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Abstract 
Computing camera rotation f rom image sequences 

can be used f o r  image stabilization, and when the cam- 
era rotation is known the computation of translation 
and scene structure are much simplified as well. A 
robust approach f o r  recovering camera rotation is pre- 
sented, which does not  assume any specific scene struc- 
ture (e.g. no  planar surface is required), and which 
avoids prior computation of the epipole. 

Given two images taken f rom two dijferent viewing 
positions, the rotation matrix  between the images can 
be computed f rom any three homgraphy matrices. The 
homographies are computed using the trilinear tensor 
which describes the relations between the projections of 
a 3D point into three images. The entire computation 
is linear f o r  small angles, and is therefore fast and 
stable. Iterating the linear computation can then be 
used to  recover larger rotations as well. 

1 Introduction 
Recovering camera rotation is one of the basic steps 

in many image sequence applications, such as elec- 
tronic image stabilization. Most existing methods take 
one of the following two approaches. One approach is 
to compute the camera rotation only after computing 
the camera translation (the epipole) [20, 4, 9, 131. The 
second approach assumes a specific 3D scene structure, 
e.g. assuming the existence and the detection of 3D 
planes in the scene [9, 19, 14, 111. 

We propose a new method to recover rotations us- 
ing three homography matrices, without using the 
epipoles and without assuming any specific 3D model. 
A homography is a transformation that maps the im- 
age of a 3D plane in one frame into its image in the sec- 
ond frame, and it can be represented as a 3 x 3 matrix 
(see Section 2). The homographies used do not corre- 
spond to any physical planes that have to be present 
in the scene, and therefore there is no restriction on 
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the scene structure. The benefits of our method are 
increased accuracy, as epipoles are believed to be a 
source for error [27], and more general applicability as 
no specific 3D model is assumed. 

A theoretical background to the presented approach 
is the property that homography matrices between 
two images form a linear space of rank 4 (See [18]). 
We further show that assuming small-motion ,which 
is typically the case in video sequence processing, the 
rotational component of camera motion which is the 
homography due to the plane at infinity i is spanned 
by only three homography matrices. 

There are several existing approaches for finding 
the three homography matrices needed to compute the 
camera rotation [8, 1, 2, 11, 14, 191. Most of these 
methods assume that each homography corresponds 
to a physical planar surface in the scene. Even when 
several planar surfaces do exist in the scene, the accu- 
racy of these methods decreases as more homographies 
are extracted. 

We found that the best method for computing the 
needed homographies is by using the trilinear tensor 
between three images [16, 4, 20, 51. The trilinear ten- 
sor is relatively accurate since it is computed from 
three frames, rather than only two, and no 3D scene 
structure is assumed. We then obtain a simple, closed- 
form solution for the rotational component of the cam- 
era motion from the trilinear tensor. 

2 The Homography Matrix 
In this section we will briefly define the homogra- 

phy matrices, and prove that all homography matrices 
between two images form a linear space of rank 4. For 
more detailed information on homography matrices in 
3D-from-2D geometry see [3, 24, 15, 6, 19, 14, 10, 12, 
91, and for more details on the rank-4 result see [18]. 

Let P be a point in 3D space projecting onto images 
9, W .  Let p E Q and p’ E Q’ be the matching points 
in the two image planes described by: 

p M [ I ;  O]P 
p’ 52 M‘[R; TIP 

where 52 denotes equality up to scale, and M denotes 
the transformation from the coordinates in the im- 
age plane to the camera coordinate system of the first 
camera, and M’ is similar for the second camera. In 
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Figure 1: The homography induced by the plane ?r maps p to 
p’ .  p and p’ are the perspective projections of any point P in 
the 3D plane ?r on the image planes 9 and @’. 

the simplest configuration, M  is of the form: 

M = [  4 
where f denotes the focal length of the camera arid 
x o , g 0  is the origin of the image plane (known as the 
“principle point”). The rigid camera motion is repre- 
sented by the rotation matrix R and translation vector 
T. Taken together, P = ( I C , ~ ,  1 , 1 / ~ ) ~ ,  where z,y are 
the image coordinates of the first view, z is the depth 
of the point, and f is assumed to  be 1, i.e., z M - l p  are 
the Euclidean coordinates of the point P in the first 
camera frames, and: 

1 
p’ % M ’ R M - l p  + -M’T.  

When the points P live on a plane T ,  then 
n: (xM- lp )  = d, where n, (normal vector) and (2, 
(scalar) are the parameters of 7r in the first camera 
coordinate system. We obtain = & n T ( M - ’ p ) ,  and 
therefore, 

z 

1 
p‘ ”= M ’ R M - ~ P  + - M ’ T ( ~ ~ M - ~ P )  

d, 
1 

= M ‘ ( R  + -Tn’)M-lp 
d, 

= H,p. 

In other words, the homography matrix associated 
with K is 

Therefore, A homography H ,  is a transformation 
associated with the two images !P and a‘, and with 
the 3D plane 7r. For any point P in T ,  the homography 
H ,  maps p to p’ (see Fig. 1). 

For a fixed pair of cameras ( M ,  M ’ ,  T and R are 
constant), given a homography matrix H ,  of some 3D 

plane T ,  all other homography matrices can be de- 
scribed by 

for some scale factor X and a normal to some plane n, 
since the hlomographies differ only in scale ;and in the 
plane parameters. 

Consider homography matrices H I ,  H2, ..., Hk each 
as a column vector in a 9 x k matrix. Let Hi = XiH, + 
TniT. The following can be verified by inspection: 

AH, + TnT (2) 

= [XlH,. . * XrcH,]gxk -b [ 1 9 x k  

[: ; ::I [n1...nk]3xk== 
O O 9 x 3  

A l .  
T O O  

We have thus proven that the space of all homography 
matrices between two fixed views is embedded in a 4 
dimensional linear subspace of R9. 
3 The Rotation Matrix 

Given a sequence of images taken by a camera mov- 
ing in a st,atic scene, we would like to  recover the ro- 
tation parameters of the camera. The rotation matrix 
R is an orthonormal matrix (up to scale). The or- 
thonormallity is the only constraint on R, which can 
generate five non-linear constraints on the elements of 
R. Note also that M’RM-’ is the homography of the 
plane at infinity (letting d, go to  infinity in Eq. 1). 
Since solving non-linear equations is in general less 
stable and harder to compute than linear equations, 
we will first examine the case of small rotsationS. In 
addition we will assume that M = M’ = 1, i.e., that 
the interaal parameters of the cameras are known. We 
will show that in addition to using linear constraints, 
the case of small rotations also places a strong con- 
straint on the family of admissible homographies: the 
only skew-symmetric homography matrix corresponds 
to the plane at infinity. 

When small rotations are involved, the rotation ma- 
trix R cain be approximated by a matrix having the 
following skew-symmetric form (up to  scale): 

In this representation, the 
vector Cl = ( i l ~ , Q y , l ; Z ~ ) ~  is the rotation axis, and 
the magnitude of the vector is the magnitude of the 
rotation around this axis. Likewise, the family of all 
approximate homography matrices H ,  is defined by: 

H ,  M H ,  = R+ -Tn; , 

where d, is the distance from the origin t o  the plane 
T ,  n: is the unit vector perpendicular to  the plane 

(5) 
A 1  

d, 
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toward the origin, and T = (Tx,Ty,Tz)' is the cam- 
era's translation vector. Note that when d, -+ 00, we 
have l?, = R. Therefore, the approximate rotation 
matrix R is also an approximate homography matrix 
of the plane at infinity. There are two main advan- 
tages of this framework. First, as we shall see next, 
the non-linear constraints associated with orthonor- 
mal matrices is replaced with a skew-symmetric con- 
dition on the family of approximate homographies - 
which, moreover, leads to  a unique choice for the ap- 
propriate rotation (unlike the general discrete case in 
which the space of homography matrices is represented 
by a 4 parameter family). Second, shown later, is 
that one can obtain a direct link between the trilinear 
tensor and the rotation matrix, thereby avoiding the 
computation of the translational component of camera 
motion (the epipolar geometry). 

We show next that the skew-symmetric form of R 
is unique. 

Lemma 1 The only approximate homography matrix 
that has an skew-symmetric form 

[ 5 B -r : -q E (6) 

is the one associated with the plane at infinity. 

Proof: if H ,  has the skew-symmetric form (6), 
then Tn; = d,(l-i?, - I?) (using Eq. 5) also has 
the skew-symmetric form (6), because R has this 
skew-symmetric form (Eq. 4). However, the skew- 
symmetric form (6) has rank 3 (or ra,nk 2 if ( = 0), 
while the matrix Tn: has rank 1, and we got a con- 
tradiction. 1 

This Lemma together with the rank 4 result im- 
plies that the matrix R we are looking for is the skew- 
symmetric matrix spanned by four approximate ho- 
mography matrices. This can be expressed as 

. ,  
where ci, i = 1..4, are scalars, and E,, i = 1..4, are 
given aproximated homography matrices. 

We can take the small-angle assumption a step fur- 
ther to show that in fact one needs elements of only 
three homography matrices in order to linearly span 
the small-angle rotation matrix: 

Lemma 2 The subset of all homography matrices 
that have n skew-symmetric form can be linearly 
spanned b y  elements of three homogrpahy matrices. 

Proof: Recall Eq. 2, all homography matrices H have 
the form 

AH, + TnT . 
Any two columns of a skew-symmetric matrix contain 
all the different entries of the matrix (Eq. 6). The first 

two columns can be written as 

where H,(2) represent the first two columns of H,, 
and nGl represent the first two elements of nT. Con- 
sider the first two columns of k homography matrices, 
denoted by  HI(^) , H+), ..., Hj+) , each as a 6-element 
column vector in a 6 x k matrix. The following can be 
verified by inspection: 

We have thus proven that the first two columns of 
the skew-symmetric matrix can be recoved as a linear 
combination of three aproximated homography matri- 
ces, as follows: 

(9) 
In the next section we will see that the small-angle 

assumption together with the rank-3 result above gives 
rise to a direct method for obtaining the small-angle 
rotation from the trilinear tensor without recovering 
the translational component of camera motion and 
without imposing any constraint on the 3D structure 
of the scene. 

4 Computing Small-Angle Rotation 
We have seen that since the small-angle rotation 

matrix is skew-symmetric, its elements can be spanned 
by three approximate homography matrices. We have 
seen also that the skew-symmetric constraint provides 
a unique solution. The unknowns are the three coeffi- 
cients that satisfy the three linear constraints of ki(2) 

(Eq. 9). Therefore, one can symbolycally solve for the 
coefficients, and obtain a closed-form formula express- 
ing Rx, fly, R, as a function of elements of the three 
given homogrpahy matrices. 

What is left is to find a general way of obtaining 
three homography matrices without imposing further 
motion Constraints, without recovering the transla- 
tional component of camera motion, and without im- 
posing constraints on the structure of the 3D scene. 
Instead we add a third view and recover the trilinear 
tensor associated with the three views (in a particular 
order). 

The trilinear tensor is described in Appendix A. 
The tensor aSk contains 27 entries (coefficients) as 
i , j , k  = 1,2,3.  The coefficients can be recovered lin- 
early from at least 7 matching points across three 
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views (see Section 5.1). The homography matrcies 
can be recovered directly from the tensor by setting 
.Ej = a!k (see Appendix A). 

By spanning the first two columns of the rotation 
matrix (Eq. 9) and eliminating the linear coefficients of 
the combination, we obtain a very simple, closed-form, 
expression relating the tensor a:k and R x ,  R y ,  Rz: 

where aj2” stands for (ai2, ai2, ai2),  etc. This 
expression recovers directly and simply small rotations 
from the trilinear tensor. This result can be extended 
to handle also the case of general rotations by using 
iterations. For details, see Appendix B. 

5 Video Stabilization 
In this section we present a two-step algorithm for 

video stabilization. The first step is to  compute thie 
trilinear tensors, and the second step is to compute 
the camera rotations and perform derotation on the 
frames. 
5.1 Computing the Trilinear Tensor 

Following are the steps we performed to  compu1,e 
the trilinear tensor from a set of three images. For 
computation stability, all coordinates are normalized 
to  the range of (-1, 1). 

0 Selection of Corresponding Points 
Optical flow is computed between all three pos- 
sible image pairs of the three images. As corrle- 
sponding points we select only those points hxv- 
ing a high gradient, and for which all the pairwise 
optical flow vectors are consistent. This process 
results in the selection of several hundred points 
as corresponding in all three frames (“correspond- 
ing triplets”). 

From all corresponding triplets computed in the 
previous step, several hundred subsets of ten 
triplets are randomly selected [26]. For each sub- 
set the trilinear tensor is computed using Eq. 13. 
Each computed tensor is then applied to  all 
matching triplets, and the single tensor for which 
the maximal number of triplets satisfy Eq. 13 is 
selected. 

0 Robust Estimation 

0 Least Square Step 
As a final step we use all the points which sat- 
isfied the selected tensor in the previous step to 
solve t,he tensor again from Eq. 13 using a least 
squares method. From this tensor the homogra- 
phy matrices will be computed. 

5.2 Derotation of Video Frames 
The image sequence is stabilized with regard to the 

first image. This is done by selecting an arbitrary irn- 
age to  serve as the third image and sequentially going 
through the images. For each such triplet of images 
the trilinear tensor is computed as described above. 
From the compute tensor we compute R x ,  Sky, R z  us- 
ing Eq. 10. The image is then warped back to cancel 
the rotation, thus getting a stable sequence 

6 Experiment a1 Results: Stabilization 
Given a sequence of images, a trilinear tensor is re- 

covered from the first frame to all other frames, using 
an arbitrary frame as the third frame. The rotation 
from the first frame to all other images is then re- 
covered by using the the tensor values in Eq. 10. By 
warping back every image using the calculated rota- 
tion, we obtain a new sequence of images having no 
rotation compared to the first image. The remaining 
motion in the new sequence is only due to  the origi- 
nal translakion, thus the new sequence is smooth and 
clear, as can be observed in the average images. 

The method was tested on outdoor scenle (Fig. 2), 
indoor scene (Fig. 4), and on a scene with objects that 
are very close to the camera (Fig. 3). Thie method 
proved to ‘be robust and efficient. 

7 Concluding Remarks 
A new robust method to recover the rotation of the 

camera wahs described. The main contribution to the 
robustness is the fact that we do not have to recover 
the epipoles, and the rotation is computed directly 
from three homography matrices assuming small ro- 
tations. The homography matrices are obtained from 
three images using the trilinear tensor parameters, and 
the recovery process does not assume any 3D model. 

A Appendix: The Trilinear Tensor 
In this section we briefly present the trilinear ten- 

sor and give an example to  measure its quality. The 
trilinear tensor is an extension of the fundamental ma- 
trix of two views and the point and line geometry of 
three views [25, 22, 211, and it describes the spatial re- 
lation of three cameras. The derivation described here 
is taken frlom [17], previous work and more (details can 
be found in [16, 20, 4, 5, 23, 71. 

Let P be a point in 3D projective space projecting 
onto p,p’,p’( three views Q, W, Q’’ represented by the 
two dimensional projective space. The relationship 
between the 3D and the 2D spaces is represented by 
the 3 x 4 matrices, [ I ,  01, [A, U’] and [B, VI’], i.e., 

P = [I,OIP 

p” 2 [B, V1qP 
p’ S [A,v’]P 
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Figure 2: First sequence - outdoor scene. 
a) First original frame. 
b) Last (fourth) original frame. The camera was rotating while 
moving forward. 
c) average of the four original images. 
d )  average of the four images after rotation cancellation. The 
remaining motion is only due to the original translation. The 
sequence looks as if it  was taken using a stabilized camera. 

Figure 3: Second sequence - close objects. 
a) First original frame. 
b) Second original frame. The camera was moving and rotating 
around the objects. 
c) average of the two original images. 
d) average of the two images after rotation cancelation. The 
remaining motion is only due to the original translation. 

Figure 4: Third sequence - indoor scene. 
a) First original frame. 
b) Second original frame. The unstable camera was moving 
toTvards the man. 
c) average of the two original images. The rotations make the 
average image unclear. 
d) average of the two images after rotation cancellation. The 
remaining motion is only due to the original translation. The 
sequence looks as if it was taken using a stabilized camera. 

We may adopt the convention that p = (z, y, l)T, 
p‘ = ( d , g ’ .  l)T and p” = (d‘,y”, l)T, and therefore 
P = [z, y, 1, p ] .  The coordinates (z, y) ,  (z‘y’), (%.’I, y”) 
are matching points (with respect to some arbitrary 
image origin - say the geometric center of each image 
plane). The matrices A and B homography matrices 
from 8 to 8’ and Q”, respectively, induced by some 
plane in space (the plane p = 0). The vectors d and 
U” are known as epipolar points (the projection of 0, 
the center of projection of the first camera, onto views 
Q’ and W’, respectively). 

The trilinear tensor is an array of 27 entries: 

where superscripts denote contravariant indices (rep- 
resenting points in the 2D plane, like U‘) and subscripts 
denote covariant indices (representing lines in the 2D 
plane, like the rows of A) .  Thus, U: is the element of 
the k’th row and i’th column of A, and dk is the k’th 
element of U’. The tensor aik forms the set of coef- 
ficients of certain trilinear forms that vanish on any 
corresponding triplet p ,  p‘, p” (i.e., functions of views 
that are invariant to object structure). These func- 
tions have the following form: let s i  be the matrix, 
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and, similarly, let ~ j ”  be the matrix, 

1 1 0 -2” 
0 1 -y” r =  [ 

Then, the tensorial equations are: 

(12) 

with the standard summation convention that an iii- 
dex that appears as a subscript and superscript is 
summed over (known as a contraction). Hence, we 
have four trilinear equations (note that Z,m = 1 , Z ) .  
In more explicit form, these functions (referred to as 
“trilinearities”) are: 

s “ 4 3 p i  - x ” x ’ a ’ Q 3 p i  + &-$pi - 
y’ta;3pi - y’/x5393pi + ,laypi - 
x “ 4 3 p i  - x ” y t 4 3 p i  + ?/‘($pi - (-$pi = 0, 

y ai p - 3  y a i  p +y’a’Q2pi 

= 0, 
= 0, 

I t  23 i It I 33 i =o.  
Since every corresponding triplet p ,  p’,  p“ con- 

tributes four linearly independent equations, then 
seven corresponding points across the three views 
uniquely determine (up to scale) the tensor a?. 

The connection between the tensor and homogr a- 
phy matrices comes from contraction properties as fol- 
lows: for any vector s j  = (SI, s 2 ,  s 3 ) ,  the matrix sjaik 
is a homography matrix from view f4 to view W, where 
s describes the orientation of the associated plane 
(similarly, S k a i k  is a homography matrix from view f4 
to  view V). In particular, when s = (1,0,0), (0,1,0) 
and (0, 0 , l )  we get our three independent homography 
matrices ~j = 4k ~201. 

Using the homography matrices one can obtain the 
“fundamental” matrix F (the tensor produces 18 Un- 
ear equations of rank 8 for F ,  for details see [20]). 
Fi . 5 shows an example of image reprojection (trans- 
fe4 using the trilinearities, compared to using the 
epipolar geometry (recovered using INRIA code or 11s- 
ing F recovered from the tensor). One can see that 
the best results are obtained from the trilinearities di- 
rectly. 

B Appendix: General Rotations Case 
In the case of general (large) rotations, the following 

iteration scheme is proposed: 

1. Compute the trilinear tensor, and use Eq. 10 to 
find the rotation. Results are not accurate si it 
was assumed that the rotation is small. 

2. Derotate the second image towards the first one 
using the inverse of the general rotation matrix of 
the resulting angles. The rotation angles between 
the first image and the derotated second image 
will be smaller than the rotation angles between 
the two original images. 

Figure 5: Reprojection in different methods. 
a) Reprojection using epipolar line intersection. Fundamental 
Matrices coimputed with code distributed by INRLA. 
b) Reprojection using epipolar line intersection. Fundamental 
Matrices computed from tensor. 
c) Reprojection using the tensor equations. 
d) Original third image. Presented for comparison. 

3. Repe,at the process with the derotated second im- 
age instead of the original second image. 

4. The tjum of the intermediate angles will give the 
general (large) rotation between the two images. 

This approach can be computationally expensive if 
in each iteration the tensor is computed aind and the 
second image is derotated. To reduce the computa- 
tional coniplexity we show that only manipulations of 
the elements of the trilinear tensor is needed in each 
iteration! 

Let be the tensor of views < 1,2 ,3  :> and R be 
a rotation matrix. Then the tensor 

/j’!k = @a!‘ (13) 

is the trilinear tensor of views < 1,2’, 3 >, where view 
2’ results from rotating the second camera (view 2) 
around its coordinate axes by R. 
Proof: alk can be written as 

Therefore, 

It is therefore clear that pik is a tensor < l , $ , 3  > 
for some view $. Note that RfR’f is the combined 
rotation RR’ and v“Rf is Rv’ which, taken together, 
means that the view $ is a result of rotating the second 
image plime by R. 0 
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Eq. 13 is mathematically equivalent to the derota- 
tion and tensor recovery steps. Using this result, we 
can apply the inverse of the general rotation matrix of 

avoiding the need to derotate an image, and recom- 
pute the tensor, in each iteration. As before, the final 

angles. 
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