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Abstract 
An image is represented by the Voronoi tessellation 

generated from selected sampling points. Using a mul- 
tiresolution approach, the density of the sampling points 
can be adaptive to image properties: smoother regions will 
have fewer sampling points than more detailed regions. 
The adaptation property results in better image quality 
than non-adaptive Voronoi representations, while preserv- 
ing the property that only the holder of the seed of the 
pseudo-random number generator can reconstruct the ori- 
ginal image. 

1. Introduction 
Ahuja, et al. [l] describe a method of representing 

images by a Medial Axis Transform (MAT) [2] that uses 
irregular polygonal blocks. The blocks of the MAT are the 
cells of the Voronoi tessellation generated by a planar ran- 
dom point process. The MAT is used to achieve compres- 
sion along with secure transmission of the image - an out- 
come of the random selection of the cells nuclei. It was 
argued [ll that error levels in the reconstruction of the 
image could be reduced by controlling individual point 
locations, but at the price of losing the security of the 
transmission. 

This paper proposes a method of selecting the sam- 
pling points, i.e., the nuclei of the cells of the Voronoi 
tessellation, in a fashion that is adaptive to the image pro- 
perties, thus achieving substantially lower error levels in 
the reconstruction, and yet with no loss of security in the 
transmission. This will be achieved by a multiresolution 
approach where analysis of low resolution levels guides 
the placement of sampling points at the higher resolution 
levels. 

The second part of this section will describe the 
Voronoi tessellation, Section 2 will briefly describe 
Ahuja’s method of deriving the MAT and Section 3 will 
describe our multiresolution adaptive point selection 
method along with experimental results and comparison of 
the two methods. 

This research was supported by a grant from the Isra- 
el Academy of Sciences. 

1.1. The Voronoi Tessellation 
Let S={pl * - p J be a finite set of points in the 

Euclidean plane. For each point pi in S there exists a 
region Ri in the plane with the property that every point in 
Ri is closer to pi than to any other point of the set S. The 
region Ri is called the Voronoi polygon [3] (cell) of the 
point pi. 

The set of all Voronoi polygons partitions the plane 
and forms what is called the Voronoi tessellation. An 
example of the Voronoi tessellation is shown in figure 1. A 
good description of the Voronoi tessellation as a result of a 
growth process can be found in [l]. 

The Voronoi tessellation of n points in the plane 
can be constructed in 0 (nlogn) time, an algorithm is given 
by Shamos and Hoey [41. 

Figure 1: Voronoi tessellation constructed from 
a given set of points. 
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2. Image Representation Using Voronoi Tessella- 
tion 

This section briefly describes the work of Ahuja et 
al. [ll. A digital Poisson point process is used to ran- 
domly select a set of sampling points in the image plane. 
The digital Poisson point process is making a binary deci- 
sion at each pixel of the image. The probability for "suc- 
cess" in such a decision (the probability of the point to be 
selected as a sampling point) determines the total number 
of selected points and thus, as explained later, affects the 
compression and error ratios. 

The Voronoi tessellation is constructed from the set 
of selected sampling points. In binary images each 
selected sampling point (a cell nucleus) is then assigned 
the color of the majority of pixels covered by the cell. In 
the case of gray level images the point is assigned the 
average gray level of the pixels covered by the cell. The 
set of sampling points (nuclei) along with the assigned 
colors constitute the representation of the image. 

An nxn image has n 2  pixels. By selecting N sam- 
pling points and transmitting only the colors assigned to 
them, we get a data compression of n2/N. Relative secu- 
rity of the transmission is also obtained: If the sender and 
the receiver use the same pseudo-random number genera- 
tor, the points locations need not be sent. By having the 
seed of the pseudo-random number generator and receiv- 
ing the list of color values, the receiver can reconstruct the 
Voronoi tessellation and color the cells uniformly with 
their color values, thus deriving an approximation of the 
original image. 

The quality of the reproduction is a factor of the cell 
sizes and locations. Clearly, smaller Voronoi cells 
represent regions more accurately; therefore by selecting a 
larger number of sampling points we can achieve higher 
quality of reproduction, but at the price of lower compres- 
sion rate. 

As noted by Ahuja, et al. [ll, error in the reproduc- 
tion of the image could be reduced by carefully manipulat- 
ing the position of the cells nuclei to better approximate 
the image, but when changing the position of the sampling 
points information conceming the characteristics of the 
image itself is revealed and thus the transmission is less 
secure. 

In the next section we describe a multiresolution 
method of selecting the cells nuclei in a way that their 
position is chosen to reduce the error and improve the 
quality of the reproduction, and yet without the need to 
expose any information conceming the image characteris- 
tics in the transmission and therefore without reducing the 
security of the transmission. 

3. Adaptive Selection of Sampling Points 
Given an image it is reasonable to assume that, in 

order to obtain better quality in the reconstructed image, 
detailed parts of the image (edges for instance) should 
occupy more space in the representation than smooth 
parts. Therefore we would like to have more sampling 
points in richly detailed regions of the image than in 
smooth regions. By selecting more sampling points in a 
region it is covered by more Voronoi cells and conse- 
quently the cells are smaller and the reproduction error of 
the region is reduced. We therefore use a coarse Voronoi 
tessellation to detect the "busy" parts of the image, and 
select more sampling points from them to construct a more 
detailed Voronoi tessellation. 

3.1. Multiresolution Selection 
step 1 : 

Using the pseudo-random number generator, ran- 
domly select a small number of points (n) in the 
image plane: If N is the number of pixels in the 
image, assign to every pixel a probability p = -. n 

N 
For every pixel use the pseudo-random number gen- 
erator to choose a random number r uniformly dls- 
tributed in the range [O,l], the pixel is selected if 
r<p.  Due to the wayp was calculated about n pixels 
would be selected. 

step 2 : 

Construct the Voronoi tessellation of the image 
using the selected points. 

In the case of binary images, color each cell of the 
tessellation with the color of the majority of pixels 
in the cell, and in the case of gray level images color 
each cell with the average gray level of the cell's 
pixels. 

These first three steps are actually the process described in 
[l]  of representing and reconstructing the image. 
step 4 : 

step 3 : 

Using an error measure (we used mean squared 
error, but it is possible to construct other measures 
relative to the point of interest), calculate the aver- 
age error per pixel of each cell, compared with the 
gray level values of the original image. Assign to 
each sampling point its cell's average error value. 

Select from the image a larger number of new sam- 
pling points (m) in the following way: 
To every pixel i assign the probability 

step 5 : 

,where Ei is the error assigned in step 4 to the 
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nucleus of the cell covering pixel i. 
For each pixel i in the image we select a random 
number ri uniformly distributed in the range [0,11. 
The pixel i is selected as a sampling point if ri<Pi.  
This process gives higher selection probability to 
pixels in regions with higher error rates. 

Repeat steps 2 through 5 with the newly selected 
sampling points until the total number of points 
selected reaches the required compression rate. 

3.2. Image Representation 
The points selected at the last iteration of the point 

selecting algorithm, along with the colors assigned to them 
in step 3 of the algorithm, are the image representation. In 
order to reconstruct the location of these sampling points, 
the sender transmits the error values of the sampling 
points in all lower levels, along with the color values 
assigned to the points of the highest resolution sampling. 

The receiver can now reconstruct an approximation 
of the image by repeating the process only if he possesses 
the seed used. He uses the seed to reconstruct the first 
Voronoi tessellation, then from the error values received 
he can reconstruct the second tessellation, and so on. The 
last reconstructed Voronoi tessellation has a relatively 
large number of cells, which are distributed according to 
the errors in the lower levels. By assigning to each cell its 
received color the receiver can get a good approximation 
of the original image. 

The optimal number of points to select at steps 1 
and 5 as well as the optimal number of iterations (step 6), 
are not determined yet. The question awaits further inves- 
tigation and experiments. For a few examples refer to the 
experimental results section. Both sender and receiver 
should use the same number of selected points when they 
apply the algorithm. 

step 6 : 

3.3. Step by Step Example 
Let us assume we have a gray level image of size 

100x100, 1 byte per pixel, which we wish to securely 
transmit at a 10 to 1 compression rate. The image has 
10,OOO bytes therefore we want to transmit 1,ooO bytes 
only. 

First we randomly select about 50 sampling points 
in the image using the method described in step 1 for 
n=50 (each pixel has probability - 50 to be selected). 

We construct the Voronoi tessellahon using the selected 
sampling points as the cells’ nuclei, and color each cell of 
the tessellation with the average color of the pixels of the 
image covered by the cell, Using our error measure (mean 
squared error) we can compute the average error of each 
cell of the colored tessellation when compared with the 
original image. We save these error values. 

10,000 

We now select about 250 sampling points according 
to step 5 (m = 250). From these 250 new sampling points 
we again construct the Voronoi tessellation, color the 
cells, compute the error values and save them. According 
to these latest error values we calculate the error based 
probabilities as before and select the final 700 sampling 
points. From these 700 sampling points we yet again con- 
struct the Voronoi tessellation and color the cells. We 
assign to each of the 700 points the average color in its 
cell. 

Finally, we transmit the 50 first error values, the 250 
second error values and the 700 color values, a total of 
1,000 bytes as desired. 

The receiver, having the same pseudo-random 
number generator and the same seed, generates the same 
first 50 points and constructs from them the first Voronoi 
tessellation. He then assigns the first 50 error values to the 
cells and computes the probabilities exactly as the sender. 
Using the probabilities he selects the same 250 points and 
constructs the Voronoi tessellation from them. From the 
250 error values he again computes the probabilities and 
selects the final 700 points. He then constructs the final 
Voronoi tessellation and colors the cells with the 700 color 
values received, obtaining an approximation to the original 
image. 

3.4. Compression, Reduced Error And Security 
By definition the algorithm gives any desired 

compression rate: The number of points selected at the last 
step of the algorithm is determined by the the predefined 
compression rate. 

The reproduction error is a factor of both efficient 
placement and the number of the final sampling points. If 
more iterations of the algorithm are applied, more accurate 
information about the image is obtained and the final 
points are better positioned, but more intermediate error 
values must be transmitted and therefore fewer sampling 
points could be selected. The exact optimal ratio between 
the two is image dependent, but experiments show that 
using a compromise between the two results in higher 
quality of reproduction compared to using either of the 
extremes. Ahuja’s algorithm is one of the extremes: no 
iterations, only random selected points. Although when 
using no iterations there are more final cells, their loca- 
tions are totally random and, as shown in the experimental 
results, the error is higher than when using some inter- 
mediate error values to place a smaller number of final 
cells. 

At the first step of the algorithm the points are ran- 
domly selected. Therefore the transmission is relatively 
secure from an eavesdropper who does not possess the 
seed of the pseudo-random number generator used. 
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Figure 2: The images used. 

3.5. Experimental Results 
Figure 2 displays the two 100x100 images we used 

for representation. Figures 3 and 4 compare the adaptive 
and the non-adaptive Voronoi representations using two 
compression rates each. In the adaptive case two iterations 
(3 samplings) of the algorithm were applied. The number 
of points selected at each sampling is noted in parentheses. 

4. Concluding Remarks 
We have presented an adaptive Voronoi representa- 

tion of images, that yields improved results compared to 
the previous non-adaptive Voronoi representation sug- 
gested in [l]. The adaptation results from a multiresolution 
approach in which the information derived from the coarse 
samplings at lower levels is used to better position the 
final fine sampling. The number of optimal resolution lev- 
els and the number of points at each level, are still to be 
considered. 

A method for improving the compression rate was 
suggested by Ahuja et al. [l]: Delete cells which are 
homogeneous and surrounded by homogeneous cells. This 
idea could still be applied while using our algorithm, thus 
yielding higher compression rates. 
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Figure 3: Non-adaptive Adaptive 
a: Non-adaptive Voronoi representation - 20: 1 

compression rate. 
b: The adaptive Voronoi representation (50.100,350) - 

20: 1 compression rate. 
c: Non-adaptive Voronoi representation - 10: 1 

compression rate. 
d: The adaptive Voronoi representation (50,150,800) - 

10: 1 compression rate. 

Figure 4: Non-adaptive Adaptive 
a: Non-adaptive Voronoi representation - 10: 1 

compression rate. 
b: The adaptive Voronoi representation (50,150,800) - 

10: 1 compression rate. 
c: Non-adaptive Voronoi representation - 4:l compres- 

sion rate. 
d: The adaptive Voronoi representation (lOO,4OO,2OoO) 

- 4: 1 compression rate. 
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