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Abstract—This paper explores the manipulation of time in video editing, which allows us to control the chronological time of events.

These time manipulations include slowing down (or postponing) some dynamic events while speeding up (or advancing) others. When a

video camera scans a scene, aligning all the events to a single time interval will result in a panoramic movie. Time manipulations are

obtained by first constructing an aligned space-time volume from the input video, and then sweeping a continuous 2D slice (time front)

through that volume, generating a new sequence of images. For dynamic scenes, aligning the input video frames poses an important

challenge. We propose to align dynamic scenes using a new notion of “dynamics constancy,” which is more appropriate for this task than

the traditional assumption of “brightness constancy.” Another challenge is to avoid visual seams inside moving objects and other visual

artifacts resulting from sweeping the space-time volumes with time fronts of arbitrary geometry. To avoid such artifacts, we formulate the

problem of finding optimal time front geometry as one of finding a minimal cut in a 4D graph, and solve it using max-flow methods.

Index Terms—Video mosaicing, dynamic scene, video editing, graph cuts, panoramic mosaicing, time manipulations, space-time

volume.

Ç

1 INTRODUCTION

IN traditional video mosaicing, a panoramic still image is
created from video captured by a camera scanning a

scene. The resulting panoramic image shows simulta-
neously objects that were photographed at different times.
The observation that traditional mosaicing does not keep
the original time of events helps us to generate richer
representations of scenes.

Imagine a person standing in the middle of a crowded
square looking around. When requested to describe his
dynamic surroundings, he will usually describe ongoing
actions. For example, “some people are talking in the
southern corner, others are eating in the north,” etc. This
kind of description ignores the chronological order in which
each activity was observed, focusing on the activities
themselves instead.

The same principle of manipulating the progression of
time while relaxing the chronological constrains may be used
to obtain a flexible representation of dynamic scenes. It allows
us not only to postpone or advance some activities, but also to
manipulate their speed. Dynamic panoramas are indeed the
most natural extension of panoramic mosaicing. But, dy-
namic mosaicing can be used also with a video taken from a
static camera where we present a scheme to control the time
progress for individual objects. We will start the description
of temporal video manipulations in the case of a static camera,
before we will continue to the case of dynamic panorama.

In our framework, the input video is represented as an
aligned space-time volume. The time manipulations we
explore are those that can be obtained by sweeping a 2D slice

(time front) through the space-time volume, generating a new
sequence of images.

In order to analyze and manipulate videos of dynamic
scenes, several challenging problems must be addressed:
The first one is the stabilization of the input video sequence.
In many cases, the field of view of the camera includes
mostly dynamic regions, when even robust alignment
methods fail. The second problem is that time slices in the
space-time volume may pass through moving objects. As a
result, visual seams and other visual artifacts may occur in
the resulting movie. To reduce such artifacts, we use image-
based optimization of the time fronts which favors seamless
stitching. This optimization problem is formulated as one of
finding the minimal cut in a 4D graph.

1.1 Related Work

The most popular approach for the mosaicing of dynamic
scenes is to compress all the scene information into a single
static mosaic image. There are numerous methods for
dealing with scene dynamics in the static mosaic. Some
approaches eliminate all dynamic information from the
scene, as dynamic changes between images are undesired
[25]. Other methods encapsulate the dynamics of the scene
by overlaying several snapshots of the moving objects into
the static mosaic, resulting in a “stroboscopic” effect [15],
[12], [1]. In contrast to these methods that generate a single
still mosaic image, we use mosaicing to generate a dynamic
video sequence having a desired time manipulation.

The mechanism of slicing through a stack of images (which
is essentially the space-time volume) is similar to video-cubes
[16], which produces composite still images, and to panora-
mic stereo [20], [30]. Unlike these methods, dynamosaics are
generated by coupling the scene dynamics, the motion of the
camera, and the shape and the motion of the time front.

In [18], [9], two videos of dynamic textures (or the same
video with two different temporal shifts) are being stitched
seamlessly side by side, yielding a movie with a larger field
of view. In this work we are interested in more general time
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manipulations, in which the edited movies combine
information from many frames of the input sequence.

The basic idea of dynamosaicing was presented in an
earlier paper [22]. Since dynamosaicing is concerned with
dynamic scenes and since dynamic scenes present chal-
lenges both in alignment and in stitching, these topics are
expanded substantially in this paper. A different approach
toward seamless stitching in the case of dynamic textures
(with the ability to produce infinite loops) was suggested in
[2]. A discussion on the differences between the two
approaches appears in Section 4.

1.2 An Overview of Dynamosaicing

Given a sequence of input video frames I1; . . . ; IN , they are
first registered and aligned to a global spatial coordinate
system. A specialized alignment scheme for sequences of
dynamic scenes is described in Section 2, but other
stabilization methods can sometimes be used (e.g., [5], [24]).

Stacking the aligned video frames along the time axis
results in a 3D space-time volume V ðx; y; tÞ. Fig. 2 shows
two examples of 2D space-time volumes. For a static camera
the volume is a rectangular box, while a moving camera
defines a more general swept volume. In either case, planar
slices perpendicular to the t axis correspond to the original
video frames. A static scene point traces a line parallel to the
t axis (for a static or panning camera), while a moving point
traces a more general trajectory.

Sweeping the aligned space-time volume with various
evolving time fronts can be used to manipulate the time
flow of the input video in a variety of ways. A particularly
interesting case is the one of creating dynamic panoramas
with the time front shown in Fig. 6b. The time manipula-
tions that may be obtained with the proposed scheme are
discussed in Section 3.

Images are generated from a time front sweeping the
space-time volume by interpolation. Simple interpolation as
commonly used in mosaicing [21], [13] can produce visually
appealing results in many cases, but the existence of moving
objects in the scene (such as walking people) requires a special
care to avoid visible seams in the output videos. This is done
by modifying the time front to avoid seams inside moving
objects in accordance to the minimization of an appropriate
cost function. This stage is described in Section 4.

2 VIDEO ALIGNMENT USING VIDEO

EXTRAPOLATION

An initial task that must be carried out before mosaicing is
motion analysis for the alignment of the input video frames.
Many motion analysis methods exist, some even offer robust
motion computation that overcomes the presence of moving
objects in the scene [5], [24], [7]. However, scenes which
consist mostly of dynamic scenes are still problematic for
existing methods. There are a few methods that address the
stabilization of dynamic scenes [11], [26], but they address
stochastic textures and cannot handle moving objects.

Unlike computer motion analysis, the human eye can
easily distinguish between the motion of the camera and the
internal dynamics in the scene. For example, when viewing
a video of a sea, we can easily distinguish between the
motion of the camera and the dynamics of the waves. The
key to this human ability is an assumption regarding the
simplicity and consistency of the scenes and of their

dynamics: It is assumed that when a video is aligned, the
dynamics in the scene become smoother and more pre-
dictable. This allows humans to track the motion of the
camera even when no apparent registration information
exists. We therefore try to replace the “brightness constancy
assumption” with a “dynamics constancy assumption.”

This dynamics constancy assumption is used as a basis for
our registration algorithm: Given a new frame of the
sequence, it is aligned to best fit the extrapolation of the
preceding frames. The extrapolation is done using video
synthesis techniques [28], [10], [18], and the alignment is done
using traditional methods for parametric motion computa-
tion [5], [14]. Alternating between video extrapolation and
image alignment results in a registration algorithm which can
handle complex dynamic scenes, having both dynamic
textures and moving objects.

2.1 Dynamics Constancy Assumption

Let V ðx; y; tÞ be a space-time volume, consisting of frames
I1; . . . ; IN . The “dynamics constancy” assumption implies
that when the volume is aligned (e.g., when the camera is
static), we can estimate a large portion of each image In ¼
V ðx; y; nÞ from the preceding frames I1; . . . ; In�1. We will
denote the space-time volume constructed by all the frames
up to the kth frame by V ðx; y; k!Þ. The “dynamics constancy”
assumption states we can obtain the nth frame by extrapolat-
ing from the preceding n� 1 frames,

Inðx; yÞ ¼ V ðx; y; nÞ � Extrapolate V x; y; n� 1
���!� �� �

: ð1Þ

Extrapolate is a nonparametric extrapolation function,
estimating the value of each pixel in the new frame given
the preceding space-time volume.

When the camera is moving, the image transformation
induced by the camera motion should be added to this
equation. Assuming that all frames in the space time volume
V ðx; y; n� 1

���!Þ are aligned to the coordinate system of In�1, the
new frame In can be approximated by

In � Tn Extrapolate V x; y; n� 1
���!� �� �� �

: ð2Þ

Tn is a 2D image transformation between frames In�1 and In
and is applied on the extrapolated image. Applying the
inverse transformation T�1

n on both sides of the equation
gives

T�1
n ðInÞ � Extrapolate V x; y; n� 1

���!� �� �
: ð3Þ

This relation is used in our registration scheme.

2.2 Video Extrapolation

Our video extrapolation is closely related to dynamic texture
synthesis [8], [3]. However, dynamic textures are character-
ized by repetitive stochastic processes and do not apply to
more structured dynamic scenes, such as walking people. We
therefore prefer to use nonparametric video extrapolation
methods [28], [10], [18]. These methods assume that each
small space-time block has likely appeared in the past and,
thus, the video can be extrapolated using similar blocks from
earlier video portions. This is demonstrated in Fig. 3.

Assume that the aligned space time volume V ðx; y; n� 1
���!Þ

is given, and a new frame Ipredn is to be estimated. For each pair
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of space-time blocks Wp and Wq, we define the SSD (sum of
square differences) to be:

dðWp;WqÞ ¼
X
ðx;y;tÞ
ðWpðx; y; tÞ �Wqðx; y; tÞÞ2: ð4Þ

As shown in Fig. 3, for each pixel ðx; yÞ in frame In�1 we
define a 3D space-time block Wx;y;n�1 whose spatial center is
at pixel ðx; yÞ and whose temporal boundary is at time n� 1
(frames which were not aligned yet can not be used). We
then search in the space time volume V ðx; y; n� 2

���!Þ for a
space-time block with the minimal SSD to block Wx;y;n�1.
Let Wp ¼W ðxp; yp; tpÞ be the most similar block, spatially
centered at pixel ðxp; ypÞ and temporally bounded by tp. The
value of the extrapolated pixel Ipredn ðx; yÞ will be taken from
V ðxp; yp; tp þ 1Þ, the pixel that appeared immediately after
the most similar block. This scheme follows the “dynamics
constancy” assumption: Given that two different space time
blocks are similar, we assume that their continuations are
also similar. While a naive search for each pixel may be
exhaustive, the scheme can be significantly accelerated by
focusing on a smaller set of image features. Additional
modifications can further accelerate the process [23].

We used the SSD (sum of squared differences) as a
distance measure between two space-time blocks, but other
distance measures can be used such as the sum of absolute
differences or more sophisticated measures [28]. We did not
notice a substantial difference in registration results when
changing the distance measure.

2.3 Alignment with Video Extrapolation

Alignment with video extrapolation can be described by the
following steps:

1. Assume that the motion of the first K frames has
already been computed, and let n ¼ K þ 1.

2. Align all frames in the space time volume

V ðx; y; ðn� 1Þ
����!

Þ to the coordinate system of Frame In�1.
3. Estimate the next new frame by extrapolation from

the previous frames

Ipredn ¼ Extrapolate V x; y; ðn� 1Þ
����!� �� �

:

4. Compute the motion parameters (the global
2D image transformation T�1

n ) by aligning the
new input frame In to the extrapolated frame Ipredn .

5. Increase n by 1 and return to Step 2. Repeat until
reaching the last frame of the sequence.

The global 2D image alignment in Step 2, as well as the
initialization step, are performed using direct methods for
parametric motion computation [5], [14]. We usually used a
motion model having image rotation and translation, which
gave good results in the case of rotating cameras. Objects
with depth parallax can be treated as moving objects when
the camera motion varies slowly.

The initialization, in which the motion of the firstK frames
is computed, is done as follows: The entire video sequence is
scanned to find K consecutive frames which are best suited
for traditional alignment methods, e.g., frames where motion
computation converges and having the smallest residual
error. We used Lucas-Kanade alignment on blurred frames
[5]. From theseK frames, video extrapolation continues in the
positive and negative time directions.

2.4 Masking Unpredictable Regions

Real scenes always have a few regions that can not be
predicted. For example, people walking in the street often
change their behavior in an unpredictable way, e.g., raising
their hands or changing their direction. In these cases, the
video extrapolation will fail, resulting in outliers. The
alignment can be improved by masking out unpredictable
regions.

This is done as follows: After the new input image In is
aligned with the extrapolated image Ipredn which estimated it,
the color difference between the two images is computed.
Each pixel ðx; yÞ is masked out if the color difference in its
neighborhood is higher than some threshold r (We usually
used r ¼ 1.) P

ðIn � Ipredn Þ2P
I2
x þ I2

y

> r: ð5Þ

The predictability mask is used in the alignment of frame
Inþ1 to frame Iprednþ1 .

2.5 Fuzzy Estimation

The alignment may be further improved by using fuzzy
estimation.This isdonebykeepingnotonly thebestcandidate
for extrapolating each pixel, but the best S candidates (we
used up to five candidates for each pixel). The multiple
estimations for extrapolating each pixel can be combined
using a summation of the error terms

Tn ¼ arg min
T

X
x;y;s

�x;y;sðT�1
n ðInÞðx; yÞ � Ipredn ðx; y; sÞÞ2

( )
; ð6Þ

where Ipredn ðx; y; sÞ is the sth candidate for the value of the
pixel Inðx; yÞ. The weight �x;y;s of each candidate is based on
the difference of its corresponding space-time cube from the
current one as defined in (4) and is given by

�x;y;s ¼ e
�dðWp;Wq Þ2

2�2 :

We almost always used 7� 7� 7 space-time cubes and � ¼
1=255 to reflect the noise in the image gray levels. Note that
the weights for each pixel do not necessarily sum to one and,
therefore, the registration mostly relies on the predictable
regions. Also, other ways to combine different predictions are
also possible.

2.6 Handling Alignment Drift

Alignment based on video extrapolation follows Newton’s
First Law: An object in uniform motion tends to remain in that
state. If we initialize our registration algorithm with a small
motion relative to the real camera motion, our method will
continue this motion for the entire video. In this case, the
background will be handled as a slowly moving object. This is
not a bug in the algorithm, but rather a degree of freedom
resulting from the “dynamics constancy” assumption.

This degree of freedom can be eliminated by incorporating
a prior bias, assuming that part of the scene is static. This is
done by adding a new predictive static candidate S þ 1 at
every pixel (by simply copying the value of the previous
frame). In our experiments, we gave a small weight of 0.1 to
the static candidate relative to the total weight of the pixel. In
this way, we have prevented the drift without effecting the
accuracy of the motion computations.
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2.7 Examples

The sequence shown in Fig. 4 was used by [26] and by [11]
as an example for their registration of dynamic textures.
The global motion in this sequence is a horizontal
translation and the true displacement can be computed
from the motion of one of the flowers. The displacement
error reported by [26] was 29.4 percent of the total
displacement between the first and last frames, while the
error of our methods was only 1.7 percent.

Fig. 5 shows an examples of video registration using
extrapolation in a challenging scene. In this scene, masking
out the unpredictable regions (parts of the falls and the
fumes), as described in Section 2.4, was important for
obtaining a good registration.

3 EVOLVING TIME FRONTS

3.1 Mosaicing by an Evolving Time Front

Image mosaicing is the process of creating novel images by
selecting patches from the frames of the input sequence and
combining them to form a new image ([21], [13], [1] are just a
few examples of the wide literature on mosaicing). It can be
described by a functionMðx; yÞ that maps each pixel ðx; yÞ in
the output imageS to the input frame from which this pixel is
taken and its location in that frame. In this work, we focus
only on temporal warping, that is Sðx; yÞ ¼ V ðx; y;Mðx; yÞÞ,

where V ðx; y; tÞ is the aligned space-time volume. This
function can be represented by a continuous slice (time slice)
in the space-time volume as illustrated in Fig. 6. A time slice
determines the mosaic patches by its intersection with the
frames of the original sequence at the original discrete time
values (shown as dashed lines in Fig. 6).

To get a desired time manipulation we specify an
evolving time front: A free-form surface that deforms as it
sweeps through the space-time volume. Taking snapshots
of this surface at different times results in a sequence of
time slices that are represented by temporal-shift functions
Skðx; yÞ ¼ V ðx; y;Mkðx; yÞÞ.

3.2 What Time Manipulations Can Be Obtained?

In this section, we describe the manipulation of chronological
time versus local time using dynamosaicing. We first describe
the dynamic panoramas, where the chronological time is
eliminated. This application inspired this work. We then
show other applications where a video should be edited in a
way that changes the chronological order of events in the
scene. The realistic appearance of the movie is kept by
preserving the time flow locally, even when the global
chronological time is being changed.

3.2.1 Panoramic Dynamosaicing

Panoramic dynamosaics may be generated using the
approach described above with the time slices shown in
Fig. 6b. Assuming that the camera is scanning the scene from
left to right, the first mosaic in the sequence will be
constructed from strips taken from the right side of each
input frame, showing regions as they first appear in the field
of view (see Fig. 7). The last mosaic in the resulting sequence
will be the mosaic image generated from the strips on the left,
just before a region disappears from the field of view.
Between these two marginal slices of the space-time volume,
we take intermediate slices, smoothly showing regions from
their appearance to their disappearance. Each of the mosaic
images is a panoramic image and the resulting movie is a
dynamic panorama in which local time is preserved. Fig. 1
shows a single panorama from such a movie.

Panoramic dynamosaics represent the elimination of the
chronological time of the scanning camera. Instead, all
regions appear simultaneously according to the local time
of their visibility period: From their first appearance to their
disappearance. But, there is more to time manipulation than
eliminating the chronological time.
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Fig. 1. Dynamosaicing can create dynamic panoramic movies of a scene. This figure shows a single frame in a panoramic movie, generated from a

video taken by a panning camera (420 frames). When the movie is played (see www.vision.huji.ac.il/dynmos), the entire scene comes to life, and all

water flows down simultaneously.

Fig. 2. Two-dimensional space-time volumes: Each frame is repre-

sented by a 1D row and the frames are aligned along the global x axis.

(a) A static camera defines a rectangular space-time region, while (b) a

moving camera defines a more general swept volume.



Figs. 1 and 8 show examples of panoramic dynamosaics

for different scenes. To generate the panoramic movies

corresponding to Figs. 1 and 8, simple slices, as the one

demonstrated in Fig. 6b, were used. Since it is impossible to

visualize the dynamics effects in these static images, we urge

the reader to examine the video clips at www.vision.huji.

ac.il/dynmos.

3.2.2 Advancing Backward in Time

This effect is best demonstrated with the waterfalls sequence

(Fig. 1), which was scanned from left to right by a video

camera. If we want to reverse the scanning direction, we can

simply play the movie backward. However, playing the
movie backward will result in the water flowing upward.

At first glance, it seems impossible to play a movie
backward without reversing its dynamics. Yet, this can also
be achieved by manipulating the chronological time, while
preserving the local dynamics. Looking at panoramic dyna-
mosaics, one can claim that all objects are moving simulta-
neously and the scanning direction does not have any role.
Thus, there must be some kind of symmetry, which enables us
to convert the panoramic movie into a scanning sequence in
which the scanning is at any desired direction and speed.

Indeed, the simple slicing scheme shown in Fig. 9 reverses
the scanning direction while keeping the dynamics of the
objects in the scene. In the water falls example, the scanning
direction is reversed, but the water continues to flow down!

3.2.3 Time Manipulations with Planar Time Fronts

The different types of time manipulations that can be obtained
withplanar timefrontsaredescribedin Fig.10.Thetimefronts
always sweep “downward” in the direction of positive time at
the original speed to preserve the original local time.
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Fig. 3. Video extrapolation using a space-time block search. Both motion and intensity variation are accounted for. (a) For all blocks bordering on
time ðn� 1Þ, we search for the best matching block in the space-time volume. Once such a block is found, the pixel in front of this block is copied to
the corresponding position in the extrapolated frame Ipnðx; yÞ. (b) The new frame In is not aligned to Frame In�1, but to the frame that has been
extrapolated from the preceding space-time volume. This extrapolation is based on image features with repetitive behavior, such as the ones shown
in this figure.

Fig. 4. A sequence of moving flowers taken by a panning camera. See
http://www.robots.ox.ac.uk/~awf/iccv01/. Our motion computation with
video extrapolation gave an accumulated translation error of 1.7 percent
between the first and last frames, while [26] reported an accumulated
error of 29.4 percent.

Fig. 5. (a) This waterfall sequence poses a challenging task for
registration, as most of the scene is covered with falling water. The
video was stabilized using video extrapolation (using a rotation and
translation motion model). (b) An average of 40 frames in the stabilized
video is shown to evaluate the quality of the stabilization. The dynamic
regions are blurred only in the flow direction, while the static regions
remain relatively sharp after averaging.

Fig. 6. Slicing the space-time volume: (a) Snapshots of an evolving time

front surface produce a sequence of time slices; each time slice is

mapped to produce a single output video frame. (b) The particular time

flow for generating dynamic panoramas from a panning camera.



The different time fronts, as shown in Fig. 10, can vary both
in their angles relative to the x axis and in their lengths.
Different angles result in different scanning speeds of the
scene. For example, maximum scanning speed is achieved
with the panoramic slices. Indeed, in this case the resulting
movie is very short, as all regions are played simultaneously.
(The scanning speed should not be confused with the
dynamics of each object, which preserve the original speed
and direction.)

The field of view of the resulting dynamosaic frames may
be controlled by cropping each time slice as necessary. This
can be useful, for example, when icreasing the scanning speed
of the scene while preserving the original field of view.

3.3 Temporal Video Editing

Consider a space-time volume generated from a video of a
dynamic scene captured by a static camera (as in Fig. 2a).

The original video may be reconstructed from this volume
by sweeping forward in time with a planar time front
perpendicular to the time axis. We can manipulate dynamic
events in the video by varying the shape and speed of the
time front as it sweeps through the space-time volume.

Fig. 11 demonstrates two different manipulations of a
video clip capturing the demolition of a stadium. In the
original clip the entire stadium collapses almost uniformly.
By sweeping the time front as shown in Fig. 11c the output
frames use points ahead in time towards the sides of the
frame, causing the sides of the stadium to collapse before the
center (Fig. 11a). Using the time front evolution in Fig. 11d
produces a clip where the collapse begins at the dome and
spreads outward, as points in the center of the frame are taken
ahead in time. It should be noted that Agarwala et al. [1] used
the very same input clip to produce still time-lapse mosaic
images where time appears to flow in different directions
(e.g., left-to-right or top-to-bottom). In contrast, our approach
generates entire new dynamic video clips.
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Fig. 7. Input frames are stacked along the time axis to form a space-time
volume. Given frames captured with a video camera panning clockwise,
panoramic mosaics can be obtained by pasting together vertical strips
taken from each image. Pasting together strips from the right side of the
images will generate a panoramic image where all regions appear as
they first enter the sequence, regardless of their chronological time.

Fig. 8. A dynamic panorama of a tree whose leaves are blowing in the
wind. (a) Three frames from the sequence (out of 300 frames), scanning
the tree from the bottom up. (b) A single frame from the resulting
dynamosaic movie.

Fig. 9. (a) A slicing scheme that reverses the scanning direction using a
time front whose slope is twice the slope of the occupied space-time
region ðtan � ¼ 2 tan�Þ. The width of the generated mosaic image is w,
the same as that of the original image. Sweeping this time front in the
positive time direction (down) moves the mosaic image to the left, in the
opposite direction to the original scan. However, each region appears in
the same relative order as in the original sequence: ua first appears in
time tk, and ends in time tl. (b) Two frames from an edited movie. The
scanning direction of the camera was reversed, but the water continues
to flow down. The entire video appears at www.vision.huji.ac.il/dynmos.

Fig. 10. The effects of various planar time fronts. While the time front

always sweeps in a constant speed in the positive time direction, various

time front angles will have different effects on the resulting video.



Another example is shown in Fig. 12. Here, the input is a
video clip of a swimming competition, taken by a stationary
camera. By offsetting the time front at regions of the space-
time volume corresponding to a particular lane one can
speed up or slow down the corresponding swimmer, thus
altering the outcome of the competition at will. The shape of
the time slices used to produce this effect is shown as well.

In this example, we took advantage of the fact that the
trajectories of the swimmers are parallel. In general, it is not
necessary for the trajectories to be parallel, or even linear, but

it is important that the tube-like swept volumes that
correspond to the moving objects in space time do not
intersect. If they do, various anomalies, such as duplication of
objects, may arise.

4 SEAMLESS DYNAMOSAICING USING GRAPH-CUTS

The mosaicing described in the previous section may result
in visual artifacts from seams at the middle of moving
objects. An analysis of “Doppler Effect” distortions for
objects moving in the same direction of camera motion is
described in [22]. In our experiments, we found out that for
dynamic textures (such as flowing water or trees), the
simple slicing scheme described in the previous section was
sufficient to create impressive time manipulations without
noticeable artifacts. Yet, when longer objects appeared in
the scene, such as walking people, the artifacts became
much more apparent. Even minor time manipulations may
cause distortions due to stitching inside moving objects,
resulting in a visually disturbing seams. See Fig. 17a.
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Fig. 11. (a) and (b) are frames from two video clips, generated from the
same original video sequence with different time flow patterns. (c) and
(d) show several time slices superimposed over a x� t slice passing
through the center of the space-time volume. The full video clips are
available at www.vision.huji.ac.il/dynmos.

Fig. 12. Who is the winner of this swimming competition? Temporal editing
enables time to flow differently at different locations in the video, creating
new videos with any desired winner, as shown in (a) and (b). (c) and (d)
show several time slices superimposed over a y� t slice passing through
the center of the space-time volume. In each case, the time front is offset
forward over a different lane, resulting in two different “winners.” The full
video clips are available at www.vision.huji.ac.il/dynmos.

Fig. 13. Two types of edges are used in the graph-cut formulation of the
mosaicing problem: “Shape” edges and “Stitching” edges. The “Shape”
edges penalize deviations from the ideal shape of the time front, while
(a) the “Stitching” edges (marked with circles) encourage spatial
consistency for the case of a single time front, and (b) both spatial
and temporal consistency in the case of an evolving time front.

Fig. 14. (b) A single time slice in the space-time volume can be
represented as a cut in a 3D graph corresponding to this volume. (a) A
top view of such a cut is shown. With the proposed cost, the cut can be
minimized by maximizing the flow from p (Source vertex) to q (Sink
vertex).



The distortions of objects and the visual seams can be
significantly reduced by taking into consideration that
stitching inside dynamic regions should be avoided. In
order to do so, we define a cost function whose minimiza-
tion determines the optimal time slice surface. This cost
function balances between the minimization of a “stitching”
cost and the maximization of the similarity of the time front
to its desired ideal shape.

A common way to represent and solve such problems is
by multilabel graphs, where the labels of each vertex denote
all possible time shifts for that pixel [1], [2]. Unfortunately,
the general formulation results in an NP-hard problem,
whose approximation requires intensive computations, such
as using loopy belief propagation [27] or iterative graph-cuts
[6]. This becomes prohibitive for the case of video editing,
where the cost is minimized over a 3D graph. In [2], [29], the
computational time was reduced by assuming that all the
time fronts and all the pixels in a single column have the
same time-shift, resulting in a 1D problem which can be
solved using dynamic programming. In [2], the solution was
further enhanced by passing several candidates for each
pixel and applying the full optimization to those candidates.
This approach can handle dynamic textures or objects that
move horizontally but may fail for objects having a more
general motion.

We take a different approach which can be implemented
without reducing the dimensionality of the problem. In our
method, we assume that the desired time front is continuous
in the space-time volume, i.e., neighboring pixels have similar
temporal shifts. Based on this assumption, we formulate the
problem as the one of minimizing a cost function defined on a
4D graph. With this formulation, the problem can be solved in
polynomial time as shown in the next section.

It is interesting to compare dynamosaicing with the PVT
approach [2]. The PVT approach, with its ability to have
discrete jumps in time, is most effective with repetitive
stochastic textures and with its ability to generate infinite
dynamics. When the scene has moving objects each having
a given structure, e.g., moving people, discrete time jumps
may result in unacceptable distortions and discontinuities.
In this case, dynamosaicing with the continuous time fronts
is more applicable. Continuous time fronts are also more
robust in cases of error in camera motion. In addition, while
the PVT approach perform best with camera that jumps
from one stable position to another stable position,
dynamosaicing works best with smooth camera motion.

4.1 A Single Time Front

In this section, we will examine the creation of a single
seamless image, while keeping the general shape of the
ideal time front that corresponds to the desired time-
manipulation. Movie generation will be addressed later.

We assume that the input sequence has already been
aligned to a single reference frame and stacked together along
the time axis to form an aligned space-time volume V ðx; y; tÞ.
For simplicity, we will also assume that all the frames after
alignment are of the same size. Pixels outside the field of view
of the camera will be marked as impossible.

The output image S is created from the input movie
according to a time front which is represented by a function
Mðx; yÞ. The value of each pixel Sðx; yÞ is taken from
V ðx; y;Mðx; yÞÞ in the aligned space-time volume. To
produce a seamless mosaic, we modify its ideal shape (e.g.,

as computed in Section 3) qaccording to the moving objects in
the scene. We define a cost function on the time shiftsMðx; yÞ.
The general form of this cost function is

EðMÞ ¼ EshapeðMÞ þ �EstitchðMÞ: ð7Þ

The term Eshape attracts the time front to follow its
predefined shape, the term Estitch works to minimize the
stitching artifacts, and � balances between the two. (We
used � ¼ 0:3 when gray values were between 0-255.) When
the image dynamics is only a dynamic texture, such as
water or smoke, � should be small.

To create panoramas, Eshape can constrain the time front
to pass through the entire sequence, yielding a panoramic
image. For more general time manipulations, we can use the
time fronts described in Section 3.2 as shape priors. Let M 0

be the ideal time front (for example, a time front determined
by the user) then Eshape may be defined as

EshapeðMÞ ¼
X
x;y

kMðx; yÞ �M 0ðx; yÞkr; ð8Þ

where r � 1 can be any norm. We usually used the l1 norm
and not the l2 norm in order to obtain a robust behavior of
the time front, making it follow the original time front
unless it cuts off parts of a moving object.

The second term, Estitch addresses the minimization of
the stitching artifacts. It is based on the cost between each
pair of neighboring output pixels ðx; yÞ and ðx0; y0Þ. Without
loss of generality, we assume that Mðx; yÞ �Mðx0; y0Þ

Espatialðx; y; x0; y0Þ ¼
XMðx0;y0Þ�1

k¼Mðx;yÞ

1

2
kV ðx; y; kÞ � V ðx; y; kþ 1Þk2

þ 1

2
kV ðx0; y0; kÞ � V ðx0; y0; kþ 1Þk2:

ð9Þ

This cost is zero when the two adjacent points ðx; yÞ and
ðx0; y0Þ come from the same frame ðMðx; yÞ ¼Mðx0; y0ÞÞ.
When Mðx; yÞ 6¼Mðx0; y0Þ, this cost is zero when the colors
of ðx; yÞ and ðx0; y0Þ do not change and it increases based on
the dynamics at those pixels.

The global stitching cost for the time front M is given by

EstitchðMÞ ¼
X
ðx;yÞ

X
ðx0;y0Þ2Nðx;yÞ

Espatialðx; y; x0; y0Þ; ð10Þ

where:

. Nðx; yÞ are the pixels in the neighborhood of ðx; yÞ.

. Espatialðx; y; x0; y0Þ is the stitching cost for each pair of
spatially neighboring pixels ðx; yÞ and ðx0; y0Þ, as
described in (9).

Note that the cost in (9) differs from traditional stitching
costs (for example, [1]) where there is no summation, but
only the two time-shifts Mðx; yÞ and Mðx0; y0Þ are used. The
cost in (9) is reasonable when the time front is continuous,
which means that if ðx; yÞ and ðx0; y0Þ are neighboring pixels,
their source frames Mðx; yÞ and Mðx0; y0Þ are close in time.
The main advantage of the cost in (9) is that its global
minimum can be found in polynomial time using a min-cut
as will be described below.

When the camera is moving, some pixels in the space-
time volume vðx; y; tÞmay not be in the field of view. We do
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not assign vertices to such pixels, therefore, only pixels in
the field of view are used in the panoramic image.

4.2 A Single Time Front as 3D Min-Cut

A 3D directed graph G is constructed from the aligned
space-time volume, such that each location ðx; yÞ at frame k
is represented by a vertex ðx; y; kÞ. A cut in this graph is a
partitioning of the nodes into two sets P and Q. Further,
assume that two vertices, the source p 2 P and the sink
q 2 Q, have been distinguished. Given a time front Mðx; yÞ,
the corresponding cut in G is defined as follows:

ðx; y; kÞ 2 P ifMðx; yÞ � k
ðx; y; kÞ 2 Q otherwise:

�
ð11Þ

In the other direction, given a cut fP;Qg, we define Mðx; yÞ
as mink ðx; y; kÞ 2 Qf g. A cost of a cut fP;Qg is defined to beP

u2P;v2Q wðu; vÞ, where wðu; vÞ is the weight of the edge
u! v. We will assign weights to edges between neighbor-
ing vertices in G such that the cost of each cut in G will be
equal to the cost of the corresponding time front Mðx; yÞ.

Before we turn to describing the edge weights reflecting
Estitch and Eshape, we need to ensure that there is a
1:1 correspondence between cuts in G and assignment
of M. To do so, we set infinite weights to the edges
ðx; y; kþ 1Þ ! ðx; y; kÞ, and to the edges ðx; y;NÞ ! q.
These edges prevents cuts in which ðx; y; kþ 1Þ 2 Q but
ðx; y; kÞ 2 P , which are the only cuts that do not corre-
spond to assignments of M.

4.2.1 Assigning Weights to the Graph Edges

The cost term Eshape measures the distance to the ideal shape
of the time front. As seen in (8), this cost consists of terms
which depend on the assignment of single variables
ðMðx; yÞÞ. To reflect this cost term, we add directed edges
from ðx; y; kÞ to ðx; y; kþ 1Þ with the weights kkþ 1�
M 0ðx; yÞkr (M 0 corresponds to the prior time front, r � 1 is a

norm). We also add edges from the Source p to ðx; y; 1Þ with
the weights k1�M 0ðx; yÞkr. The sum of weights in the each
cut givesEshape for the corresponds assignment of time front.

To take into account the stitching costEstitch, we add edges
(in both directions) between each adjacent pair of pixels ðx; yÞ
and ðx0; y0Þ and each k with the following weight:

1

2
kV ðx; y; kÞ � V ðx; y; kþ 1Þk2

þ 1

2
kV ðx0; y0; kÞ � V ðx0; y0; kþ 1Þk2:

These edges are shown in Fig. 13. It can be seen that the
given a cut, the sum of weights of these edges equals to the
stitching cost given in (9). Note, however, that this
equivalence is not true for traditional stitching costs (used,
for example, in [2], [1]) but only for our cost function.

4.2.2 Computing the Best Assignment M

The minimal cut in G can be computed in polynomial time
using min-cut [17]. From the construction of the graph, the
cost of a cut in G equals to the corresponding cost defined
on the original 2D graph. Therefore, the best assignment of
time slice M can be found efficiently using a min-cut, as
shown in Fig. 14.

It should be noted that although it seems as if the
complexity of the problem was increased by the conversion
from a 2D problem to a 3D one, the total number of labels in the
original 2D formulation equals to the number of vertices inG.

4.3 Evolving Time Front as a 4D Min-Cut

To create a new movie (of length L), we have to sweep the
space-time volume with an evolving time front, defining a
sequence of time-slices M1; . . . ;ML. This is shown in Fig. 15.
Onewaytocontrol thetimeslices isusingtheidealshapeof the
time front as a shape prior. In this case, each time slice Ml is
computed independently according to the ideal shape of the
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Fig. 15. An evolving time front is computed using a 4D graph which consists of L instances of the 3D graph used to compute a single time slice.

(a) Sweeping the space-time volume with a stationary time front is equivalent to setting a shift of 1 between consecutive time slices. (b) When the

time front evolves, the shift between consecutive time slices varies. Temporal edges between the 3D graphs may be added to enforce temporal

consistency.



corresponding time slice and according to the stitching
constraints, as was described in the previous section. An
example for a time manipulation that can be obtained in this
way is shown in Fig. 16. The ideal time front evolved in a way
thatmadenearbyregions movefaster,while theexact shapeof
the each time slice was determined using a min-cut to avoid
visible seams.

When the time manipulation aims to preserve the
dynamics of the original movie (as is the case in producing
panoramic movies), a better control can be obtained by
adding temporal consistency constraints that avoids
“jumps” in the output sequence, and minimizing the cost
for all the time-slices at once. We first describe the modified
stitching cost that involves also temporal consistency and
later show how it may be solved using min-cut.

4.3.1 Preserving Temporal Consistency

Temporal consistency can be encouraged by setting for each

pair of temporally neighboring pixels ðx; y; tÞ and ðx; y; tþ
1Þ the following cost (assuming that Mtðx; yÞ �Mtþ1ðx; yÞ):

Etemporalðx; y; tÞ¼
XMtþ1ðx;yÞ�1

k¼Mtðx;yÞþ1

1

2
kV ðx; y; kÞ�V ðx; y; kþ1Þk2

þ 1

2
kV ðx; y; kþ 1Þ � V ðx; y; kþ 2Þk2:

ð12Þ

This formulation reflects temporal consistency in both past

and future. This cost is zero for Mtþ1ðx; yÞ ¼Mtðx; yÞ þ 1, an

assignment which preserves the temporal relations of the
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Fig. 16. Time manipulations using min-cut: The shape of the ideal time front was roughly determined so as to accelerate close-by regions. (a) One
frame from the output movie when using the ideal time front. (b) Minimizing the energy function in (7) using a min-cut, made most visible seams
disappear. (c) and (d) The differences are better seen in the magnified versions. Some cut-offs are circled. (e) and (f) The seams of the time slices
used to generate the frames shown in (a) and (b) are marked on top of the frames. The seams in the left figure are uniformly distributed, as the ideal
shape of each time slice was set to be linear. Note how the min-cut avoids stitching inside the swimmers. (See www.vision.huji.ac.il/dynmos for the
full video clip.)



original movie. The global stitching cost for the time frontM is
now given by

EstitchðMÞ ¼
X
l

EstitchðMlÞ þ
X
ðx;y;tÞ

Etemporalðx; y; tÞ; ð13Þ

where EstitchðMlÞ is the global spatial stitching cost defined
in (10).

4.3.2 Computing the Evolving Time Front Using Min-Cut

As was done for the case of a single time front, the cost
defined for the evolving time front can be formulated as a cut
in a directed graph G0. The 4D graph G0ðx; y; k; lÞ is
constructed from the aligned space-time volume, such that
each location ðx; yÞ at input frame k and output frame l is
represented by a vertex. A cut fP;Qg that corresponds to the
set of time slices M1ðx; yÞ; . . . ;MLðx; yÞ is defined as follows:

ðx; y; k; lÞ 2 P ifMlðx; yÞ � k
ðx; y; k; lÞ 2 Q otherwise:

�
ð14Þ

As the 4D graph G0 is very similar to L instances of the

3D graph G (described in the previous section), we describe

only the modifications that should be done to obtain G0. To

reflect the modified stitching cost given in (13), the edges (in

both directions) between each pair of temporal neighbors

ðx; y; k; lÞ and ðx; y; kþ 1; lþ 1Þ are assigned with the follow-

ing weights:

1

2
kV ðx; y; kÞ � V ðx; y; kþ 1Þk2

þ 1

2
kV ðx; y; kþ 1Þ � V ðx; y; kþ 2Þk2:

ð15Þ

The minimal cut of this graph corresponds to a set of

time-slices M1; . . . ;ML which implement the desired time

manipulation while keeping a seamless movie.

4.3.3 Flow-Based Temporal Consistency

A variant of this algorithm is to enforce temporal consistency

by assigning weights to edges between pixels according to

the optical flow at that pixels, instead of using temporal

consecutive pixels. (See [4] regarding methods to compute

optical flow).
Let ðx; yÞ be a pixel at the kth frame. Let ðx0; y0Þ be the

corresponding location at frame k� 1 according to the flow

from frame k to frame k� 1, and let ðx00; y00Þ be the

corresponding location at frame kþ 1 according to the flow

from frame k to frame kþ 1.
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Fig. 17. A dynamic panorama of a crowd looking at a street performer. The performer was swaying quickly forward and backward. (a) Therefore,
linear time front resulted in a distorted dynamic panorama. The distortions disappear using the 4D min-cut as shown in (b). The seams for that image
are marked in (c).



To enforce temporal consistency we do the following:

. Edges ðx; y; k; lÞ ! ðx0; y0; k� 1; l� 1Þ are assigned
with the weights:

1

2
kV ðx0; y0; kþ 1Þ � V ðx0; y0; kÞk2:

. Edges ðx; y; k; lÞ ! ðx00; y00; kþ 1; lþ 1Þ are assigned
with the weights:

1

2
kV ðx00; y00; kþ 2Þ � V ðx00; y00; kþ 1Þk2:

The reason we had to separate between the two directions
(“past” edges versus “future” edges) is that the forward
flow and the inverse flow are not necessarily the same.

The advantage of the flow-based temporal consistency
over the simpler approach is that the older one encourages
the time fronts to remain static unless necessary, while the
optical-flow-based approach encourages the time fronts to
evolve in a more natural way according to the flow in the
scene.

4.4 Accelerations

The memory required for saving the 4D graph may be too
large. For example, the input movie that was used to
create the panoramic movie shown in Fig. 18 consists of
1,000 frames, each of size 320� 240. Constructing the
graph would require prohibitive computer resources. We
therefore suggest several modifications that reduce both
the memory requirements and the runtime of the
algorithm:

. We solve only for a sampled set of time slices, giving
a sparser output movie, and interpolate the stitching
function between them. (This acceleration is possible
when the motion in the scene is not very large.)

. We can constrain each pixel to come only from a
partial set of input frames. This is very reasonable
for sequences taken from a video, where their is a lot
of redundancy between consecutive frames. (It is
important though to sample the source-frames in a
consistent way. For example, if the frame k is a
candidate source for pixel ðx; yÞ in the one output
frame, then the frame kþ 1 should be a candidate for
pixel ðx; yÞ in the successive output frame.)

. We use an hierarchical framework, where a coarse
solution is found for low resolution images, and the
solution is refined at higher resolution levels only
along the boundaries. Similar accelerations were also
used in [2], and are discussed in [19].

5 CONCLUDING REMARKS

It was shown that by relaxing the chronological constraints
of time, a flexible representation of dynamic videos can be
obtained. Specifically, when the chronological order of
events is no longer considered a hard restriction, a wide
range of time manipulations can be applied. An interesting
example is creating dynamic panoramas where all events
occur simultaneously and the same principles hold even for
videos taken by a static camera.

Manipulating the time in movies is performed by sweep-
ing an evolving time front through the aligned space-time
volume. The strength of this approach is that accurate
segmentation and recognition of objects are not needed. This
fact significantly simplifies and increases the robustness of
the method. This robustness comes at a cost of limiting the
time manipulations that can be applied on a given video.
Assume that one moving object occludes another moving
object. With our method, the concurrency of the occlusion
must be preserved for both objects.

In order to overcome this limitation and allow indepen-
dent time manipulations even for objects that occlude each
other, very good object segmentation and tracking is needed.
In addition, methods for video completion should be used.

It is interesting to compare dynamosaicing with the PVT
approach [2]. The PVT approach, with its ability to have
discrete jumps in time, is most effective with repetitive
stochastic textures and with its ability to generate infinite
dynamics. When the scene has moving objects each having a
given structure, e.g., moving people, dynamosaicing with
the continuous time fronts is more applicable. Continuous
time fronts are also more robust in cases of error in camera
motion. In addition, while the PVT approach perform best
with camera that jumps from one stable position to another
stable position, dynamosaicing works best with smooth
camera motion.
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Fig. 18. When the camera is translating, the dynamics in the scene consists of both moving objects and the parallax. Both are treated in the same
manner using the 4D min-cut. Gradient domain composition [1] handled variations in illumination. (a) A frame from panoramic movie (the entire video
clip is available at www.vision.huji.ac.il/dynmos). (b) The min-cut avoids stitching inside moving objects or inside foreground objects (which have
high disparity due to parallax).
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