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A Three-Frame Algorithm for Estimating
Two-Component Image Motion

James R. Bergen, Peter J. Burt, Member, I[EEE, Rajesh Hingorani, and Shmuel Peleg, Member, IEEE

Abstract— A fundamental assumption made in formulating
optical-flow algorithms is that motion at any peint in an image
can be represented as a single pattern component undergoing a
simple translation; even complex motion will appear as a uniform
displacement when viewed through a sufficiently small window.

This assumption fails for a number of situations that commonly
occur in real-world images. For example, transparent surfaces
moving past one another yield two motion components at a
point. More important, it fails along the boundary between two
differently moving image regions. Even local motion analysis must
be performed within a window of finite size. This window contains
two motion components when it falls on a motion boundary.

We propose an alternative formulation of the local meotion
assumption in which there may be two distinct patterns under-
going coherent (e.g., affine) motion within a given local analysis
region. We then present an algorithm for the analysis of two-
component motion in which tracking and nulling mechanisms
applied to three consecutive image frames separate and estimate
the individual components. Precise results are obtained even
for components that differ only slightly in velocity as well as
for a faint component in the presence of 2 dominant, masking
component.

We demonstrate that the algorithm provides precise motion
estimates for a set of elementary two-motion configurations and
show that it is robust in the presence of noise.

I. INTRODUCTION

HE OPTICAL flow approach to motion analysis has

been based on a single-component model of local image
motion; even a complex moving scene will be indistinguish-
able from a single pattern undergoing simple translation when
viewed through a sufficiently small window over a sufficiently
short interval of time. Therefore, in attempting to solve the
optical flow equation, it is frequently assumed that the image
pattern in the immediate neighborhood of each sample point
of an image sequence undergoes simple translation between
image frames [7], [12], [16]. However, a single-component
motion model is inadequate for a number of important situ-
ations that commonly occur in real-world image sequences.
For example, transparent surfaces moving past one another
yield two motion components at a point. Patterns of light
and shadow moving over a differently moving surface also
yield two motions. Furthermore, failures of the single-motion
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model occur along the boundary between any two differently
moving regions in a scene. The area subject to such failures
can represent a significant fraction of the area of a scene.
These failures result from the fact that neighborhoods used
in estimating motion cannot always be “sufficiently small.”
The neighborhood must be large compared with the frame-to-
frame image displacements and sufficiently large to encompass
adequate pattern detail on which to base estimates of motion.
When this neighborhood falls on a motion boundary, the
estimated motion typically represents an average of the com-
ponents on either side of the boundary. It does not represent
either motion accurately.

The single component model is implicit in the “smooth-
ness constraints” used in optical flow computation [2], [11],
[13]. In an effort to increase accuracy near boundaries, more
recent approaches have adopted a piecewise smoothness con-
straint, which allows a small number of discontinuities be-
tween smoothly varying regions. In effect, a segmentation
process is introduced to locate motion boundaries. Motion
analysis is then constrained not to combine local estimates
across such boundaries. However, such segmentation presents
its own problems. Often, the only information on which to
base segmentation is the observed image motion itself. Thus,
good quality motion analysis depends on image segmentation,
whereas segmentation depends in turn on good quality motion
information. Methods can be readily imagined, some of which
have been implemented, that alternate between computation
of motion and computation of image segments that rely on
successive refinement to converge to a stable interpretation
of the scene [18], [20]. Examples of this approach include
Markov random field models incorporating “line processes”
to decouple motion estimation processes on either side of
a boundary and “brittle membrane” models [8]. These tech-
niques tend to be slow to converge and are cumbersome to
apply to practical problems. In addition, segmentation-based
techniques cannot deal with other types of multiple motion
such as transparency.

Hough transform and correlation techniques have been
used to estimate multiple components of motion without
segmentation [7], [9]. A direct estimation technique has also
been proposed [21]. These techniques have limited precision,
however. Since the differently moving pattern components
are not isolated, each component can introduce errors in the
estimates obtained for the other components. It has been
demonstrated [1] that rigid motions of multiple moving ob-
jects can be computed from accurate optical flow. However,
traditional methods to compute optical flow fail in the case of
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multiple moving objects.

In this paper, we introduce an alternative model for de-
scribing local motion in an image in which there may be two
distinct, differently moving patterns within the neighborhood
of an image point. We further define an algorithm that can
obtain precise estimates of the component motions without ex-
plicit segmentation. This two-component motion model allows
analysis of most basic local motion configurations that do not
conform to the traditional single-motion model. The algorithm
is iterative, alternately estimating one component and then
the other. As each component is estimated, it is largely
removed from the image through a nulling procedure. This
allows more precise estimation of the remaining component.
Because we relax the single-motion constraint, analysis can
be performed within larger neighborhoods. This improves
signal/noise aspects of the computation and leads to more
precise and robust motion estimates. Convergence is rapid;
in our experience, estimates of both motions are recovered
to an accuracy of 0.01 pixel/frame interval after only a
few iterations. The algorithm uses three frames of a motion
sequence to estimate two motions. The time interval between
frames must be small to ensure that any acceleration of
the moving components is negligible. We demonstrate that
the algorithm provides precise motion estimates for a set of
elementary two-motion configurations, including transparent
pattern motion and motion boundaries, and show that it is
robust in the presence of noise.

The two-motion algorithm we describe should be regarded
as a basic component of a larger motion analysis system. It
provides a more flexible method for estimating motion within
local image regions. Other system components are required to
select the local regions in which analysis is to be performed
and to assemble results into an overall interpretation of scene
motion.

II. ELEMENTARY MOTION CONFIGURATIONS

As we have observed, the estimation of motion at a point
in an image must be based on pattern information in a
neighborhood of that point. We will refer to this neighborhood
as the motion analysis region.

The size of the motion analysis region is a critical factor
in motion estimation. It is important that it be small so that
motion within the region can be described by a simple model.
However, the region cannot be too small, or it may not
encompass sufficient pattern detail to permit reliable motion
estimation. The appropriate size is dictated by such factors as
the size and velocity of objects in the scene.

These observations lead to two questions: How can we
determine the “optimal” size for the analysis region, and what
motion configurations may be expected to occur within regions
that have this appropriately selected size? The answer to the
first question is beyond the scope of the present paper, except
to note that “foveation” [5], or split-and-merge procedures
[19], might be used to control region size.

In answer to the second question, we have assembled a
small set of elementary motion configurations, as shown in
Fig. 1. The most common configuration is undoubtedly a single
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Fig. 1. Elementary local motion configurations: (a) Uniform motion of a
single surface; (b) motion boundary; (c) transparent surfaces in motion; (d)
“picket fence” motion; (¢) masking; (f) two-component aperture effect.

pattern undergoing coherent motion (Fig. 1(a)), but there are a
number of commonly occurring configurations involving two
motion components (Fig. 1(b)-(f)). More than two components
can also occur, but these are relatively rare. Existing motion
algorithms typically can deal with only one or two of these
configurations adequately. Our objective in formulating a new
motion analysis algorithm is that it should estimate correct
motions in all of the configurations shown in this figure.

The elementary local motion configurations are the follow-

ing:

1. Single Surface: The analysis region contains a single
pattern undergoing coherent (e.g., affine) motion.

2. Motion Boundary: The region contains two differently
moving patterns separated by a distinct boundary.

3. Transparent Surfaces: The region contains two differ-
ently moving image patterns that appear superimposed.
Examples include moving shadows, spotlights, reflec-
tions in a pond; etc., as well as actual transparent objects.

4. “Picket Fence”: The region contains small or thin fore-
ground objects that move in front of a differently moving
background, or the background appears through small
gaps in the foreground. Foreground and background
move coherently as two groups, although they may be
disconnected in the image.

5. Masking: The region contains a dominant moving pattern
and a second pattern that has low contrast or is small.
The dominant pattern may mask the second in the ele-
mentary motion computation. An example is a football
partially tracked by the camera in a sports broadcast.

6. Two-Component Aperture Effect: The aperture effect may
be overcome by making the analysis region sufficiently
large to include an entire object, but then, it is likely
to contain two differently moving objects. In addition,
features formed by the superposition of object patterns,
such as T junctions in this example, may appear to move
differently from either object.

This set of elementary motion configurations is intended

to encompass the important cases in which two differently
moving patterns occur within an image region. There may be



888

other configurations of which we are not aware. The algorithm
we propose in the next section can handle each of these and
other configurations in which the image can be modeled as a
combination of two coherently moving patterns.

III. 'MODELS FOR LOCAL MOTION

Motion estimation is based on an assumed model relating
motion to observed image intensities. The traditional model
used in optical flow computation postulates a single pattern
moving uniformly within any local analysis region. We intro-
duce a new model that postulates two such components.

A. Standard Single-Component Model

Let I(z,y,t) be the observed gray-scale image at time ¢. Let
R be the analysis region in which we wish to estimate motion.

The traditional model used in optical flow analysis [2], [10],
[14] assumes that within the region R, the image may be
represented as a pattern P(z,y) moving with instantaneous
velocity p(z,y). This motion field can be represented by ve-
locity components in z and y: p(z,y) = (p=(2,¥). py(z,y))-
It is frequently assumed that this motion field is constant
within R; the pattern P undergoes a simple rigid translation.
More generally, the motion may be assumed to conform to
other smoothly varying coherent motions, such as an affine
transformation, that can be described with a small number of
parameters. The analysis then seeks to estimate best values
for these parameters. Formally

I(z,y,0) = P(z,y),
I(x»yvl) = P(’f“?m?}‘l’y) = Pp
and

I(I,y,t)=P(z—tpr,y—?py)=Ptp )

where PP denotes the pattern P transformed by the motion tp
(see Fig. 2(a)). Here, t is assumed to be a small time interval
so that acceleration can be neglected. This mode] can represent
only the first of the elementary motion configurations in Fig.
1 because it assumes that locally, there is only one coherent
motion.

B. Proposed Two-Component Model

We introduce an alternative model for local motion, as
shown in Fig. 2(b). This is based on the same assumption of
locally coherent motion as in the standard model, but we now
allow two motion components. Within the analysis region, the
image is assumed to be a combination of two distinct image
patterns P and @), which have independent motions of p and ¢:

I(z,y, 0) = P(x y) @ Q("I:’ y)
and

I(z,y,t) = PP ¢ Q". @

Here, the @ symbol represents an operator such as addition or
multiplication that combines the two patterns.

The proposed two-motion model can represent (at least
approximately) all of the elementary motion configurations in
Fig. 1. For example, a motion boundary (Fig. 1(b)) can be
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Fig. 2. Two models for local motion: (a) Traditional model with single
motion: pattern P moves with velocity p within the analysis region R; (b)
two-motion model: two patterns P and (2 move with velocities p and q.

represented as the sum of two patterns that are defined over
the entire analysis region but that have zero amplitude over
complementary portions of the region. If P moves to the right
and its lower half is uniformly zero, whereas Q moves to the
left and its upper half is uniformly zero, then the sequence
I(z,y,t) generated from their sum represents a scene whose
upper half moves right and lower half moves left. Transparent
motion of a reflection in a shop window also corresponds to
the case in which & is addition, whereas patterns of light or
shadow moving over a surface correspond to the case in which
@ is multiplication (Fig. 1(c)).

IV. ESTIMATING A SINGLE MOTION

We now review an algorithm for estimating a single image
motion in accordance with the model of (1). In the next
section, we show that this procedure for estimating single-
component motion can be applied repeatedly to extract two
motion components.

The single motion algorithm combines several techniques
to achieve speed and precision. Although, individually, these
techniques are not new, they are reviewed briefly here for
completeness. First, we describe a basic incremental-motion
estimator that can obtain estimates for motion, given that
frame-to-frame displacements are small. Second, the precision
of the estimator is enhanced through a successive alignment
procedure. Finally, the range of the estimator is extended by
implementing coarse-fine alignment within a pyramid struc-
ture.

A. Incremental-Motion Estimator

The problem of estimating the motion of an image region
can be complicated and computationally expensive. However,
if we restrict our consideration to small motions, it has been
shown that there exists a simple, closed-form estimate [16],
[17]. We review one derivation of this type of motion estimate.
From (1), I(z,y,t) can be expressed in terms of I(z,y,t—1):

I(%?JJ):I(x—Pz,y—Py,t—l)- (3)
(To simplify notation, let the frame interval be one unit of
time.)

Adopting the standard “least squared error” approach, we
wish to find the motion field p = (p.,p,) that minimizes the
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squared error:

Err= Z (I(x,y,t)—l(z—pmy—l’yat—1))2~ C))
z,yER

Under the assumption that the displacement is small, the
above equation can be simplified through truncated Taylor
series expansion of I(z,y,t):

I(CIZ — Pz Y — Py,t - 1) zl(m,y,t) _pwlt(xvy,t)
_pyly($7y7t) - It('z‘v:%t) (5)

where
0@y
T o
;= =yt
vy = ay
T e
Then
Err= Y (Li+p.Ls +py1,)" ©)
T, yER

The image motion is now obtained by setting the derivatives
of (6) with respect to each of the parameters of the veloc-
ity components to zero and solving the resulting system of
equations [12].

If the motion is modeled by simple translation, that is,
p = (az,a,), where a, and a, are constants, then the familiar
optical flow equations [12], [13], [15] are obtained:

(> n%e.+ [ LIJa, = - LI
(S rpe+ [ 1Ye ==Y Lk O

If, instead, we model motion as an affine transformation, p
has six parameters:

Pe(T,y) = @ + bz + C2y
py{z,y) = ay + byr + cyy.

If the error in (6) is differentiated with respect to each of
these parameters, a system of six equations with six unknowns
is obtained, and it is shown at the bottom of this page.

This system is solved for the coefficients of the affine
transformation.

I [(EERNTRE B BN L
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B. Alignment

The above estimation method is accurate, in general, only
when the frame-to-frame displacements due to motion are a
fraction of a pixel so that the Taylor series approximation is
meaningful. The precision of the estimates can be significantly
improved through an iterative alignment procedure [3], [5].
After an initial estimate of motion is obtained, the first image is
shifted toward the second to compensate for the estimated dis-
placement. The motion estimation procedure is then repeated
between the shifted first image and the original second image
to obtain an estimate of any residual velocity. These shift
and estimate steps are iterated to bring the first image into
alignment with the second, thereby progressively reducing the
frame-to-frame displacement and creating conditions in which
the incremental-motion estimator is most accurate.

Let p, be the velocity estimate obtained after the kth
iteration of the alignment process. Let p, be the a priori
estimate of velocity before analysis begins. Typically, we
assume p, = 0. Steps of the alignment procedure during the
kth iterations (k > 1) are as follows (see Fig. 3):

1. The first image I(z,y,t — 1) is shifted or warped
toward the second image I(z,y,t) in accordance with
the velocity estimated p,_; obtained on the previous
iteration:

‘Il—-l = I("E ~ Pxg-1-Y —pyk—l’t - 1)

2. The incremental-motion estimator is applied to
IPe-1(z,y,t — 1) and I(z,y,t) to obtain an estimate
Ap,. of residual motion.

3. The estimated motion is updated:

P, = Pr—1 + Ap;.

When initial displacements are within range of the incre-
mental motion estimator, this alignment procedure generally
converges rapidly, usually achieving its limiting accuracy
within two or three iterations.

C. Coarse-Fine Alignment

The range of the motion estimation process can be extended
to the general case of large displacements by implementing
alignment within a multiresolution (pyramid) structure (Fig.
4).

A Gaussian pyramid is constructed for each of the source
image frames I(z,y,t — 1) and I(z,y,t). This pyramid is
a sequence of copies of the original image in which both
resolution and sample density are reduced by powers of 2. Let
Gt be the (th pyramid level for image I(x,y,t). The zero

S I2 Yal? Syl S LI,
Yzl,2 Y222 Yayl? Sal.1,
Syl Yayl® Y yL° Syl
2 1, 2zl 2 yl1y P
Sell, Y zLI, YazyllI, Yal’
YylI, Y wyl.ly EszzIy Znyz

Szl Syl az S I
Y 22L1, > zyl.l, by S ald
S xyld, S y?L I, | _ _ Syl I
E‘Ely2 Zylyz ay YL
S 2?12 > ayl, by S el
Y- zyl, Yy Cy 2ylyl
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Fig. 3. Precise motion estimates obtained through feedback and successive
alignment.

level is identical to the source image, i.e., Gio = I(z,y,t);
the (th level is obtained by convolving the £ — 1 level with a
small kernel filter w followed by subsampling [4]:

Gu = [Gt,g__l * w]lz.

Here, |2 indicates that the quantity in brackets has been
subsampled by 2 in both z and y; every other row and column
are discarded.

Motion analysis begins at a low resolution level of the image
pyramid. The sample distance at level £ is 2¢ times that of
the original image. This means correspondingly larger image
velocities can be estimated. At each successive iteration, the
shift and estimate steps are performed on the next higher
resolution pyramid level. Thus, if level ¢ is processed at
iteration k, then the shift (or warp) estimated at level £ + 1
is applied to pyramid level G;_;, to form G, fi‘l, and the
residual Ap, is computed between this and the corresponding
level of the second pyramid G, ¢. Shifting ensures that residual
displacements remain less than a sample distance as the
procedure moves to each higher resolution pyramid level
until full resolution is reached. Thus, coarse-fine tracking can
efficiently estimate velocities of many pixels per frame time
at accuracies of a small fraction of a pixel [2], [3], [6], [10]-
Note that this process can be represented in terms of the loop
in Fig. 3, with the addition of a control process that decreases
the scale of analysis at each cycle of the loop.

V. ESTIMATING TWO MOTIONS

We now consider the analysis of motion described by
the two-component model (2). If a direct extension of the
least squares estimation technique is attempted, it becomes
necessary to first estimate spatial and temporal derivatives of
both moving patterns P and (). However, these derivatives
can only be estimated if the patterns are separated prior to
motion analysis, i.e., the image is segmented.

Alternative approaches that simultaneously estimate two-
component motion without segmentation have been proposed.
Examples include the use of Hough transform techniques,
cross correlation, and “direct” estimation [7], [9], [21]. How-
ever, these are computationally difficult and may not provide
results of the desired precision. The present approach obviates
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both the need for segmentation and the need to estimate two
motion components simultaneously.

The key observation for the present approach is that if one
of the motion components and the combination rule & are
known, it is possible to remove that component pattern from
the images and compute the other motion using the single-
component motion algorithm without determining patterns P
or () themselves. In that which follows, we will assume that the
combination operation is addition. The case of multiplication
can also be turned into addition by taking the logarithm of
the images.

Suppose, for the moment, that motion p is known so that
only motion g must be determined. The pattern component P
moving at velocity p can be removed from the image sequence
by shifting each image frame by p and subtracting it from
the following frame. The resulting sequence will contain only
patterns moving with velocity g.

Let D; and D, be the first two frames of this difference
sequence, which were obtained from three original frames.
From (2)

Dl = I(z,y, 2) - Ip(:r,y, 1)
= (PP 4+ Q) - (PP +QT'P)
- qu _ Q11+P

= (Q1- ),

D2 = I($7y73) - Ip($>y72)
= (PP + Q31) — (PP + Q*1*P)
= Q3¢I - Q24+P

= (Q1-on)". ®

The sequence {D,,} now consists of a new pattern Q9 — QP
moving with a single motion g, that is, D, = (Q9 — QP)"4.
Thus, the motion g can be computed from the two differ-
ence images D; and D, using the single-motion estimation
technique described in the previous section.

In an analogous fashion, the motion p can be recovered
when g is known. The observed images I(z,y,t) are shifted
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by g, and a new difference sequence is formed:

Dn, = I(.Z‘, y,n+ l) - Iq(zyyan)'

This sequence is the pattern PP — P9 moving with velocity
p: D, = (PP — P9)"P, Therefore, p can be recovered using
the single-motion estimation algorithm.

Note that the shift and subtract procedure removes, or
“nulls,” one moving pattern from the image sequence without
determining what that pattern is and without explicit seg-
mentation. If the combination rule in (2) is multiplication,
then a shift-and-divide procedure in (8) would achieve the
same nulling function, yielding D,, = (Q9/QP)"4 when p is
known.

In practice, of course, neither motion p nor ¢ is known
a priori. However, it is possible to recover both motions
precisely if we start with even a very crude estimate of either.
It is generally sufficient to assume p = 0 in order to obtain a
first estimate of ¢ if no better a priori information is available.

Two-component motion analysis can therefore be formu-
lated as an alternating iterative refinement procedure (Fig. 5).
Let p,, and q,, be the estimates of motion after the nth cycle.
Estimates alternate between p and g; therefore, if p is obtained
on even-numbered cycles, ¢ is obtained on odd cycles. Steps
of the procedure are as follows:

1. Set an initial estimate for the motion p, of pattern P.’

2. Form the difference images D; and Dy as in (8) using
the latest estimate of p,,.

3. Apply the coarse-fine single-motion estimator to D; and
D, to obtain an estimate of ¢, ;.

4. Form new difference images D; and D, using the

estimate ¢, ;.

5. Apply the single-motion estimator to the new sequence

Dy and D, to obtain an update p, .
6. If a desired level of precision (stability) has been at-
tained, then stop; else, repeat starting at Step 2.

In the cases we have tried, convergence of this process is
fast; with artificially generated image sequences, the correct
transformations are recovered to within roughly 1% after three
to five cycles, regardless of the initial guess of p,. We have
not attempted to determine analytically the conditions under
which the algorithm is guaranteed to converge.

When this two-motion algorithm is applied to a region
containing only one moving pattern, it will detect that motion
on the first iteration but will pick up “motion” of noise in
the second. In practice, a test will be required to detect
this situation. One way of detecting such a situation is to
use the estimated motion to register the difference images
used in the computation and compare the mean square of
the registered images with the mean square error of the
unregistered difference images.

VI. EXAMPLES OF TWO-MOTION ANALYSIS

We have tested the two-motion algorithm with several
examples of the elementary motion configurations shown in
Fig. 1. We have used both artificial sequences constructed from
moving random noise patterns and real images of complex
natural scenes. In all examples in this section, the analysis
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Estimate Single
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Form Difference
Images

Fig. 5. Two-stage computation for recovering two motion components
from three input images. The loop inside the right-hand box represents the
coarse-fine iteration detailed in Fig. 4. The outer loop increments each time
the inner loop is completed.

region R was taken to be the entire image, and the images

were 256 x 256 or 256 x 200 pixels in size. In all cases, .

coarse-fine computations began at pyramid level three and
moved to level zero. The initial motion estimate for both
components was taken to be zero. When artificial sequences
were used, the actual velocities were known, and the accuracy
of the estimate could be determined. All computations were
performed on a Sun SparcStation 1. Each full iteration of the
algorithm described in the previous section required roughly
10 s.

A. Example 1: Transparent Motion

A synthetic image sequence showing transparent motion
was constructed by adding two random dot patterns P and Q,
where one translated (8,0) pixels between successive frames,
and the other translated (0,8) pixels. The appearance of this
sequence is of one transparent textured surface sliding over
a second opaque surface. The two correct translational com-
ponents of the original sequences were recovered after three
cycles of the coarse-fine process. Other choices of initial guess
produced similar results.! Actual recovered translations were
(8.04,0.01) and (0.01, 8.03). Unfortunately, the results of this
example cannot easily be displayed in a still image. In a video
sequence showing the compensated difference images Dy,
it is easily seen that the two motions have been accurately
separated.

A second example involving additive transparency is shown
in Fig. 6. In this case, a sequence was captured with a moving
video camera showing a face reflected in the glass covering
a print of Escher’s “Three Worlds.” A single frame from
this sequence is shown in Fig. 6(a). As the camera moved,
the image reflected in the glass and the image in the print
moved differently. These two motions were computed from
this sequence and used to produce the compensated difference
images (frames from D,,) shown in Fig. 6(b) and (c). In Fig.
6(b), the reflected image (which is barely visible in Fig. 6(a))

IThe importance of the initial motion estimates has not been studied
systematically. Clearly, convergence can only be obtained if the error in the
initial estimates falls within the range of velocities that can be detected by
the single motion algorithm. This range is large because the algorithm is
implemented within a pyramid structure.
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Fig. 6. Transparent motion. A sequence of images was obtained as the
camera moved, showing a face reflected in the glass of a framed picture:
(a) One frame from the sequence; (b) difference of two consecutive frames
after registration using the computed motion of the picture. The picture cancels
out, and the face structure is visible; (c) difference of two consecutive frames
after registration, using the computed motion of the reflected face. The face
is canceled out, and only the picture structure is visible.

is revealed, showing that the other component was registered
accurately. In Fig. 6(c), the reflected image has been nulled.

B. Example 2: Motion Boundary

The second example demonstrates motion estimation at a
boundary. This sequence was constructed from two random
noise fields that are not transparent but are forming foreground
and background regions. The upper left field is in the back-
ground, moving with velocity (6.831,2.331). The foreground
field moving with velocity of (—3.863, 1.024) covers a region
in the lower half of the picture. These displacements corre-
spond to a motion parallel to the boundary for the foreground
segment and a velocity oblique to the boundary for the
background. In this case, the sequence is not precisely the sum
of two uniformly moving patterns because a small area of the
background is hidden, or occluded, by the foreground object
on each frame. In spite of this minor violation of the sequence
structure assumed in the two-component motion model, the
algorithm successfully recovers the motion components. The
translation components determined by the algorithm after two
iterations are (6.828,2.322) and (—3.845.1.041). The result
of compensating for one of the estimated displacements and
subtracting successive frames is displayed Fig. 7(c). It can
be seen that the estimated displacement corresponds very
accurately to the motion in one of the two regions, resulting in
that region being blank in the compensated difference image.
In this example, knowledge of the two motions leads directly
to an accurate segmentation of the image. For comparison,
an optical flow computation [3] results in the compensated
difference image in Fig. 7(d). Here, the pattern is canceled
over most of the image area, indicating accurate motion
compensation, but does not cancel near the boundary.

C. Example 3: Masking

A second sequence of real images was digitized to demon-
strate motion recovery when one motion pattern predominates,
and “masks,” the second pattern as in Fig. 1(e). This sequence
is an “aerial photograph”: a small toy tank moves rapidly in
front of a large moving background of toy roads and trees.
One frame of this sequence is shown in Fig. 8(a). Because the

Fig. 7. Motion boundary: (a) Sequence of frames was constructed in which
regions of random texture moved; (b) one image in the sequence; (b) multiple
motion algorithm used to recover both motions; (¢) when one image is shifted
by one of these motions and a difference image is formed, the corresponding
moving pattern is canceled, and the boundary is revealed; (d) if an optical flow
algorithm is applied instead, erroneous motion estimates are obtained along
the boundary, as is apparent when the estimated motion is used to register
successive frames, and a difference is formed.

()

Fig. 8. Masking. A small moving object may be obscured when viewed
against a larger, differently moving background: (a) One frame from the
sequence; (b) difference of two consecutive frames after registration using
the background motion. The background is canceled out, and the tank is
visible; (c) difference of two consecutive frames after registration using the
tank motion. The tank is canceled out, and only the background structure is
visible.

motion of the foreground object is roughly equal to its own
size, it would be difficult to select a window within which this
motion would dominate. However, the two-motion algorithm
obtains accurate estimates of both background and foreground
motions. The background cancelation is shown in Fig. 8(b) and
the foreground cancelation in Fig. 8(c). Note the absence of the
moving vehicle in this last image. Accurate estimation of both
motions is obtained in spite of the fact that the combination of
foreground and background components is not strictly additive.

D. Example 4: Two-Component Aperture Effect

An example involving both transparency and a two-
component aperture effect is shown in Fig. 9. The image
sequence in this case consists of the sum of two uniform
squares moving diagonally in opposite directions, as in Fig.
1(f). In this case, the actual motions were (2.0,2.0) and
(—2.0,—2.0). An optical flow computation [3] results in the
flow field shown in Fig. 9(c). Note that almost all flow
vectors point in directions other than the direction of actual
motion. Some vectors correspond to the well-known aperture
effect, and others correspond to the apparent motion of
features formed by the superposition of two differently moving
patterns. Clearly, it would be very difficult to recover accurate
estimates of object motions from such a flow field. However,
when the two-component motion algorithm is applied, actual
object motions are recovered to machine precision after only
two iterations.
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Fig. 9. Two component aperture effects: (a) Input configuration; (b) one
frame from sequence; (c) optical flow field computed from two frames of the
sequence. Note that the complex pattern of flow does not correspond to the
motion of either object. When the two-component algorithm is applied, both
motions are accurately recovered.

E. Example 5: “Picket Fence”

The final example (Fig. 10) shows an image sequence
in which a crowd of people is viewed through a complex
pattern of tree branches. The camera is translating and ro-
tating; therefore, the foreground trees and background crowd
are seen to move differently. Because the motions include
dilation and rotation as well as translation, we must estimate
two affine transformations. This is an example of a “picket
fence” configuration (Fig. 1(d)). In spite of many violations
of the additivity assumption due to occlusion and exposure,
convergence is reached after four iterations. In order to demon-
strate the accuracy of the foreground and background motion
estimates, we have generated two “temporal average” images
after registering the three input images using the two estimated
motions (Fig. 10(c) and (d)). In each of these, the registered
areas are sharp, whereas the rest of the image is blurred due
to the image motion. For reference, an unregistered temporal
average is shown in Fig. 10(b).

VII. QUANTITATIVE EXPERIMENTS

A. Stability Analyses

The examples shown in the preceding section suggest that
the algorithm that we have described is surprisingly robust
with respect to violations of the assumptions about image
sequence structure expressed in (2). Of the examples shown,
only Example 1, which involves transparency, can be exactly
represented as the sum of two coherently moving patterns.
In the others, some areas appear or disappear from frame to
frame. In the case of the tree scene (Example 5), there are also
objects within the analysis region that move with velocities
unrelated to either of the two major coherent components.
Nevertheless, the registration of the major components is fairly
accurate. In the case of the synthetic images where the motions
are known exactly, these values are recovered precisely in spite
of violations of assumptions.

1) Experiments: Two experiments were performed to deter-
mine the limits of the algorithm’s performance when applied
to image sequences that do not precisely conform to the two-
component motion model. In both cases, the test sequence
was the sum of unfiltered Gaussian noise images with standard
deviation equal to 15 gray levels. Each component moved with
a speed of 3 pixels/frame, with one to the right and the other
to the left.
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Fig. 10. “Picket fence.” A crowd is viewed through the branches of a
foreground tree. The camera is moving so that the foreground and background
appear to move in different directions: (a) One frame from the original
sequence; (b) averaging three consecutive frames from the original sequence
(no motion compensation). The entire scene is blurred; (c) averaging three
frames after registration with the foreground motion. The trees are sharp,
whereas the background is blurred; (d) averaging three frames after registration
with the background motion. The background remains sharp, whereas the
foreground is blurred.

In the first experiment, temporally uncorrelated noise was
added to the motion sequence. This simulates the effect
of image occlusion since regions of the image that appear
or disappear from frame to frame produce local changes
in intensity that are uncorrelated in time. In the second
experiment, a moving uniformly distributed noise pattern was
added to the original two-component sequence. This simulates
the effect of motions that do not fit the model of either coherent
motion being estimated. Note that noise signals are distributed
uniformly over the analysis region in these experiments,
although the conditions that these experiments are designed to
simulate (such as occlusion effects) are generally localized in
natural images. This difference is not critical, however, since
the contributions are summed over the analysis region.

In each experiment, two factors were varied: the amplitude
of the interfering signal and the size of the analysis region.
Two characteristics of algorithm performance were measured:
the likelihood that the algorithm successfully isolated the two
motion components after 20 cycles of the algorithm (ten for
each motion component) and the average RMS error in those
estimates with respect to the true velocities. The region size
was varied over a wide range because increased size may be
expected to decrease sensitivity of the algorithm to noise. In
both experiments, only uniform displacement was estimated,
rather than a more complex transformation.

2) Results: Fig. 11(a) shows the results using uncorrelated
noise. The standard deviation of the noise is on the abscissa.
Since the noise was uniformly distributed, the range of the
noise is the standard deviation multiplied by 1.732. The
probability that the two-motion algorithm converged to within
20% of the correct velocities within ten cycles of the “estimate-
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Fig. 11. Probability of convergence as a function of noise level. The

abscissa shows noise standard deviation. The ordinate shows probability
of convergence to within 20% of the correct motion estimates within ten
iterations. The error is defined as the rms error divided by the rms amplitude of
the velocities, and thus, convergence requires that both motions be reasonably
well estimated. The various curves correspond to window sizes ranging from
16 x 16 to 128 x 128 for the uncorrelated noise and 16 x 16 to 64 x 64 for the
moving noise: (a) Uncorrelated noise: new samples of noise were generated
for each frame; (b) moving noise: one sample of noise was generated and
then moved upwards by three pixels on each frame.

subtract” analysis process is shown on the ordinate. Each
probability estimate is based on 30 trials with the same signal
but independent samples of noise. Four curves are shown,
representing window sizes of 16 x 16, 32 x 32, 64 x 64, and
128 x 128 pixels.

A number of characteristics are worthy of note. First, with
little or no noise, even a window size of only 16 X 16 is
sufficient for reliable convergence of the algorithm. However,
for this smallest window size, the results are sensitive to noise,
and by a noise standard deviation of about three gray levels,
the process is already rather unreliable. This is a relatively high
noise value, corresponding to a signal-to-noise ratio of 5 since
the individual “signal” components have a standard deviation
of only 15 gray levels. For larger window sizes, however, the
process is very resistant to the effects of uncorrelated noise. It
is not until the signal-to-noise ratio falls well below 1 that the
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Fig. 12. Percentage RMS error when probability of convergence is above
50%. The abscissa shows the noise standard deviation. Curves show window
sizes ranging from 16 x 16 to 128 x 128.

probability of convergence drops below 90%. Furthermore, for
these stimuli, at least, there is only a slight benefit in increasing
the window size above 32 x 32.

The results of the second experiment are shown in Fig.
11(b). A third motion component is introduced, and it moves
at the same speed as the original two (3 pixels per frame) but
upward rather than right or left. Again, the abscissa shows
the noise component standard deviation (note the difference in

* scale), and the ordinate shows the probability of convergence

within 20% of the correct signal velocities. For the 16 x 16
window size, the results are very similar to those for the
uncorrelated noise; the algorithm is rather noise sensitive. For
the larger window sizes, performance is reliable down to a
signal-to-noise ratio of about 2. Beyond this level, performance
decays rapidly. This is not surprising since in these stimuli, the
signal components and the noise are almost identical. When
the noise component approaches the signal components in
amplitude, the algorithm begins to track the noise instead of
one of the signal components. Thus, there is no possibility of
correctly estimating the signal velocities when the signal-to-
noise ratio is less than 1. However, it is clear that for moderate
levels of extraneous motion, the algorithm continues to provide
meaningful estimates.

An additional measure of the robustness of this algorithm
is shown in Fig. 12, which shows the RMS deviation of the
estimated velocities from the true values for the cases in which
convergence was obtained. Clearly, this is only of interest
when the probability of convergence is high and when the
estimated variation is considerably smaller than the criterion
for convergence. The figure shows values as a function of
uncorrelated noise levels for the four window sizes. For
all but the smallest window size, the expected error grows
gradually and smoothly with noise level. Performance overall
is highly accurate. Similar precision is found in the case of the
moving noise when conditions yielding similar probabilities of
convergence and window sizes are compared.

3) Conclusions: These results suggest that the performance
of the algorithm is robust, at least with respect to the viola-
tions of assumptions introduced here. This is of considerable
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importance since in real image sequences, the assumptions of
the two-motion model will never be satisfied precisely. These
experimental results help explain the good performance of the
algorithm on several of the examples shown in the previous
section, particularly those involving real images.

VIII. SUMMARY AND COMMENTS

Most current approaches to motion analysis are based on a
single motion assumption; when an image sequence is viewed
through a sufficiently small analysis window over a sufficiently
short interval of time, it may be modeled as a single pattern
undergoing uniform motion. This assumption holds and can
lead to accurate motion estimates within many local regions of
a typical image sequence. It fails, however, when even a small
analysis window contains two or more differently moving
patterns, such as along the boundary between a moving object
and its background and where semi-transparent surfaces or
patterns of light move over other surfaces. Such failures lead
to the incorrect interpretation of a scene.

Techniques to address limitations of the single motion
model have been proposed, but these introduce other analysis
problems. Image segmentation, for example, can be used to
control the placement of local analysis regions to ensure that
regions do not cross motion boundaries. However, this presents
a “chicken-egg” dilemma since segmentation processes nrust
often rely on motion analysis to detect such boundaries. In ad-
dition, conventional segmentation cannot handle transparency.
Methods that simultaneously estimate two motions within a
region may be limited in their ability to distinguish similar
motions since each motion component constitutes noise in the
signal as it is used to estimate the other component.

We propose an alternative approach to the analysis of mul-
tiple motions that largely overcomes limitations of previous
methods. The components are estimated one at a time using
a single motion algorithm. Once an initial estimate of one
component has been obtained, the associated pattern is largely
removed from the image sequence through a shift-and-subtract
procedure. Three frames of the original sequence are used to
prepare two difference frames that can be used to estimate the
second motion, again using a single motion algorithm. These
steps are then repeated to obtain a more accurate estimate
of the first motion. A few iterations generally suffice to
isolate motion components and obtain highly precise motion
estimates. Speed, precision, and robustness are obtained by
implementing all computations within a pyramid framework.

We show that the new approach to motion estimation
can handle a variety of basic two-component motion con-
figurations in a unified way. The same computation steps
can obtain precise motion estimates at motion boundaries,
identify motions of transparent patterns, and detect small or
low contrast moving patterns in the presence of large, high-
contrast patterns. The approach does not require explicit image
segmentation to obtain precise estimates of each component
motion.

Several issues that are important to full motion analysis have
not been addressed in this paper and require further research.
We assume that motion analysis is performed within local
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regions that have been selected to have, at most, two differently

moving pattern components. This relaxes the single motion
constraint imposed in most past approaches and means that the
analysis regions can generally be much larger than is possible
with conventional approaches. However, when more than two
motions occur within a given region, it is then necessary to
reposition and/or reduce the size of the region. We have not
addressed the problems of how to detect whether more than
two motions have occurred or how to automatically select new
analysis regions. Again, an advantage of the present approach
is that it does not require segmentation to obtain precise motion
estimates of two pattern components. This should provide a
powerful starting point for subsequent segmentation.

Finally, it should be noted that our approach assumes that
both moving pattern components have constant velocity over
the three frames used in analysis. This can be a significant
restriction if objects are accelerating, and the frame rate is low.
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