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Fig. 8.

lengths for any scan direction 0 gives, of course, the area. First
moments, combined with area, give the location of the centroid.
Higher moments give shape parameters. If the moments (including
area) are calculated at every scan angle, then the redundancy can
be used to improve the accuracy.
A useful single parameter involving chord length is the maximum

chord length which, as Fig. 8 shows, may be different from the
maximum width. More detail is given by maximum chord length at
each scan angle. Still more detail is given by all local maxima and
mlnlma.

VIII. COMPLETE SHAPE INFORMATION
The various parameters and functions discussed in the previous

sections all throw away some information about shape for the sake
of simplicity. Complete information, i.e., information sufficient to
reconstruct the image to within the quantization error, can be ex-
tracted in various ways. For example, if the sum of the lengths of
the chords is kept separately for every scan line, then the image can
be reconstructed by means of the Radon transform. For a time, it
was conjectured that the distribution of chord lengths [5], [12], a
location and orientation-independent data set easily obtained from
the rotated scan, is also complete, but it has been shown that this
is not the case [4]. The procedure outlined below provides a com-
plete data set in a particularly convenient form.

First, find for each value of f the scan line that passes through
the object's centroid. Second, locate on this scan line the endpoints
of the object's chords relative to the centroid. This procedure pro-
vides a polar representation of the object with the origin at the cen-
troid. It can be made scale independent by normalization with any
scale-proportional parameter such as the perimeter, the maximum
chord, or the square root of the area. It then requires only a one-
parameter search (in k) to match the normalized polar plot with a
template. Even the one-parameter search can be eliminated if the
polar plot and the templates can be oriented by means of an iden-
tifiable angle such as the angle of the maximum chord, the angle of
the maximum width, or the angle of some other feature.

The two stages of the procedure can be carried out on two suc-
cessive half rotations (in which case the locations of the scan lines
through the centroid must be stored) or in a single half rotation (in
which case the chord endpoint coordinates must be stored for the
duration of each parallel scan).

This method is applicable, of course, primarily when it is known
that the field of view contains only one object.
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Min-Max Operators in Texture Analysis

MICHAEL WERMAN AND SHMUEL PELEG

Abstract-A signature is generated for a given picture by operating
on it with different masks. The operations are gray level generalizations
of "shrink" and "expand" for binary pictures using Serra's morpho-
logical methods [10]. The signature is a set of numbers, each corre-
sponding to an application of an operator at a certain scale and direc-
tion, and can be used to analyze the discriminate textures. It is shown
that this family of signatures includes as special cases several currently
used texture descriptors.

Index Terms-Min-max, morphological operators, texture analysis.

I. INTRODUCTION
Serra defines dilation, erosion, opening, and closing of binary

pictures, and uses these operators to measure morphological prop-
erties. These operations are generalized to gray level pictures and
are used to analyze and classify textures.

A. Binary Definitions
Let P be a binary picture; the 1's represent the object, the O's

the background. If a = (ax, ay) are the coordinates of a pixel, then
Pa is P translated by a, i.e., Pa(X - ax, y - ay) = P(x, y).

Dilation: Let A, B be binary pictures. The dilation of A by B,
DAB, is defined as a binary picture, such that DAB(a) = 1 iff Ba and
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A have a nonempty intersection of their respective objects. Or, if
f,(a) is the characteristic predicate of P, being true iff the point a
is in the object of P, then fDAB(a) = V6{ fA(b) A fB(b - a)} (analo-
gous to convolution). For example, if A and B =1 1, then

1 1
DAB

1 1
Erosion: The erosion of A by B, EAB, is defined as the binary

picture in which EAB(a) = 1 iff the object of Bb, is totally included
in the object of A. Using the characteristic predicate, we have
fFIB(a) = Ab{ fA(b) V -I mfB(b - a)}. Erosion is related to dila-
tion through the following formulas.

EAB = DAB; DAB EAB.
For example, if A - 1111 and B = 111, then E4B = 11. Dilation
results in enlarging the object in a pattern determined by the dila-
tion matrix. Dilating an object with a matrix having only two l's,
for example, will result in duplicating the object at a distance equal
to the distance between the l's. Dilating with the matrix

1 1

1 1

will add to the object all neighboring background elements. Erosion
is the dilation of the backround.

Opening the closing are two ways to compute 'ismooth" approx-
imations of A. The closing of A by B, CAB, Is defined as
CAB EDl BB A is dilated by B and the result is eroded by B. The
opening of A by B is defined by OAB = DE4BB; A is eroded by B and
the result is dilated by B. Opening and closing are related through

OAB CAB, CAB = 01B

In opening, the erosion causes partial reversal of the preceding
dilation. In an object with holes, for example, after dilation
the erosion can shrink the boundary back to its original shape,
while holes that were completely filled by the dilation cannot be
reclaimed.

II. GRAY LEVEL GENERALIZATIONS
To generalize the operators from binary functions to gray level

pictures, we give new meaning in dilation and erosion using fuzzy
logic. In the binary case, dilation is defined byfD,(a) = V{fA(b)
A fB(b -Ca)}, f being the characteristic predicate. In fuzzy logic
1141 Vis replaced by maximum and A is replaced by minimum. We
will define DAB where A and B are gray level pictures with values
between 0 and 1, as

DAB(a) = sup {min (A(b), B(b -a))}.
I)

In the case that A and B are binary, this new definition is equiv-
alent to the original binary definition. In the case that A is gray-
level and B binary, then DAB(a) is the maximum of all the values of
A that coincide with the l's of B,

Similarly, we define E4B where A and B are gray level pictures
as

EAB(a) = inf {max (A(b), 1 -B(b -a))}.
I?

If both A and B are binary, this definition is the same as the original
binary definition. If A is a grey level function and B is binary, EIB(a)
is the minimum of all the values of the pixels of A that coincide
with the l's of B,.

Using the new definitions for dilation and erosion, opening
and closing are defined in the same way as the binary case:

OAB - DEABB and CAB = ED)BB-
Peleg and Rosenfeld [81 used these inf, sup (min, max) opera-

tors, with B being a digital ball with a raduis of 1, to generalize
shrink and expand from binary to gray level pictures. The gray level
generalizations of the morphological operators described in this
section are the same as Serra's 1101 when A is a gray level picture

and B is binary. When A and B are both gray-level, Serra's defini-
tion is different: He defines erosion as infb {A(b) - B(a -b)} and
dilation as supb {A(b) + B(a - b)}.

III. GENERATION OF DESCRIPTORS
In this section, we develop families of operators on a picture (or

part of a picture) that generate descriptor matrices.
Let P be a gray level picture. Define a(P) as the sum of the gray

level values of the pixels in P. Let {Mrj be a set of masks with
parameters r E R, w E Qi. One possible choice for Mr,,, is to be a
straight line segment of length r and angle C (r > 0, 0 < co < 7r).
For example,

M3, r/4 I and M2() = 1 1.

Using the set of masks {M,J,,}, we define four feature matrices for
a picture P.

1) The dilation matrix D = (o(DpM,')). D(r, c) is the sum of
the pixels in the picture generated by the dilation of P by Mr,

2) The erosion matrix E = (u(EPM, )). E(r, co) is the sum of the
pixels in the picture generated by the erosion of P by Mr,,

3) The closing matrix K = (a(CpM, )). K(r, c) is the sum of the
pixels in the picture generated by the closing of P by Mr,A

4) The opening matrix 0 (=(OpM, )). O(r, co) is the sum of
the pixels in the picture generated by the opening of P by Mr,

Other choices for Mrw, are possible. An example is a binary mask
of a rectangle (including its interior) whose sides are parallel to the
axis and whose diagonal is of length r and angle co. For example,

I l l

M3,,14 = 1 1 I and M4 arctg 113

1 1 1

11 1 1

11 1 1

Given a picture P for any type of mask Mr,,w and sets R and Q of
lengths and angles, the four feature matrices can be generated.
Every matrix measures some property of P. The use of these ma-
trices will be described in Section IV. For simplicity, in the rest of
this correspondence, only straight line segments will be used for
masks.

IV. SIGNATURES
We can use one or more of the erosion, dilation, opening, and

closing matrices in order to define a signature for a picture. These
features for masks of line segaents can be as follows.

1) The entire matrix. These matrices measure the effect of an
operation (erosion, dilation, opening, or closing) with different
Imnasks. When features of size I occur at angle c, operations with
line segments of length I and angle co will reveal strong effects. In
a texture of vertical black lines distance d apart, for example, open-
ing with horizontal line masks will do nothing when the line seg-
ments are shorter than d. but the entire picture will become black
when the line segments are longer than d.

2) Sums of rows over all angles. This corresponds to the overall
effect of all line segments of equal length, and measures features
regardless of their orientation. The row sum for length I in 0 in-
dicates the existence of objects of size 1, while the row sum for
length I in K indicates the existence of "holes" of size 1.

3) Sums of columns over all lengths. This corresponds to the
overall effect of all line segments of the same orientation, and
measures orientation features of all spatial sizes.

Measuring the different responses to different masks demon-
strates the effect of small changes in mask size. Derivatives are
helpful in finding critical size masks. For example, for the opening
matrix 0 as follows.

4) The derivative by row O(r, c) -O(r, c - 1) measures the
change caused by changing the angle of the line segment.
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5) The derivative by column 0 (r, c) 0(r - 1, c) measures

the change caused by changing the length of the line segment.
6) The gradient l0(r, w)- 0(r - 1, - 1)1 + I0(r - 1, cc) -

0(r, - 1)1 measures the change caused by changing the angle
and the length of the line segment. An example of the use of these
derivatives will be given in Section V-A.

In order to compare two pictures, we compare some of their re-

spective signatures. This can be done, for example, by summing up

all the absolute differences of their corresponding feature matrices.
More meaningful comparisons (but using more computation) can

be obtained with generalizations of the distance measures sug-

gested in [3] and [15]. This metric is a generalization of the metric
suggested in [12], and involves computing a minimal matching be-
tween the features. Further details, as well as proofs, can be found
in [15] and [3].

V. RELATION TO OTHER METHODS

Several known operators are instances of the erosion and dilation
described in this correspondence, especially in the binary case.

A. Binary Run Lengths
A run length primitive is a maximal collinear connected set of

pixels in the object. A run length primitive can be characterized by
its length and its angle. Galloway [4], [5] used these primitives to
categorize textures.

Let Mr,, be a line segment of length r and angle c, and let P be
a binary picture. The (r, c) entry in the second derivative by col-
umn of the erosion matrix E is exactly the number of run length
primitives of length r and angle in P. Each run length primitive
of length r and angle adds 1 to E(r, c), 2 to E(r - 1, c), 3 to
E(r -2, c), and so on. For example, let

P-0 1 1 1 1 0 1 1

EP,MIO,=O 1 1 1 1 0 1 1

EP,M20 =O 1 1 1 0 0 1 0

Ep,M30=O 1 1 0 0 0 0 0

EP,M40-O° 1 0 0 0 0 0 0

EPM50 0 0 0 0 0 0 0 0

Therefore, E (6, 4, 2, 1, 0, 0, ), and the derivative of E by
row is

E' = (2, 2, 1, 1, 0, 0,

while the second derivative is

E" = (0, 1, 0, 1, 0,0, **,

The l's at locations 2 and 4 stand for one run length primitive of
length 2 and one of length 4 in P.

B. Binary Autocorrelation
The autocorrelation function is commonly used in texture utiliz-

ing the linear dependence of the pixels [5], [11]. The autocorrela-
tion of P is A(r, cc) = Ea P (a) Pr(,,(a) where P,,,, is P translated by
(r cos (c), r sin (cc)).

The autocorrelation A(r, w) of a binary picture P is the erosion
matrix E of P by matrices M0,t, where Mr ,, are the two endpoints
of line segments of length r and angle This follows from the fact
that the product of two binary digits is the same as their minimum.

C. Multiple Resolution Texture Analysis
In order to classify textures, Peleg et al. [7] measured changes

in their properties with changing resolution. Treating gray levels as

elevations, the surface area of the gray level surface was measured
at several resolutions. This area decreases at coarser resolutions,
since the fine details that coiitribute to the area disappear. The rate
of this decrease in area was used for texture comparison and clas-
sification. The surface area at different resolutions was computed

in [7] by dilating the gray level surface with three-dimensional
(3-D) digital balls of different sizes, and dividing the resulting vol-
ume by the radius of the ball. The derivative of the dilation matrix
D (and the erosion matrix E) by squares of different sizes is very
similar to the rate of decrease of surface area, and has the same
experimental classification power as the methods in [7].

VI. COMPUTATIONAL COMPLEXITY
In order to compute the dilation matrix D(r, co) = (u(DMrJ),

r e R, X E Q, we do not always have to dilate the picture separately
for each mask. We describe several computation methods for the
dilation matrix which are also applicable for erosion. Unfortunately,
most methods will not help speed up the computation of opening
or closing. Special architecture, however, is available to speed up
this computation [8].

Often, dilation by large elements can be achieved by iterative
application of smaller elements. Dilation by straight lines, for ex-
ample, can be reached by iterative dilation with line segments of
length 2. When dilations by all intermediate lengths are needed,
this method is more efficient than direct dilation by all lengths.
Similar speed improvements are possible for dilation by rectangles.
When dilation by a large element is needed, a different method

is to precompute for each pixel the closest pixels on the same line
that are bigger or equal to it in value. Having this information, we
can compute for how many different length line segments this pixel
is the maximum. The precomputation step takes 0( PI log Pl),
using the range finding methods of Bentley [1]. A similar approach
is applicable to rectangles where the use of quad trees and oct trees
[9], [6] is efficient for the precomputation.
A fast algorithm for computing the dilation of a picture P by any

binary mask exists. It is sketched here for the case where the binary

0

0, E(l, 0) = u(Ep M,o) = 6

O E(2, 0) = of (Ep M,2) = 4

0, E(3, 0) = g(EpM30) = 2

0, E(4, 0) = a(EpM4O) I1

0, E(5, 0) =a (EpMS0) 0.

mask is a line segment of length k and angle 0, and P is a one-
dimensional picture.

Let H be a heap with an auxilary queue Q with pointers to H.
1) Initialization: Build the heap H and the queue Q so that H

has the first k elements of P, its apex is its maximum, and Q has k
elements where the ith element is a pointer to the location of the ith
element of P on the heap.

2) Output: Output the apex of the heap.
3) Output: Remove the end of Q and the entry on the heap it

points to. Insert the next element of P into H and put its address at
the beginning of Q.

4) Go to 2 until P is finished.
The computation is correct because the heap will always have at

its apex the maximum of the last k elements.
The complexity is 0 (k) for the first step, 0 (1) for the second and

O (log (k)) for the third, or altogether 0 (I P log (k)) for the entire
computation.

The same can be done for erosion. Similar algorithms using two
heaps can be used to compute an opening or a closing.

VII. APPLICATIONS TO TEXTURE CLASSIFICATION

This section will describe some experiments in the application of
the proposed mesures to texture analysis. Fourteen different texture
pictures from Brodaz [17] were used: beans, burlap, cork, grass,
marble, mica, paper, pellets, pigskin, raffia, rice paper, seafan,
straw, and bark. Two different 64 x 64 windows were taken from
each texture.
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Fig. 1. The line segments used in the experiments. Four directions were
used, and in each direction eight different lengths were tested. There is
no need to use the directions in the other half of the circle, as their effect
is obtained by using these four directions.

TABLE II
DERIVATIVF BY COLUMNS OF THE EROSION MATRICES. THE ELEMENTS IN THE

iTH ROW ARE THE EROSION MATRICES OF THE VALUES IN T'HE i-1ST
AND i TH Rows

Erosion derivatives of beans

0 3,7

1 i4i 13
I II 14 10rl
2 10 11 9 1 2
3 9 I0 8 11

4 8 7 7 9
a- 8 16 7 8
6 6 2 2 7

7 6 4 2 2

8 4 4

Erosion derivatives of burlap

0I
4 2) 4

11 14 11 1 4 18

2 11 15 1 1 12

3 1 13 6 11
4 4618 38

6 3

6 4 4 2 3

7 3 3 2) 2

8 3 13 2

Erosion derivatives of cork

1 7 8 5 7
2 5 6 4 25
3 51 5n 3
4 14 4 2 3
5 4 4 3 2_
6 4 4 2 2
7 3 3 1
8 3 .3 12 2

TABLE I
THE EROSION MAIRICES OF BEANS, BURLAP, AND CORK. THE COLUMNS
REPRESENT DIFFERENT ANGLES, WHILE iHE Rows REPRESENT DIFFERENT
SEGMENT LENGTHS. ALL RESULTS WERE NORMALIZED TO TIIE GRAY LEVEL

OF THE ORIGINAL IMAGE TO GIVE 100 IN THE FIRST Row

Eero-on of beans

7
x 7r ;37,
4 2 4

0 100 100 1(30 10()
89 86 90 87

2 79 75 81 75
3 70 65 73 _61
4 62 58 66 5 |

5 54 52 54 47

6 48 47 51 4(3
7 42 43 09 35
8 37 39 45 31

Erosion of burla)

I ) 7r T 3:7r
0 1)0 100 100I 100
1 86 79 83) 82
2 7251 64 75 67

3 66 5 69 56

4 60 43 66 1 8

5 25 37 63 43

ti 1 .33 6 31(
7 48 30 59 38
8 45 27 7 36

ELrosion of cork

02
4 2 4

0 100 100 10(3 100
1 93 92 95 93
2 88 86 91 88
3 83 81 88 85
4 79 77 86 82
5 75 73 83 80
6 71 62 81 78
7 68 66 80 77
8 65 63 78 75

The erosion matrix E was generated by eroding the images with
straight line segments. The line segments was of 4 directions and
8 lengths, totaling 32 different segments. The structure of the seg-
ments is displayed in Fig. 1, and erosion matrices of three different
textures are displayed in Table I.

Examination of the erosion matrices reveals that after erosion
with yardsticks of length eight (last row), the cork matrix preserves
the highest values among the three matrices. Since the dilation is a
local minimum operator, this phenomenon could be caused by the
low contrast of the cork, compared to the higher contrast of the
beans and burlap.

More useful information can be obtained from the erosion mat-
rices by using their derivatives relative to the yardstick. Such de-
scriptors are displayed in Table II, and are the columnwise deriva-
tives of the matrices in Table I. Examination of the burlap matrix
reveals strong directional effects with yardsticks of length 1-5 where
the derivative for the 0 and 7r/2 directions is much lower than that
for directions 7r/4 and 37r/4. For larger yardsticks, the directionality
disappears. This exhibits the usefulness of similar matrices in re-
vealing the interdependency between directionality and scale.

For discrimination purposes, the erosion matrices were com-
pared to each other. All 28 matrices (two for each texture) were
compared, and the distance computed between each pair. Partial
results of this comparison are displayed in Table III. Of the 28 ma-
trices, all but one were closest to the second matrix of the same
texture. The same matrix comparison has been performed for the
derivatives of the erosion matrices, giving perfect results. Using
the dilation matrices gave again one misclassification, different from
the one of the erosion matrices.

These descriptors are thus shown to be powerful for texture des-
crimination. For a given application, one has a choice of using any
of the many descriptors available, each descriptor exhibiting a dif-
ferent aspect of the texture.

VIII. CONCLUDING REMARKS

A new set of morphological image features is proposed, and is
shown experimentally to be of value in texture analysis. These fea-
tures measure combined effects of directionality and scale. It has
been shown that some previously used descriptors are special cases
of the general descriptors suggested here.

TABLE III
TEXiURE CLASSIFICATION. PARTIAL RESULTS OF COMPARING ALL 28
TEXTURE WINDOWS. ELEMENTS IN THE MATRIX ARE THE DIFFERENCES

BETWEEN THE RESPECTIVE EROSION MATRICES. IN THIS SUBSAMPLE, EVERY
TEXTURE HAS AN EROSION MATRIX MOST SIMILAR TO THE OTHER SAMPLE OF
THE SAME TEXTURE. IN [HE FULL COMPARISON, ONE TEXTURE SAMPLE

WAS MISCLASSIFIED. THE MINIMUM IN EACH COLUMN AND EACH
Row IS BARRED

|_______ |bearis1 burlapl [ corki mica paperl pelletsl pigl rafialI
beans2 5 13 21 12 14 8 18 15

buriap2 9 6 2i in in 16 19 18
cork2 25 26 1 11 8 28 3 7

mica2 14 17 11 1 6 17 8 6

paper2 17 21 7 6 1 20 4 5

pellets2 6 13 25 5 17 3 22 19
3)lg) 22 21 2. 8 6 2) 1 5

raflba2 17 19 7 5 , 20 6 1
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