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Abstract 
A fundamental assumption made in formulating 

optical-flow algorithms is t ha t  motion at  any point in an im- 
age can be represented as a single pattern undergoing a sim- 
ple translation: even complex motion will appear as a uni- 
form displacement when viewed through a sufficiently small 
window. This assumption fails in a number of common sit- 
uations. For example, transparent surfaces moving past 
one another yield two motion components a t  each point. 
More important,, the  assumption fails along the boundary 
between two differently moving image regions. 

We propose an alternative formulation in which there 
may be two distinct patterns undergoing coherent motion 
within a given local analysis region. We then present an 
algorithm for the analysis of two-component motion. We 
demonstrate that  the algorithm provides precise motion es- 
timates for a set of elementary two-mot,ion configurations, 
and show tha t  i t  is robust in the presence of noise. 

1 Introduction 
The  optical flow approach to  motion analysis has been 
based on a single-component model of local image mo- 
tion: even complex motion will be indistinguishable from a 
single pattern undergoing simple translation when viewed 
through a sufficiently small window, over a sufficiently short 
interval of time [8 ] .  However, a single-mot,ion model is in- 
adequate for a number of important situations t.hat com- 
monly occur in image sequences. For example, hansparent 
surfaces moving past one another yield two motion compo- 
nents a t  a point, as do patterns of light and shadow moving 
over a surface. Furthermore, failures of the single-motion 
model occur along the boundary between any t,wo differ- 
ently moving regions in a scene. The  area subject, to such 
failures can represent. a significant fraction of a scene. 

This problem a t  boundaries is a consequence of the 
introduction of smoothness constraints in optical flow com- 
putation, whether this is done explicitly or not [ T ,  11. In 
an effort to increase accuracy near boundaries, recent, ap- 
proaches allow a small number of discontinuities between 
smoothly varying regions. In this approach good qrialit,y 
mot,ion analysis depends on image segmentation, while seg- 
mentation depends in turn on good qualit,y motion informa- 
tion. Methods have been proposed t,liat, combine computa- 
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tion of motion and image segmentation, relying on succes- 
sive refinement to converge to  a stable interpretation of the 
scene [9, IO]. Examples of this approach include Markov 
Random Field models incorporating ‘line processes’ t o  de- 
couple motion estimation across boundaries, and ‘brittle 
membrane’ models [SI. These techniques tend to be slow to 
converge and cumbersome to  apply to practical problems. 
Also, this approach cannot directly help with problems such 
as transparency. In such situations every point has two mo- 
tions, and no spatial segmentation can separate them. 

Another approach avoids the issue of segmentation 
by relaxing the assumption that a single motion describes 
change within the region of analysis. This has been de- 
veloped to deal with scenes containing several moving ob- 
jects [4, 6, 111. Approaches to this problem that  are based 
on multiple peak detection in Hough Transform represen- 
tations or cross-correlation functions [4, 61 generally lack 
robustness. Recently, the problem of multiple motion has 
been treated in the spatio-temporal domain for the case in 
which motion is uniform over many frames [ll]. 

In this paper we introduce an alternative model for 
describing local motion in an image in which there may be 
two differently moving patterns within the neighborhood 
of an image point. This two-component motron model al- 
lows analysis of most basic local motion configurations (in- 
cluding transparent motion) that do not conform to the 
traditional single-motion model. Based on this model, we 
describe an algorithm for accurately estimating two mo- 
tion components within a local analysis region using three 
frames of an image sequence. 

2 Motion Configurations 
Motion estimation at  an image point is based on pattern 
information in a neighborhood of that  point. We will refer 
to this neighborhood as the motion analysis region 

We have assembled in Figure 1 a small set of elemen- 
tory motzon configtirations which can occur in a motion 
analysis region. These configurations are: 

1. Single motion. 

2 .  Two different.ly moving patt.erns separated by a bound- 
ary. 

3. Two transparent, surfaces with different. motions. Ex- 
amples include moving shadows. reflections, as well as 
actual transparent objects. 
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Figure 1: Elementary local motion configurations. For 
description, see text 

4. Two interleaved components: small or thin foreground 
objects that  move in front of a differently moving back- 
ground, or the background appears through small gaps 
in the foreground. 

5 .  A dominant moving pattern and a second pattern that  
has low contrast or is small. An example is a football 
partially tracked by the camera in a sports broadcast. 

6. Aperture effect exists for each of two components. 

3 Models for Local Motion 
Motion estimat.ion is based on an assumed model relat- 
ing motion to observed image intensities. The  traditional 
model used in optical flow computation postulates a single 
pattern moving uniformly within any local analysis region. 
We introduce a new model that  postulates two such com- 
ponents. 

Let I (x ,  y, t) be the observed grayscale image a t  time t. 
Let R be the analysis region in which we wish to  estimate 
motion. 

The  traditional model used in optical flow analysis [7, 
13 assumes that within the region R, I ( x , y , t )  may be  r e p  
resent,ed as a pattern P ( z , y )  moving with velocity p(x ,y ) .  

where P * P  denotes the pattern P transformed by the mo- 
tion tp (see Figure 2a). This model can represent only the 
first of the elementary motion configurations in Figure 1 
because i t  assumes that  locally there is only one coherent 
motion. 

We introduce an alternative model for local motion, as 
shown in Figure 2b. Wit,liin the analysis region t,he image is 
assumed to  be a combination of two distinct image patterns, 
P and Q ,  having independent motions of p and q: 

I(L, Y ,  0) = P(x ,  Y )  @ Q(z, Y L  (2 1 

P - 

Figure 2: Two models for local motion. 
a) The  traditional model wit,h single motion. 
b) The  two-motion model: two patterns, P and Q, move 
with velocities p and q. 

I (x ,y , t )  = P'* $Qfq.  

Here the @ symbol represents an operator such as addition 
or multiplication to  combine the two patterns. 

With appropriate choices of patterns P and Q and 
of the combination operator @, the proposed two-motions 
model can represent all of the elementary motion configur& 
tions shown in Figure 1. In transparent cases (Figure IC), 
P and Q cover the analysis region and @ is addition or 
multiplication. The  more general foreground-background 
configurations shown in Figure 1 can sometimes be treated 
as approximately additive: they can be represented as ad- 
ditive over some subset of the analysis region. In what 
follows we will limit our consideration to the additive case, 
but we will show that an algorithm based on the assump- 
tion of additivity is robust with respect to  violations of this 
assumption encountered in the more general cases. 

4 Estimating a Single Motion 
We now review an algorithm based on coarse-fine tracking 
for estimating a single image motion in accordance with the 
model of Equation (1). Various components of this algo- 
rithm for estimation of single motions have been described 
previously [l, 2,  3, 81, but their combined use has some im- 
portant properties. In the next section we show that  this 
procedure for estimating single-component motion can be 
applied repeatedly to  extract two motion components. 

For small displacements between frames I(., y, t - 1) 
and I (x ,  y, t)  of an image sequence we can use the incremen- 
tal motion estimator derived by Lucas and Kanade [SI. In 
general, t,his estimat.ion method is accurate only when the 
frame-to-frame displacements due to  motion are a fraction 
of a pixel, so that  the truncated Taylor series approxima- 
tion is meaningful. The  precision of the estimate can be 
improved significantly through an iterative alignment pro- 
cedure [8]. However, much better results can be obtained 
and the range of the mot,ion estimation process can be ex- 
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Figure 3: Diagram of the coarse-fine motion tracking 
algorithm. 

tended to the general case of large displacements by imple- 
menting tracking within a multiresolut,ion pyramid struc- 
ture, Figure 3 [3]. 

A Gaussian pyramid is const,ructed for each of the 
source image frames, Z(z, y, t - 1) and Z(z, y, t ) .  The  pyra- 
mid is a sequence of copies of an original image in which 
both resolution and sample density are reduced by powers 
of 2 .  Let Gt>t  be level C of the pyramid for image I(., y, 1). 
The sample distance at level! is 2' times that of the original 
image. 

Motion analysis begins a t  a low resolut,ion level of the 
image pyramid where sample distance is large and corre- 
spondingly large image velocities can be estimated. At 
each successive iteration of the t,racking procedure analysis 
moves to  the next higher resolution pyramid level. Thus if 
level C is processed at iteration I;, and the motion estimate 
from the previous iteration is p k - 1 ,  a shift of p k - 1  is ap- 
plied to  pyramid level Gt-l,e t o  form GY:,;. The residual 
motion, A p k ,  is computed between this shift,ed image and 
the corresponding level of the second pyramid, Gt,!. Shift- 
ing ensures that  residual displacements remain less than a 
sample distance as the procedure moves to the next higher 
resolution pyramid level. Thus coarse-fine t,racking can ef- 
ficiently estimate velocities of many pixels per frame time, 
a t  accuracies of a small fraction of a pixel [1, 3, 31. 

5 Estimating Two Motions 
We now consider the analysis of motion described by t.he 
two-component model. A key observat,ion for the present 
approach is that  if one of the motion components and t.he 
combinat,ion rule @ are known, it, is possible t.o compute 
the other mot,ion using the single-motion algorit.hm wit.liout 
making any assumpt,ions about t,lie nature of t.he pat,terns P 
and Q. In what, follows we will assume that t.he combination 
operation is addition. 

Suppose, for the moment, that  mot,ion p is knomn, 
so that  only motion q must, be determined. The pattern 
component P moving at  velocity p can be removed from 

the image sequence by shifting each image frame by p and 
subtracting i t  from the subsequent, frame. The  resulting 
sequence will contain only patterns moving with velocity 
9. 

Let D1 and D2 be the first two frames of this differ- 
ence sequence, obtained from three original frames. From 

The sequence { D V L }  now consists of a new pattern 
Qq - QP moving with a single motion q ,  that  is: D, = 
(Qq - QP)"". Thus the motion q can be computed from 
the two difference images D1 and D2 using the single- 
motion estimation technique described in the previous sec- 
tion. 

In an analogous fashion the motion p can be recovered 
when q is known. The observed images I ( % ,  y, t )  are shifted 
by q ,  and a new difference sequence is formed: 

D n = I ( z , y , n + l ) - Z q ( Z , y , n ) .  

This sequence is the pattern Pp- P q  moving with velocity 
p: D ,  = ( P p  - Pq)np, so p can be recovered using the 
single-motion estimation. 

Note that the shift and subtract procedure removes, 
or "nulls," one moving pattern from the image sequence 
without determining what that  pattern is, that  is without 
explicit segment ation. 

In practice, of course, neither motion p or q is known a 
przorz. However, i t  is possible to recover both motions pre- 
cisely if we start  with even a very crude estimate of either. 
Two-component motion analysis can therefore be formu- 
lated as an alternating iterative refinement procedure. Let 
pn and q, be the estimates of motion after the nth cycle. 
Refined estimates are obtained alternately for p and q, so 
if p is obtained on even-numbered cycles, q is obtained on 
odd 

1. 
3. 

3. 

4. 

5. 

6 .  

cycles. Steps of the procedure are: 
Set initial estimate for the motion po of pattern P. 
Form the difference images D1 and D2 as in Equation 
( 3 )  using the latest estimate of p,. 
Apply the single-motion estimator t o  D1 and D2 to 
obtain an estimate of qn+l .  
Form new difference images D1 and D2 using the esti- 
mate q,,+l. 
Apply the single-motion estimator to the new sequence 
D1 and DZ t o  obtain an update pt,+2.  

Repeat starting at Step 3. 

In the cases we have tiied, convergence of this process 
is fast: with artificially generated image sequences, the cor- 
rect transformations are recovered accurately after three to 
five cycles regardless of the initial guess of po. 
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Figure 5: Registration of components with a small mov- 
ing object against a large moving background. 
a) One frame from the sequence. The  toy tank and the 
background have different motions. 
b) Difference of two consecutive frames after registra- 
tion using the background motion. 
c) Difference of two consecutive frames after registration 
using the tank motion. 

Figure 4: Registration of components in transparent 
motion, as described in text. 
a) One frame from the sequence. 
b) Difference of two consecutive frames after registra- 
tion using first motion. 
c) Difference of two consecutive frames after registration 
using second motion. 

6 Examples 
We have tested the two-motion algorithm with several 
examples of the elementary motion configurations shown 
in Figure 1. We have used both artificial sequences 
with known velocities, and r e d  images of complex natural 
scenes. In all examples in this section, the analysis region 
R is taken to  be the entire image and the images were of 
size 256 x 256 or 256 x 200 pixels. 

Example 1: Transparent Motion 
An example involving additive transparency is shown 

in Figure 4. A sequence was captured with a moving video 
camera showing a face reflected in the  glass covering a print 
of Escher’s “Three Worlds”. A single frame from this se- 
quence is shown in Figure 4a. As the camera moved, the 
image reflected in the glass and the image in the print 
moved differently. The  algorithm was applied to  recover 
the two motions. To  demonstrate the accuracy of the com- 
putation, two consecutive frames are registered using each 
of the computed motions, and a difference image formed. 
A component will be canceled out in a difference image 
if registration is done with the motion of that  component,. 
Resulting difference images are shown in Figure 4b and Fig- 
ure 4c. In Figure 4b the reflected image (barely visible in 
Figure 4a) is revealed showing that the other component 
was registered accurately. In Figure 4c, the reflected image 
has been nulled. 

Example 2: Masking 
A second sequence demonstrates motion recovery when 

one motion pattern predominates, and ‘masks’, the second 
pattern as in Figure le. This sequence is an “aerial p1iot.o- 
graph”: a small toy tank moves rapidly in front of a large 
moving background of toy roads and trees. One frame of 
this sequence is shown in Figure 5a. Because the motion 
of the  foreground object is roughly equal to  its own size, 
i t  would be difficult to  select a window within which this 
motion would dominate. However, the two motion algo- 
rithm obtains accurate estimates of both background and 
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foreground motions. The  background cancellation is shown 
in Figure 5b  and the foreground cancellation in Figure 5c. 
Note the absence of the moving vehicle in this last image. 
Accurate estimation of both motions is obtained in spite 
of the fact that  the combination of foreground and back- 
ground components is not strictly additive. 

Example 3: Interleaved motion 
The final example, Figure 6, shows an image sequence 

in which a crowd of people is viewed through a complex 
pattern of tree branches. This is an example of the con- 
figuration in Figure Id. The  camera is translating and ro- 
tating, so the foreground trees and background crowd are 
seen to  move differently. Because the motions include di- 
1at.ion and rotation as  well as t.ranslation we must estimate 
two affine transformations rather than simple translations. 
In spite of many violations of the additivity assumption 
due to  occlusion and exposure, convergence is reached af- 
ter 4 iterations. In order to  demonstrate the accuracy of 
the foreground and background motion estimates, we have 
generated two “temporal average” images after registering 
the three input images using the two estimated motions, 
Figure 6c and d.  In each of these, the registered areas are 
sharp, while the rest of the image is blurred due to  the 
image motion. For reference, an unregistered temporal av- 
erage is shown in Figure 6b. 

7 Stability Analyses 
The examples shown in the preceding section suggest that 
the algorithm described is surprisingly robust with respect 
to violations of t,he assumptions expressed in Equation (2). 
Of the examples shown, only Example 1 involving trans- 
parency can be exactly represented as the sum of two coher- 
ently moving patterns. In the others, some areas appear or 
disappear from frame to  frame. In Example 6, t,here are also 
objects within the analysis region that move with velocities 
unrelat,ed to  either of the two major coherent components. 
Nevertheless, the registrat,ion of the major components is 
fairly accurate. 



Figure 6: Regist.ration of interleaved motion components. 
a) One frame from tlie original sequence. 
b) Averaging three consecutive frames from tlie original 
sequence. The  entire scene is blurred. 
c) Averaging three frames after registration with the 
foreground mot.ion. The  t,rees are sharp, while the back- 
ground blurs out. 
d )  Averaging three frames after regist,ration with the 
background motion. The background remains sharp, 
while the foreground blurs out. 

7.1 Experiments 

Two experiments were performed to  det,ermine tlie lim- 
its of the algorit,hm’s performance when applied to im- 
age sequences that do not precisely conform to  t.he two- 
component mot,ion model. In both cases, tlie test sequence 
was the sum of unfiltered Gaussian noise images with stan- 
dard deviation equal t o  15 gray levels. Each component 
moved wit,h a speed of 3 pixels per frame, one to  the right, 
the  other to the left. 

In the first experiment, temporally uncorrelated noise 
was added to  the motion sequence. This simulates the effect 
of image occlusion since regions of the image t.liat appear 
or disappear from frame to frame produce local changes 
in iiitensit,y that  are uncorrelated in time. In the second 
experiment a moving uniformly distributed noise pat,tern 
was added to t,he original two-component sequence. This 
simulates the effect of motions tha t  do not fit, the model of 
eit,her coherent motion being estimated. 

In each experiment, two factors were varied: the am- 
plit,ude of the interfering signal and t.he size of the analysis 
region. Two characterist,ics of algorit,hm performance were 
measured: the likelihood t,liat t,he algorit,l~m successfully 
isolated the t.wo motion components after 20 cycles of t.he 
algorit,hm (10 for each mot.ion component), and t.he aver- 
age RhIS error in t,hose estiniat,es with respect, to the t,rue 
velocities. The region size was varied over a wide range be- 
cause increased size may be expect,ed t,o decrease sensitivity 
of the algorit,hm to  noise. 

Figure 7: Probability of convergence as a function of 
noise level. For details see text. 
a) Uncorrelated Noise: new samples of noise were gen- 
erated for each frame. 
b) Moving Noise: one sample of noise was generat,ed, 
and then moved upwards by three pixels on each frame. 

7.2 Results 
Figure 7a shows the results using uncorrelated noise. On 
the abscissa is the standard deviation of the noise. Since 
the noise was uniformly distributed, the range of the noise 
is the standard deviation multiplied by 1.732. On the or- 
dinate is shown the probability that the two-motions al- 
gorithm converged to within 20% of the correct velocities 
within 10 cycles of the ‘estimate-subtract’ analysis process. 
The error is defined as the rms error divided by the rms 
amplitude of the velocities, thus convergence requires t,hat 
both motions be reasonably well estimated. Each proba- 
bility estimate is based on 30 trials witah the same signal 
but independent samples of noise. Four curves are shown, 
representing window sizes of 16 x 16, 32 x 32, 64 x 64, and 
128 x 128 pixels. 

With lit,tle or no noise, even a window size of only 
113 x 16 is sufficient for reliable convergence of the algo- 
rit.1im. However, for this smallest window size the results 
are sensitive to  noise, and by a noise standard deviation of 
about 3 gray levels the process is already rat,her unreliable. 
This is a relatively high noise value, corresponding to a 
signal t o  noise ratio of 5 ,  since the individual ‘signal’ com- 
ponents have a standard deviation of only 15 gray levels. 
For larger window sizes, however, the process is very resis- 
tant, t o  the effect.s of uncorrelated noise. It is not until the 
signal-to-noise rat.io falls well below 1 that  the probability 
of convergence drops below 90%. Furthermore, for these 
stimuli a t  least, there is only a slight benefit in increasing 
the window size above 32 x 32. 

The results of the second experiment, are shown in Fig- 
ure 7b. A third motion component is introduced, moving at  
the same speed as the original two. (3  pixels per frame), but 
moving upward rat,her than right or left. The axes are as in 
Figure 7a. For the 16 x 16 window size the results are very 
similar t o  those for t.he uncorrelated noise: t,lie algorithm is 
rather noise-sensit.ive. For the larger window sizes, perfor- 
mance is reliable down to a signal-to-noise ratio of about 2 .  
Beyond this level, performance decays rapidly. This is not 
surprising since in t,liese stimuli the signal components and 
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Figure 8: Percentage RMS error when probability of 
convergence is above 50%. 

the noise are almost identical. When the noise component 
approaches the signal components in amplitude, the algo- 
rithm begins to  track the noise instead of one of the signal 
components. Thus there is no possibility of correctly esti- 
mating the signal velocities when the signal-to-noise ratio 
is less than 1. However, i t  is clear that  for moderate levels 
of extraneous motion the algorithm continues to  provide 
meaningful estimates. 

An additional measure of the robustness of this algo- 
rithm is shown in Figure 8, which shows the RA4S devi- 
ation of the estimated velocities from the true values for 
the cases in which convergence was obtained. The figure 
shows values as a function of uncorrelated noise levels for 
the four window sizes. For all but the smallest window size, 
the expected error grows gradually and smoothly with noise 
level and never gets above 10%. Similar precision is found 
in the case of the moving noise when conditions yielding 
similar probabilities of convergence and window sizes are 
compared. 

These results suggest that  the performance of the al- 
gorithm is robust, at least with respect to  the violations of 
assumptions introduced here. This is of considerable im- 
portance since in real image sequences the assumptions of 
the two-motions model will rarely be satisfied precisely. 

8 Concluding Remarks 
A method has been presented for detecting two components 
of motion within an image region using three frames. This 
technique is based on a two-component, model of local image 
motion, which is a generalization of the single-component 
model implicit in standard optical flow computation. The 
technique does not require segmentation t,o obtain precise 
motion estimates. Instead, it relies on an iterat,ive mul- 
tiresolut.ion tracking process in which each estimate of one 
component of the motmion is used to  improve t,he accuracy 
of t,he other. This allows the motions t,o be estimat,ed accu- 
rately without explicitly knowing their corresponding pat- 
tern components. 
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Advantage can be taken of the proposed method to 
improve optical flow computations. Current approaches to 
flow estimation are forced to  use small neighborhoods in 
the computation of each motion vector so that  the likeli- 
hood that  a neighborhood will overlap a motion boundary 
is small. Multiple motion analysis as proposed here, allows 
larger neighborhoods to  be used, since neighborhoods can 
overlap motion boundaries without violating assumptions 
of the analysis. Larger regions lead, in turn,  t o  more precise 
and robust motion estimates. 
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