levels of the
classes to fix the values of the nodes at the top level may
degrade the results, perhaps because it introduces prema-
ture biases that are not compatible with the early stages of
the linking process.

c¢) The process is relatively insensitive to the sequencing
of the iterations and to the node ordering used for breaking
ties.

We also showed that the process yields good segmenta-
tions of synthetic images (for which the “correct” segmen-
tation is known), and we suggested that its performance
can be evaluated in terms of how it reduces the “busyness”
of the image while at the same time keeping the difference
from the original image small.

Sections IV and V showed that the forced-choice linking
process can be “softened” into a process making use of
weighted links, provided that a suitable nonlinear weight-
ing scheme is used, or that interactions among nodes
within each level are allowed in order to smooth the node
values or the link weights. Section VI showed that the
linking process can be based on features other than gray
tone, or on pairs of features, and that using pairs often
yields improved results.

Pyramid linking is somewhat different from the standard
pyramid-based schemes of image segmentation (e.g.,
Pavlidis [11]), which split an image into blocks (top-down)
rather than linking blocks into trees (bottom-up). On the
advantages of combining the two approaches see [12].

The computing time required by pyramid linking (on a
64 by 64 image, using a PDP-11 /45 computer) is about 3
to 4 minutes. However, the method is of interest in spite of
its relatively high computational cost as compared to sim-
ple segmentation techniques, since it could be implemented
very efficiently on a tree-structured cellular processor;
designs for such processors are currently a topic of active
research.

It should be emphasized that the methods described in
this paper have been tested only on a small set of images,
and we cannot be certain how they will perform on images
of other types. We have given no performance comparisons
between pyramid linking and conventional segmentation
schemes, e.g., based on pixel classification, though we have



622

pointed out that pyramid linking has the advantage of
being less “myopic”. In any case, the pyramid linking
approach (and its predecessors) certainly seems to have
useful properties, and deserves consideration as a possible
alternative to existing methods of image smoothing and
segmentation.
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Automatic Identification of Noise Pollution
Sources

PANTELIS MOUKAS, JOHN SIMSON, aAND LEONARD NORTON-WAYNE, MEMBER, IEEE

Abstract— Instrumentation currently available for the automatic moni-
toring of noise nuisance has the shortcoming that although the intensity,
duration, and time of occurrence of noises may be recorded, their source
often cannot be identified. Research directed towards providing improved
instrumentation which can identify sound sources is described. Our results
suggest that application of statistical pattern recognition to recorded sounds
can differentiate sources which are structurally dissimilar (e.g. trains,
fixed-wing aircraft, helicopters) with an accuracy of better than 95 percent.
The work is continuing to discriminate sounds which are structurally
similar (e.g. different types of aircraft), and to produce hardware capable of
field application.

I. INTRODUCTION

OISE POLLUTION is a particularly annoying conse-
quence of life in a technologically advanced society.
Surveys show that road traffic noise causes most an-
noyance but aircraft noises are also particularly objection-
able. However, trains, noisy neighbors, and even the hum
of electrical transformers can cause an intolerable nui-
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sance. The nuisance caused by noise pollution is subjective,
in that the nature of the sound and the conditions under
which it is heard rather than merely its amplitude and
frequency content determine the extent of disturbance.
One important step towards limiting this pollution is to
analyze the nature of the nuisance by monitoring, i.e., by
obtaining records of the location, time, severity, duration,
and cause of incidents, preferably in a form reliable enough
to be acceptable in a court of law. Several instruments are
already commercially available which can record times at
which the ambient noise level exceeds a preset threshold, of
periods up to one week. These cannot however identify the
source of the noise. Consequently, a joint project involving
the Scientific Branch of the Greater London Council and
the Department of Systems Science at the City University
is being undertaken, directed towards providing more intel-
ligent instrumentation to remedy this shortcoming, and
thereby render existing instrumentation more versatile. The
first stage of this investigation has involved analysis of
recorded sounds, using a general purpose digital computer,
to investigate methods of signal processing capable of
identifying the sounds. The first application of this work
will be to design prototype hardware for distinguishing
helicopters from all other loud sounds. This will then be
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