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Abstract. The proliferation of surveillance cameras has created new
privacy concerns as people are captured daily without explicit consent,
and the video is kept in databases for a very long time. With the increas-
ing popularity of wearable cameras like Google Glass the problem is set
to increase substantially. An important computer vision task is to enable
a person (“subject”) to query the video database (“observer”) whether
he/she has been captured on the video. Following a positive answer,
the subject may request a copy of the video, or ask to be “forgotten” by
erasing this video from the database. Two properties such queries should
possess are: (i) The query should not reveal more information about the
subject, further breaching his privacy. (ii) The query should certify that
the subject is indeed the captured person before sending him the video
or erasing it. This paper presents a possible solution when the subject
has a head mounted camera, e.g. Google Glass. We propose to create a
unique signature, based on pattern of head motion, that could identify
that the subject is indeed the person seen in a video. Unlike traditional
biometric methods (face, gait recognition etc.), the proposed signature
is temporally volatile, and can identify the subject only at a particular
time. It is of no use for any other place or time.

1 Introduction

Most people are captured on security cameras many times every day. In addi-
tion to high security places like airports, train, and bus stations, cameras are
also installed in most shops. Most recorded video is kept in databases for a long
time. With the increasing popularity of wearable cameras, the number of times
each person is recorded on a video by complete strangers is going to increase
substantially. In many countries it is a basic right of people to learn what in-
formation about them is kept in databases, and in some cases even to request
removal of such information. While this issue has been approached extensively
in text based databases, the case of video recordings is yet to be resolved.

Consider the case where a pedestrian is possibly captured by a static security
camera, or a moving wearable camera. For the purpose of this paper we refer
to the pedestrian as subject and the entity holding the video of the subject as
observer. The subject would like to query if he has been captured in observer’s
video. The subject can provide an identity signature to the observer for matching
in his video. Since the subject and the observer do not trust each other, the
signature should not reveal more information about the subject than what is
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Subject computes signature for his 
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If any signature computed by 
observer matches with the one 

sent by subject, a match is declared 

Observer sends his video clip to the 
subject if a match is declared 

Fig. 1. With the advancement of technology, there is a growing possibility to get cap-
tured by surveillance and wearable cameras. In the schematic above, the subject (in
white) might be captured on video by several observers: surveillance cameras, the per-
son he is interacting with him (red) and multiple people around him with wearable
cameras. All these observers might have captured the subject on their video. The ob-
servers can share their video with the subject or may be asked to erase it from their
storage.

already being held by the observer. For example, subject giving observer an
image of his face is ruled out, since even if the observer has never captured the
subject, he will know following the query the identity of the subject, and he
could even use the face he received and search for the subject in other videos.
Similar argument hold against most biometric signatures like Gait patterns etc.
[1]. Another important consideration is to ensure that the subject is the owner of
the claimed identity. For example, the subject may try to impersonate any other
person in order to extract videos from innocent observers. Therefore even if the
subject provides a face classifier which matches against a person the observer
sees, it does not prove that the subject is indeed the person being watched. After
all, anybody can create a face classifier of President Obama or Shakira!

An additional potential application of such privacy preserving authentication
scheme is video sharing. Video sharing is particularly necessary since a wearable
camera can not capture the wearer. If the wearer would like to see himself in
video, the video must be taken by other people’s cameras. Consider again the
scenario where a pedestrian is being captured by an observer’s camera. The
subject should be able to prove to the observer that he has been captured in
the video, and request to share his video with him. The observer may not be
willing to share his entire video, but might agree to share the portion of the video
where the subject appears. Such arrangement preserves the privacy of all parties
involved: subject, observer and other persons appearing in observer’s video.

The problem of video based authentication scheme which does not violate
privacy lies in the general framework of privacy preserving secure multiparty
communication (SMC) [2]. In a general SMC problem, the two parties hold a
portion of data and want to evaluate a function on the union of the data without
revealing their data to each other. In our problem, the function to be evaluated
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is whether the subject appears in a video clip and the data held by the two
parties is the video held by the observer and the identification information held
by the subject. Secure multiparty communication techniques are known to be
computationally intensive with large communication overhead. This makes their
application hard for large data sets such as images or videos. On the other hand,
domain specific constraints applicable to these large data sets allow to devise
new strategies which are not generic but are efficient for targeted problems.
Avidan and Butman [3] address several techniques and applications of privacy
preserving computation protocols within computer vision context. Privacy pre-
serving content based image retrieval is addressed by [4]. While both methods
provide means against leaking private information, they do not address our re-
quirement of verification of ownership of data, which leaves them vulnerable to
impersonation attacks in the scenarios we present.

The focus of the paper is to suggest a novel protocol and an algorithm for
privacy preserving signatures for querying and certifying the identity of a person
captured in a video. We propose a novel use of videos from head mounted camera
(a.k.a. egocentric videos) to generate a temporally volatile personal signature of
the wearer based upon his head motion. Most importantly, this signature does
not contain any private information of the wearer. Intuitively the instantaneous
optical flow in egocentric video is dominated by the motion of wearer’s head.
E.g., if a wearer moves his head to the left the optical flow for most parts of
the frame is to the right and vice-versa. The optical flow over a set of frames
therefore provide a compact representation of wearer’s head activity (a sequence
of instantaneous head motions) over a short period of time. We show that the
head activity at a resolution of 1/30 of a second along with coarse location
and time information is discriminative enough to differentiate one person from
another. The signature consists of relative motions of the face with respect to
the torso. When the observer’s face has enough pixels to be recognizable, there
is enough resolution for computing the signature as well. Older low resolution
cameras, where people appear as blobs, may not have enough resolution to work
with the proposed techniques. However, such low resolution videos have no use
in the context of privacy preservation and video sharing application anyway.

The organization of the paper is as follows. We begin with describing the
first step in our algorithm, which is to compute the signature of the subject’s
head activity. Section 2 describes how to compute these signatures from subject’s
egocentric video. Section 3 describes how to compute head activity signatures
from observer’s point of view. In Section 4 we propose a method for matching
the two signatures and present theoretical bounds for the uniqueness of the
signatures. Section 5 details results on various experiments conducted by us to
ascertain the accuracy of the proposed matching scheme. We conclude with our
thoughts on future work in Section 6.
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Fig. 2. Optical flow is computed at fixed image locations in the egocentric video. The
optical flow is mostly proportional to the angular velocity of the wearer’s head. The left
image shows the fixed image locations (blocks) in which the optical flow is computed.
The graph on the right shows an example of optical flow for one specific block. We
estimate the optical flow in 50 such blocks and average them to compute a single
global motion vector. Concatenation of the x and y components of this motion vector
over a period of time is used as a signature of wearer’s head activity.

2 Head Activity Signature from Subject’s Camera

An ideal way of computing subject’s head activity from the subject’s egocentric
video is to estimate the camera’s egomotion and pose at each frame. Computing
egomotion is a well studied area in computer vision [5, 6] with various commercial
and research software available [7–9]. However, egomotion computation becomes
difficult in the case of egocentric videos due to large and rapid changes in the
viewing direction caused by the wearer’s natural head motion. Unstructured
environment coupled with lack of constraints on lighting and moving objects in
the scene make the problem further challenging. Our experiments with various
egomotion computation software [7–9] did not yield much success.

Computing instantaneous optical flow between two consecutive frames is a
more robust estimation procedure [10]. While it doesn’t yield exact camera lo-
cation and pose, it provides us with enough information for our needs, as we
explain next. We note that optical flow observed in an egocentric video consists
of two main components. The first component is in radially outwards direction
due to forward motion of the camera wearer. The second and more dominant
component is due to the head motion (rotation) of the wearer. Neglecting the
first component, the optical flow observed in the egocentric video is proportional
to the angular velocity of the wearer’s head and can be considered as a signa-
ture of wearer’s head activity. The change from egomotion to optical flow allows
the head activity signatures to be computed in a robust and efficient manner,
making it attractive for mobile devices with relatively low compute power.3

3 We note that inertial devices (as used by [11]) could have been used for computing
head activity signatures as well. However, our experiments with such inertial devices
have yielded a very noisy signal which is not useful for our case. In any case, the
requirement of additional hardware restricts the potential application areas, while
using image based solution widens the scope of application.
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Ignoring perspective effects in the instantaneous optical flow, we seek to
estimate frame to frame homography using a translation only model. It would
have sufficed to estimate a single homography in the ideal case. However, given
the likelihood of moving objects in the scene, we divide the frame into non-
overlapping tiles and compute the translation independently for each tile (see
Fig. 2). In our experiments we divide the frame to 10× 5 non-overlapping tiles
and compute the optical flow using our own implementation of LK [12], similar to
[10]. We chose LK due to its efficiency, simplicity and robustness. Other methods
for optical flow estimation can be used as well [13].

Each tile in the frame gives an independent optical flow estimation. We av-
erage the x and y components independently to arrive at single two dimensional
motion vector for every two consecutive frames. There are more robust methods
than averaging, but our experiments show that simple averaging is sufficient.
Concatenating these motion vectors over a period of time gives a signature of
wearer’s activity over the duration. Formally, let (ui,jt , vi,jt ) be the (x, y) optical
flow computed for tile (i, j) ∈ (M × N) at frame t. The average motion vector
for frame t is defined as (ūt, v̄t) = ( 1

MN

∑
i,j u

i,j
t , 1

MN

∑
i,j v

i,j
t ). The subject’s

signature for time period [a, b] is then:

S[a,b] = ((ūa, v̄a), (ūa+1, v̄a+1), ..., (ūb, v̄b))
T . (1)

In the context of our problem, the subject computes the signature S[a,b]
whenever he’d like to query observers whether he appears on their video or not.
The signature is then sent to the observer who then computes another signature,
the observer’s signature using a procedure we describe in next section. The
observer then matches the two signatures to verify that the subject is visible in
his video. It may be noted that although we call the signatures “subject’s” and
“observer’s” signature, they both describe the activity of subject’s head. The
notation is only to disambiguate who computes the signature.

It may be noted that in the proposed protocol, the subject need not have seen
the observer to obtain his own head activity signature. However, the observer
must see the subject to be able to obtain a signature of the subject’s head
activity. Therefore, the requirement of having seen each other in the protocol is
asymmetric and is reflective of the prevailing situation in surveillance as well as
video sharing applications where the subject might not have seen the observer.

3 Head Activity Signature from Observer’s Camera

The observer is willing to share (or erase) parts of his video with subjects who
can provide evidence that they appear in the observer’s video. In the previous
section we presented the subject’s signature, which can serve as an evidence for
the subject’s appearance in the observer’s video. In order for the observer to
verify the signature, he first needs to find candidate subjects within his video.
Therefore, the observer first checks if there are any candidate subjects visible in
his video clip. We assume the availability of off-the-shelf person/pedestrian de-
tector for this purpose [14]. We then detect and track feature points on the head
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Fig. 3. Signature from observer’s camera. (a) The original feature point locations on
the subject (in blue) and in other frames (in red). The observed displacement is due to
the combination of movement of candidate subject’s head, torso as well as motion of the
observer. (b) Tracked feature point after warping by the homography (shown in red).
All the points on the torso are mapped to their original location. However, the feature
point on the head is mapped to a different location due to change in the subject’s
head pose. (c) Curve showing the subject’s head activity computed as concatenation
of displacement of warped point on the head, over a period of time.

and torso of the candidate subjects separately. Any human parts based model
can be used for detecting head and torso [15]. We note that the instantaneous
displacement of a feature point on the head of a candidate subject (as seen from
the observer’s camera) has three major components. The first component is due
to the walking of the candidate subject. As the candidate subject walks towards
or away from the observer, there is a displacement in the feature point. This is
true even when the head of the candidate subject was perfectly stationary with
respect to his torso. The second component is due to the observer’s camera mo-
tion. The third component is due to the relative motion of candidate subject’s
head with respect to torso. For computing observer’s signatures we are interested
in finding a function measuring the third component and invariant to first and
second components (see Fig. 3).

Let us assume that the observer is sufficiently far from the candidate sub-
jects he captures on the video, such that the body of a candidate subject (face
as well as torso) could be treated as a plane. This makes it possible to express
the displacement of feature points on the candidate subject’s body by finding a
planar homography. We detect and track multiple points on the torso and head
of each of the candidate subjects appearing in the observer’s video. We fit a
homography (with respect to some reference frame r) using only the points on
torso. Ideally, transforming the points using the computed homography should
cancel the displacement in the feature points due to the motion of the torso.
Any remaining displacement (x as well as y) observed in the feature points on
the head of the candidate subject is entirely due to the change in the candidate
subject’s head pose with respect to his torso. The concatenation of the remain-
ing displacement computed as described above over a time duration gives the
signature of head activity of the candidate subject from observer’s point of view
(see Fig. 3).

Formally, let Cit be the ith candidate subject detected in the observer’s video
at time t ∈ [a, b] and let Ptorso

i,t be the sets of feature points tracked on the torso
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of Ci. For simplicity, let us have a single feature point pheadi,t = (x, y) tracked on

the head of Ci at time t and let r ∈ [a, b] be a reference frame of our choice,
in which Ci appears. For each frame t, we find an homography Ht→r using
Ptorso
i,r and Ptorso

i,t . We then calculate the warped point whead
i,r = Ht→r ·pheadi,t . The

displacement δi,t = (δxi,t, δ
y
i,t) = whead

i,r − pheadi,t is proportional to the head pose

of Ci relative to his torso. We concatenate the displacements for all t ∈ [a, b] to

get: Õi,[a,b] =
(

(δxi,a, δ
y
i,a), (δxi,a+1, δ

y
i,a+1), . . . , (δxi,b, δ

y
i,b)
)T

. Note that while the

subject’s signature S is proportional to the subject’s head angular velocity, Õ
is proportional to the change in head displacement with respect to frame r. We

therefore temporally derive Õ to get the observer’s signature: O = dÕ
dt

In our implementation we manually select one feature point on the head and
at least 10 feature points on the torso of each candidate subject in the first frame
of the sequence. In case of multiple feature points on a candidate subject’s head,
the average of the δi,t displacements per frame can be used as the elements of

Õ.

It may be noted that, while the subject’s signature indeed describes the an-
gular velocity of the head, observer’s signature describes it as observed after
projecting it on the observer’s image plane. The two signals are therefore not
identical. However, the projection can only change the magnitude of instanta-
neous displacement but not the sign of the displacement. The matching strategy
as we describe in the next section should therefore ignore the magnitude and
focus on the sign of instantaneous displacement.

4 Matching Head Activity Signatures

Once a subject has presented his signature S, the observer would like to verify if
the subject’s signature matches the observer’s signatures corresponding to any
of the candidate subjects that appear in the observer’s video. It may be noted
that the subject’s and the observer’s signatures have been produced from two
videos which may have very little in common (looking to opposite sides, different
cameras/resolution/FPS etc.). Even the derivation process of the signatures is
not the same and therefore one might consider the signatures as originating from
different modalities. While there are various methods available for matching
signals obtained from different modalities [16], we believe that problem in our
case is much simpler. Most importantly, both signatures have the same dimension
and are measured in pixels. We observe that for our case the scale of the two
signatures can be very different but they should agree in their phase for a correct
match. We propose using Pearson Correlation Coefficient as a score for signature
match. The Pearson’s correlation coefficient ρ between two variables X and Y
is defined as:

ρ(X,Y ) =
Cov(X,Y )

σXσY
=

E [(X − µX)(Y − µY )]

σXσY
, (2)
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Fig. 4. (a) The curves showing subject’s (in green) and observer’s (in blue) signatures.
(b) Correlation between observer’s and subject’s signatures at various temporal align-
ments. The zero offset implies the ground truth alignment. We show the correlation
scores with various alignments in the range of ±100. The score is significantly higher
at the time instance of correct match (offset = 0).

where Cov is the covariance between X and Y , σX is the standard deviation
of X, µX is the mean of X and E is the expectation. We denote the x and
y components of the subject’s signature as Sx,Sy. Similarly, the components
of the observer’s signature is denoted by Ox,Oy. We compute independently
ρx = ρ(Sx,Ox) and ρy = ρ(Sy,Oy). Recall that ρ ∈ [−1,+1]. We add |ρx| and
|ρy| to obtain a total score for the match.4 In an abuse of notation, we call the
total score correlation and denote ρx as x-correlation and ρy as y-correlation.

Fig. 4 shows the matching between signatures for an indicative experiment.
The subject provides his signature with an indication of time where he claims
to be present in observer’s video. Observer computes observer’s signature and
tries matching it with various alignments around the time claimed by subject.
This is to allow synchronization errors between subject and observer. In our
implementation, we have empirically chosen a threshold of T = 1.1 (which is just
above the half way mark) and declare that the signatures match if the total score
is greater than this threshold. Note that we claim and show in the experiments
section that the signatures are unique and even if observer would have chosen
to match over the entire range for which subject’s signature was available, he
would have found a match only in case of valid subject at the correct time. The
decision to search only in the search window around the claimed time is due to
efficiency.

4.1 Signature Uniqueness

An important consideration at this stage is to quantitatively evaluate uniqueness
of the signatures. The question we seek to answer is: How hard is it for a malicious
attacker to fool the observer into sharing his video clip by ‘guessing’ another

4 The observed displacement in observer’s signature could be opposite or in phase
with subjects’s signature depending upon whether the subject is seen from front or
back by the observer.
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subject’s signature? For the discussion in this section we consider each of the
Sx,Sy,Ox and Oy as vectors in a d-dimensional space, where d is the duration
of the signatures in frames. Note that correlation score is invariant to scale and
shift. Therefore, we assume each vector to be normalized to unit norm and zero
mean. The question we are asking now is: How easy it is for a malicious attacker
to ‘guess’ signature vectors Sx,Sy such that the correlation with the observer’s
vectors Ox, Oy comes out to be more than T

2 = 0.55 per vector (x and y).5

Geometric interpretation of the correlation coefficient views it as the cosine
of the angle between the two vectors [17, 18]. A correlation score of T

2 = 0.55
corresponds to an angle of about 60◦ between the vectors. With this interpreta-
tion it is easy to observe that the probability of getting another vector within
60◦ degrees of the first one is practically zero for a large enough d. In other
words, for large enough dimensions, two random vectors sampled uniformly are
almost orthogonal with probability 1.6 In our context it implies that if the val-
ues of the signature at different time instance are i.i.d (identically independent
distributed), then the chances of hitting a correlation of T

2 = 0.55 (or for that
matter any non-zero correlation) by random guessing the vector is practically
zero.

The above argument is näıve in the sense that we assume the values are i.i.d.
In our case, the value of the signature at a particular time instance represents
the velocity of the head at that time instance. Therefore, the velocities at two
consecutive time instances are strongly dependent. The head of a human being
never becomes still immediately after moving at some other velocity or the other
way around. A more reasonable approach would be to bound the acceleration
of the head motion. Let us assume that the difference of values of the signature
(head velocity) at two consecutive time instances can not be more than ε. Assume
the signature value is ε at a time instance t. With the bound on acceleration, the
possibilities for the next value are 2ε, ε or 0. We restrict the possibilities further
and say that the next value can only be ε or 0. Note that this is equivalent to
providing additional information to the malicious subject. We show that even
with this additional information it is not possible for the malicious observer
to guess the signature vector. Observe that with the additional restriction, the
vector can be treated as a binary vector. It is easy to see that for sufficiently high
dimension, the chance of hitting non-zero correlation, even for binary vector, is
practically zero.

The above theoretical analysis is still näıve in the sense that we do not
account for patterns that may arise from unique individual behaviour observed
over a long time (i.e. collecting millions of signatures of the same subject). We
are not aware of any work that attempts to deal with such long term patterns
from egocentric videos. However, the possibility of such pattern-based attacks

5 Any unequal division of the total score requirement would be more difficult to meet.
6 In our implementation, the dimension of the vectors (length of the signature) is

usually more than 200 frames (corresponding to 3-4 seconds of video at 60 frames
per second). This is a sufficiently large dimension for the proposed probabilistic
analysis.
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Fig. 5. Matching scores between subject’s and observer’s signature at different tempo-
ral offsets as described in Fig. 4. First row shows a sample frame for each sequence. (a)
In this experiment subject and observer are standing in place and talking. Note that
the two are not exactly stationary and there is a bit of walking by observer towards the
subject. (b) Matching scores for the case when the subject is captured walking towards
a surveillance camera hanged from a room’s ceiling. (c) The proposed scheme also
works in the scenario when observer haven’t seen the ‘face’ of the subject. In this case,
subject is working on the computer and observer is watching his back. The matching
score can still accurately find the match at correct time instance. (d) The proposed
scheme can also handle cases where the subject and/or observer are moving. In this
scenario, the subject and observer are walking towards each other. The original video
clips corresponding to results shown here can be found at the project page.

cannot be ruled out. We validate the theoretical analysis in this section with
empirical evidence in Section 5.

5 Experiments

We have conducted our experiments using both self shot videos and a publicly
available dataset [19, 10]. We have used GoPro Hero3+ cameras in narrow view
mode for shooting our videos. The videos are in full HD resolution at 60 FPS and
are available at the project page: http://www.vision.huji.ac.il/egosig/.
We use our own implementation of LK for computing the subject’s signature. We
divide each frame to a 10×5 grid and compute optical flow independently in each
grid region. This grid size proved to be quite robust against moving objects in the
scene and other sources of optical flow failure. Other choices of grid size did not
yield much improvement in the results. For computing the observer’s signature
we detect GFTT features and track them using the LK. Both implementations
are available in OpenCV [20]. The points are detected and tracked separately
in head and torso regions. For the head region, we choose one point visible for
longest duration, whereas for torso region we use all the points visible during
entire length of the video. The homography between the torso points is computed
using Matlab’s geometric transformation estimator. The homography estimation
is done by using RANSAC with outlier removal options set. We observe that
homography estimation is not stable between frames separated by a long time
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Fig. 6. (a) In case of walking there is a periodicity in subject’s head activity due to
natural head motion associated with walking steps. This leads to weak periodicity in
the x-correlation scores. However, the head activity is not exactly same and there is still
a significant peak in the correlation score at correct time instance. (b) The y-correlation
scores are not affected.

duration. We therefore choose a new hop-over frame after every 60 frames (1
second in our videos). The homography is computed between the current and the
hop-over frame and then multiplied by the homography between the hop-over
and the reference frame to find the overall transformation. The time duration for
the observer’s signature is chosen to be at-least 200 frames to ensure low false-
positive rates. The signatures are declared as a match if there is a correlation
score (sum of x and y correlations) of more than T = 1.1 observed at any point.
The time of match is declared at the point of maximum correlation score.

We conducted experiments under various interaction scenarios between the
observer and the subject. Fig. 5 shows the correlation scores for indicative experi-
ments. As described in the previous section, we compute the observer’s signature
and then find the correlation score with subject’s signature in a window of ±100
frames around the time claimed by subject. Note that in our self-shot experi-
ments the videos are approximately synchronized and therefore we should see
a peak at origin. The proposed scheme correctly recognizes the subject while
standing, talking or walking. The signatures can be successfully matched even
when the observer sees the back of the subject. This exposes the strength and
novelty of the proposed method with respect to face pose estimation approaches.
Not only the face pose estimation is much harder to infer compared to proposed
tracking based approach, but by definition face pose estimation can be applied
only if the observer sees the ‘face’ of the subject.

We notice that there is some periodicity in the matching score in the walking
sequence. The reason for this could be understood from the fact that there is
a natural head motion associated with the stepping during walking. Since the
stepping speed doesn’t change too much over a period of few seconds there is a
gross similarity in the head activity in x direction (see Fig. 6). The periodicity
is limited to x direction only and is not visible in y-correlation score. Even for
x correlation, although the head motion is periodic at gross level, the activity
doesn’t match precisely between two (walking) steps. Therefore, the peak in the
score is still observed at correct time instance.
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Fig. 7. (a) Average probability of false positive for various signature length corre-
sponding to observer’s signature obtained from different sequences. The false positive
probability is non-zero for short signatures but quickly goes to 0 for signatures longer
than 100 frames. In our implementation we use signatures of length more than 200. (b)
Probability of false positive with respect to signatures of different variance. The length
of the signature chosen in this case is 100. The probability is practically zero even for
signatures with low variance.

In Section 4.1, we presented theoretical analysis on the uniqueness of the
proposed matching technique. We showed that the probability of a subject to
randomly ‘guess’ a signature which can match observer’s signature with a cor-
relation score of more than T = 1.1 (T

2 = 0.55 for each x and y-correlation) is
practically 0. The results holds for sufficiently large dimension and we claimed
that the dimension of 200 in our implementation is sufficiently large. We vali-
date our claim with experimental evidence here. We created a repository of more
than a million subject’s signatures based on the videos from GeogiaTech’s First-
Person Social Interactions Dataset [19]. In all, the repository is based on more
than 30 hours of egocentric videos. For the observer’s signatures, we used the
signatures from the workstation, standing and whiteboard sequences that were
shot by us. We evaluated the matching score between each observer signature
and the entire subject’s signatures repository. The probability of a false match
is the number of instances where the correlation of more than 1.1 is observed
against the number of evaluations. We repeat this experiment for various sig-
nature lengths. Fig. 7(a) shows the results. Expectedly, the probability of false
positive is non-zero for shorter signatures, but goes to 0 quickly for signatures
longer than 100 frames. We also confirmed this by choosing observer’s signature
having different variance. Fig. 7(b) shows the results. The probability of a false
match is practically 0 even for signatures with low variance. To further verify
the above findings, we repeated this experiment with a slight change. Instead of
matching the observer’s signatures (which are based on our self shot videos) with
the subject’s signature repository, we randomly picked signatures from the same
repository and matched them against the rest of the repository. This process
yielded similar results, which proves the uniqueness of the signatures.

One can think of special cases where even long signatures of more than 100
frames can be guessed. One such example is a subject’s signature that represents
no head activity at all (signature is a ‘flat line’). E.g, the subject’s camera is
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Fig. 8. Comparison of correlation scores for videos at various frames per second (FPS)
corresponding to whiteboard sequence with signature length of 200 frames. We observe
that although the best correlation score is similar at all FPS, the signal to noise ratio,
measured as the ratio of highest peak to second highest is best at 60 FPS.

placed on a statue’s head. It is clear that if the observer is presented with multiple
such signatures from multiple statue-like subjects, there is no way of telling who
produced which signature. A simple way to overcome this case is to require the
signature to contain a minimal amount of information, measured as variance or
entropy.

The experiments conducted as above merely serve the purpose of showing
that it is practically impossible to randomly guess the signature. The question of
whether it is possible or not to make an ’educated’ guess of a subject’s signature
(based on long-term observation of the specific subject) remains open.

It may be noted that the correlation scores are not strongly dependent upon
the frame rate of input videos. Although we use videos at 60 frames per second
(FPS), the results do not change much at lower FPS. Fig. 8 shows the score com-
parison at various FPS corresponding to the whiteboard sequence. The length
of the signature is chosen to be same for all videos. Note that the correlation
peak is at the correct place and of similar strength at all FPS. However, the
signal to noise ratio measured as ratio of highest peak to second highest peak is
best for 60 FPS. We therefore, recommend videos at 60 FPS for the problem.
The 60 FPS videos have additional advantage that the observer has to keep the
subject in view for a shorter amount of time (for same signature length) thereby
implying more flexibility.

Using head activity signature from egocentric video as proposed in the paper
is simple, efficient and robust enough for the problem we are considering. How-
ever, more sophisticated approaches for the signatures could have been used. For
example, face pose estimation has been a well studied problem in the computer
vision community and various algorithms have been proposed recently for the
same [21, 22]. We have experimented with [21] for which the source code was
publicly available. Our experiments showed ambiguity in the matching due to
quantized nature of face pose output. Figure 9 shows the result. It is important
to note that using face pose estimation from the said method to infer head ac-
tivity will restrict our method to forward moving sequences with x head motion
only. Furthermore, it would restrict us to cases when the face is seen clearly and
at enough resolution. Therefore, we are not advocating its use in the context of
our method.
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Fig. 9. (a) Face features and pose estimated by [21]. (b) Observer’s signature generated
using pose estimation. Also shown is the subject’s signature for visual comparison. Note
that [21] gives coarse pose estimation in step size of 15 degrees only. The same is visible
in observer’s signature which can only take few discrete values now. (c) Matching
score at various offset. While the peak is at the correct location, there is another
high correlation at an offset of 60 frames from ground truth. This is corresponding to
matching with next head turn as visible in (b).

6 Conclusion

A novel method for privacy aware sharing of egocentric videos has been pre-
sented. The proposed method paves the way for exciting applications by en-
abling a camera wearer to access the video clips which may have captured him.
The focus of the paper is not new technology for tracking or pose detection but
to use simple existing techniques to offer a practical solution for the privacy
concerns associated with video capture and sharing. There is no personal infor-
mation disclosure by either parties other than sharing of the requested video
clip in which the subject appears. The head activity signatures are temporally
volatile and can not be easily used to recognize the subject at any other time or
place. Yet, the computed signatures are unique enough to distinguish the correct
signature amongst the various signatures presented. The technique relies on sim-
ple steps of detecting and tracking features for which many efficient algorithms
are available. This broadens the scope of application by making it attractive for
mobile devices. The robustness of the tracking algorithms enables the algorithm
to be applied from a distant or low resolution cameras as well. The signatures
do not depend upon the visibility of a ‘face’ and can be computed even when
the observer see the subject from the back.

A possible weakness of the current algorithm is the requirement to see the
head for the duration of the signature. The duration required is not large (typ-
ically a few seconds) but even this small duration can be a restriction in an
egocentric setting, where the observer’s view point may be changing quickly due
to natural head motion. We note that there is a possibility of reacquiring the
feature points and allowing for ‘holes’ in the signature during matching. This is
an interesting possibility which we would like to explore in the future research.
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