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Abstract 

We outline a selective analysis approach to motion estima- 
tion that promises to provide the precision and efficiency re- 
quired for autonomous vehicle guidance. Efficiency is achieved 
by implementing computations within a hierarchical (pyramid) 
structure, and by restricting these computations to selected re- 
gions of the scene. These analysis regions are moved dynamically 
over the scene as a sequence of focal probes, much as a human 
driver move his or her eyes and shifts visual attention. Precise 
motion estimates are obtained by fitting models comprising one 
or two rigidly moving su-faces to the image data within each 
focal analysis region. Differential motion within the region sep- 
arates foreground from background objects, while overall region 
motion relative to the focus of expansion determines distance 
from the observer. High level intelligent control directs the focal 
probes. 

We show through examples that model-based motion es- 
timation can be used to detect obstacles in the road, and to 
discriminate such obstacles from road markings. High level in- 
telligent control i s  described briefly. 

I[. Introduction 
Image motion analysis is potentially an important source of 

visual information for vehicle guidance. For instance, it can be 
used to detect possible obstacles in and near the road through 
motion parallax, and unlike many currently used sources of 
visual information, it does not rely on objects having known 
shapes or distinctive features. However, the parallax motion 
between an obstacle arid the road can be small compyed to 
other components of image motion common to both objects. 
This means motion estimates must be highly precise if they are 
to serve vehicle guidance. F’urthermore, estimates must be ob- 
tained over dense arrays of image points in the direction of travel 
or potential obstacles may be overlooked. For practical applica- 
tions, these computations must be performed in real time, using 
hardware of modest size and cost. 

Current visual guitlance systems analyze motion either by 
tracking prominent image features over successive image frames 
or by computing image flow. By tracking painted lane markings 
in the road, featurebased methods have proven effective for de- 
termining the vehicle’s own motion. However, because motion 
estimates are obtained only at scattered points in the field of 
view, these techniques c a n  not be relied upon for detecting all 
obstacles. Flow analysis techniques compute dense arrays of 
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estimates, but current approaches often require excessive com- 
putation and do not yield precise, robust motion estimates. f i r -  
thermore, flow analysis is ‘bottom-up,’ based on image data, and 
does not make use of a priori knowledge of motion in the scene, 
such as that it is due to the road surface or previously detected 
objects. 

Model-based analysis can provide the precise motion esti- 
mates required for obstacle detection. But the complete inter- 
pretation of real world scenes in terms of surfaces and objects is 
not feasible: the models are too complex, and computations are 
prohibitive. 

Fortunately, effective vision for driving does not require 
complete understanding of the scene. While highly precise esti- 
mates of motion parallax may be essential to detect an object 
in the road, much of the scene can be analyzed at a much lower 
resolution, or can be virtually ignored by the vision system. 
Model-based analysis can be restricted to local regions of the 
scene that are most likely to contain information required for 
the driving task. 

In this paper we outline a vision system designed to achieve 
precision and efficiency through selective analysis. Analysis is 
split into two distinct but interacting levels, one local and one 
global. These differ in the types of computations performed and 
the representations used. 

At the local level motion analysis is performed within se- 
lected regions of the scene. These analysis regions are moved 
over the scene to gather information reqqired for the.driving 
task, much as a human driver moves his (or her) eyes and shifts 
visual attention. Because these regions are limited in size, mo- 
tion within each region is generally quite simple, often a single 
surface (possibly tilted in depth), or two surfaces, one foreground 
the other background. Precise motion estimates are obtained lo- 
cal!~ by fitting the appropriate surface model to the image data. 

Local analysis is implemented within a pyramid structure. 
This provides a general framework for implementing highly effi- 
cient motion analysis algorithms, and for specifying the size and 
resolution of image regions in which the analysis is performed. 

Motion estimates obtained through local analysis are inter- 
preted as objects and distances at the global analysis level. The 
system maintains a representation of its environment in terms 
relevant to vehicle guidance, as in the 4D dynamical model in- 
troduced by Dickmanns and Graefe [l]. This includes road de- 
scriptors and parameters of the observer’s own motion, as well as 
a record of each potential obstacle detected in the road. Based 
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Figure 1: Image motion as observed from a moving 
vehicle. 

on requirements of the driving task and on information in the 
world model, ‘intelligent’ control processes qt the global level de- 
termine where to direct local analysis in the scene, The resulting 
local motion estimates are then used to update and refine the 
world model. 

on objects and events that are critical to vehicle guidance. To- 
gether they can reduce data and processing required for visual 
guidance by factors of of 1,000, 10,000, or more, without a sac- 
rifice in performance. 

We begin the present discussion with a statement of the 
motion est‘imation problem, then outline a framework for dy- 
namic motion analysis. We describe algorithms used for focal 
motion estimation and show with several examples that these 
algorithms can be used to detect obstacles. High level control 
will be described in general terms, but has not yet been imple- 
mented. 

These dynamic analysis techniques focus processing resources 

11. Problem Statement 

Figure 1 illustrates a typical pattern of image motion ob- 
served from a moving vehicle. Motion at each point in the scene 
includes components due to camera rotation and camera transla- 
tion. In this example rotation is assumed to be zero., Translation 
is in the direction of the focus of expansion, the FOE. All sta- 
tionary objects in the scene appear to move radially away from 
the focus of expansion, with speeds that increase with the angu- 
lar separation from the FOE, and decrease with distance from 
the observer. The relative distances of objects can be recovered 
through a simple geometric relationship given their observed mo- 
tion and the location of the FOE. Absolute depth is recovered 
if the speed of the observer’s motion towards the FOE is also 
known. 

In practice, motion estimates are difficult to obtain with the 
precision required for obstacle detection. It is most important 
for the vision system to analyze motion near the FOE, because 
this is in the direction of travel. But this is also the direction in 
which parallax motion becomes vanishingly small. firthermore, 
image motion near the FOE is dominated by components of mo- 
tion due to camera rotation. Such rotations result from camera 
pan and from vibrations as the vehicle moves over uneven pave- 
ment. Small obstacles in the road present the greatest challenge 
because their parallax motion differs only slightly from that of 
the road against which they are viewed. These difficulties are 
exacerbated by the fact that current approaches to motion esti- 

mation are prone to error. Errors may be due either to noise in 
the video signal, or to lack of sufficient pattern detail on which 
to base motion estimates. 

However, several characteristics of the vehicle guidance task 
allow simplifications of motion analysis. Full precision is needed 
only in the area of the camera’s image that repre7ents the road. 
Outside this area, an&lysis can be performed at lower resolution. 
Furthermore, the highly precise analysis required to detect ob- 
stacles can often be performed locally, based on differential mo- 
tion within restricted image regions. Image motion within a 
local region will generally represent a single physical surface un- 
dergoing rigid motion. This motion can be recovered by fitting a 
planar surface model to image data. Deviations from the model 
then indicate the presence of points in front of the surface, or 
of a discontinuity between foreground and background surfaces. 
In either case the discrepancy indicates that an obstacle may be 
present. f ir ther analysis can be directed to just those regions 
where potential obstacles have been detected, to confirm the 
detection and determine the size and distance to the obstacle. 

Before local estimates can be interpreted as depth, esti- 
mates obtained within diverse image regions must be combined 
to determine observer motion. This more global analysis need 
not be based directly on image data, but on parametric descrip- 
tions of motion within local regions. 

When rotation is not assumed to be negligible the form 
of local motion becomes more complex. However not all com- 
ponents of motion are equally important for obstacle detection 
and vehicle guidance. This is suggested in Figure 2. Here points 
A and B occur within a local region R of the scene. To sim- 

a. 

b. 

Figure 2. Points A and B within local region R fall on 
a foreground and background surface, respectively. (a) 
The components of motion are shown for these points 
separately. (b) The components of motion are shown 
as differential motion within the region and average 
motion of the region itself. 
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plify, we assume the points are at equal (angular) distances from 
the FOE. Each point has a velocity in the image that combines 
three components: Vt, the motion radially away from the FOE 
that is due to camera translation along the road, V,, the mo- 
tion perpendicular to & that is due to camera rotation about 
the direction of the FOE, and Vd, the component of motion due 
to camera rotation about an axis perpendicular to the direction 
of the FOE. Of these components, only & carries information 
about depth. The others vary in systematic, predictable ways 
across the image. 

The V, components of motion for points within the local re- 
gion R can be represented in terms of an average region motion 
and internal differential motion, Figure 2b. The region motion, 
VA, the distance from the region to the FOE, and the speed of 
the vehicle can be used todetermine the mean distance of objects 
within the region from the observer. The differential component, 
Vo, then indicates the separation of the points in depth. Dif- 
ferential motion is critical for discriminating foreground from 
background surfaces, and hence for detecting obstacles in the 
road. 

111. Framework for Dynamic Analysis 

A human driving it car continually moves his (or her) eyes 
to gather information required for the driving task. This is illus- 
trated in Figure 3. At a given moment in time he may look at 
the road, then at an onicoming car, then at a road sign, then at 
the road again. The driver fixates an object to see it in detail, 
and tracks it with his eyes to stabilize its image on his retinae. 
While his central (foveal) vision provides pattern detail, his pe- 
ripheral vision monitors a wide field of view at low resolution to 
detect unexpected events, and to guide foveal vision. 

In computational terms, the foveal organization of the eye 
serves two purposes: by restricting precise analysis to local re- 
gions it limits the data that the system must be process, and by 
isolating and stabilizing image patterns it simplifies the analysis 
that the system must perform. To gain these benefits without 
losing sensitivity, eye movements must be guided by high level, 
intelligent control processes: the human understands the driving 
task, and moves his eyes to gather information required for that 
task. 

I 

I 
Figure 3. Eye movement strategies used by a driver. 

We adopt aframework for motion analysis that can be moti- 
vated in part by analogy to human vision. Analysis is organized 
into distinct, but interacting local and global stages. Local analy- 
sis is further organized as a sequence o f  focal probes. Each probe 
examines motion withim a restricted local analysis region of the 
scene. Successive probes move over the scene to gather and refine 
motion information. The size and resolution of the local analy- 
sis region is changed from probe to probe. Typically, analysis is 
first performed within a large region, at low resolution, to deter- 
mine the general motion in the scene. Then analysis is moved to 
progressively smaller regions, at correspondingly higher resolu- 
tions, to examine critical image motions in greater detail. The 
sequence of probes is controlled dynamically to gather informa- 
tion required for the driving task. 

Motion estimates are obtained by fitting a model composed 
of a small number of moving surfaces, typically one or two, to 
the image data within the local analysis region. Differential 
motion is estimated with greatest precision, to allow the system 
to discriminate foreground from background motion. 

Local analysis can be implemented conveniently within a 
pyramid structure. This is suggested in Figure 4. The analysis 
regions corresponding to a sequence of focal probes are shown as 
rectangles superimposed on the scene, on the left. Motion anal- 
ysis is performed on subarrays of image data within the pyramid 
representation of the image, as shown on the right. Shaded areas 
at each pyramid level correspond to the data arrays used in the 
successive focal probes. In this example, the sequence of probes 
begins at a low resolution level to pyramid where the array of 
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Figure 4. Analysis of a road scene as a sequence of 
focal probes (a) based on data from a multiresolution 
image pyramid (b). 

data corresponds to the entire scene. Analysis then moves to 
successively higher resolution levels of the pyramid, where the 
respective subarrays of data correspond to progressively smaller 
regions of the scene. In addition to providing a framework for 
controlling the position, size, and resolution of the analysis re- 
gions, the pyramid supports fast analysis algorithms used in 
motion estimation. 

Components of the motion analysis system are shown in 
Figure 5. A preprocessing stage performs initial image digiti- 
zation, enhancement, and pyramid construction. At the local 
analysis stage, estimates of motion are obtained within selected 
regions through the model fitting process. At the global stage, 
the system interprets motion estimates as depth, and determines 
where to ‘look’ next, where to direct successive focal probes. 

A dynamical world model, much like that of Dickmanns 
and Graefe [l], is maintained at the global analysis level. This 
includes motion parameters for the vehicle, for the road, and 
for objects that have been detected on the road. The intelligent 
control process directs successive probes based on requirements 
of the driving task, guided by information in the world model, 
and in response to unexpected events that are detected in the 
scene. 

For each successive probe, the control process specifies the 
position and size of the analysis region R, within the image do- 
main, and the maximum resolution at which image data should 
be examined. It also decides what surface model M should be 
used within the region, and it provides appropriate constraints 
to be imposed on the estimation process as well as an a priori 
estimate Vo of the motion expected in the region. The local 
stage then performs the specified analysis using a model-based 
iterative refinement procedure. In effect, this obtains precise 
motion estimates by aligning the image pattern in successive 
image frames within the analysis region R. The local stage re- 
turns refined estimates of the model parameters, V k  (after the 
kth iteration), as well as confidence information, C, to the global 
stage, where these are used to estimate depth, detect obstacles, 
and update the system’s world model. 

In the following section we describe algorithms used in local 
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Figure 5. Components of the vision system. 

analysis stage of this system. Again, intelligent control and other 
analysis at the global stage are beyond the scope of the present 
paper. 

IV. Motion Estimation 

In formulating analysis within each local analysis region 
it is assumed that motion corresponds to a single surface in 
depth, or to two surfaces, one foreground and one background. 
Motion is then estimated through a model fitting process. This 
basic assumption may prove incorrect for any given focal probe 
if motion within the analysis region is too complex. In this case 
a new smaller region is selected. The process may also fail if the 
region lacks sufficient image detail on which to base a robust 
motion estimate. In this case a new larger region is selected. 

We have developed several models for describing motion 
within the local region. These include 
(a) a single-component affine motion model [2], 
(b) a two-component foreground/background model [2,3], and 
(c) a single component smoothly varying model [4]. 

These suffice for the basic discriminations required for ve- 
hicle guidance, to detect small obstacles on the road, or larger 
objects viewed against a more distant background. In practice, 
all of these models could be implemented within a single vision 
system, with different models selected for the analysis of different 
regions of the scene depending on local motion characteristics. 

Tilted Surface Model 
Suppose we wish to estimate motion between frames F(t  - 

1) and F ( t )  of the motion sequence. That is, we wish to find 
V(S,  Y) = ( G ( S ,  Y), d z ,  Y)) such that 

F(x,y,t)=F(x-w,,y-v,,t - 1 )  

within region R. 

used: 
If V is small then a Taylor series approximation may be 

In the single-component affine model the 5 and y compc- 
nents of velocity are given by 

v,(q y) = a5 + by + c, 

and 
w y ( ~ , y ) = d x + e y + I .  ’ 

To fit the model to the data we find the values of the pa- 
rameters that minimize the error: 

2 E r r =  ( F ( x , y , t j - F ( x - v , , y - t + , , t - l ) )  
wER 

x (v,F, + vyFy + Ft)2 .  
z , v € R  

Six simultaneous equations are obtained by setting the deriva- 
tives of the error with respect to each of the model parameters 
to zero. When solved, this provides expressions for each of the 
parameters in terms a set of image moments of the general form: 

See, for example, [3]. 
The above computation can give precise results only if the 

frame-to-frame displacement is small, generally less that one 
pixel. Otherwise, the Taylor series approximation used in solv- 
ing for the optimal model parameters are invalid. Since the 
motions of interest in vehicle guidance will often be much larger 
than this, a successive refinement procedure is used, Figure 6. 
For a given pair of image frames and analysis region, this gener- 
ates a sequence of estimates of motion VI, Vz, ... V k .  Before each 
estimate is obtained, the first image is “warped” in accordance 
with the prior estimate of motion to bring it into rough align- 
ment with the second image. Motion estimation is performed 
between the warped first image and original second image to 
obtained an estimate of the residual motion, AV. Let Fm(t - 1) 
be frame F(t - 1) warped by motion V,: 

Analysis begins with an a priori estimate, Vo, of the motion 
within R. This may be based on previous estimates obtained in 
the region or in neighboring regions. The model fitting proce- 
dure outlined above is performed between Fo(t - 1) and F ( t )  to 
obtain an estimate of residual motion, AV,. This is added to the 
prior motion, Vo, to obtained the refined estimate, VI. The first 
image is again warped and the estimated residual is obtained. 
These steps are repeated until a desired level of accuracy is ob- 
tained. 

In practice these analysis steps are best carried out as coarse- 
fine refinement within a pyramid structure. The initial estima- 
tion step is performed at a low resolution level of the pyramid 
where the sample distance is large compared to the expected 
motion in the scene. Then, as the alignment process proceeds. 
and residual velocities become small, the computation is moved 
to progressively higher resolution pyramid levels, ending with 
the resolution specified for the analysis region. Convergence is 
often quite rapid. 
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Figure 6. Model-based motion estimation with alignment. 

Foreground/Background Model 
The above procedure can now be extended to estimate the 

motions of multiple surfaces within the analysis region. The 
model-based alignment process is first applied to estimate one 
of the motions. Image samples that move in accordance with 
the first motion are then removed from consideration, and the 
procedure is applied to the remaining samples to determine the 
second component of motion. The analysis may alternate be- 
tween components several times to obtain precise estimates. 

When estimating motion of foreground and background sur- 
faces, it is expedient to represent each surface motion as simple 
translation rather than as full &ne motion. This reduces the 
number of parameters to be estimated for each surface, thus im- 
proving stability. And it is an adequate model for situations 
that occur in the scene where the separation of foreground and 
background surfaces is large compared to the extent that either 
surface is tilted in depth within the analysis region. 

The single-surface motion estimator tends to provide a good 
estimate of one motion even when multiple motions are actually 
present. To understand why this is true, consider a case in 
which two moving patterns are present, but one pattern motion 
is small, and within the range represented by the Taylor series 
approximation, Eq. 1, while the other pattern motion is large, 
beyond this limit. Both surfaces contribute to the integrals, Eq. 
2, but only the smaller motion makes a coherent contributim, 
while the contribution of the larger motion is effectively noise. 
The smaller motion then tends to dominate the alignment pro 
cess, and is selected by the analysis. 

When analysis is performed within a pyramid structure this 
selective mechanism can isolate one motion even when both have 
large and roughly equal velocities. The initial stages of the anal- 
ysis, at low resolution, tend to estimate an average of the two 
motions; however, as the successive alignment procedure reduces 
net velocity, and analysis is shifted to higher resolution, the dif- 
ferences between the velocities becomes progressively more sig- 
nificant. The procedure for estimating residual velocity then 
tends to select and locks onto just one motion. 

The above tendency is accelerated and made more precise 
by rdning the sypupport region for the dominant motion compo- 
nent as analysis proceeds. Points within the region R that are 
least consistent with the current estimate of surface motion are 
discarded. These ‘outliers’ tend to be on the pattern moving 
with a different motion. The remaining points are more accu- 
rately aligned to the given moving pattern. Once one motion 
is obtained, the points that contribute to that motion are set 
aside, and the algorithm is repeated, starting with the remain- 
ing.points. 

Smoothly Varying Surface Model 
The optic flow equation corresponds to the translation com- 

ponent of surface motion and can be used to estimate a sep- 
arate motion vector at each point in an analysis region. Let 
V(z, y) = (v,(z, y), v,(z, y)) be the estimated velocity for im- 
ages F(z,y,t - 1) and F(z,y,t). Then at each point (z, y) the 
flow is obtained by solving these two equations: 

This basic form of the optic flow computation has several 
shortcomings. Because a separate estimate of motion is obtained 
for each image point, and each such estimate is based on very 
limited image data in the neighborhood of that point, estimates 
tend to be unreliable. The derivation is based on a Taylor ap- 
proximation to image intensities, and thus assumes that frame- 
to-frame displacements are small, generally well under a pixel 
distance. Perhaps the most important shortcoming is that optic 
flow does not model discontinuities in motion, as at the bound- 
aries between foreground and background surfaces. 

The first two of these limitations can be largely overcome 
imposing ‘smoothness’ constraints, by refining estimates through 
a successive alignment procedure, and by performing computa- 
tions within a pyramid structure. Then the flow approach is 
quite effective for estimating complex patterns of motion, pro- 
vided velocity varies smoothly over the analysis region, and there 
are no discontinuities. 

Computations again take the form shown in Figure 6. Let 
Vo(z,y) be an a priori estimate of image motion. (Lacking bet- 
ter information this is taken to be zero.) Analysis begins at a 
level of the pyramid at which errors in motion with respect to 
Vo are expected to be less than a sample distance. The first 
image of the pair, F(t - l), is warped towards the second in 
accordance with this estimate of motion, to form Fo(t - 1). The 
optic flow equation, Eq. 3, is used to estimate residual motion 
AV1. A low-pass filter, w, is applied to the residual flow field 
to enforce a smoothness constraint, then the prior estimate and 
the smoothed residual are summed to form an updated estimate 
of flow. These steps are repeated until the desired precision is 
obtained. At iteration lc the flow equation is used to compute 
residual motion AV, between Fk-l(t - 1) and F ( t ) .  Then 

v k  = Vk-1 + W  * AV.. 

Successive refinement steps move to higher resolution levels of 
the pyramid. 

V. Examples 
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We now provide several examples to illustrate the ability of 
local model-based motion estimation to detect obstacles. 

1. Block in Road 
The first example is shown in Figure 7a. Here a stone block, 

about 10 cm in height, is observed at the side of the road. This 
must be detected as a three dimensional obstacle baaed on its 
parallax motion with respect to the road. The scene also con- 
tains dirt and shadow marks on the road that should not be 
confused with obstacles. 

The detection task is challenging because the block is rel- 
atively small and is viewed at a large angle with respect to the 
ground plane, 90 that its parallax motion with respect to the 
road is small. The block is situated in the scene at roughly 30 
degrees from the focus of expansion, so that the common motion 



a. b. a. 

C. d. 
b. Figure 7. (a) A stone block by the side of the road. 

(b) Difference between successive images showing rapid 
camera motion. (c) Difference after estimating and 
compensating for motion of the ground plane. (d) De- 
tection of highest points in the scene. 

of the road and block are large compared to the differential mo- 
tion between these objects. In addition the camera was panning 
rapidly at the time this image was obtained. 

Figure 7b shows the difference between two frames (four 
frames apart in the image sequence). Note that displacements 
are uniformly large. A single surfaxe &ne model was applied to 
the region shown in this example (128 by 128 pixels). Because 
the road constitutes the major portion of the analysis region, the 
surface fit corresponds to the road surface. Figure 7c shows a 
difference image after warping the first image towards the second 
in accordance with this motion estimate. 

Several points are of interest in these results. Most of the 
patterns on the road surface are cancelled, indicting that the 
estimate of road motion is quite good. However, discrepancies 
remain, particularly towards the top of the image. These may 
reflect limitation of the affine model to represent motion over 
the analysis region in this case. Residual difference values are 
most apparent along the sharp boundary between the shadowed 
and sunny parts of the road. Note that the left and right vertical 
edges of the block are apparent in the difference image and that 
the width of these edge difference patterns forms a wedge that 
grows wider towards the top. This reflects the fact that the 
parallax motion of the block with rcspect to the ground plang 
increased with height. Finally, Figure 7d shows regions of the 
scene at which motion is most different from the ground plane, 
indicating the presence of a possible obstacle in the road. 

2: Postman 
In this kxample a postman is seen walking across a country 

road, Figure 8a. The postman’s truck is parked on the right, 
and he is approaching a mailbox on the left. The road is naxrow, 

c .  

Figure 8. (a) Postman crossing road. (b) Region se- 
lected for motion analysis. ( c )  Difference between suc- 
cessive image frames showing motion due to the cam- 
era and postman. (d) Difference after detecting and 
compensating for surface motion within the analysis 
regions. 
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a. b. C. 

Figure 9. (a) Road sign viewed against a line of trees by the side of a road. (b) Estimate 
of smooth surface motion obtained through a coarse-fine optic flow computation. (c) 
Segments obtained from the flow field. 

twisted, and hilly. Trees and bushes line either side and overhang 
the road. The camera is on a vehicle that is approaching the 
scene quite rapidly. These circumstances mean that motion flow 
is complex. 

In order to detect potential obstacles in the road, the system 
selects (here selection is done manually) an analysis region cen-. 
tered on the road in the distance. The analysis region (80 by 64 
pixels) is shown in Figure 8b. Figure 8c shows a difference im- 
age between successive frames, without motion compensation. 
Note that the motion is generally significant over the region. 
Analysis was performed on this region using the single surface 
&ne model. Figure 8cl shows a difference image formed after 
warping the first image towards the second in accordance with 
the resulting motion estimate. Much of the background and the 
road are compensated by this process. The postman is visible, 
as are objects near the side of the road. 

3: Road Sign 
The final example is a sign observed at the side of the road 

(96 by 96 pixels), Figure 9a. This sign was quite close to the 
focus of expansion, which was roughly at the left hand edge of 
the region shown. The trees that form the background recede 
into the distance on the left, but are at the same distance as the 
sign on the right. The objective of analysis in this case is to use 
motion parallax to separate the sign from the tree line. 

The scene was analyzed by first estimating a smooth surface 
motion through the application of the coarse-fine optic flow al- 
gorithm. The resulting optic flow field was then segmented into 
two surfaces using a split and merge procedure [5]. Figure 9b 
shows the optic flow. Figure 9c shows the two surface segmen- 
tation. Note that the resulting regions correspond to the sign 
and the trees. The black areas of the segmented image show 
portions of the flow field that did not fit either surface motion 
(due to inevitable errors along the motion boundary) and hence 
were disregarded. 

VI. Summary and Discussion 

There are several key features in the system we have de- 
scribed for vehicle guidance. Analysis is organized into two dis- 
tinct but interacting levels, one local and one global. We believe 
this will simplify the motion analysis problem by restricting re- 
quirements for highly precise analysis to the local level. Locally 
computed differential motion serves to detect motion boundaries 
between foreground and background surfaces, and hence to de- 
tect potential obstacles in the road. Global analysis provides 
information regarding observer motion that is required to inter- 
pret local differential motion. 

Local analysis is model-based: image motion within each 
analysis region is interpreted as a single surface in coherent mo- 
tion, or as two surfaces in a foreground/background relationship. 
The model is fit to image intensity data over the entire analysis 
region. It is not limited to selected image features. This allows 
for the computation to be robust and the estimates precise. Pre- 
cision is further improved through a successive refinement pro- 
cedure. 

The local analysis regions are moved dynamically over the 
scene, as a sequence of focal probes. In this way the system 
focuses its computing resources on regions most likely to contain 
critical information. Computations are implemented within a 
pyramid structure, so that the size and resolution of the analysis 
region can be controlled from probe to probe. 

Etfective use of selective analysis techniques depends on the 
availability of intelligent control procedures to decide where to 
direct probes and how to interpret results. We have not devel- 
oped this control aspect of the system. 

There me many aspects of a motion analysis system for ve- 
hicle guidance that we have not discussed here. For example, a 
system must estimate its own motion, or equivalently, the po- 
sition of the FOE and rotation parameters of the camera. The 
determination of the FOE can be based at least to first approx- 
imation on inertial sensors on the vehicle. The estimate of this 
direction can be further refined by analyzing the pattern of mo- 
tion observed within the scene. The components of motion due 
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s ,  to camera rotation are common to all points in the image, SO 

can be estimated directly from observed motions. The differen- 
tial motions in each local analysis region point to or away from 
the FOE, so estimates of differential motion at scattered points 
in the scene can be used to locate the FOE itself. 

ent strategy may be required near the 
motion is small, it should be measured 
base, over multiple frame times. The 

and other parameters of observer motion 
are represented in the dynamical world model, and are refined 
over time. This provides stability to estiinates obtained over 
the longer time intervals, averaging out effects of variations that 
may be due to vibrations. 

References 
1 E. D. Dickmanns and V. Graefe, “Dynamicmonocular ma- 

chine vision,” Machine Vision and Applicatnons, pp. 223- 
240, 1988. 

Lee, A. Leung, J. Lubin, and H. Shvaytser, “Object tracking 
with a moving camera, an application of dynamic motion 
analysis,” In IEEE Workshop on Visual Motion, pp. 2-12, 
1989. 

3 J. R. Bergen, P. J. Burt, R. Hingorani, and Shmuel Peleg, 
“Tramparent-motion analysis,” In Proceedings of the First 
European Conference on Computer Vision, pp. 566-569, 
199’a. 

4 J. R. Bergen and E. B. Adelson, “ Hierarchical, compu- 
tationally efficient motion estimation algorithm,” J.  Opt. 
Soc. Am. A., Vol. 4 ,  pp. 35, 1987. 

5 T. Pavlidis, Structural Pattern Recognition. Springer, New 
York, 1977. 

2 P. J. Burt, J. R. Bergen, R, 

The focal probes and alignment techniques we describe are 1 

d within digital analysis algorithms. They are an 
ocessing mechanism analogous to eye movement 

strategies in human vision. An additional component of me- 
chanical camera tracking is dso appropriate in real world appli- 
cations. Camera motion is required to extend the effective field 
of view, and to reduce camera blur. 
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