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Abstract—Real-time creation of video mosaics needs fast and
accurate motion computation. While most mosaicing methods
can use 2D image motion, the creation of multi view stereo
mosaics needs more accurate 3D motion computation. Fast and
accurate computation of 3D motion is challenging in the case
of unstabilized cameras moving in 3D scenes, which is always
the case when stereo mosaics are used. Efficient blending of
the mosaic strip is also essential.

Most cases of stereo mosaicing satisfy the assumption of
limited camera motion, with no forward motion and no change
in internal parameters. Under these assumptions uniform
sideways motion creates straight epipolar lines. When the 3D
motion is computed correctly, images can be aligned in space-
time volume to give straight epipolar lines, a method which is
depth invariant.

We propose to align the video sequence in a space-time
volume based on efficient feature tracking, and in this paper
we used Kernel Tracking. Computation is fast as the motion
in computed only for a few regions of the image, yet giving
accurate 3D motion. This computation is faster and more
accurate than the previously used direct approach.

We also present “Barcode Blending”, a new approach for
using pyramid blending in video mosaics, which is very effi-
cient. Barcode Blending overcomes the complexity of building
pyramids for multiple narrow strips, combining all strips in a
single blending step.

The entire stereo mosaicing process is highly efficient in
computation and in memory, and can be performed on mobile
devices.
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I. INTRODUCTION

Stereo mosaics (or stereo panoramas) from a single video
are created by stitching the video frames into at least two
mosaic images that can create a 3D effect for the viewer. The
3D effect can be generated only when the captured scene has
depth differences, and when the motion includes translation
to create motion parallax. Stereo mosaics from a single
camera were first introduced in [1], [2], and were generated
in two steps. The first step computed image translation
and rotation between video frames, and the second step
was mosaic stitching. Left eye mosaics were stitched from
strips taken from the right side of the frames, and right-eye
mosaics were generated from strips taken from the left side
of the video frames. Generation of any number of views has
been described in [3].

Figure 1. (a) Every region on the image sensor corresponds to a different
viewing direction. (b) Stereo mosaics are generated by creating the left-eye
mosaic from strips taken from the right side of the video frames, and the
right-eye mosaic is created from strips taken from the left side of the video
frames. (c) Stacking the video frames in an x− y − t space time volume.
Creating a stereo mosaic can be seen as “slicing” the space-time volume
by two y − t planes. One on the left side and one on the right side.

Computing a global image motion, e.g. a global rotation
and translation between frames, results in distorted stereo
mosaics, as relevant scenes have 3D parallax that can not
be described by global parametric motion. The accuracy
of motion computation can be increased when observing
that the motion used for stereo mosaicing is limited: there
is no forward motion, and there is no change in internal
parameters. This observation was used in [4], [3] to propose
depth invariant image alignment of the video sequence in an
x−y−t space time volume, see Fig. 1. The concept of Time
Warping has been introduced based on the EPI (epipolar)
planes described in [5]. Paper [5] observed that when the
camera motion is constant the lines generated by trajectory
of features in the EPI planes (epipolar lines) are straight
lines. Time Warping was a resampling of the t axis in order
to make the epipolar lines straight, simulating a constant
velocity. The method proposed in [4], [3] uses Lucas Kanade
[6] over the entire image, making it computationally expen-
sive.

As in [4], [3] we propose to align the video sequence
using the x − y − t space time volume, but using efficient
feature tracking instead of using Lucas Kanade. In [7] Kernel
Tracking has been demonstrated as a very efficient and
accurate technique for moasicing purposes. With our novel
approach only a few regions of each frame are needed in
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order to obtain the epipolar lines, resulting in Real-Time 3D
alignment. All the alignment parameters can be computed
in a single step using a newton style approximation, taking
advantage of the character of the Kernel Tracking.

Another contribution of this paper is an introduction of
a new pyramid blending scheme [8] for video mosaicing,
overcoming the difficulty in blending together multiple nar-
row strips. The new blending, “Barcode Blending”, blends
all strips in a single blending step.

The remainder of the paper is structured as follows: Sec. II
provides a detailed description of our image alignment ap-
proach, and Sec. III presents mosaic generation and Barcode
Blending. Sec. IV describes the experiments conducted.
Final remarks and future work can be found in Sec V.

II. 3D MOTION COMPUTATION

A video sequence is a sequence of frames {fi}i=1:N . The
first task in any video mosaicing is to compute the alignment
between the frames, alignment that will allow stitching the
frames into a coherent mosaic image. In stereo mosaicing,
creating multiple views of a 3D scene, 2D image alignment
is not appropriate. Computation of the 3D camera motion is
needed for creation of undistorted stereo mosaics. Following
[4], [3] we align frames in the space-time volume so that
EPI lines [5] become straight.

The alignment parameters of each frame fi are Ωi =
{ti, yi, αi}, placing the frame fi in the x − y − t space
time volume such that the epipolar lines become straight.
Parameters {ti, yi, αi} corresponds to the time, the vertical
displacement, and rotation angle of frame fi. We refer to
this alignment as Time Warping motion model. We will
first make a brief review to Kernel Tracking. Afterwards,
our Time Warping approach will be described in detail. A
summary of our algorithm will than be provided.

A. Kernel Tracking

Kernel Tracking (KT) and Multiple Kernel Tracking
(MKT) with Sum of the Squared Differences (SSD) were
presented on [9], and we adopt a similar notation. Kernel-
based objective functions have been demonstrated as an
effective means of tracking in video sequences. In these
functions the target model q is a spatially weighted his-
togram as defined in a formal way in (Eq. 1).

q = U tK(c), (1)

where K(c) is a the kernel weight function giving a lower
weight to pixels further away from c = (x, y), the center of
the target region, and U is the sifting matrix. K(c) is a vector
of n elements (n is the number of pixels of the target region),
and U is an n by m matrix, where m is the number of bins in
the histogram. U is defined by U = [u1, u2, ..., um] where,
ui = ui(t) = δ(b(xi, t), i), xi is the intensity value of the
pixel at position i, and δ is the Kronecker delta function.
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Figure 2. Scheme of how tracking a target can describe an EPI line in
the x− y− t space time volume. The red line represents an EPI line, and
the rectangles frames of a video sequence panning from left to right. The
red circle represents the target.

[9] suggested to compute the location of the original
region in a new video frame fi by building a weighted
histogram p(c) for a candidate target region centered around
an initial location c,

p(c) = U t(i)K(c). (2)

To improve the initial location c we need to find �c
minimizing the Matusita metric,

||√q −
√
p(c+�c)||2 = 0. (3)

Eq. 3 is optimized by approximating
√
p(c+�c) using

Taylor series,

√
p(c+�c) =

√
p(c) +

1

2
d(p(c))−

1
2U tJK(c)�c (4)

where d(p(c)) is the diagonal matrix with values p(c) and
JK is the Jacobian matrix of the Kernel function and is
defined as,

JK =

[
∂K

∂x
,
∂K

∂y

]
(5)

Representing 1
2d(p(c))

− 1
2U tJK(c) in Eq. 4 by M we

obtain the linearized objective function, ||√q − √
p(c) −

M�c||2, leading to a standard least square solution:

�c = (M tM)−1M t(
√
q −

√
p(c)) (6)

In MKT the same procedure is used to compute the new
position of a region, but the model histogram is generated
differently. Instead of using a single kernel to represent the
target region, it uses several kernels placed over this region.
The MKT model is created by stacking in a single vector Q
all the individual histograms q. MKT allows to track larger
regions without examining all pixels in those regions, and
can compute higher order motion models.
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B. Time Warping Motion Model

Following [5], EPI lines in a video sequence are trajec-
tories of feature points in (x, y, t) 3D space, where t is the
time of each frame. When the camera translates in a constant
velocity in a static scene all EPI lines are straight lines, see
Fig. 2. The slope of each line represents the depth of the
corresponding feature point, where very far feature points
will create lines almost perpendicular to the x − y planes,
while closer feature points will create a smaller angle with
the x − y planes. If we assume that the camera motion is
a purely constant horizontal translation, the location of the
feature point moves by a constant x displacement m between
successive frames, where m corresponds to the depth of
the point (the smaller m the more depth point). Formally,
the EPI lines in the x − y − t space-time volume can be
recursively defined in a matrix form as,

⎛
⎜⎜⎝

xi

yi
ti
1

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

1 0 0 m
0 1 0 0
0 0 1 1
0 0 0 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

xi−1

yi−1

ti−1

1

⎞
⎟⎟⎠ , (7)

where m is the slope of the EPI line in the (x, t) axis
and i is the frame number. We use homogeneous coordinates
since the transformation involves displacements. In this case,
if we “slice” the space-time volume by a y− t plane we get
a reasonable mosaic image of the scene. But in most cases
the motion of a hand-held camera is not constant, and has
rotations and vertical displacements. In such case EPI lines
can be defined recursively in a matrix form as,

⎛
⎜⎜⎝
xi

yi
ti
1

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝
cos(�αi) −sin(�αi) 0 m

�ti

sin(�αi) cos(�αi) 0 �yi
0 0 1 �ti
0 0 0 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝
xi−1

yi−1

ti−1

1

⎞
⎟⎟⎠ ,

(8)
where�ti,�yi and�αi represent the motion parameters

of frame fi: the horizontal translation of the camera, the ver-
tical image displacement, and the image rotation about the
optical axis. These parameters are identical for all tracked
feature points in image fi, and represents the increments
of these parameters respect to the previous image. Our
goal is to compute the parameters �ti, �yi and �αi

(three parameters for each image) such that the EPI lines
become straight, and Eq. 8 is satisfied. This is equivalent to
compensate for the vertical displacements and rotations of
the image, and compensating for the horizontal translation
of the camera by time warping.

As we have seen in the previous section, the center c of the
Kernel function was defined in terms of x and y coordinates
and was optimized to satisfy Eq. 3. We would like now to
optimize Eq. 3 in terms of t, y and α. We use Eq. 8 to find
the center of the Kernel function c into the image frame and

Figure 3. Evolution of some tracked regions in a Video Sequence. Each
circle represents a target and the color its state. From green to red are
represented the SSD error (green less error). The targets detected on flat
regions are pink, targets out of bounds are black and new targets white.

the Jacobian of the Kernel Function, which is computed from
the gradients of the time warping parameters as follows,

JK =

[
∂K

∂t
,
∂K

∂y
,
∂K

∂α

]
, (9)

where ∂K
∂t and ∂K

∂α can be computed using the chain rule
as,

∂K
∂t = ∂K

∂xy
∂xy
∂t = ∂K

∂x m

∂K
∂α = ∂K

∂xy
∂xy
∂α = ∂K

∂x (y − Cy)− ∂K
∂y (x− Cx),

(10)

where (Cx, Cy) is the frame center. In this case the result
of Eq. 6 becomes �c = (�t,�y,�α).

C. 3D Alignment by Time Warping

Our algorithm is based on two alternating steps. In the first
step we use Kernel Tracking to track L target regions which
are distributed over the frame as described in Sec. II-A.
The tracks of these tracked regions, {kj}j=1:L, are used
to estimate straight EPI lines by computing the global mj

slope for each track. The global slopes mj are computed
using an iterative mean of the target velocity in the x−y− t
space time volume, (�xj

�ti
).

The second step (Sec. II-B) consists of computing the
time warping motion parameters using the estimated slopes
of the EPI lines as computed in the previous step.

It is important to maintain a uniform distribution of
tracked target regions during the alignment process in order
to get accurate motion estimation. We do this by dividing the
frame in sections, requiring that one target will be selected
from each section. If a section contains two or more targets,
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Figure 4. (a) Mosaic construction as slicing the x − y − t space time volume. Five frames of a video sequence are shown in an aligned space time
volume. The generated mosaic is the blue plane Py−t. Each frame is represented by a different color. (b) Image strips around the intersection of P with
each image are pasted onto P . In order to simplify the scheme we assume that the slope of the epipolar lines μm = 1. (c) Odd, even and mask mosaics
generation, in order to compute Barcode Blending.

only a single target is used. In our implementation we used
the target region belonging to the longest track. In addition,
new targets are selected for those sections having no targets.

Targets giving inaccurate trajectories are also removed.
This includes targets placed on uniform regions, targets
with a high SSD after alignment, or targets that overlap
the image boundaries. Targets with a high SSD error or
targets overlapping the image boundaries are trivial to detect.
Targets placed on flat regions are detected using κS(MTM)
(see Eq. 6), where in [10] it is demonstrated that the Schatten
norm of the matrix MTM is related to the stability of
tracking. When κS(MTM) is above a threshold it means
that the tracker is placed on a flat region. Note that this
process is performed in the first step of the proposed
algorithm where only x and y parameters are estimated,
therefore the matrix MTM is a 2×2 symmetric and positive
definite. In such case κS(A) can be easily computed as,

κS(A) =
(a11 + a22)

2

a11a22 − a12a21
. (11)

A summary of the proposed algorithm is shown in algo-
rithm 1 and an example of the evolution of the tracks in the
fist step is shown in Fig. 3.

III. MOSAIC CONSTRUCTION

Once the video sequence is aligned, the mosaic image
is generated by concatenating strips from different frames.
Each strip si ∈ fi is generated by cutting a region sur-
rounding the intersection Ii = fi

⋂
Py−t between a frame

fi and a plane Py−t in the x − y − t space time volume.
See Fig. 4(a). The width of strip si depend on the image
alignment, si including image columns having the following
x coordinates:

si = {x ∈ fi|[Ii − di
2
, Ii +

di+1

2
]}, (12)

where di = μmΔti, and μm is the mean of all EPI
lines slopes mj . See Fig. 4(b). Simple stitching of the strips
produces visible misalignments caused by the parallax effect,
and strip blending is needed.

Algorithm 1: Stereo Mosaic construction using Feature
Tracking
Data:
Video Sequence F = {fi}i=1:N

Trackers K = {kj}j=1:L

Alignment Parameters Ω0 = {0, 0, 0}
Result:
Stereo Mosaic image M

1 begin
2 for i← 1 to N do
3 Step 1. Track K;
4 Step 2. Compute time Warping Ωi;
5 ∀kj ∈ K update mj ;
6 ∀kj ∈ K replace if is necessary;
7 Update the mosaic M using fi−1 and Ωi−1;

In this work we present the Barcode Blending, a novel
blending method which is based on Pyramid Blending, but
only a single blending step is required for blending all strips.
This process is much faster and gives better results compared
to the traditional approach of blending each strip separately.

Barcode Blending starts with the generation of two dif-
ferent mosaics without blending, one from the odd input
frames and another for the even input frames. Strips in the
Odd Mosaic are defined as,

sOdd
2k+1 = {x ∈ f2k+1|[I2k+1−d2k+1, I2k+1+d2k+2]}, (13)

and strips in the even mosaic are defined as,

sEven
2k = {x ∈ f2k|[I2k − d2k, I2k + d2k+1]}, (14)

where k ∈ [0, N − 1]. The number of strips in each of
these two mosaics is half of the number of strips in the final
mosaic image, and each strip has a double width. The final
mosaic will be generated by pyramid blending from these
two mosaics using a binary mask which defines which part
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Odd Frames Mosaic

Even Frames Mosaic

Mask Mosaic

Blend Mosaic

Figure 5. Example of Odd, Even and Mask mosaic and the resultant
mosaic when Barcode Blending is applied.

of the final mosaic is taken from the odd mosaic and which
is taken from the even mosaic. The mask therefore looks like
a barcode whose strips have the same widths as the strips
in the final mosaic, and is defined as,

smask
i =

⎧⎪⎪⎨
⎪⎪⎩

[1, di

2 ] =

{
0 ⇐ i Odd
1 ⇐ i Even

[di

2 , di] =

{
1 ⇐ i Odd
0 ⇐ i Even

, (15)

Fig. 4(c) shows the barcode blending process.
Once we have generated the odd mosaic, the even mosaic,

and the mask, we blend the two mosaics according to the
mask using a simple pyramid blending. Some results are
shown in Fig. 5 and Fig. 6. It is important to note that
generating the two mosaics and the mask is a trivial and
fast process, and that pyramid blending is used only once.

IV. EXPERIMENTAL RESULTS

In all the examples we used a uniform lattice of 12× 12
tracked features. The use of anaglyph glasses will enable the
reader to appreciate the 3D effect.

Fig. 7 used a video captured from a river boat. A small
area is shown from different mosaics to emphasize the
parallax effect between the different mosaic images.

The mosaics in Fig. 8 where made from video recorded
by a hand held iPhone 4. The resolution of the captured
sequences are 1280× 720.

We have implemented the proposed method in C++, and
tested it by tracking 144 features (on a 12 × 12 lattice)
on three HD video sequences (1280 × 720) running on a
Mac Book Pro 15’ 2.66GHz Core i7. Alignment frame rate

Figure 6. Comparison between mosaic regions with and without Barcode
Blending. The top images belong to a mosaic image generated without any
blending and the bottom images are generated using Barcode Blending.

was ≈18 fps, with implementation not fully optimized, no
hardware acceleration, and using a single thread. The most
costly step is the tracking of 144 features, each of size
31 × 31 pixels, running at ≈30 fps. The 3D alignment is
computed in a frame rate of ≈45 fps.

V. CONCLUDING REMARKS

The presented generation of stereo mosaics is faster and
more accurate than previous approaches. The 3D alignment
is based on feature tracking, which allows to process HD
video sequences with low computational cost and memory
requirements. While we used Kernel Tracking, any other
feature tracking can be used.

The new Barcode Blending also presents a substantial
improvement in speed and memory for mosaic blending. It
is trivial to implement and results are better than traditional
mosaic blending.
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Figure 7. An anaglyph stereo mosaic generated from a video sequence of 450 frames captured from a river boat. The bottom images show the same
regions as they appear in the different mosaics, showing the parallax effect.

Figure 8. Anaglyph stereo mosaics generated from videos recorded by a
hand held iPhone 4, with resolution of 1280× 720 pixels.
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