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Abstract: An algorithm is presented for obtaining a representation of patterns in strings of symbols. The patterns are
represented by equations among bit values in a binary encoding of the symbols. An application is described where the symbols
are English letters and the strings are words. The patterns enable the solution of cryptograms, and the construction of crossword

puzzles.
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1. Introduction

This paper considers the detection of repeated
patterns within a string of symbols, where the pat-
terns are not known in advance. If a pattern of
symbols repeats itself throughout the string, many
properties of the entire string can be learned by
considering the pattern and the way in which it
repeats itself. In some cases, several of such pat-
terns can completely describe the string. However,
the detection of such patterns is usually difficult,
because they may take complicated forms and
repeat themselves irregularly.

In this work we consider a simplified version of
the above problem. The string is assumed to be
divided in some ‘natural’ way into substrings of
equal length; only patterns that appear in all sub-
strings are considered. It seems at first that the
solution of the simplified problem is of no special
interest, since patterns are not usually found after
an arbitrary partitioning of the string. Qur results
show, however, that very complex patterns always
exist for any partition of the string. These patterns
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cannot always be described as simple arrangements
of symbols, but rather as relations that exist among
the symbols. We refer to these patterns as rela-
tional patterns and will give their exact definition
in Section 2.

As an example, let the symbols be the English
alphabet and the string be an English text. An ar-
bitrary partition of the text into substrings of five
letters each will not enable the recognition of pat-
terns among words, but will enable the detection of
the following relation among letters: unless the let-
ter ‘g’ is last in a substring, it will be followed by
the letter ‘u’.

We will show that the problem of determining
relational patterns is equivalent to determining
constraints among events, for which a theoretical
framework was given in [1]. Using some results
from [1] will enable the development of an effi-
cient algorithm for the recognition of these pat-
terns. We will also discuss the application of the
algorithm to some NP-complete problems such as
crossword puzzle construction and substitution
cipher problems.
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2. A formal definition of relational patterns

Let ¥ ={ay,...,,} be a finite set of symbols,
and Se ¥ * be a string of these symbols. To
simplify notation and analysis the symbols are
assumed to be encoded into bits (strings of zeros
and ones). As will be seen later, different encodings
do not change the existence of relational patterns,
but may change their complexity. Therefore, it is
possible to assume without loss of generality that
the string S is a string of bits: Se {0, 1}*.

We consider a ‘natural’ partition of S into #-
tuples of bits

S:SISZ'“Sk’ S,E{O,l}", i=1,...,k.
We denote by Xj’ the j-th bit of S;, i.e.,
S;=Xix5.Xx!.

In their most general form, the relational patterns
can be expressed by a functional f.

Definition. A relational pattern is a functional
JS(Xy, ..., X,) whose value is 0 for all substrings S;,
ie.,

FXL o, Xy=0, i=1,...,k.

Example 1. Let Y ={a,b,c}. Consider a string
Se ¥ *partitioned into the following substrings of
two characters each:

c¢b cc da.

Using the encoding
a-00, b-01, c¢-10, d-11,

the binary representations of the substrings are:
1001 1010 1100.

The values of the XJ’ for the three substrings are
given in the following table:

X, X, X; X,

¢ch| 1 0 0 1
cc| 1 0 1 0
da|l 1 1 0 0

In this example, relational patterns are
P X -1,
Py X+ X3+X,—1
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(since P;=P,=0 in all three substrings). Notice
that the above patterns completely characterize the
original substrings, since by regarding them as
equations with unknowns that can have only bi-
valent (zero or one) values, the following system of
equations is obtained:

Xlzl, X2+X3+X4=1
with the solutions:

X, X, X5 Xy
solution1 | 1 0 0 1

solution 2 | 1 0 1 0
solution 3 | 1 1 0 0

These three solutions correspond exactly to the
original three substrings.

3. Relational patterns and constraints among
events

If the bits in the representation of the substrings
are taken as events that can either happen (X;=1)
or not happen (X;=0), and the substrings are
taken as permitted relations among the events, the
definition of relational patterns coincides with the
definition of constraints among events as given in
[1]. Therefore, it is possible to apply some of the
theoretical results obtained in [1] for our case. Let
V be the following set of variables:

V:{I,Xl, ...,Xn,Xle, ...,Xl"'Xn}

i.e., Vincludes 1, X3, ..., X,,, and all their possible
products. Consider linear combinations of the
variables y, ...,y € V:

ayyitoetag Yy 0y

where ay,...,a, are real numbers. These linear
combinations are actually multilinear forms in the
variables 1, X),...,X,. Since each substring S;=
XiX}... X! determines the values of all variables in
V (the variable X;in Vis being assigned the valued
X} of §;), it also determines the values of all the
multilinear forms of (1). Given a set of substrings,
two differently represented multilinear forms may
have identical values under all substrings. For
example, X, + X; and 1— X, have identical values
for all substrings of Example 1. We will consider
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much multilinear forms as identical (under the
given set of substrings).

The following are direct consequences of the
equivalence between constraints among events and
relational patterns. The proofs (for constraints)
appear in [1].

1. The set of linear combinations of variables
from a subset V*C V is a finite dimensional vec-
tor space. (Notice that the variables in V" are not
necessarily linearly independent because different-
Iy represented multilinear forms may still be iden-
tical.)

2. Every relational pattern can be expressed as a
linear combination of variables from V.

3. The set of all relational patterns that can be
expressed as a linear combination of variables from
a subset V*CV is a finite dimensional vector
space. (Notice that all relational patterns are iden-
tified with ‘0’ in the vector space described in 1.
above).

4. If the variables of the subset V*CV are
Yir---» Y&, Where y,, ..., ¥ are linearly independent
in the vector space described in 1. above, and

Ya+1s--s Vi depend on yy, ..., ¥4, then y .0, ..., Vi
can be expressed as linear combinations of

Viseoes Vas i.e.

yi=Liy, .., py), i=d+1,.. k.
In this case,

Vi— Loy ¥g), i=d+1,..k,

are relational patterns, and they form a basis to the
vector space of all relational patterns described in
3, above.

We define the complexity of a relational pattern
as the degree of its multilinear form.

5. For any string S and a partition into sub-
strings of length » there always exist relational pat-
terns of complexity n.

4. An algorithm for determining relational
patterns

Although relational patterns of complexity n
always exist, they may be too complicated for
practical problems. If, for example, relational pat-
terns are to be determined for English words of five
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letters each, and each letter is represented by six
bits, the relational patterns of complexity n are
described by equations of degree 30. However,
much simpler relational patterns cam be found for
most practical problems. In this section we present
as algorithm for determining all the linearly in-
dependent relational patterns that can be expressed
as linear combinations of variables from a subset
V*CV (as defined in Section 3). Since the com-
plexity of these relational patterns cannot exceed
the maximal degree of a monomial in ¥, choos-
ing the elements of ¥* with bounded degree
guarantees the detection of low complexity rela-
tional patterns (if such patterns exist).

Let V*={»,...,¥}. The relational patterns
are determined from the co-occurrence matrix,
which is defined as follows:

Definition. The co-occurrence matrix R=(R;) is
the £ X k matrix in which R;; is the number of sub-
strings of which y;=1 and y;=1.

Example 2. In Example 1 let V' be {y, s, )3,
Y45 V53, where
=1 n=X, =X, ¥»=X;, ys=X,.

The co-occurrence matrix is

331 11
33111
R=(111 00
11010
110 01

where Ry; =3 since in the three substrings y,=1;
Ry;=1 since only in a single substring y,=X;=1
and y;=X,=1, etc.

The co-occurrence matrix can be used to deter-
mine relational patterns because of some useful
properties:

(a) R is symmetric since by definition R;=R;.

(b) If yy,...,y; are independent, R is positive
definite.

Proof. Consider the expression
Pr=(ay- y{+ -+ i)

where ay,...,a; are arbitrary constants, and yj’ is
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the value of y;e V" in the substring S;. Clearly,
P;=0, Vi
Therefore,

Y P=0
i

and

0< Y P=Y (a;-yi+-+ag yi)
4 1

=Y Y aayyi=Y aa ¥ vy
st i

i st

= Z asatRst .

5t

If yy,..., ¥, are independent, there must exist a
substring S; such that

@yt a0,
since otherwise
@Y+ b yi=0, Vi
so that
ap-y1+ @ ye=0

as a vector space identity in contradiction to their
independence. Therefore,

Y aaRy=Y (a1-yi+-+a-y)>0. O
I

s, 1

(©) If yy,..., ¥, are dependent, R is singular.
Proof. Since y,, ..., y, are dependent, there exist
coefficients ay, ..., a; not identically zero such that

ay- Y1+t ag =0,
i.e.,
a; Y+t ayi=0, Vi

Multiplying the above equation by y} and summ-
ing over i we get

al-R1j+-~'+ak~Rkj=0, W. O (2)

(d) If vy, ..., ¥;_, are independent, and yy, ..., ¥
are dependent, then

Y=yt T e Ve
where ay,...,a,_; can be obtained from the
system of equations
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a Ry
R. . .

Ap_ Ry 1k

where R is the co-occurrence matrix for the
variables yy, ..., ¥, _;. (In linear estimation theory,
this system of equations is called the Yule-Walker
equations [2].)

Proof. Because yi, ..., y,_ are independent, there
always exist coefficients «; in (2) such that ¢, =—1.
O

The algorithm is based on the Choleski method
for decomposition of symmetric positive definite
matrices [3]. For a matrix A =(a;) which is sym-
metric and positive definite, there exists a lower
triangular matrix L = (/;) such that

A=LLT,

The lower triangular matrix L can be obtained by
the following Choleski decomposition algorithm
which is listed here in reversed order.

fori=12,...,n,
{

a:.:— jAI[. [
for j=1,...,i—1, li-:’f—zw

! L ’

1

li=lai— ¥ I
l’ 1=1
}

Whenever A4 is positive definite, /,>0 Vi. If, how-
ever, A is singular, there exists / such that /;=0.
Because of the properties of the co-occurrence
matrix, the Choleski decomposition algorithm can
be used together with property (4) of the relational
patterns (see Section 3) to detect relational pat-
terns. The resulting algorithm will generate a basis

for the set of a/l relational patterns that can be ex-
pressed as linear combinations of the variables

Dy =vricy.

Input: The co-occurrence values of yy, ..., y;.
Output: A list of relational patterns.

Method: the algorithm builds a subset IC V' of
independent variables and generates the lower
triangular matrix Z for which ZZT =R, where R is
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the co-occurrence matrix of the variables in 7. It
outputs the relational patterns which are expressed
as dependencies of variables from V't —I. Because
of Property 4 of Section 3, these relational patterns
form a basis to the set of all relational patterns that
are linear combinations of variables from V™.
The algorithm: In the algorithm let |7| denote the
number of elements in 7. We assume without loss of
generality that the variables in I are yy, ..., Y- U
and u; are auxiliary variables, and R(X, Y) denotes
the co-occurrence value of the two variables
X, YeVt.

Initially I=0.

While ¥* is not empty

{

Remove an element Y from V™.

R(Y,y)— Y/ luz
For j=1,...,|I|, set u;= Y0 = Yiey iy

Zjj
1]
u=]R(Y,Y)- ¥ u?.
=1

If u#0, add the row u;, u,, U U 1o Z, i.e.,

Zl]“_l,j(_uj j:1,...,|l|,

and add Y to I.
If u=0, output the relational pattern

r+1,+1<4

ayy e tanyn—Y

where ay, ..., a) can be determined by forward
and backward substitutions from

a Ry, Y)
zz"| i | = :
a Ry, Y)

}

Example 3. In this example we use the co-occur-
rence matrix of Example 2. The indices of u; and
z; are taken as the indices of the corresponding
variables y;.

1=0.
Iteration 1:

Yoy, u=V3#0, z;,=V3, I={y}.
Iteration 2:

Y<y,, u;=vV3, u=0.
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Solve:
V3-V3.gy=1 = a=1.

Output: The relational pattern y,—y; (i.e. X;—1).
Iteration 3:

Y(_y3’

! 2;&0
uy=—, u=J\—+0,
V3 3

1 2
231=ﬁ, <33 = g,

I:{ylay3}

Iteration 4:

Y<—y4s
1 1 1 £0
= — ==, U=— ,
=l BT 2
1 1 1
Z‘“:ﬁ’ Z43:_\/_5’ Z44=\/_§,
I:{y1>y3’y4}'
Iteration 5:
Y<—y55
1 1 1 0
=Tz, Wy=—=, Uy=-5=, u=0.
Mt BT !
Solve:
1 1
1P 2 1| |@& (1)
el z o a | =
3 3 3 6 a 0
1 1 1 1
Vi V6 V2 2
to obtain

a1=1, a3:—1, a4:_1.
Output: The relational pattern ys5—y;+y;+y,
(i.e. X+ X3+ X,—1).

The two relational patterns generated by the
algorithm are P, and P, initially mentioned in
Example 1 (Section 2).
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5. Some applications of relational patterns

In this section we show how relational patterns
in English words can be used to solve simple cryp-
tograms and to construct crossword puzzles.

5.1. Complexity considerations

The problems we discuss belong to the class of
search problems whose corresponding decision
problems are NP-complete, and therefore are NP-
hard [4]. This means that an efficient algorithm
cannot be found for the general case (assuming
P #NP). Our method will show how to reduce the
solution of these problems to the solution of a
system of equations in bivalent unknowns. Al-
though solving such a system is also NP-hard [4]
(in fact, even a solution of a single linear equation
in bivalent unknowns is NP-complete, because it
can be reduced to the knapsack problem), efficient
heuristic methods are known to yield good results
when the equations involved are of low degree. If
simple relational patterns exist, they can be used to
generate a system of equations of low degree for
the solution of these problem. These equations will
approximate the search problems in the following
sense: each solution of the search problem will also
be a solution of the system of equations (i.c. the
solution set of the search problem is a subset of the
solution set of the system of equations). In many
practical cases, simple relational patterns yield a
system of equations whose solutions are exactly the
same as the solution set of the search problem. In
our experiments, the bivalent equations were solved
using the algorithm suggested in [5] for linear
equations, and the ideas of additive penalties [6] to
extend the algorithm to the nonlinear case. The
technical details of these algorithms are omitted.

5.2. Crossword puzzle construction

The following crossword puzzle construction
problem was proved to be NP-complete by Lewis
and Papadimitriou (see [4]): Given a finite set
WC Y * of words, and an n X r matrix of black/
white squares, is it possible to fill the white squares
with symbols from Y such that any maximal
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(greater than 1) horizontal or vertical contiguous
sequence of white squares is a word in W? (i.e. a
crossword puzzle according to the usual rules).

We are interested in the corresponding search
problem: Given a set of words WC ¥, *and a cross-
word puzzle matrix, find al/ crossword puzzles that
can be constructed from the words in W and the
crossword puzzle matrix. Using relational patterns,
the problem can be approximated by a system of
equations in bivalent unknowns. Let |} |=m.
Each symbol a€ ¥ can be encoded using [log m |
bits. Let the white squares of the crossword puzzle
matrix be ¢y, ..., ¢,. The unknowns to be determin-
ed are the r- [log m | bits in the representation of
all symbols to be inserted into the white squares.
Since every maximal horizontal or vertical con-
tiguous sequence of white squares must be a word
in W, the relational patterns in these words imply
relational patterns among the unknown bits which
can be taken as equations.

Example 4. Consider a 2x2 crossword puzzle
matrix where all squares are white, and the set of
words as in Example 1. There are eight unknowns
Xy, ..., Xg, two for each square:

X1Xy | X3X4

X5Xg | X7X3

The two relational patterns that were found earlier

for this example are:
X -1, X+ X+ X,—1,

which imply the following system of equations:
For the upper horizontal word:
x =1, X+ X3+ x4=1.
For the lower horizontal word:
xs=1, Xg+Xx;+x3=1.
For the left vertical word:
x =1, X+ x5+ x=1.
For the right vertical word:
x=1, X4+X+x3=1.

There are two solutions to these equations:
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X1=1, X2:0, X3:1, X4=O,

I
—_

xs=1, x=0, x;=0, xg
and

xi=1, x%=0 x=1, x4=0,

xs=1, x=0, x,=1, x3=0,

which are the two crossword puzzles:

C C c C

c | b c|c

Further experimental results are described in Sec-
tion 6.

5.3. Substitution ciphers

In popular crossword puzzle magazines, puzzles
such as ‘cryptoquizzes’ and ‘cryptograms’ are very
popular [7]. In these puzzles, a sentence or a list of
related words are put into a simple code in which
another letter of the alphabet is substituted for the
original letter. A solution to these puzzles is a letter
mapping which assigns a plaintext letter to each
ciphertext letter, thus creating a sentence which
makes sense in English.

As an encryption scheme, the substitution cipher
has almost no practical use, since the mapping can
be found easily by using relative frequencies of n-
tuples of letters in English. Shannon, in [8], show-
ed that less than thirty letters are almost always
enough to uniquely determine the mapping, when
this mapping is a permutation. Computer programs
for solving substitution ciphers usually require a
much larger ciphertext, and use approximations to
obtain probabilities of large n-tuples of English
text. See for example the use of relaxation algo-
rithms in [9]. Another disadvantage of algorithms
based on probabilities is that they produce a uni-
que result which is best according to some measure.
When the encrypted text is short, there may be
several solutions that make sense, and the ‘true’
solution may be missed. In order to avoid these
difficulties we suggest a non-probabilistic model of
the substitution cipher problem. It will be shown
that the problem in our model is NP-complete, and
a solution algorithm based on relational patterns
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will be suggested. In Section 6, the suggested
method will be applied for ‘real problems’, using
probabilities in a new way.

The following is the non-probabilistic version of
the substitution cipher problem. The problem is
first presented as a decision problem to show its
NP-completeness, although we are interested in its
corresponding search problem.

Instance: Two alphabets ¥, and ¥} ,, and two sets
of words W, C ZI and W,C E;, where each word
is of length less than a fixed number k. W,
describes the plaintext and W, describes the
ciphertext.

Question: Can a function f:Y,— ¥, be found
such that each ciphertext word w, € W, is mapped
into a plaintext word w, e W,?

We consider two versions of this problem, where
the function f is either an isomorphism (one-to-
one) or homomorphism. In the case of isomor-
phism, the function f is (or can be extended to) a
permutation; when f is a homomorphism, an ex-
tension to a permutation is usually impossible, and
the encryption process can be viewed as non-
deterministic (f has no inverse).

Example 5. The substrings of Example 1 are used
as the plaintext words, i.e.,

Y, ={ab,c}, W, ={ch,cc,da}.
Given the encrypted word XX:
L,={X}, W={XX}

and the only solution for both isomorphism and
homomorphism is

J&X)=c.
Given the encrypted word XY:
Y,={X 7Y}, W={XTY}

There are two solutions for isomorphism:

SHilX)=c, f1(Y)=b

and

HLX)=d, fi(Y)=a.

In the homomorphism case there is an additional
solution:
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fiX)=¢c, fi(Y)=c

Theorem. Both versions of the substitution cipher
are NP-complete.

Proof. Membership in NP is simple since a non-
deterministic machine can ‘guess’ a function f (iso-
morphism or homomorphism) and then check
polynomially whether each word is mapped as re-
quired. To prove completeness, a transformation
to the subgraph isomorphism/homomorphism
problem is shown. (These problems are both NP-
complete [4].)

Given two graphs G=(V|,E;) and H=(V,, E;)
the subgraph isomorphism/homomorphism pro-
blem is whether there exist a subgraph of G which
is isomorphic/homomorphic to H. The reduction
to the substitution cipher is as follows:

Z]zVI’ WIZEI’ 22:V2’ W2:E2’

i.e. for each edge (v,,v,) in G, a two letter word
vV, is in W7, and the same for the edges of A and
the words in W,. Clearly, a function f which is
isomorphism/homomorphism exists for the sub-
stitution cipher if and only if the subgraph iso-
morphism/homomorphism problem has a solu-
tion. [

5.4. Solving substitution ciphers using relational
patterns

The set of plaintext words W, can be searched
for relational patterns where each subset of words
having the same length is treated separately. As
before, these relational patterns are relations
among bits in the representation of the symbols in
Y,. (Let the number of bits needed for each sym-
bol be r.) Therefore, the functions

VAD Y ind M

which are solutions to be substitution cipher pro-
blem, can also be represented as

I Zzﬁ{o’l}r

where {0, 1}" are strings of r bits. Treating the bits
in the representation of f(¢;), o;€ ¥, as un-
knowns, the relational patterns imply a set of
equations for each word w, e W,.
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Example 6. For the same cases as Example 5, if
Y,={X},  W={XX},

the unknowns are xq, x,, the binary representation
of f(X). The decoded representation of the word
XX is therefore x;x,x,x,. The equations induced
by the relational patterns of Example 1 are:

x1=1, x+x+x=1,
with the unique solution

x=1, x=0,
i.e.,

JX)=c.
For

L,={X Y},
the unknowns are x, x,, x3, x4 where

SX)=x1x3, f(Y)=x3%,.

The decoded representation of XY is therefore
X1X,X3%, and the equations are

Wy={XY},

x =1, Xo+x3+x,=1
with the three solutions:
x=1, x=1, x3=0, x,=0;
x1=1, x%=0, x=1, x,=0;
x1=1, x=0, x3=0, x=1;
i.e.,
HX)=d, fi(Y)=a
LX) =¢c, fo(Y)=c
SiX)=c, f3(Y)=b;

Further experimental results are described in Sec-
tion 6.

6. Experimental results

The non-probabilistic version of the substitution
cipher described in Section 5 requires a list of all
words in the language. This requirément is un-
realistic, since in practice almost any combination
of letters may appear as a rare word (perhaps a
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spelling mistake). The method suggested here for
the use of probabilities in handling substitution
ciphers is a simple technique for transforming the
probabilistic problem into the discrete problem
that was discussed in Section 5. As certain words
appear in English much more frequently than
others, we can choose as W, the set of the most
frequent plaintext words and as W, the set of the
most frequent ciphertext words. If W, is long
enough, and the ciphertext is also long enough, by
choosing W, as a small set of words we get a high
probability that the decoded text of W, will be in-
cluded in W;.

In our experiments, the set W, was chosen as
the set of the 200 most frequent words in English,
taken from [10]. It was found that about twenty
ciphertext words were enough to almost uniquely
determine the homomorphic transformations, so
that the condition for the success of this method is
that the ciphertext is long enough to have its most
frequent twenty words among the 200 most fre-
quent words in English.

The relational patterns that were found among
the 200 most frequent English words support our
assumption about the existence of simple relational
patterns. Although patterns of complexity 1 (linear)
were very rare, patterns of complexity 2 were
enough to completely determine the text. Using the
encoding:

a - 00000 n - 01101
b - 00001 o - 01110
¢ -00010 p - 01111
d -00011 g - 10000
e -00100 r —10001
S -00101 s — 10010
g -00110 ¢t -10011
h -00111 u - 10100
i - 01000 v - 10101
J -01001 w - 10110
k -01010 x - 10111
/[ -01011 y - 11000
m - 01100 z - 11001

Examples of relational patterns for two letter
words (with the bit representation x;, ..., Xxjy) are:

Xe+Xxg=1,

2X1 = X1X3 — X1 X4 — X1 Xg — X1 X7 =0.
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An example of a relational pattern for the three let-
ter words (with the bit representation x;, ..., X;s) is:

4Ax) + 23+ 2x5 — Xg — Xg — Xg+ 3X 9+ 2X1 + 2X3
+2x5+ 1.5 x100, — 2x%5 — 1% — 2% X5
+ 3x X6+ 2x1 %7 + 2X, x5 — 2X g — 1.5 X1 X1
+0.5x1x5—2x1x13+ 0.5 X%, — 3x,X)5
+ 253 — 22X X4+ 3X2X6 + 200X — 2X5X 1
—2X5X13 = 2XpX 15 — 2X3X5 — 13305 + X3 X
—X3X0=4.

In general, twenty words gave few solutions for
homomorphism, and usually a unique solution for
isomorphism. The following is an example.

The ciphertext: A ARE AS AT FOR HE HIS IN
IS IT OF ON THAT THE THEY TO WAS WITH
YOU

Solutions:

Ju| Lo | 3 | Ja | S5 | Je
Alalajala|a]a
Eje|lelel|le|e]|e
Fl|f|f|f|f|f;f
Hih| h|h| h|h}{h
1 i ifiji|ifi
Nifn|f|f|f|n|n
O|lo|o]Jo|lo|o]|o
Riyr|r|r|r|rr
S S|s|{s|s|s|s
T t t t t t t
Uljuju|lw|t]lw]|t
Wilwl w|lwlw|w]|w
Yilylylninjin|n

The resulting plaintext for each of the solutions is:

fi: a are as at for he his in is it of on that the
they to was with you.

f>: a are as at for he his if is it of of that the
they to was with you.

f3: a are as at for he his if is it of of that the
then to was with now.

fs4: a are as at for he his if is it of of that the
then to was with not.
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fs: a are as at for he his in is it of on that the
then to was with now.

J¢: a are as at for he his in is it of on that the
then to was with not.

Notice that only f; is a solution for the isomor-
phism case, while all other solutions are legitimate
solutions for the homomorphism case since the
plaintext words are all among the 200 most fre-
quent English words.

Crosswords puzzles were also created from the
200 most frequent English words. Among the ten
3 x 3 crossword puzzles found were:

t|lo]|o wlh|o wlals
o|w|n hlo|w al|lr|e
o|ln|e o|w|n s |le |t

4 x4 crossword puzzles with black squares in the
middle were also searched for among the 200 most
frequent words. Some of the 64 solutions found
are listed below.

7. Concluding remarks

This paper has presented an approach to con-
structing crossword puzzles and breaking substitu-
tion ciphers. The novelty in this approach is that
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simple constraints can be discovered among letters
in the form of relational pattern. In general, NP-
hard problems (such'as those above) are solved by
using search algorithms with exponential time
complexity. Sometimes, however, instances of NP-
hard problems arising from particular applications
(as in these cases) satisfy special constraints that
affect their complexity. Here, faster backtracking
algorithms can be devised to take advantage of
these constraints. A construction of algorithms
sophisticated enough to exploit the special problem
constraints requires skill and intuition. Using the
relational patterns approach, special constraints
can be extracted automatically, using an algorithm
which does not require any insight of the problem.
There is a secondary advantage in this approach.
After finding constraints as relational patterns, the
solution can be obtained by solving a system of
equations in bivalent variables, a problem which
has efficient heuristic solutions.
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