
 Lucas-Kanade Without Iterative Warping

Alex Rav-Acha
School of Computer Science and Engineering

The Hebrew University of Jerusalem
91904 Jerusalem, Israel

E-Mail: alexis@cs.huji.ac.il

Abstract

A significant part of the parametric motion computa-
tion methods are based on the algorithm proposed by Lu-
cas&Kanade [8]. We describe an algorithmic acceleration
which can be used to speedup most of those methods, while
preserving their accuracy. The method is also generalized
to an online multi-image alignment framework which in-
creases the accuracy and robustness of the motion compu-
tations with no additional computational cost.

1 Introduction
Although many robust methods exist for motion com-

putation, the direct motion analysis initially proposed by
Lucas & Kanade [8], and later adapted for parametric mo-
tion computations by [2, 6] is still of wide use [1]. We
will denote this method as ’LK’ although they addressed
in the original paper to the problem of optical flow, while
we focus more in this paper on parametric motion. The
popularity of this method is due to its stability, simplicity
and robustness not only to outliers but also to inaccura-
cies in the image model (such as changes in the illumi-
nation, lens distortion, etc’). For example, it was shown
in [9], that when computing a parametric motion of pure
translation between two images, it converges to the dom-
inant motion even when there are multiple motions. The
advantage of direct methods are mostly expressed in dif-
ficult scenes where no clear features exist. In this work
we present an algorithmic acceleration which can speedup
the motion computations while preserving their accuracy.
We also show a generalization of the image alignment to
a multi-frame alignment, which increases the robustness
and accuracy of the motion computations while preserving
both the direct characteristic of the LK method and its effi-
ciency. The ideas shown in this paper can be used for both
parametric motion computations and for computing optical
flow.

In section 2 we describe how to accelerate parametric
motion computations that are based on the LK by avoiding
the additional computation needed for the iterative back-
warping of the image. In Section 3 we introduce the multi-
frame alignment framework, and show how to accelerate
it in Section 4. Possible improvements are introduced in
Section 5, including an automatic frame weighting and a
generalized multi-resolution framework.

2 Accelerating the computations of the LK
2.1 Accelerating Sub-Pixel Translations

Let
���

and
���

be two images, and let the transformation
between the two images be a pure translation ���	��
� . As
was described in [2], an iteration of the LK method for the
case of pure translation is done by solving the equation set��� �
������ , where

�
is the LK matrix given by:

� ���� ���� � ��!
� � �#"$�&%� � ���� � ��!

� � �#"$��%'� � � ��"(��%'�
���� � ��!

� � �#"$��%'� � � ��"(��%'� ��)� � ��!
� � �#"$��%'� � *+

(1)
and � is given by:

�,� ��.- ���� � ��!
� � ��"(��%'� �0/ ��"$�&%'�

- ���� � ��!
� � ��"(��%'� �1/ �#"$�&%� *+ (2)

Where
� � and

� � are the image derivatives, approximated
from the intensities of the image

� �
using derivative ker-

nels, and
�0/

denotes the derivative in time, and is practically
approximated by the difference image

�2�
-
�2�

. The summa-
tion in the above expressions is over the region of analysis3

. This region includes most of the image for many di-
rect methods[2, 6], and a window around a certain pixel
for local motion computations[8]. Without loss of gener-
ality each pixel received the same weight, but a weighted
sum can be used exactly in the same way.

For simplicity of presentation, we sometimes omit the
indices ��"(��%'� from the summation expressions in the fol-
lowing equations. In the iterative scheme, given an estima-
tion of the image translation �#�(�&
 � , the image

� �
is warped

(using a back-warping) according to the current motion pa-
rameters, and the warped image is used in the next itera-
tion, until convergence.

The LK matrix
�

does not change per each iterations,
and thus can be computed only once (this scheme was de-
scribed in details by [1]). Whereas the free term does vary
per iteration:

� ����� � � - �
� � � /

- �
� � � / ��� � - �

� � � �0� -
� ����� � �� �

- �
� � � � � -

� ���	� � �� � � (3)

where
� ����� � ��

equals to
���

after warping according to
the current estimated motion between

� �
and

�0�
. Assuming

that the motion is smaller than a pixel (and thus it can be
done using interpolation), and under the model of a pure
translation, we can write:

� ��� �� � �2��
�
, where

�
is a

convolver whose size depends on the interpolation scheme.
(For example, in bilinear interpolation

�
is a 2x2 kernel).

In this case, we can write:
� �)� � � � ��"$�&%'� � ����� � �� �#"$��%'� � � ��� � � � �#"$��%'��� �2� ��"(��%'�
�� � (4)

� �
����� � � � � � � � � �)� � � � �#"$�&%��� �2� �#" -

� �&% -
� �&�

� �
����� � � � � � � ���

�� � �
where � �

�� � ��� are all scalers. The second component of �
can be manipulated in a similar way. Therefore, assuming
a sub-pixel translation, the only terms that are changed per
iteration are the values of

�
, while the rest of the terms

can be computed in a pre-processing, leaving only a few
operations per each iteration of the LK: A number which
depends only on the size of the interpolation kernel (which
is usually very small) but is independent in the number of
pixels in the region of analysis.

The number of operations needed for the pre-processing
is similar to the number of operations for each iterations of
the LK (only the order of the operations is changed), and
the extra number of operations done in each iteration is� ����� . 1

2.2 Accelerating Large Translations
When the relative motion between the two input images

is large, there are two changes in the registration scheme
that should be addressed:

1For some platforms, this change in the order of summation is has
additional advantages: Instead of working with interpolated values, we
process image values (�! !"#�%$&"#�%'), allowing a better precision.

(The image warping after each iterations can no longer
be described as a combination of constant numbers (4
numbers in the case of bilinear interpolation) since the
pixel-wise location of the interpolation varies from it-
eration to iteration.

(For large motions, a multi-resolution framework is
usually used. That it, Gaussian pyramids are con-
structed for both images, and the motion parameters
estimated by the low-resolution level are used as an
initial estimation for the finer level [2].

It should be noted that when using the multi-resolution
scheme, the residual translation in the finer levels is almost
always sub-pixel, as the pixel-wise translation is expected
to be recovered in the lowest resolution (and enhanced by
each level). Nevertheless, we will not like to rely on this
observation. Instead, we prepare two tables) � �#�(�&
 � for

�
� � �1/ and) � �#�(�&
 � for �

� � �0/ (The tables are functions
of ���	��
� as the two terms are summed over all the pixels in
the region of analysis). The number of entries in the tables
is determined by the number of possible (pixel-wise) trans-
lations. The tables) � and) � are initialized by null values.
Each time we need a value in one of the tables, we com-
pute the relevant term only if its value in the table is null.
In this way we guarantee correctness while saving com-
putations whenever possible.(The size of the tables does
not influence on the computational complexity, as we ac-
cess their cells only on demand). Note, for example, that if
the translation was a pixel and a fraction, we can still save
computations as only some of the terms are new (for bilin-
ear interpolation: half are new, for bi-cubic interpolation
only 3 terms out of 9 are new).

Regarding to the multi-resolution framework, we sim-
ply construct a table for each level, which means that the
minimal number of “actual” iterations done in the proposed
method equals to the number of levels in the pyramid (of
course, most of the computations are done in the finest res-
olution level).

2.3 Extensions to other Types of Motions

The acceleration described above cannot be simply gen-
eralized to different types of motions, other than pure trans-
lation, since general motions can not be modeled by a con-
volution with a kernel. However, it is very common to ap-
proximate the image motion in local regions by a trans-
lation. This approximation holds for any smooth image
motion. This approximation can be utilized to accelerate
general motions by dividing the image into a set of win-
dows, assuming each window have a uniform translation.
For example, assume an Affine motion model and let ��"(��%'�
belong to a windows whose center is located at image co-
ordinates �#"�*��&%&* � , the image shift �,+	��"$�&%'�1�.-�#"$�&%�&� will be

2

given by: � +	��"$�&%'�
-�#"$�&%�'��� ��� " * � � % * ���� " * ��� % * ��� � � (5)

This motion model has 6 unknowns, and its deviation from
the real Affine model is given by� � �� � ��� �	� ��" * - " � � � �#% * - %�� �#" * - " � ��� �#% * - %'� � (6)

which is usually very small as � ��
�
�
2� ����
and ��" -" * �&% - % * � are only few pixels. (Otherwise, one of the

images can be warped using a real Affine transformation
after several LK iterations). Since each window is accel-
erated separately, a significant speedup can be achieved as
long as the window size is large compared to the size of the
interpolation kernel.

2.4 Numerical Evaluation

The algorithm does not guarantee to reduce the num-
ber of iterations to a single iteration if the image motion
is larger than a pixel. However, we can hope that practi-
cally, when using a multi-resolution framework, the resid-
ual motion in the highest-resolution level will be less than
a pixel, resulting in a single iteration in this level (which is
the most expensive). Note that the proposed acceleration is
also valid when the motion is computed only using lower-
resolution levels, as is sometimes done in efficient imple-
mentations of the LK. In this case, the same speedup is
achieved, only that to compute the actual cost of the regis-
tration, we consider the size of the highest-resolution level
used in the motion analysis instead of the size of the origi-
nal image.

Simulation with pairs of images of different types
showed that for the proposed method only a single iter-
ation was needed in all the image resolutions, accept for
the lowest one. Therefore, the speedup achieved with the
proposed method was high especially for difficult scenes
where the traditional LK converged more slowly than the
usual. The speedup in the number of iterations was 3-10
(In many implementations the number of iterations is set
to be constant), and the speedup in the total running time
was ranged from 2 to 4. The total running time includes
the computation time of Gaussian pyramids and the com-
putation of image derivatives. For many applications, these
computations are done anyway, making the number of LK
iterations be the main measure for the speedup. 2

2We have done the analysis for PCs, which has a very fast memory. In
other platform (like DSP cards) the bottle-neck of the computations are
usually the number of passes over the image, significantly increasing the
benefit of using our method.

3 Multi-image Online Alignment
In the previous section we described a method for ac-

celerating the LK method. In this section we address the
problem of increasing the robustness and stability of the
method without paying for it in complexity. For this pur-
pose we introduce a new computation scheme, in which
each frame is aligned to several preceding frames and not
only to the previous one. Unlike local to global methods
[12, 11], the motion computations are done only once per
each frame, using the same framework as the traditional
LK and avoiding exhaustive (and hard to implement) non-
linear optimization (such as bundle adjustment [14]). In
addition, we exploit the “true” multi-frame information as
we use the gray-values of earlier frame, and not only the
transformations computed for those frames. (in a similar
way to [10].) The proposed scheme consists of the follow-
ing steps (to be elaborated later):

1. Select a frame
�
, and initial from it a set � � � � � . Set

all the pixels in this frame to be valid pixels. (The first
frame can be selected arbitrarily to be the first frame
in the sequence).

2. Compute motion parameters by aligning a new frame
to the existing set � . For each frame in the set � , use
only its valid pixels.

3. Mask out pixels that were miss-aligned by the regis-
tration, for the future computations. (Mark this pixels
as non valid).

4. Add the registered frame to the set � , together with
the corresponding validity mask.

5. Return to 2. Repeat until reaching the last frame of
the sequence.

In the rest of the section we describe in details the dif-
ferent stages of the multi-image alignment, and in the next
section we show how it can be done without increasing the
computational complexity.

3.1 Image Alignment Stage

Assume that all the images
� �
�
�
 � ��� � have already

been aligned and let the �
/��

frame be the new frame be-
ing aligned. To compute the motion parameters of the new
frame, we minimize the error function: (For a multi-image
registration, we do not use the term

�0/
but explicitly write

the differences between pairs of images).

����� �,+(�.-)� � �
��� ���

���� � ��� � � � � + ! � �! " � -
! � �! % � � � -

� � � � �
(7)

3

where
 ��"(��% ��� � is a validity mask (whose computation

is described in the next section) and �,+(�.-)� are the displace-
ment of each pixel. For the pure translation case, they are
given by:

+	��"$�&% � �$� � � � - � �
-�#"$��% � �$� �
 � -
 �
 (8)

Other motion models can also be used. For example, in the
case of affine motion model:

�� + - � *+ ���� � � � � � �� � � � � �� � �
*+ � �

� �� � � � � � �� � � � � �� � �
*+ � �� " % � *+

(9)
In either cases, the only unknowns are the motion param-
eters of the current image (i.e - �#� � ��
 � � for pure transla-
tion and � � �
�
�
 � � � for affine motion model). Therefore
the terms + and - are linear in the unknowns, and the er-
ror function can be minimized by solving a set of linear
equations similar to the traditional parametric LK [2].

Note the use of the derivatives ������ � and ������ � which are
estimated from each image

� � rather than from the new
image

� � . This notation fits well to more general motion
models, such as ego-motion or optical flow computations,
but the inverse notation can also be used (That is, using the
new image as a reference).

The coefficients �
�� are also used to weight the impor-

tance of each frame in the alignment. For example, the
weights should probably decrease for images which are se-
quentially far away from the aligned image.

3.2 Computing the Validity Mask
To increase robustness, we add a step of validation

which masks pixels were the alignment is not good. These
pixel will not be used for future computations. Note, how-
ever that in our method we do not repeat the registration
of the current image using only the valid pixels, but only
use this validation for future registrations. This scheme is
more efficient, as each image is aligned only once.

In the validation stage a mask is computed, which mea-
sures for each pixel the SSD error between a window
around the pixel, and the corresponding window in the pre-
vious frame. This score is normalized with the gradient of
that window. In our implementation, we have used a binary
mask by thresholding the score:

 �#"$��% � �$� �
�		
 		� � � � ����� �

� ��� � ������� ���

�� �� � �
��� � �� � �

��� �"! � �
�
� � � � (10)

where the summation is over a window # �)� � around �#"$��%'� ,
and

�
is a threshold (We usually used

� � �). This is a
conservative scheme to mask out pixels in which the resid-
ual energy will likely to bias the registration. The mask

 � �#"$��%'� � ��"(��% � �$� is used to mask pixels in
� � in all

the future alignment in which
� � takes place.

4 Accelerating the Multi-image Alignment
In this section we describe how to speedup the multi-

image motion computations. In the first part, we describe
how the acceleration method described in Section 2 can
be incorporated into the multi-image framework from Sec-
tion 3. In the second part, we use a recursive update
scheme to do the multi-image alignment without actually
computing the terms related to all the previous frames for
each alignment of a new frame.

4.1 Incorporating the Single-Frame Acceleration into
the Multi-image Framework

For clarity of presentation, we focus on the pure trans-
lational case with sub-pixel motion. The generalization
to other cases is identical to the single-image registration.
The the case of pure translation, taking the derivatives of
Eq. 7 with respect to � and
 and setting them to zero yields

the linear set of equations
� � �
 � � � where:� � �

��� � �
�� � � � � � �

��� � �
�� � �
 (11)� � is given by:

� � � �$� ���� �
 � �%���� � �

���� �
 � ������ � ������ �

���� �
 � ������ � ������ � ���� �

 � ������ � � *'&+ (12)

and � � is given by:

� � � - �� ���� �
 � ������ � � � � -

� � �
���� �
 � ������ � � � � -

� � � *+ -
� � � � �
 � � (13)

(The right term of � � does not appear in the single-frame
LK, as we usually solve for the residual translation be-
tween the two frames. Here, we need to compensate for
the different (but known) motion of each image ��� � �&
 � � .

The 2x2 LK matrices
� � are computed only once per

frame. This means that the computation complexity of the
LK matrix for the multi-frame case is similar to the single-
frame one. As a result, the computation of the free term �
is more dominant in the total computational cost, making
the proposed acceleration even more important.

Looking at the expression for � , it is evident that the
same idea which was used to accelerate the LK computa-
tions for the single-frame case can also be used to acceler-
ate the multi-frame case. By writing � as:

� � � � � � � � � � � �)(
� ��* � � � (� (14)

4

(
� �

is a 2x1 vector while
� � � ��* are matrices), we can use

the same manipulation that was used in Eq. 4 to pass over
the images only once, and to update the equation set in� ����� for each iteration.

Similar to the single-frame algorithm, one may use a
multi-resolution framework. In this case, a Gaussian pyra-
mid should be computed once for each frame of the se-
quence for efficiency. Note that as stated before, the same
acceleration can be applied in a similar way to more com-
plex motion models.

4.2 A Multi-frame Registration in the Complexity of
A Single-Frame

For some natural choices of a frame-weighting scheme
for the alignment, additional acceleration can be performed
which further reduces the computational cost of the multi-
frame case to be equal to a single-frame case regardless of
the number of frames used for the alignment. By letting
the weights �

�� to be uniform (that is �
�� � � for � -) �� � � and zero elsewhere) or geometrically decreasing

(�
��� �� � - � �

�� � we can use an incremental computation to
perform the multi-frame registration in the complexity of a
single-frame one. The logic behind using a geometrically
decreasing weighting scheme is that after compensating for
the image motion, closer frames in the sequence tend to be
more similar.

To apply the accumulated computations, we must align
each new frame to the reference frame. In the case of large
motions (more than a pixel), two technical issues must be
considered:

(The image should be aligned only according to the
sub-pixel part of the motion. The pixel-wise part can
be saved and used virtually. (Otherwise, one should
have saved panoramic views for each frame, which is
not practical).

(For image boundaries (regions which are visible only
in the new frame) the accumulated terms are set to
zero, so only the values of the new image are used.

In this section we describe in details the incremen-
tal computations for the case of geometrically decreasing
weights, but the case of a uniform weighting scheme is
very similar. The use of an incremental computation for the
computation of the LK matrix

�
is straight-forward from

Eq. 11. By writing Eqs. 11 and 12 in the following form:

� � � �)� � �$� ���� �
 � ������ � �

���� �
 � ������ � ������ �

���� �
 � �%���� � �%���� � ���� �

 � ������ � � * &+ � (15)

each of the terms in the matrix can be computed recursively

as an accumulated sum. For example -

�
��� �

 �
! � �
! "

�
� - � �

��� ��� � � ! � �! "
�
� ��� - -)� � � ! � �! "

�
(16)

Accelerating the computation of � is done in a similar
way. Again, we rewrite Eqs. 11 and 13 as following:

�,� -
� �)� � �� ���� �

 � ������ � � � - � ���� �
 � �%���� � � � �

���� �
 � ������ � � � - � ���� �

 � �%���� � � � � *+
 (17)

(Recall that we align each new frame to the reference
frame, and therefore we can assume here without loss of
generality that � � and
 � are zero for all previous frames.)
Similar to

�
, � can be computed recursively by saving the

accumulated sums of four images, and updating them with
terms that are computed from the new frame.

To conclude, in order to compute the linear system
recursively for the geometrically decreasing weighting
scheme, one should save 7 accumulated images (three for
the computation of

�
and four for �). These images are up-

dated in each alignment, and no further information should
be saved from the past sequence. By combining the recur-
sive computation with the previous acceleration, the multi-
frame implementation of the parametric alignment can be
done online in a computational complexity of

� ��� � in-
stead of the naive cost which is

� ���
)
�� � , where �
is the number of pixels in each image,) is the number
of frames used for the alignment, and

�
is the number of

iterations.

5 Additional Improvements
We describe two additional variations of the method that

can improve the accuracy of the motion computations. The
first paragraph deals with automatically setting the weights
of each frame in the alignment. Unlike previous improve-
ments, using a different weights for each frame requires
additional computational complexity, as the acceleration
described in Section 4.2 can be applied only for special
weighting schemes. The second paragraph generalize the
multi-image alignment to a multi-image-multi-resolution
alignment, in which different images and different resolu-
tions are used simultaneously for the alignment.

5.1 An Automatic Scheme for Setting the Frame-
Weights

In the preceding sections we have suggested to use a
set of frames to align each new frame instead of align-
ing it only to the last frame. Experimental evaluation of
this idea showed that using a small number of frames al-
ways increased the stability of the registration, but some-
times using more frames gave even better results. On the

5

other hand, it is logical that there is a limit on the num-
ber of frames from which it is no longer worthwhile to add
more frames to the alignment process. This limit can be
determined either due to computational considerations, or
according to the temporal variability of the sequence (For
example - changes in the illumination of the scene).

It may be of a large benefit if one could automatically
determine the number of frames that should be used in the
alignment. A more general scheme would be to give a
weight for each frame, which describes the influence of
this frame on the alignment. Given the weights, the num-
ber of frames in each alignment can be determined with
respect to the specific application: In applications which
demand fast computations, frames with low weights may
be omitted from the computations.

As the proposed registration scheme is online, it would
be of a great advantage to learn the weights that will be
used for aligning the �

/��
frame from preceding alignments.

Using a predefined set of weights may not be appropriate,
as it must depend on the dynamic properties of the scene.
To check whether it is possible to do so, we have per-
formed the following test: We have aligned several video
sequences, and for each frame of each sequence we com-
puted its � ��� (Sum of Squared Differences) to its � pre-
ceding frames (We used 5 frames). From the � ��� we have
computed alignment scores:

�
� � �

� ���
where � is the number of overlapping pixels between
the two corresponding frames. Then, the � scores where
normalized to sum to one. Some vectors of normalized
scores are shown below (for two different sequences). The� /��

row describes the different weights in the alignment
of the

� /��
frame (starting from the weight of the earliest

frame):

sequence1:
0.161867 , 0.17076 , 0.185054 , 0.191662 , 0.290656
0.171825 , 0.171157 , 0.169407 , 0.200928 , 0.286683
0.172707 , 0.167018 , 0.171996 , 0.198316 , 0.289963
0.17141 , 0.172195 , 0.177726 , 0.19796 , 0.280709
0.172193 , 0.176888 , 0.184121 , 0.195573 , 0.271225
0.173469 , 0.173244 , 0.179744 , 0.190237 , 0.283306

sequence2:
0.0942116 , 0.134753 , 0.161537 , 0.211008 , 0.39849
0.109341 , 0.113662 , 0.154806 , 0.191648 , 0.430543
0.109542 , 0.137191 , 0.15499 , 0.23322 , 0.365057
0.114045 , 0.132609 , 0.166553 , 0.220887 , 0.365905
0.109203 , 0.142641 , 0.161403 , 0.192277 , 0.394475
0.121274 , 0.141872 , 0.16762 , 0.208983 , 0.360251

0.121249 , 0.134765 , 0.161818 , 0.208292 , 0.373876

These vectors look fairly consistent along the sequence
(but differ from sequence to sequence). Intuitively, this can
be explained by the dynamical nature of the scene - There
are scenes which have a large temporal variance (such as
crowd), while other scenes have low temporal variance
(Such as static scenes). These results suggest that we one
can compute the frames weights from the last alignment
step (after the motions have been recovered), and use it
(shifted) in the next step for aligning the new frame.

5.2 Simultaneous Alignment of Different Resolutions

When using a multiresolution pyramid, the motion pa-
rameters are usually computed first using the lowest res-
olution level, and then the resulting motion parameters
are used as an initial estimate to the higher resolution
level. A better exploitation of the image information can
be obtained by using all the levels simultaneously. Sim-
ilar schemes were proposed for non-parametric motion
computations[3]. In general, we minimize the error func-
tion:

����� �,+(�.-)� � �
� �

�� � �)� � �,+ � �� � - � �� � � �/ � � (18)

Here, the upper index denotes the level of the pyramid.
(� � � - � denotes the lowest resolution level, and � � �
denotes the highest resolution level which is the original
image). +$� - are the displacement functions of each pixel
in each level. For example, for pure translational model:

+	��"(��% ���'� � �� �-�#"$�&% � �'� � �� �
 (19)

To handle large motions, we start by setting �
�� � �

,� � � - � , and we use the result of the computation to
initialize a finer level, in which �

� � � , � � � ��� �
and

so on. Note that the in this multi-resolution alignment does
not increase the computational complexity, as we use terms
that have already been computed. For example, in the pure
translation case, the upper left term of the LK matrix is

given by: � � � � ��)� � ��� �� � �
. This means that for each low-

resolution level � , one can use the term ��)� � ��� �� � �
which has

already been computed in previous iterations, only multi-
plying it with the weight �

� .
An interesting question that is still open is how can we

determine the weights of the different levels automatically.
There are several options:

1. Learning the weights per each input sequence.

6

2. Choosing the weights that maximize some score per
frame. (F.g - Minimizing the uncertainty of the align-
ment which can be described by the covariance ma-
trix).

3. Using geometrically decreasing weights, so that in the
finest resolution step, half of the weights will come
from the finest resolution level, and half from upper
resolution levels.

This question is strongly related to the automatic computa-
tion of the frame’s weights described in Section 5.1.

6 Appendix1: Fast Stereo Computations
Some methods use the LK method to compute sub-pixel

disparity using two or more images (with a known camera
motion) [5]. The process can be formulated in the follow-
ing way: Let � be the index of the frame for which we
estimate the disparity. and let) � � � � ��� � - � � ��
 � -
 � � /
be the translation of the optical center of the camera be-
tween the �

/��
and the � /�� frames. Here we assume that

the camera can only translate on a planar surface, which
fits to many camera settings involving stereo computations
(Light Field [4, 7] or Horizontal Parallax [13]).

Following [5], The disparity parameter
� � � �#"$�&% � �'�

in the image location ��"$�&%'� minimizes the following error
function:

����� � � � � �
���� � �

�� � ���� � ��� � � ��� � / �) � � � � � � -
� � � � � (20)

Where � �
is the gradient of the image

� � in the location�#"$��%'� , and # is a window around �#"$�&%� . The minimum of
this quadratic equation is obtained by:

� � - � ���� � �
�� � � ��� � � � / �) � � � � � � � �#"$�&%� -

� � ��"(��%'���
� ���� � �

�� � � ��� � � � � / �) � �
(21)

The weights �
�� determine the influence of each frame

on the disparity estimation.
For each window in

� � , the computation described
above is repeated iteratively until convergence, where in
each iteration, the relevant regions in all the frames � � � �
with �

��
	� �
are warped back towards

� � according to) � � �
and the current estimate of

�
. Similar to the case of pure

translation, the only terms that are changed from iteration
to iteration are the warped image of

� � . We can therefore
use the same algorithm as described in Section 2 to accel-
erate the computations, and compute the disparity in a very
small number of iterations. Note, that similar to the regis-
tration, the computations can be further accelerated using
image pyramids.

7 Appendix2: Computing Optical Flow
In this paper we focused on the computation of para-

metric motion, such as image shift, or Affine motion. The
same ideas (both the multi-frame alignment and the accel-
erations) can be applied also for the computation of opti-
cal flow with the Lucas-Kanade method [8]. In this case,
the translation of each pixel in estimated using a window
around this pixel which is assumed to translate uniformly.
The translation of each window can be robustly and ef-
ficiently be calculated using the method described in this
paper (but instead of summing over the entire image, we
sum only over the pixels in the window).

References
[1] Simon Baker and Iain Matthews. Lucas-kanade 20

years on: A unifying framework. International Jour-
nal of Computer Vision, 56(3):221–255, 2004.

[2] J.R. Bergen, P. Anandan, K.J. Hanna, and R. Hin-
gorani. Hierarchical model-based motion estimation.
In ECCV’92, pages 237–252, Italy, May 1992.

[3] W.T. Freeman, E.C. Pasztor, and O.T. Carmichael.
Learning low-level vision. In ICCV, pages 1182–
1189, 1999.

[4] Steven J. Gortler, Radek Grzeszczuk, Richard
Szeliski, and Michael F. Cohen. The lumigraph.
SIGGRAPH, 30:43–54, 1996.

[5] M. Irani, P. Anandan, and M. Cohen. Direct recov-
ery of planar-parallax from multiple frames. IEEE
Trans. on Pattern Analysis and Machine Intelligence,
24(11):1528–1534, November 2002.

[6] Michal Irani and Shmuel Peleg. Motion analysis
for image enhancement: Resolution, occlusion, and
transparency. J. on Visual Communications and Im-
age Representation, 4(4):324–335, December 1993.

[7] Marc Levoy and Pat Hanrahan. Light field rendering.
SIGGRAPH, 30:31–42, 1996.

[8] B. Lucas and T. Kanade. An iterative image regis-
tration technique with an application to stereo vision.
IJCAI, pages 674–679, 1981.

[9] Burt P.J., Hingorani R., and Kolczynski R.J. Mecha-
nisms for isolating component patterns in the sequen-
tial analysis of multiple motion. In Visual Motion,
Proceedings of the IEEE Workshop, pages 187–193,
October 1991.

[10] H.S. Sawhney and R. Kumar. True multi-image
alignment and its application to mosaicing and lens

7

distortion correction. PAMI, 21(3):245–243, March
1999.

[11] S. H. Sawhney, S. Hsu, and R. Kumar. Robust video
mosaicing through topology inference and local to
global alignment. In ECCV, pages 103–119, 1998.

[12] H. Shum and R. Szeliski. Construction and refine-
ment of panoramic mosaics with global and local
alignment. In ICCV ’98, pages 953–958, Washing-
ton, DC, USA, 1998.

[13] Richard Szeliski and Ramin Zabih. An experimen-
tal comparison of stereo algorithms. In Vision Al-
gorithms: Theory and Practice Workshop,, volume
1883-2000, pages 1–19, September 1999.

[14] P. R. Wolf. Elements of photogrammetry. McGraw-
Hill, New York, 1974.

8

