Non-Zero-Sum Games with
Multiple Weighted Objectives

Yoav Feinstein![*], Orna Kupferman![0000-0003-4699-6117] 44 Noam

Shenwaldl [0000—0003—1994—6835]

The Hebrew University of Jerusalem, Israel
Abstract. We introduce and study non-zero-sum multi-player games

with weighted multiple objectives. In these games, the objective of each
player consists of a set a of underlying objectives and a weight function
w : 2% — 7Z that maps each subset X of a to the utility of the player
when exactly all the objectives in X are satisfied.

We study the existence and synthesis of stable outcomes with desired
utilities for the players. The problem generalizes rational synthesis and
enables the synthesis of outcomes that satisfy wellness, fairness, and
priority requirements.

We study the extension of the game by payments, with which players
can incentivize each other to follow strategies that are beneficial for the
paying player. We show how such payments can be used in order to repair
systems.

We study the complexity of the setting for various classes of weight
functions. In particular, general weight functions are related to Muller
objectives, and the synthesis problem for them is PSPACE-complete.
We study non-decreasing, additive, positive, and other classes of weight
functions, and the way they affect the memory required for the players
and the complexity of the synthesis problem.

1 Introduction

Synthesis is the automated construction of systems from their specifications
[36]. Modern systems often consist of interacting components. The interaction
is modeled by a multi-player game played on a finite graph. In the turn-based
setting, the vertices of the game graph are partitioned among the players. A
token is placed on an initial vertex, and in each turn, the player that owns the
vertex with the token moves it to a successor vertex. Each player has a strategy
that directs her how to move the token when it reaches vertices she own. A
profile is a vector of strategies, one for each player. The outcome of profile is a
play — an infinite path in the game graph, obtained when the players follow their
strategies. The goal of each player is to direct the game into an outcome that is
optimal from her point of view.

The simplest games are Boolean zero-sum games: the players compete with
each other on the satisfaction of contradicting Boolean objectives. In particular,
two-player zero-sum games model the interaction between a system that aims
to satisfy a given specification and an environment that tries to violate the
specification [8]. Researchers have studied several extensions of Boolean zero-
sum games. One is to quantitative zero-sum games. There, the objectives or the



game graph are multi-valued, and we seek strategies that satisfy the objectives
in the highest possible value, maximize rewards, or minimize costs, possibly in
a stochastic manner [7,22, 2,40, 3,14, 13]. Another extension is to Boolean non-
zero-sum games, namely when the objectives of the players may overlap [16, 38].
There, typical questions concern the stability of the game and the equilibria the
players may reach [41]. The most common criterion for stability is the existence of
a Nash equilibrium (NE) [32]. A profile of strategies is an NE if no (single) player
can benefit from unilaterally changing her strategy. In particular, in rational
synthesis, we seek an equilibrium in which the objectives of the players that
model the system are satisfied [20, 17].

The two extensions above have been merged in non-zero-sum games with
quantitative objectives. Specifically, in [26,4,9], the authors add a quantitative
layer to LTL and studied rational synthesis for multi-valued extensions of LTL,
and in [39, 12], the authors study equilibria in weighted games. The closest to our
contribution here are non-zero-sum games with multiple w-regular objectives. In
particular, [35,10] study games in which the underlying objectives are ordered,
specifying priorities on different objectives.

We introduce and study non-zero-sum multi-player games with weighted mul-
tiple objectives. Consider a game graph with vertices in V. An objective in our
game is specified by a tuple (a,w) where a = {a1,...,a,,} € 2V, is a set of
underlying Bichi objectives, and w : 2% — Z is a weight function that maps
each subset X of a to the wutility obtained when exactly all the objectives in
X are satisfied. More formally, for a play p, let X C a be the set of objec-
tives in « that p satisfies; that is, p visits infinitely often exactly all the sets in
X. Then, the satisfaction value of the objective (o, w) in the play p is w(X).
We view (o, w) as a maximization objective, and refer to games with weighted
multiple Biichi objectives as MazWB games. Note that each player has her own
objective. Thus, a k-player MaxWB game is G = (G, a, {w; }i¢[x]), Where for all
i€ k] ={1,...,k}, we have that w; is a weight function for Player i.

Weighted objectives enable the user to conveniently prioritize different sce-
narios. The different objectives in o may correspond, for example, to different
types of grants given by a server or different storage options in the cloud. Using
the weight function w;, Player i can express the utility of different combinations
of grants, storage options, locations, and more. Negative weights can be used
to specify behaviors that are not desired, or assume-guarantee specifications. As
a concrete example, consider robots that patrol a warehouse. The robots are
operated by different companies, each having its own objectives. The setting
can be modeled by a game graph whose vertices correspond to locations in the
warehouse. Each robot is assigned with missions that combine the retrieval of
items from appropriate shelves and logistical tasks such as repeatedly visiting or
avoiding certain charging stations or areas covered by security cameras. Differ-
ent sets of locations within the warehouse are associated with varying rewards
and costs, reflecting diverse priorities related to requested items, specific shelves
for retrieval, balance of the traffic in the different zones, and more logistical
considerations for each robot.



In [28], the authors study zero-sum games with weighted multiple objectives.
There, each objective also includes a threshold ¢t € Z, and a player satisfies a
Boolean MazWB (BMaxWB) objective (o, w,t) if the weight of the satisfied
objectives is at least . The authors solve the problem of deciding the game
and analyze its tight complexity and memory requirements for each of the play-
ers. General weight functions enable BMaxWB objectives to express all Muller
objectives [31, 18], which specify the exact set of vertices that repeat infinitely
often in a play. By giving a positive weight to such sets and negative ones to
the other sets, the translation from BMaxWB objectives to Muller objectives is
straightforward, and implies that BMaxWB games can be decided in PSPACE
[33,23]. The connection to Muller games also implies a matching lower bound.
The study in [28] then focuses on zero-sum BMaxWB games with restricted
weight functions, for which the complexity is lower.

We consider a setting in which the set [k] of players is partitioned to a
set S of system players, whose behavior is controllable, and the set [k] \ S of
environment players, which are rational and aim for maximizing their utility. The
main problem we consider, termed Desired NE (DNE, for short), is the existence
and finding of stable profiles that satisfy some desired properties. Formally, a
profile is stable if it is an S-fixed NE: no player in [k]\ S has a beneficial deviation.
The DNE problem gets as input a k-player MaxWB game G, a set S C [k] of
system players, and a predicate P describing desired utilities for the players. It
returns an S-fixed NE 7 in G such that the utilities of the players in 7 satisfy
P. The predicate P is given by a Boolean assertion with atoms that refer to
the utilities of the players. For example, cooperative rational synthesis [20] is a
special case of DNE in which P sets lower bounds on the utilities of the system
players. The predicate P can also prioritize the players or specify wellness or
fairness goals [34].

We start with the case G has general weight functions and show that the
PSPACE complexity of zero-sum BMaxWB games is carried over to non-zero-
sum MaxWB games. The ordered objectives studied in [35] are sets in a Muller
objective, and so our results apply also to the setting studied there, where the
tight complexity of finding an NE (a special case of DNE, with S = () and P =
true) was left open. We then consider several restrictions on the weight function
and the way they influence the expressive power of the weight functions and
the complexity of the DNE problem. We consider the following restrictions: (1)
Positive weight functions correspond to settings where players are only awarded
for satisfying objectives, thus w(X) > 0 for all X C «. (2) Non-decreasing
weight functions correspond to settings with free disposal [34], thus for all sets
X, X" Coa,if X C X', then w(X) < w(X’). (3) Additive weight functions
correspond to settings where the objectives are independent of each other, thus
the weight of a set is the sum of the weights of its elements. Accordingly, an
additive weight function is given by w : a — Z, and for every X C «, we have
that w(X) is the sum of the weights of the objectives in X.

Studying the DNE problem for the various types of weight functions, we show
that a key factor in the complexity is the existence of a memoryless strategy for



the minimizing player in the corresponding zero-sum BMaxWB game. In partic-
ular, games with a non-decreasing weight functions enjoy this property, and we
show that the DNE problem for them is NP-complete. Also, while games with an
additive weight function are PSPACE-complete, games with an additive weight
function that is almost positive, namely when only one Biichi objective may not
be positive, also satisfy the above property, making the DNE problem for them
easier. The result is tight, in the sense that we cannot extend it to games in
which a fixed number of Biichi objectives is non-positive. Our study completes
the picture known for zero-sum BMaxWB games. In particular, the study in [28]
concerns only positive additive weight functions, and we show that, surprisingly,
(non-positive) additive weight functions can express all Muller objectives. The
best translation between the two formalisms, however, is exponential in both
directions. Back to non-zero-sum games, we also show that additive weight func-
tions can be manipulated so that for every partition (S, E) of [k], we can make
the game (S, E)-polar, in the sense that all the players in S agree on the polar-
ity (i.e., whether it is positive or negative) of each of the underlying objectives,
which is dual to the polarity of the objective for the players in E. Thus, the
relative weights of the different objectives play a role that is more significant
than their polarity.

We demonstrate the application of MaxWB games by introducing multi-
player games with payments, where players can incentivize each other to follow
strategies that are beneficial for the paying player. Consider for example a su-
percomputer that gets calculation requests from users. Payments from the users
can be used in order to incentivize the supercomputer to perform certain calcula-
tions. For simplicity, assume that each player i € [k] has a single Biichi objective
«;, with a weight R; € IN, awarded in case «; is satisfied. Then, a game with
payments includes a payment function p : [k] x [k] — IN that maps each two
players i,j € [k] to the amount Player ¢ commits to pay Player j when «; is
satisfied. It is not hard to see that a game with payments can be reduced to
a MaxWB game with almost-positive weight functions. Indeed, the weight for
each Biichi objective now takes into account both the reward and the payments
to and from the other players. For general MaxWB games with payments, we
suggest richer payment functions, and a reduction to MaxWB games is possi-
ble too. Beyond the application of MaxWB games for synthesizing strategies in
games with payments, we study the monetary-based repair of systems, where we
synthesize a payment function with which a desired stable outcome exists. Thus,
unlike earlier work, where repairs are based on controlling the players [24, 21]
or manipulating the objectives [1], our solution adds monetary incentives to the
picture, which reflects the way equilibria are often achieved in real life.

2 Preliminaries

2.1 Multi-player games

For k > 1, let [k] = {1,...,k}. A k-player game graph is G = ({Vi}icpi), vo, E),
where {Vi};cpy are disjoint sets of vertices, each owned by a different player,



and we let V = Uz‘e[k] Vi. Then, vg € V is an initial vertex, and E CV x V is a
total edge relation, thus for every v € V, there is at least one u € V such that
(v,u) € E.

In the beginning of a play in the game, a token is placed on vy. The players
control the movement of the token in vertices they own: In each turn in the
game, the player that owns the vertex with the token chooses a successor vertex
and moves the token to it. Together, the players generate a play — an infinite
path in G. Formally, a strategy for Player i is a function f; : V* -V, - V
that directs her how to move the token in vertices she owns. Thus, f; maps
prefixes of plays to possible extensions in a way that respects E: for every p-v
with p € V* and v € V;, we have that (v, f;(p - v)) € E. The strategy f; is
memoryless if it depends only on the current vertex visited, in which case we
describe it by a function f; : V; — V, and is finite-memory if it is possible to
replace the unbounded histories in V* - V; by a finite number of memories. A
profile is a tuple m = (f1,..., fx) of strategies, one for each player. The outcome
of a profile m# = (f1,..., fr) is the play obtained when the players follow their
strategies. Thus, Outcome(w) = wg, vy, V2, ... is such that for all j > 0, we have
that v;41 = fi(vo,v1,...,v;), where i € [k] is such that v; € V;.

A zero-sum two-player game is G = (G,v), where G = (V1, Vs, 19, E) is a
2-player game graph and ¢ C V* is an objective for Player 1, describing the set
of outcomes in which Player 1 wins. The objective of Player 2 complements the
one of Player 1, thus Player 2 wins when the outcome is not in . A strategy
f1 is a winning strategy for Player 1 if for every strategy fo for Player 2, we
have that Outcome((f1, f2)) satisfies ¢. Dually, a strategy f2 for Player 2 is a
winning strategy for Player 2 if for every strategy fi for Player 1, we have that
Outcome((f1, f2)) does not satisfy 1. We say that Player ¢ wins in G if she has
a winning strategy.

Multi-player games may be non zero-sum, thus the objectives of the players
may overlap. There, we consider quantitative objectives for the players and stable
profiles. Formally, for £ > 1, a k-player game is a pair G = (G, {9i };c[x]), where
G is a k-player game graph, and for every i € [k], we have that ¢; : V¥ — Z maps
each play p in G to the (possibly negative) utility of Player ¢ when the outcome
is p. Formally, the wtility of Player 4 in a play p, denoted util;(p), is ¥;(p). Then,
for a profile 7, the utility of Player i in m, denoted util;(7), is util;(Outcome(r)).

A profile m = (f1,..., fx) is a Nash Equilibrium (NE, for short) [32] if no
player can benefit from unilaterally changing her strategy. Formally, for i € [k]
and a strategy f/ for Player ¢, let w[i < f!] = (f1,..., fi—1, f], fi+1,---, fx) be
the profile in which Player ¢ deviates to the strategy f/. We say that 7 is an NE
if for every i € [k] and strategy f/, we have that util;(7[i < f/]) < util;(7).

We say that two profiles 7 and 7’ are equivalent iff for all ¢ € [k], we have
that util;(7) = util;(7"). For two sets of objectives {t;};cx) and {1;}ien over
the same set V' of vertices, we say that {¢;}icix) and {1]}icpy are equivalent
if for every play p € V¥ and i € [k], we have that ¥;(p) = ¥}(p). Then, two
games G = (G, {¢j}ier)) and G' = (G, {9;}icx)) over the same game graph are
equivalent iff {1;};cx and {4} }ien are equivalent.



2.2 Weighted multiple objectives

In the definitions above, we used ¥ C V* and 1; : V¥ — Z to denote Boolean
and quantitative objectives. We now define weighted multiple objectives, which
specify ¢ and ; succinctly.

For a play p = vg, v1, - . ., let reach(p) denote the set of vertices visited along
p and inf(p) denote the set of vertices visited infinitely often along p. That is,
reach(p) = {v € V : there is ¢ > 0 such that v; = v}, and inflp) = {v € V :
there are infinitely many ¢ > 0 such that v; = v}. For a set of vertices « CV, a
play p satisfies the Biichi objective « iff inf(p) N a # 0.

A weighted Biichi objective is a pair (o, w), where a = {ay, ..., } is a set
of m Biichi objectives and w : 2% — Z is a weight function that maps subsets of
objectives in « to integer numbers.! We assume that w(()) = 0. We say that w is
positive if for all X C «, we have that w(X) > 0. We say that w is non-decreasing
if for every two sets X, X’ C o, if X C X'/, then w(X) < w(X’). In the context of
game theory, non-decreasing weight functions are very useful, as they correspond
to settings with free disposal, namely when satisfaction of additional objectives
does not decrease the utility [34]. Note that since w(@) = 0, a non-decreasing
weight function is positive.

A weight function is additive if for every set X C «, the weight of X equals to
the sum of weights of the singleton subsets that constitute X. That is, w(X) =
Y aex W({au}). An additive weight function is thus given by w : @ — Z, and
is extended to sets of objectives in the expected way, thus for every X C «, we
have that w(X) =} x w(a).

For a play p, let sat(p, @) C « be the set of objectives in « that are satisfied in
p. The satisfaction value of {c,w) in p is then the weight of the set of objectives in
« that are satisfied in p, namely w(sat(p, «@)). Since we view an objective («, w)
as a maximization objective, we refer to games with weighted Biichi objectives
as MaxWB games. We assume that the objectives of all the players in the game
are defined over the same set of underlying objectives. Thus, a MaxWB game is
G = (G, a,{w;};cx)), where for all i € [k], we have that w; : 2* — Z is a weight
function for Player . Then, the utility of Player ¢ in a play p is w;(sat(p, «)). Note
that since the utilities for the players depend on the set of vertices that appear
infinitely often in a play, if 7 and «’ are profiles such that inf(Outcome(r)) =
inf(Outcome(n’)), then m and 7’ are equivalent.

A well-studied special case of MaxWB games is when the players have un-
derlying Biichi objectives. There, each player has a single Biichi objective she
wishes to satisfy. Formally, for all ¢ € [k], there is j € [m] such that w;(«a;) > 0,
and for all I € [m]\ {j}, we have w;(cy) = 0. We describe Biichi games by
G = (G, {{as, Ri) }ier)), where for all i € [k], we have that a; is the objective
she aims to satisfy, and R; > 0 is the reward for the satisfaction.

1 All our results can be extended to weight functions over real numbers. Indeed, we
only need to consider the relations among the weights of the finitely many subsets
of a. Thus, the only challenge with weight functions over real numbers is their
representation.



By adding a threshold to the weight function w, we can make the objective
Boolean. Formally, a play p satisfies a Boolean MaxWB (BMaxWB, for short)
objective (a,w,t), for t € Z, if w(sat(p,a)) > t. By [28], two-player zero-sum
BMaxWB games are determined, thus in every game, Player 1 or Player 2 wins.

We define the size of a game graph G as the size |E| of its edge relation,
and define the size of an objective 1y = (a,w) as the size of w, defined as
2 xCasw(x)20 W(X). Note that w can be encoded in |w| bits. In fact, for our
upper bounds, the encoding of w(X) can be in either unary or binary. That is,
the bounds stay valid even when the encoding of w(X) adds to the length of
the input only logw(X) bits. When w is additive, our bounds hold also when
we define its length by >_ ., w(a).

2.3 Partially-Fixed Nash-Equilibria with Desired Utilities

We consider a setting in which the players model components of a system and
its environment. Technically, we assume that [k] is partitioned to a set S C [k]
of system players, whose behavior is controllable, and the set [k] \ S of environ-
ment players, which are rational and aim for maximizing their utility. The basic
problem we consider is the existence and finding of stable profiles that satisfy
some desired properties.

We refine the notion of NEs to take into account our ability to control the
system players. For a set S C [k] of system players and a profile 7, we say
that 7 is an S-fized NE if no player in [k] \ S can benefit from unilaterally
changing her strategy. Thus, for every ¢ € [k] \ S and strategy f/, we have
that util;(7[¢ <= f/]) < util;(7). Desired utilities of a k-player game are specified
by a predicate P C Z*]. We describe such predicates by Boolean assertions
with atoms of the form t; < t5, for arithmetic terms ¢; and t5 defined over
{u1,...,ux} UZ, where for all ¢ € [k], the variable u; stands for the utility of
Player i.

Formally, for a set X of variables, the set of terms over X, denoted Tx, is
defined inductively as follows.

—zandn, forx € X and n € Z.
— tl -I-tg and tl —tQ, for tl,tg S TX

The set of Boolean assertions over X, denoted By, is defined inductively as
follows.

— tl S t2 for tl,tg € TX.
- _\bl and bl /\b2 for bl,bg S BX.

Consider an assignment ¢ : X — Z to the variables in X. We extend ¢ to
terms in the expected way, thus € : Tx — Z is such that &(¢1 +1t2) = £(t1) +&(t2),
and &(t; — ta) = &(t1) — &(ta), for all ¢y, € Tx.

We also extend ¢ to Boolean assertions over X, thus £ : Bx — {true, false}
is defined inductively as follows.



— For t1,t5 € Tx, we have that £(t; < t2) = true iff £(t1) < £(t2).
— &(—b) = =¢(b), for b € Bx.
— f(bl VAN bg) = f(bl) /\f(bg), for by,bs € Bx.

Each Boolean assertion b € By is a predicate on Z~, thus an assignment
&€ € ZX is in b iff € satisfies b. A profile 7 then satisfies a predicate P if the
assignment f : {uy,...,ur} — Z with f(u;) = util;(7) satisfies P. For example,
the predicate (u; > 8)A(uz > uz) A(usz+ug < 20) requires the utility of Player 1
to be at least 8, the utility of Player 2 not to be smaller than that of Player 3,
and the combined utilities of Players 3 and 4 to be at most 20.

The problem of partially-fized NE with desired utilities (DNE, for short) gets
as input a k-player game G, a set S C [k] of system players, and a predicate
P C 7 describing desired utilities. Given (G, S, P), the goal is to return an
S-fixed NE 7 in G such that the utilities of the players in 7 satisfy P. Below, we
describe useful instances of the DNE problem.

— In cooperative rational synthesis [20], the predicate P sets lower bounds on
the utilities of the system players. For example, solutions to DNE with
(G,{1},u1 > t) are 1-fixed NEs in which the utility of the single system
player is at least t.

— Different wellness goals like total or fair wellness [34] can be specified by
bounding the differences among the different utilities. For example, the pred-
icate ;e (2k - avg < k- u; < 4k - avg), with avg = E€+]u, restricts the
distance of each player’s utility from the average utility, and the predicate
/\L ek (u; < 2uy ) restricts the distance between each two players’ utilities.

— Priorities among players can be specified by predicates like /\ie[k_l} (u; >
Ui+1), which order the utilities, or u; > (ug + - -+ + ug), which relates the
utilities of sets of players.

We conclude this section with two useful lemmas. In the first, we consider
zero-sum games that are used when a player may deviate from her current
strategy and all the other players cooperate in order to make such a devia-
tion non-beneficial. Formally, consider a MaxWB game G = (G, o, {w; }ic[),
with G = ({Vi}ie[x), vo, E). For a player i € [k], a vertex v € V;, and a thresh-
old t, we define the game from v against Player i with objective (o, w;,t) as
the two-player zero-sum game G/, defined as follows. The game is played on G
with initial vertex v, between Player i (who is Player 1 in G7;) and the players
in [k[\{i} (who compose Player 2 in G?;). The objective of Player i is the set
of plays in which her utility is at least t. Thus, G, = ((V;,V '\ Vi, v),¢), with
¥ ={p: wi(sat(p,a)) > t}. The following lemma offers a useful characterization
of NEs [38,17].

Lemma 1. Consider a k-player game G, a set S C [k], and a predicate P C ZI*],
For every path p of G, there is a solution to the DNE problem for (G, S, P) that
has outcome p iff the p satisfies P and for every player i € [k]\ S and vertex
v € Vi Nreach(p), Player i loses in the game G}, with t = util;(p) + 1.



Proof. Consider a path p of G. Assume first that there exists a solution = =
(f1,---, fr) to the DNE problem for (G, S, P) such that p = Outcome(r). First,
as m is a solution for (G, S, P), then p satisfies P. Next, assume by way of
contradiction that there exists ¢ € [k]\ .S and v € V;Nreach(p) such that Player i
wins in the game G;, with ¢ = util;(7) + 1. Let g7 be the winning strategy for
Player i in G7';. Consider the strategy f; that follows f; until v is visited and then
switches to g?. Consider the profile 7[f; < f/]. Since the other players follow
their strategies in m, the outcome of 7[f; < f;] has a prefix that reaches v, from
where Player i switches to g¢ and wins in G7;. Thus, the utility of Player ¢ is ¢,
which is bigger than util;(7), making f/ a beneficial deviation, contradicting the
fact 7 is an S-fixed NE.
For the other direction, let p be a path that satisfies P and assume that for
every player ¢ € [k] \ S and vertex v € V; N reach(p), Player i loses in the game
1 with ¢ = util;(7) + 1. Consider the profile  in which all the players move the
token in a way that generates p and for every i € [k]\ .S, if Player ¢ deviates and
moves the token from a vertex v € reach(p) to a successor that does not extend
p, then all the players in [k]\7 play according to their winning strategy in G?,, for
t = util;(p)+1. We claim that 7 is an S-fixed NE with Outcome(7) = p, and so it
is a solution to the DNE problem for (G, S, P). In particular, for every i € [k]\ S,
Player i does not benefit from deviating from 7. Indeed, only deviations that
cause the outcome to depart from p may influence the utilities of the players,
and deviations that depart from p are not beneficial.

The second lemma states that when the weight functions are general, the
non-zero-sum setting is at least as hard to reason about as the zero-sum setting.

Lemma 2. Given a zero-sum BMazWB game G = (G, (o, w,t)), we can con-
struct weight functions wy and wso such that Player 1 wins in G iff there is a
DNE solution for ((G,a,{wi,ws}),{1},u1 >t).

Proof. For all X C «, we define wy(X) = w(X) and wy(X) = —w(X). Let
G = (G,a,{w1,ws}). It is not hard to see that f; is a winning strategy for
Player 1 in G iff for all strategies f for Player 2, the profile (fi, f2) is a 1-fixed
NE in which the utility of Player 1 is at least ¢. Thus, Player 1 wins in G iff there
is a DNE solution for (G', {1}, u; > t).

3 MaxWB Games

In this section, we study the DNE problem in MaxWB games with general weight
functions. Thus, G = (G, a, {w; } i) is such that w; : 2% — Z, for every i € [k].
The techniques are similar to these used for reasoning about non-zero-sum games
with Streett objectives or weighted reachability objectives [12,38], and we give
them for completeness. Essentially, the proof is based on Lemma 1: the DNE
solution for (G, S, P) has an outcome p such that for every vertex v in p that
is owned by a player ¢ not in S, the strategies of the players in [k] \ {i} make
sure that there is no beneficial deviation for Player ¢ from v. We note that the



existence of an NE in MaxWB games (that is, Theorem 1) follows also from the
study of NEs in the generalized Muller games in [35]. Our proof, however, sets
the stage to optimal algorithms for finding an NE.

Theorem 1. For every k-player MaxWB game G, and set S C [k] of system
players, there exists an DNE solution for (G, S, true).

Proof. Consider a k-player MaxWB game G = (G, o, {w; }i¢[))- For every player
i € [k] and a vertex v € V;, let ¢, be the maximal threshold such that Player i
can force her utility from v to be at least t,. That is, t, is the maximal ¢ for
which Player ¢ wins the MaxWB game G, against her.

For every i € [k] and a vertex v € V, let g? be a winning strategy for Player ¢
in G/, . Note that if v and v are vertices with ¢, = ¢,, then we can assume
that g/ = ¢}'. We define a strategy f; for Player ¢ as follows. The strategy
starts by following the strategy g¢;°. Note that by doing so, the generated play
is guaranteed to reach only vertices v with t, > t,,. As long as the play visits
vertices v with ¢, = t,,, the strategy f; continues to follow ¢;°. When the play
reaches a vertex v with ¢, > ¢,, the strategy f; switches to follow the strategy
g7, and so on. Note that again, the thresholds that induce the strategies can
only increase, and eventually they stabilize.

Consider the profile 7 = (fi,..., fx). Let p = Outcome(w). We construct a
profile 7" such that Outcome(n’) = p, and 7’ is an S-fixed NE, for all S C [k].
First, note that for every ¢ € [k] and a vertex v € V; that p visits, we have
that ¢, < util;(7). Indeed, f; is a winning strategy in the game against Player i
from v with the MaxWB objective (o, w;,t,), thus it forces her utility to be at
least t,. Also, the way we have defined t, implies that for every vertex v € V;
that p visits, the players in [k] \ {¢} have a winning strategy in the game against
Player ¢ with the objective (o, w;, util;(r) + 1). Consider the profile 7" in which
the players jointly generate the play p, and if a player i € [k] deviates, the other
players proceed to use the winning strategy in the game against Player ¢ with the
MaxWB objective {a, w;, util;(7) +1). Using the same arguments as in Lemma 1,
the profile 7’ has outcome p’ and is an NE, and hence also an S-fixed NE, for
all S C [k].

Clearly, once a predicate P is added, a desired S-fixed NE need not exist.
Once, however, there is a DNE solution, there is also one with an outcome of
polynomial length:

Theorem 2. Consider a k-player MaxWB game G, a set S C [k] of system
players, and a utility predicate P. If there exists a DNE solution 7 for (G, S, P),
then there also exists a DNE solution 7' for (G, S, P) such that all the following
hold.

1. Outcome(n’) = py - p§, where p1 and py are of polynomial size.
2. reach(Outcome(7")) C reach(Outcome(n)).
3. inf(Outcome(n’)) = inf(Outcome(r)).
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Proof. Let G = (G, a, {wi}iep)), and assume that 7 is a DNE solution for
(G, S, P). Let p = Outcome(r).

Let U = inf(p) be the set of vertices that p visits infinitely often, and consider
a vertex u € U. Note that p eventually gets stuck in U, and thus there is a cycle
p2 through wu, of length at most |U|?, that visits exactly all the vertices in U.
Also, since u € reach(p), there is a simple path p; C reach(p) from vy to u. Let
p' = p1 - p4. Note that p; and py are of polynomial size, reach(p’) C reach(p),
and inf(p’) = inf(p). Since the utilities for the players in p satisfy P, the latter
implies that so do the utilities for the players in p’.

By Lemma 1, for every player i € [k]\S and vertex v € V;Nreach(p), Player i
loses in the game G, with ¢ = util;(7) + 1. Since reach(p’) C reach(p), the above
holds also for every player i € [k] \ S and vertex v € V; N reach(p’).

Consider a profile ' in which all the players move the token in a way that
generates p’ and for every i € [k]\ S, if Player ¢ deviates and moves the token from
a vertex v € reach(p’) to a successor that does not extend p’, then all the players
in [k] \ {7} play according to their winning strategy in G7,, for ¢t = util(p) + 1.
By Lemma 1, the profile 7’ is a DNE solution for (G, S, P).

We continue to the complexity of the DNE problem. BMaxWB objectives are
strongly related to Muller objectives. A Muller objective is defined with respect
to a finite set C of colors and is a pair ¢ = (F, ), where F C 2¢ specifies
desired subsets of colors and x : V' — C colors the vertices in V. A play p
satisfies v iff the set of colors visited infinitely often along p is in F. That is,
{i € C:inflp) N x (i) # 0} € F. It is shown in [28] that every BMaxWB
objective ©p = (o, w,t) has an equivalent Muller objective of size |{X C « :
w(X) > t}|, and every Muller objective ¢ = (F, x) has an equivalent BMaxWB
objective of size [¢)]. It follows that Muller games are polynomially reducible to
BMaxWB games, and vice versa, and so zero-sum two-player BMaxWB games
are PSPACE-complete. As detailed below, this implies a PSPACE completeness
also for the DNE problem.

Theorem 3. Given a k-player MaxWB game G, a set S C [k] of system play-
ers, and a utility predicate P, deciding whether there exists a DNE solution for
(G, S, P) is PSPACE-complete. Hardness in PSPACE already applies for k = 2.

Proof. Consider a k-player game G = (G, o, {w; }ie[x)), a set S C [k], and a pred-
icate P C Z*. We describe a NPSPACE algorithm that decide whether there
exists a DNE solution for (G, S, P). Since NPSPACE = PSPACE, a PSPACE
upper bound follows.

The algorithm guesses a polynomial-sized lasso-shaped play p in G, and
checks that the utilities for the players satisfy P. Then, for every i € [k] \ S
and a vertex v € V; that p visits, the algorithm checks that Player ¢ does not
win the game against her with the objective (o, w;, w;(sat(p,«)) + 1) from v,
which can be done in PSPACE [28]. By Lemma 1 and Theorem 2, the algorithm
finds a DNE solution iff one exists.
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Finally, a PSPACE lower bound follows from Lemma 2 and the fact the
problem of deciding zero-sum two-players BMaxWB games is PSPACE-hard
[28].

4 MaxWB Games with Non-Decreasing Weight
Functions

In this section, we study MaxWB games with non-decreasing weight functions.
Thus, G = (G, a, {w;}icp) is such that for all i € [k] and X, X" C a with
X C X', we have that w;(X) < w;(X’). We show that every DNE solution for
G has an equivalent DNE solution of polynomial size. Thus, while Theorem 2
only bounds the length of the outcome of an equivalent solution, the restriction
to non-decreasing function also bounds the memory requirements for the players
in the solution, making the problem easier.

Theorem 4. Consider a k-player MaxWB game G with non-decreasing weight
functions, a set S C [k] of system players, and a utility predicate P. If there
exists a DNE solution for (G, S, P), then there also exists a DNE solution for
(G, S, P) of size polynomial in G.

Proof. Let G = (G,a, {wi}iepx)), and assume that 7 is a DNE solution for
(G, S, P). By Theorem 2, we can assume that p = Outcome(n) is of polyno-
mial size.

Consider a profile " in which all the players move the token in a way that
generates p and for every i € [k] \ S, if Player ¢ deviates and moves the token
from a vertex v to a successor that does not extend p, then all the players in
[k] \ {i} play according to their winning strategy in G?,, for t = util(p) + 1.
By Lemma 1, the profile 7’ is a DNE solution for (G, S, P). By [28], if Player 2
has a winning strategy in a zero-sum MaxWB game with non-decreasing weight
functions, then she also has a memoryless winning strategy. Therefore, the size
of winning strategies for Player 2 in games of the form G}, is polynomial in the
size of G. Hence, the profile ' is of polynomial size, and we are done. a

We continue to the complexity of the DNE problem. Note that the reduction
in Lemma 2 involves negative weight functions, so we cannot apply it. We can
still show a lower bound for & = 2, but the proof is more complicated and
involves a composition and dualization of BMaxWB games.

Theorem 5. Given a k-player MaxWB game G with non-decreasing weight
functions, a set S C [k] of system players, and a utility predicate P, decid-
ing whether there exists a DNE solution for (G, S, P) is NP-complete. Hardness
in NP already applies for k = 2, positive and additive weight functions, and P
that only refers to the utility of Player 1.

Proof. For the NP upper bound, consider a k-player game G = (G, o, {w; }iex)),
a set of players S C [k] and a predicate P. An NP algorithm guesses a path p =
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p1-(p2)* such that the length of p; and ps are polynomial in |G|. Additionally, for
every i € [k] \ S, the algorithm guesses a memoryless strategy g; for Player 2 in
the game against Player ¢ with the BMaxWB objective 1; = (a, w;, util;(p) + 1).
The algorithm checks that util; (p),. .., utilg(p) satisfy P, and checks that for
every i € [k] \ S, the strategy g¢; is indeed winning for Player 2 in the game
against Player ¢ with v;, from every vertex v that p reaches. Note that indeed
gi can be verified in polynomial time [28]. By Lemma 1 and Theorem 2, there
exists such a path and strategies iff there exists a DNE solution for (G, S, P).

For the lower bound, we describe a reduction from the problem of deciding
whether Player 2 wins in a zero-sum BMaxWB game, known to be NP-hard
already for positive and additive weight functions and threshold ¢ > 1 [28].
Consider a zero-sum BMaxWB game G = (G, (w, o, t)), with G = (V1, Vs, v, E).
We construct a two-player non-zero-sum MaxWB game G’ = (G, o/, {w1, ws})
with positive and additive weight functions such that there exists a DNE solution
for (G', {1}, {uy > 1}) iff Player 2 wins in G,

Intuitively, we define G’ so that Player 2 chooses to help Player 1 to have
utility 1 iff there is no winning strategy for Player 1 in G. Specifically, the game
graph G is as follows. From the initial vertex, Player 2 chooses between moving
to a self-looped sink |, and moving to a copy of G. In the copy of G, Player 2 aims
to satisfy the BMaxWB objective of G. Note that the original roles of Player 1
and Player 2 in G are switched in its copy in G’. We define the weight functions
so that Player 1 has utility 1 if the play reaches 1 and utility 0 otherwise, and
Player 2 has utility ¢t — 1 if the play reaches L and utility according to w and
the outcome in G otherwise. Since t > 1, the weight functions in G’ are indeed
positive and additive. Let S = {1} and P = {u; > 1}. Note that P is satisfied
iff the play reaches the sink |, thus there exists a DNE solution iff Player 1 can
make sure Player 2 cannot benefit from moving to the copy of G, which holds iff
Player 1 has a strategy in G that forces the satisfaction value of {a, w) to be at
most ¢t — 1. Accordingly, there exists a DNE solution in G’ iff Player 2 wins G.

Formally, the game G’ = (G', o/, {w1, w2 }) is defined as follows.

1. G' =(V{, V4, v}, E') where:
(a) The vertices are V{ = Vo, and V4 = V3 U {v), L}.
(b) The edge set is E' = E'U {(v(, L), (v{,vo)}.
2. The objective set is o' = a U {a } where oy = {L}.
3. the weight functions are defined as follows.
(a) For every oy € o, if oy = ay then wy(oy) = 1, otherwise wy(ay) = 0.
(b) For every oy € o, if oy = ay then wy(ay) =t — 1, otherwise we(aq) =
w(ay).

We prove the correctness of the construction. For the first direction, assume
Player 2 wins G. Let m be a profile in G’ in which Player 2 proceeds from the
initial vertex to the sink 1, and Player 1 uses the winning strategy of Player 2
from G in the copy of G. We show that 7 is a 1-fixed NE with util; (7) > 1. First,
note that since Outcome(w) reaches L, the utility for Player 1 is 1. Next, note
that 7 is a 1-fixed NE. Indeed, utila(7) = wa(a) ) =t — 1, and for every strategy
f2 for Player 2 that proceeds to the copy of G, we have that utila(7[2  f2]) <
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t — 1, since Player 1 uses a winning strategy of Player 2 from G in the copy of
G, that ensures the BMaxWB objective («, w, t) is not satisfied.

For the second direction, assume that Player 1 wins G. Then, Player 2 can
guarantee a utility of at least ¢t by proceeding to the copy of G from the initial
vertex and then using a winning strategy for Player 1 from G. Thus, there is
no 1-fixed NE in which Player 2 proceeds from the initial vertex to L since in
such a profile Player 2 only receive a utility of ¢t — 1 and benefits from deviating.
Accordingly, there is no 1-fixed NE in which the utility for Player 1 is at least
1, and so there is no DNE solution for S and P. a

5 MaxWB Games with Additive Weight Functions

In this section, we study MaxWB games with additive weight functions. Thus,
G = (G, o, {wi}iep)) is such that for all 7 € [k] and a; € «, we have that
wi(a;) € Z, and for X C a, we have that w;(X) = >_ x wi(a). Note that
additive weight functions correspond to cases the objectives are independent of
each other. In particular, ordered objectives, as in [10], can be specified using
additive weight functions.

In [28], the authors study zero-sum BMaxWB games with positive and ad-
ditive weight functions. In particular, they show that the problem of deciding
the winner is co-NP-complete, thus the games are easier than these with general
weight functions. We first complete the picture known for the zero-sum case and
study zero-sum BMaxWB games with additive (but not necessarily positive)
weight functions. Surprisingly, additive weight functions can express all Muller
objectives:

Theorem 6. Consider a Muller objective (F,x) defined over a set of colors
[m] and vertices in V. There is a set a C 2V of underlying objectives and an
additive weight function w : o — Z such that the objectives (F,x) and {a,w,0)
are equivalent.

Proof. Consider a Muller objective (F,x) defined over a set of colors [m], for
m € IN. Let a = {a¢ : C C [m],C # 0}, where for every set of colors C' C [m],
we have that ac = ;e x 7' (i). We show that there exists an additive weight
function w : & — Z such that (F,x) and (o, w,0) are equivalent. Note that the
sets ac need not be singletons. The important thing is that that weight function
w is defined for single objectives in a and induces an additive function.

Note also that a play p with x(inf(p)) = C satisfies exactly all the Biichi
objectives acr € a such that CNC’ # (). Accordingly, in order for (o, w, 0) to be
equivalent to (F, x), the sum of weights of objectives acs such that C N C’ # ()
should be at least 0 when C' € F, and smaller than 0 otherwise. Thus, the weight
function w must satisfy the following.

L Y crcimpencrzo Wlaer) 2 0, for every C € F.
2. ZC’Q[W]:CQC’#@ 'LU(O&C') < 07 fOI' every C (S 2[m] \./—"
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In order to prove that such a weight function exists, we prove below that there
exists an integral solution for the following system of linear equations, defined
over the set of variables {z¢ : C' C [m],C # 0}. The solution then induces the
weight function w, with w(ag) = z¢:

1. The equation ec for C € F is ZCfg[m]:Cmc’;éQ) zor = 0.
2. The equation ec for C' € 2™\ (FU{0}) is zc,g[m]:cﬂc,¢@ zor = —1.

Let n = 2™ —1, and let Cy,...,C, be the sets C' € 2™\ {(}, ordered according
to |C|, where sets with the same size appear in a lexicographical order. Let A
be the matrix that correspond to the linear system of equations, where the i-th
column corresponds to the variable x¢,, and the i-th row corresponds to the
equation ec,. Note that for every pair i,j € [n] we have that Afi,j] = 1 iff
CiNCj # 0, and Ali, j| = 0 otherwise. We show that A satisfies the following
properties.

1. Ali,n—1i] =0, for every 1 <i < mn.
2. Ali,j]=1,forevery 1 <i<mnandn—i+1<j<n.

Intuitively, C,,—; = [m] \ C;, for every 1 < i < n. Then, Afi,n — i] = 0, since
CiN([m] \ C;) = 0. Also, since |[m] \ C;| < |C;| for every j > n — i, we have
that C; contains elements from C;. Thus, C; N C; # 0 and A[i, j] = 1, for every
j > n—1i. So, the n-th row is all 1s, the (n — 1)-th row has 0 in the first column,
and then it is all 1s, the (n — 2)-th row has 0 in the second column and then all
1s, the (n — 3)-th row has 0 in the third column and then all 1s, and so on (see
Example 1).

Thus, to prove A has the above properties, it is sufficient to show that C,,_; =
[m] \ C;. Consider a set C; of size k, and assume C; is the j-th smallest subset
of [m] of size k. Thus, i = f:_ll (7) + j. Since C; is the j-th smallest subset
of [m] of size k, the set [m] \ C; is the j-th biggest subset of [m] of size m — k.
Indeed, when the lexicographic index of C; among sets of size k gets smaller, the
lexicographic index of [m] \ C; gets bigger. Hence, [m] \ C; = Cis such that ' =
n=(Cl ke (1) +5 1) Since (7) = (), we have that 33, (7) =
S () =0 (M = (M) +1=i+1—j. Thus, i’ =n —
Ol (N +i—D=n—(i+1—j+j—1)=n—i.

We now show that, due to the above properties, there exists a sequence of
row subtractions in the matrix that reaches a matrix with a diagonal of 1s, and
0Os in all the other entries. That is, we describe an algorithm to reduce A to the
identity matrix. Note that it implies that the system of equations has a solution.
Also note that the only row operations we use to reduce A to the identity matrix
(up to changing the order of the rows) is subtraction, implying the solution is
integral.

The sequence of row subtractions is defined as follows, when R; is used to
denote the i-th row.

1. For every i from n to 2:
(a) Subtract R; « R; — R;_1.
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b) Subtract R; < R; — R;, for every j < i such that A[j,n —i+ 1] = 1.
j j

Note that the first subtraction leaves A[i, n—i+1] = 1, since A[i—1,n—i+1] =
0, and A[i, j] = 0 for every j > n — i + 1. Then, since R; has a single 1 entry
Ali,n — i + 1], the following subtractions make the rest of the entries in the
(n — i+ 1)-th column to be 0.

Ezample 1. Let m = 3, and consider the Muller objective (F,x) with F =
{{1},{2},{3},{1,2,3}}. The corresponding system of equations A-T = b appears
in Table 1. Table 2 shows the system of equations after subtracting R; < R;— Rg,
and Table 3 shows the system of equations after subtracting R; < R; — R, for
every i < 7 such that A[i, 1] = 1. The solution is then xy = w9y = 233 = 1,
T{1,2y = T{1,3} = T{2,3} = —2, and T{1,2,3} = 3. O

| [z |z |z zneros [res[roes ] ]

€1y 1 0 0 1 1 0 1 0
€12} 0 1 0 1 0 1 1 0
e(3} 0 0 1 0 1 1 1 0
€{1,2} 1 1 0 1 1 1 1 1
€{1,3} 1 0 1 1 1 1 1 -1
er2,3) || O 1 1 1 1 1 1 -1
er1,2,3}| 1 1 1 1 1 1 1 0

Table 1. The system of equations A-T = b, for m = 3 and F = {{1}, {2}, {3},{1,2,3}}.

| [z |z |z lzneros [resroes ] ]

ef1} 1 0 0 1 1 0 1 0
€12} 0 1 0 1 0 1 1 0
e(3} 0 0 1 0 1 1 1 0
€{1,2} 1 1 0 1 1 1 1 -1
€{1,3} 1 0 1 1 1 1 1 —1
€(2,3} 0 1 1 1 1 1 1 -1
er1,2,3}| 1 0 0 0 0 0 0 1

Table 2. The system of equations after subtracting R7 < R7 — Rs.

Thus, the MaxWB objective (a,w,0), with w(afy) = w(agy) = —1 and
w(aq1,2y) = 1, is equivalent to (F, x). O

The number of underlying Biichi objectives in the equivalent MaxWB objec-
tive generated in Theorem 6 is exponential in the number of colors. Also, while
Muller objectives can refer to all subsets of objectives that are satisfied, such
a reference is succinct in additive weight functions, and so the translation of
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| [z ey [z zna[ras[restns |

€1} 0 0 0 1 1 0 1 —1
e{2} 0 1 0 1 0 1 1 0
ey |00 1] 0 | 1 | 1 1 [0
ey 0| 110 1 1 1 T [—2
enas | 00T T | 1 |1 1 |—2
ey | 0 | 1| T ] T | 1 | 1 1 -1
ef1233 1] 0|0 0 0 0 0 1
Table 3. The system of equations after subtracting R; < R, — Rz, for every i < 7

such that A[i, 1] = 1.

BMaxWB objectives with additive weight functions to Muller objectives is also
exponential. Thus, while the two formalisms are as expressive, the best trans-
lation between them is exponential in both directions, and we cannot easily lift
known results about Muller games to games with MaxWB objectives with ad-
ditive weight functions. We show that the complexity of MaxWB games with
additive weight functions still coincides with the one of Muller games. Thus, the
advantage of positive additive weight functions is lost. We start with zero-sum
games. Essentially, the upper bound follows from the fact the PSPACE algorithm
in [31] does not need an explicit representation of the Muller objective, and the
lower bound follows from a careful examination of the PSPACE-hardness proof
for Muller games [23], showing that the Muller objective used there can be spec-
ified as a BMaxWB objective with an additive weight function of polynomial
size.

Theorem 7. Deciding whether Player 1 wins a zero-sum two-player BMaxWB
game with an additive weight function is PSPACE-complete.

Proof. We start with the upper bound. As discussed above, the translation from
a BMaxWB objective with additive weight function to a Muller objective, may
involve an exponential blow up, and thus we cannot simply use the known
PSPACE upper bound for zero-sum two-player Muller games. The PSPACE al-
gorithm in [31], however, does not need an explicit representation of the Muller
objective. Rather, it examines outcomes of the game and checks whether they
satisfy the objective. A similar check can be done in PSPACE also when the
objectives are BMaxWB objectives given by additive weight functions.

For the lower bound, we describe a reduction from QBF. That is, given a
QBF formula @, we construct a zero-sum BMaxWB game Gg with an additive
weight function such that @ = true iff Player 1 wins Gg.

Consider a set X = {1,...,2,} of variables, and let X = {77,...,T,}. We
assume that QBF formulas are of the form & = Jz1Vzxs ... 3z, 1Vr, @ and ¢ is
a propositional formula over X U X given in 3DNF. That is, ¢ = C; V --- V Cy
with C; = (I A2 ALZ) and 1},12,13 € X UX, for every i € [k]. The QBF problem
is to decide whether @ = true. For every i € [n], we say that the index of the
literals x; and T; is i. Note that all the existentially-quantified variables have
odd indices, and all universally-quantified literals have even indices.
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Our reduction is similar to the reduction from QBF to deciding Muller games
[23], showing that the Muller objectives used there can be specified as BMaxWB
objectives with additive weight functions of polynomial size. Essentially, the
reduction in [23] constructs from ¢ a game graph Gg¢ in which Player 1 chooses
a clause C; of ¢, and then Player 2 chooses a literal I of C;. Choosing a literal
involves proceeding to a vertex that corresponds to that literal. Then, the play
proceeds to traverse a string of vertices that correspond to all the literals with
indices bigger than the index of I, and returns to the initial vertex. The Muller
objective ¢ = (F,x) is defined over the set of colors {1} U X U X, and x is
defined so every vertex that corresponds to a literal [ has color [, and the initial
and clause vertices have color L. Then, F contains the following sets of colors.

1. F; ={L}U{x;,7;:i < j <n}, for every even i € [n].
2. {x;} U F;11, for every odd i € [n].
3. {Z;} U Fi11, for every odd i € [n].

Note that the Muller objective v is satisfied if for every existentially-quantified
variable x;, the play traverses both vertices that correspond to the literal x; and
the literal Z; only if there exists a variable with smaller index j such that the
play traverses both vertices that correspond to the literal z; and the literal T;.

As proven in [23], Player 1 has a winning strategy for ¢ in Gg iff & = true.
Thus, it is sufficient to construct a MaxWB objective ¢’ = («,w,t) such that
for every play p in Gg we have that 1) is satisfied in p iff ¢’ is satisfied in p.

For every literal [ € X U X, we define the Biichi objective oy = x~!(I). That
is, oy is satisfied iff the play visits vertices that correspond to [ infinitely often.
Note that by the definition of the game, if an objective «; is satisfied, then also
every objective «; is satisfied, where [’ is a literal with an index bigger than
the index of [. Then, we define the weight function w and the threshold ¢ so
objectives that correspond to literals of existentially-quantified variables have
negative weights, objectives that correspond to literals of universally-quantified
variables have positive weights, and a sum of weights of a set of objectives is
above t iff the corresponding set of literals is in F.

Formally, ¢ = (a, w, t) is defined as follows.

1. The set of objectives is a = {ay : | € X U X}, where a; = x~1(I). That is,
ay consists of all the vertices that correspond to the literal [.

2. The weight function w : @ — Z is defined as follows.
(a) For every odd ¢ € [n] and literal | € {z;,7;}, we define w(ey) = —i.
(b) For every even ¢ € [n] and literal | € {z;,T;}, we define w(wy) = i.

3. The threshold is t =n + 1.

We prove the correctness of the construction. Consider a play p in Gg, and
let i be the minimal index of a literal | € X U X such that «; is satisfied in p.
That is, the play satisfies o, az7, or both, and does not satisfy objectives that
correspond to literals with indices smaller than i. Note that all the objectives
in {amj,am—j 144+ 1 < j < n} are satisfied in p, and they contribute the sum of
weights 2 Z?:Hl w(a, ). We calculate the sum of weights for the case i is even,
and the case i is odd. For i € n, let up(i) = {j : j >4 and j is odd}.
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1. If i is even, then 22?:¢+1 w(ag;) =2 Z?:Z.+1(—1)j T =2 eupirn)(—I
. n—(G+1)+1
2. If i is odd, then 2377, w(ag,) = 2(0 + 1) + 23 e ppa)(—d +7+1) =
n—(i+2)+1
2

n — 1.

2(i+1)4+25>"
n+14i+ 1.

oyl =2(i+1)+2- = 2(i+1)+n—(i+1) =

JEup(i

We prove that the Muller objective ¥ and the BMaxWB objective 3’ are equiv-
alent. For the first direction, assume that v is satisfied in p. If ¢ is even, then
both «a,, and az; are satisfied in p, and thus w(sat(p,a)) = 2i + (n — i) =
n+14i>n+2>t If iis odd, then o, or az; are not satisfied in p, and thus
w(sat(p,a)) = —i+ (n+i+1) =n+ 1=t Therefore, ¢’ is satisfied in p.

For the second direction, assume v is not satisfied in p. If 7 is even, then «y,,
or a7 are not satisfied in p, and thus w(sat(p, o)) = i+(n—i) = n < t. If i is odd,
both a,, and az; are satisfied in p, and thus w(sat(p,a)) = =2i+ (n+i+1) =
n—i+1<n-—1+1=n <t Therefore, ¢’ is not satisfied in p. O

We continue to non-zero-sum games. The upper bound is similar to the one in
Theorem 3, using Theorem 7 for the involved zero-sum BMaxWB games. The
lower bound follows from Theorem 7 and Lemma 2.

Theorem 8. Given a k-player MazrWB game G with additive weight functions,
a set S C [k] of system players, and a utility predicate P, deciding whether there
exists a DNE solution for (G, S, P) is PSPACE-complete. Hardness in PSPACE
already applies for k = 2.

6 MaxWB Games with Restricted Additive Weight
Functions

In Section 5, we saw that allowing negative weights increases the complexity of
the DNE problem in MaxWB games with additive weight functions. Specifically,
the complexity jumps from NP to PSPACE. In this section, we examine whether
we can allow some restricted use of negative weights in additive weight functions
in a way that does not increase the complexity. We consider two cases. The first
is when at most one objective is allowed to get a negative weight, and the second
is when the weights enjoy some polarity, making the setting closer to zero-sum
games.

6.1 When at most one objective may be negative

An additive weight function w : o — Z is almost positive if there exists | € [m)
such that for every j € [m]\ {l}, we have that w(a;) > 0. That is, at most
one objective can have a negative weight. Note that different players may have
different negative objectives.
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In [28], it is shown that a BMaxWB objective with a positive weight func-
tion can be translated to an equivalent generalized Biichi objective. Here, we
show that a BMaxWB objective with an almost positive weight function can
be translated to an equivalent Streett objective. A Streett objective is a set
Y = {(Li, Ri) }iepm) € 2V x 2V of pairs of sets of vertices. A play p satisfies 1
iff for every [ € [m], if p visits L; infinitely often, then it also visits R; infinitely
often. That is, inf(p) N Ly = 0 or inf(p) N R; # 0. A generalized Biichi objective
is a special case of Streett, with L; = V for all [ € [m]. The important point for
us is that, as is the case with generalized Biichi objectives, zero-sum two-player
Streett games are such that if Player 2 wins, then she has a memoryless winning
strategy. Thus, handling of the single objective with negative weight involves a
transition from generalized Biichi to Streett objectives, but still leaves us in the
terrain of games in which Player 2 has a memoryless winning strategy.

Theorem 9. Consider a zero-sum MaxWB game G with an almost-positive
weight function. Player 2 wins G iff she has a memoryless winning strategy.

Proof. Consider a zero-sum MaxWB game G = (G, v) with ¢ = (o, w,t) and
a = {aq, ..., an } such that w is almost positive. WLOG, assume that w(a,,) < 0.

Since «y, is the only objective with a negative weight, the objective v is
satisfied in a play if «,, is not satisfied and the sum of weights of satisfied
objectives from «a \ {a,,} is above ¢; or if a, is satisfied and the sum of weights
of satisfied objectives from a\ {a,, } is above t —w(ayy, ). That is, ¢ is satisfied iff
Qi i not satisfied and the BMaxWB objectives 11 = (a\ {am }, w, t) is satisfied,
or the BMaxWB objective ¢3 = (a\ {am }, w,t — w(ayy,)) is satisfied.

Below we show that the above characterization can be captured by a Streett
objective, thus there is a Streett objective equivalent to . Since Player 2 wins
a Streett game iff she has a memoryless winning strategy [19, 25], the result for
G follows.

Let o and o” be the generalized Biichi objectives equivalent to 1 and g,
respectively.

We define the Streett objective ¥’ = {(V o) : o] € &'} U {{am,a)) 1 of €
o”}. Note that the Streett objective {(V,a}) : ] € &'} is equivalent to the
generalized Biichi objective o/, and that the Streett objective {(am,]) : o] €
o'} is satisfied iff «,;, is not satisfied or the generalized Biichi objective o' is
satisfied.

We prove that the objectives 1) and v’ are equivalent. Consider a play p in G,
and assume first that 1 is satisfied in p. Note that the generalized Biichi objective
o/ is satisfied in p, and thus also the Streett objective {(V,a}) : o] € o'}. If cupy,
is not satisfied in p, then the Streett objective {(am, ) : @ € o'} is satisfied
since vertices in ay, are visited only finitely often. Otherwise, o’ is satisfied in p,
and thus also the Streett objective {(aum,]) : @] € o'} is satisfied. Therefore,
1) is satisfied in p.

For the second direction, assume 1)’ is satisfied in p. Note that this implies
o' is satisfied in p as well. If «,, is not satisfied, then the satisfaction of o’
implies the satisfaction of . If ay, is satisfied in p, we have that o’ is satisfied
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in p. Therefore, the sum of weights of satisfied objectives is at least ¢t — w(,,) +
w(am) =t. O

One may be tempted to generalize the result in Theorem 9 to a fixed number
of objectives that may have a negative weight. With more than one negative
objective, however, a winning strategy of Player 2 may need to direct the out-
come of an interaction into different successors of a vertex that repeats in the
outcome. For a specific example, see Lemma 3.

Lemma 3. There is a zero-sum BMaxzWB game G with an additive weight func-
tion in which exactly two objectives have negative weights and such that Player 2
wins G, but Player 2 does not have a memoryless winning strategqy in G.

Proof. We define a zero-sum BMaxWB game G = (G, {a1, as}, w,t) with w(aq), w(ag) <
0 such that Player 2 wins G, but Player 2 does not have a memoryless winning
strategy in G.

Intuitively, the game is defined so Player 2 needs to satisfy both objectives
a1 and as in order to win, and satisfying both objectives requires memory.

The game graph G is defined as follows. From the initial vertex vy, Player 2
chooses between proceeding to a vertex a, and proceeding to a vertex b. From
both a and b, the game returns to the initial vertex. Then, we define ay = {a},
as = {b}, w(ay) = w(az) = —1, and t = —1. It is easy to see that Player 2
has a winning strategy that satisfies both objectives a1 and as, and that every
strategy for Player 2 that satisfies both objectives require memory.

Theorem 9 enables us to lift the “polynomial DNE solution” property proved
in Theorem 4 for non-decreasing weight functions to almost-positive weight func-
tions. In order to also lift the NP solution in Theorem 5, we first need to find
a solution in NP for zero-sum games. Guessing a memoryless strategy fo is a
first step for that, but one also needs to check f; in polynomial time. The fact
only one objective o; € o may get a negative weight makes it possible. Indeed,
we only need to reason about the maximal strongly connected sets of the graph
induced by f2, and its restrictions to vertices not in «;, which can be done in
linear time [37].

Theorem 10. Deciding whether Player 2 wins a zero-sum MaxWB game with
an almost-positive weight function is NP-complete.

Proof. We start with the upper bound. Consider a zero-sum MaxWB game G =
(G, ) with ¢ = (a,w,t), « = {a1,...,am}, and w is almost positive. Let [ be
such that w(oy) < 0. An NP algorithm guesses a memoryless strategy fo for
Player 2, calculates the sub-graph Gy, of G such that edges from vertices in V5
agree with f, and checks that there does not exist a play in Gy, that satisfies
1. The check proceeds as follows.

First, we remove from G, the vertices in a; and check whether the obtained
graph has a maximal strongly connected set U with w({a; € a: UNey; # 0}) > t.
If there is such a set, we know that there is a play — one that reaches U and
then traverses all the vertices in U infinitely often, that satisfies 1. Otherwise,
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we check whether the graph Gy, has a maximal strongly connected set U with
w{a; € a: UNaj # 0}) > t. That is, we repeat the same check, now with
Gy, itself. If there is such a component, we again know that there is a play that
satisfies 9. Also, if no set U is found in the two checks, we can conclude that no
a play in Gy, satisfies ¢. Indeed, since all the objectives in « \ oy have positive
weights, restricting attention to mazimal strongly connected sets is sound, and
leads to a linear algorithm [37].

The lower bound follows from the NP-hardness of deciding whether Player 2
wins a zero-sum BMaxWB game with positive and additive weight functions
[28]. O

The considerations in the proof of Theorem 5 can now be applied for games
with almost-positive weight functions. In particular, note that the weight func-
tion used in the lower bound there is positive and additive, and hence also
almost-positive.

Theorem 11. Given a k-player MaxWB game G with almost-positive weight
functions, a set S C [k] of system players, and a utility predicate P C ZF | decid-
ing whether there exists a DNE solution for (G, S, P) is NP-complete. Hardness
in NP already applies for k = 2.

6.2 Additive Weight Functions with Polarities

Consider a MaxWB game G = (G, o, {w; }iex)) With an additive weight function.
Let a = {aa,...,amn}. For an objective oy € o and a set A C [k] of players, we
say that aq is good for A if for all i € A, we have that w;(cq) > 0. Likewise, o
is bad for A if w;(ay) < 0 for all ¢ € A. Finally, «; is polar for A if a; is good or
bad for A.

Consider a partition A, B C [k] of the players in [k]; thus AU B = [k] and
ANB = ). We say that (A, B) is a natural partition (to coalitions) of [k] if every
objective a; € « is polar for A and for B, with dual polarity. That is, either q
is good for A and bad for B, or o is bad for A and good for B

Games with a natural partition of [k] to coalitions may seem weaker than
general games. Indeed, if (A, B) is a natural partition, it is tempting to merge all
the players in A to a single player, aiming for the satisfaction of objectives with
a positive polarity for them, and merge all the players in B to a single player,
aiming for the satisfaction of the complementary set of objectives. Thus, games
with a natural partition to coalitions seem related to zero-sum games.

As we show below, however, the relative weights of the different objectives
play a role that is more significant than their polarity. Using these relative
weights, we can turn each MaxWB game G to an equivalent game that has
a natural partition to coalitions. Moreover, given any partition (A, B) of the
players, we can turn G to an equivalent games in which (A, B) is a natural par-
tition to coalitions. Thus, games with natural partitions are by no means easier
than general ones.
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Theorem 12. Consider a MaxWB k-player game G = (G, o, {w; }iepr)) with an
additive weight function. For every partition (A, B) of [k], there is a game G’
equivalent to G such that (A, B) is a natural partition to coalitions in G’.

Proof. Consider a MaxWB k-player game G = (G, o, {w; }ie[r)), and a partition
(A, B) of [k]. Let m = |a|. We construct a MaxWB game G’ equivalent to G
such that (A, B) is a natural partition in G’. The game G’ = (G, o/, {w; }icx)) is
defined as follows (see Example 2).

Ezample 2. Consider the MaxWB 3-player game G = (G, {a1, ao, as}, {w1, wa, ws}),
where the weights functions are described in the table below (left).

|l fasz[as] [ [[eilof[e3][oF]as[od]

wy [+ 1[+1]—1 wi[+2[—1[+2[-1][+1]-2
wo||+1|—1[+1 wh|[—1+2[=2]+1]=1]+2
ws||—1[+1]—1 wh[ =2+ 1= 1]+2[=2[+1

The partition ({1}, {2,3}) is not a natural partition of G. On the table (right),
we describe the weight functions w], wj, and w, on the two copies of « and
with which ({1}, {2, 3}) is a natural partition. Note that for every ¢,l € {1, 2, 3},
we have that w;(aq) = w}(a}) + wi(af). 0

First, o/ consists of two copies? of a. For [ € [m], let o] and o denote the
two copies of a; in ’. Then, for every player i € A, we define the weight function
w; : o/ — Z as follows. Consider an objective a; € .

L. If wi(oq) <0, then wi(e}) =1 and wi(a?) = w;(oy) — 1.
2. If w;(ay) > 0, then wi(a) = wi(oy) + 1 and wi(af) = —1.

Finally, for every player ¢ € B, we define the weight function w} : o/ — Z as
follows. Consider an objective o € a.

L. If wi(oq) <0, then wi(a}) = wi(ey) — 1 and wi(af) = 1.
2. If wi(ay) > 0, then wi(aj) = —1 and w}(af) = w;(ay) + 1.

Note that for all [ € [m], the objective aj is good for A and bad for B, and the
objective o is bad for A and good for B. Also, w;(ay) = wi(a}) + wi(a?), and
so we can express with w’ the same utilities in G’ expressed with w in G. O

7 Non-zero-Sum Games with Payments

In this section, we study non-zero-sum games in which each player ¢ € [k] may
commit to pay the other players a certain amount for each of the underlying
objectives that are satisfied. Clearly, such payments may incentive the other
players to choose strategies that are preferable for Player .

2 That is, @’ as a multi-set. Avoiding a multi-set is possible, but involves a duplication
of vertices.
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We first study the setting for Buichi objectives, and then extend to MaxWB
objectives. Consider a k-player Biichi game G = (G,{a;}icx); {Ritiew) A
payment function p : [k] x [k] — IN maps each two players i,5 € [k] to the
amount Player i commits to pay Player j when «; is satisfied. We require that
p(,7) = 0. When Player ¢ does not commit to pay more than her reward, thus
R; > Zje[k] p(i,7), we say that p is positive. A k-player Biichi game with pay-
ments is a pair (G, p), for a Biichi game G and a payment function p.

The utility of a player in a game with payments (G, p) combines her reward in
G with the payments she pays and receives from the other players. Formally, for
a profile w, let W(r) = {j € [k] : a;j € sat(Outcome(n), a)}. Thus, W (r) is the
set of objectives satisfied in 7, which is also the set of players that has to fulfill
the payment commitments to the other players. Then, the utility of Player ¢ in

T is
Ry =35y Pl i) + 3 jewm P 1) if i € W(m),
ZjeW(ﬂ') p(j, 1) if i ¢ W(m).

Stability in games with payments is defined with respect to the utilities that
take payments into account. Note that the payment function is fixed and pay-
ments are not part of the player’s strategies. The DNE problem for games with
payments gets as input a game G, a payment function p, a set of players S C [k],
and a utility predicate P C Z*, and has to return an S-fixed NE in (G, p) that
satisfies P.

Uti|i(ﬂ') =

Theorem 13. For every k-player Biichi game G and payment function p : [k] x
[k] — IN, there is an equivalent k-player MaxWB game G’ with almost-positive
additive weight functions. If p is positive, then G’ has positive additive weight
functions.

Proof. Let G = (G,a,{R;i}icp)). We define G’ = (G, a,{w;}icw)), where for
every i € [k], we have that w;(a;) = R; — > ;¢ P(4,7), and for all I € [k]\ {},
we have that w;(«;) = p(l,1).

The correctness of the construction follows immediately from the definition
of the utilities in games with payments. Indeed, for every profile = in G, the
utilities of Player ¢ in 7 coincide in (G, p) and G’. O

Remark 1. [MaxWB games with payments] The definition of games with
payments as well as the reduction in Theorem 13 can be easily extended to
MaxWB games. The same way we study different classes of weight functions,
one can define different classes of payment functions in MaxWB games. Consider
a game G = (G, o, {w; };ie[r))- The most general payment function is p : [k] x [k] x
2% — IN, mapping each two players 4, j € [k] and set X C « of objectives to the
amount Player ¢ pays Player j when exactly all the objectives in X are satisfied.
A payment function is additive if it induced by a function p : [k] X [k] X o — IN,
which describe payments for single objectives.

We show how the construction in Theorem 13 can be extended to general
MaxWB games. There, a payment function for a k-player MaxWB game with m
underlying objectives and weight functions {w;}iep is p : [k] x [k] x [m] — N,
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where p(i, 7,1) describes how much Player ¢ commits to pay Player j in case «y is
satisfied. We say that p is positive if Zje[k] > aex Pis 3,1) < wi(X), for every
i€ [k] and X C a.

The weight functions in the proof of Theorem 13 are then {wj;};cpr with
wi(X) = wi(X) =30, ex 2ojep P64, 1), forevery i € [kl and X C {ay, ..., am}.
Note that if the weight functions in G are additive, then the weight functions
in G’ are additive and positive if p is positive, and if the weight functions in G
are non-decreasing and p is positive, the weight functions in G’ are positive and
non-decreasing.

It follows that the complexity results in Theorems 4 and 5 apply also for the
case of MaxWB games with payments for non-decreasing weight functions and
a positive payment function. Also, the complexity results for general and non-
positive additive weight functions apply also for the case of MaxWB games with
payments with the same type of weight functions and general payment functions.

Note however that when the payment function is non-positive, MaxWB
games with payments and positive additive weight functions are equivalent to
MaxWB games with non-positive additive weight functions, and games with
non-decreasing weight functions are equivalent to MaxWB games with general
weight function. In particular, recall the zero-sum game G from the lower bound
proof of Theorem 7, and note that there exists a MaxWB game with payments
and a positive additive weight functions (G’, p), such that there exists a DNE
solution for (G, {1}, {utily > ¢}) in (G’,p) iff Player 1 wins G. Specifically, the
weight functions for the players are empty, thus w; (o) = wa(ay) = 0, for every
objective a; € «, and the payment function p mimics the weight function of G,
thus p(1,2,1) = i, for every existentially-quantified variable x; and a literal [
with index 7, and p(2,1,1) = i, for every universally-quantified variable z; and a
literal | with index 1. ad

The DNE problem for Biichi games without payments can be solved in poly-
nomial time [38]3. Adding payments involves a transition to the DNE problem
for MaxWB games with almost-positive weight functions, which has a computa-
tions cost. In Theorem 14 below, we show that this cost is unavoidable, in fact,
already for the special case of cooperative rational synthesis.

Theorem 14. Given a k-player Biichi game with payments (G,p), a set S C [k]
of system players, and a utility predicate P C Z¥ | deciding whether there exists a
DNE solution for (G, p, S, P) is NP-complete. NP-hardness applies already when
p is positive, S = {1}, and P = {x1 > 1}.

Proof. The upper bound follows from Theorem 13 and Theorem 5.

For the lower bound, we describe a reduction from 3SAT. Given a 3CNF
formula ¢, we construct a Biichi game G and a positive payment function p such
that there exists a DNE solution for (G,p, {1}, u; > 1) iff ¢ is satisfiable.

3 The study in [38] is for cooperative rational synthesis with Boolean objectives, but
can be easily extended to the DNE problem.
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Consider a set of variables X = {z1,...,2,}, and let X = {77, ...,7,}. Also
consider a formula ¢ = Cy A...ACy, with C; = (I} VI2VI3) and I}, 12,13 € XUX,
for every i € [k].

Intuitively, we define the game with payments (G, p) as a (2n+2)-player game
with Player 1, Player 2, and literal players Player [ for every I € X U X, so only
Player 1 and Player 2 control vertices in the game graph, and Player 2 chooses
to help Player 1 to have utility 1 iff at most n literal players pay Player 2 when
she does not help Player 1. When Player 2 does not help Player 1, Player 1 is
required to choose an assignment to the variables in X, and then prove that the
chosen assignment satisfies . There, for every literal I € X U X, the objective
of Player [ is satisfied iff Player 1 states that [ is evaluated to true, either as
part of the chosen assignment or as part of her proof. Each literal player offers
to pay Player 2 when her objective is satisfied, and accordingly, Player 1 can
ensure that at most n literal players pay Player 2 iff there exists an assignment
that satisfies .

The game graph G proceeds as follows. From the initial vertex, Player 2
chooses between proceeding to a self-looped sink L in which the objective of
Player 1 is satisfied and accordingly Player 1 gets utility of 1, and proceeding
to an assignment sub-graph. In the assignment sub-graph, Player 1 chooses an
assignment to every variable in X, and then chooses for every clause of ¢ one of
its literals, essentially stating that the literal is evaluated to true in the chosen
assignment, and the process repeats infinitely often. Choosing an assignment to
a variable z; involves choosing between proceeding to a vertex that corresponds
to the literal z;, and a vertex that corresponds to the literal ;. Choosing a
literal I for the clause C; involves proceeding to a vertex that correspond to the
literal lf . Note that only Player 1 and Player 2 own vertices in G.

The objective of Player 1 and Player 2 is to reach L, and the objective of
Player [ is to visit infinitely often vertices that correspond to the literal [ in the
assignment sub-graph, for every [ € X U X. Then, Player 1 gets reward of 1,
Player 2 gets reward of n, and Player [ gets reward for 2, for every [ € X U X.
Also, every Player [ offers to pay 1 to Player 2 when her objective is satisfied.
That is, Player [ pays 1 to Player 2 when the play proceeds to the assignment
sub-graph, and visit vertices that correspond to [ infinitely often.

Note that by definition, every play in the assignment sub-graph satisfies at
least n objectives of literal players, and there exists a play that satisfies exactly n
objectives of literal players iff ¢ is satisfiable. Indeed, for a satisfying assignment,
Player 1 can generate a play that only visits vertices that correspond to literals
that are evaluated to true in the satisfying assignment, and thus satisfy exactly
n objectives of literal players. Specifically, satisfy the objectives of Player [ for
every literal [ that is evaluated to true in the assignment. And, when there
does not exist a satisfying assignment, when choosing literals for every clause,
Player 1 is forced to visit both a vertex that correspond to [ and a vertex that
correspond to [, for some literal I € X U X. Therefore, when ¢ is not satisfiable,
every play in the assignment sub-graph satisfies the objectives of at least n + 1
literal players.
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Since every literal player offers to pay 1 to Player 2 when her objective is
satisfied, we have that Player 2 benefits from proceeding to the assignment sub-
graph more than proceeding to L iff at least n+ 1 objectives of literal players are
satisfied there, and Player 1 can force that at most n objectives of literal players
are satisfied iff ¢ is satisfiable. Accordingly, there exists a 1-fixed NE in which
Player 2 proceed to 1, and thus the utility for Player 1 is 1 iff ¢ is satisfiable.

Formally, (G, p) is defined as follows. First, the (2n + 2)-player Biichi game
G = (G, {1, 0} U{au};cxux {1, Re} U{Ri},c xx) contains the following
components.

1. The game graph G = (V1, Vs, vg, E) contains the following components.
(@) Vi={L}U{v:ienJUuXUXU{C; :ielk]Ju{l},i2,13:i¢€ [k]}.

The vertices in {v; : i € [n]},X UX{C; :i € [k]},{1},12,13 :i € [K]} are

171"
variable, literal, clause and clause-literal vertices, respectively.

(b) V2 = {vo}.
(¢) The set of edges F contains the following edges.

i. (vo,v1), (vo, L), and (L, 1). That is, from the initial vertex, Player 2
chooses between proceeding to the assignment sub-graph, and to L,
in which case the play stays in L indefinitely.

ii. (v;, ;) and (v;,7;), for every i € [n]. That is, Player 1 assigns true
to z; by proceeding to the literal vertex z;, and assigns true by
proceeding to the literal vertex Z;.

iii. (2, vi41) and (T;, vi41), for every 1 < i < n.

iv. (z,,C1) and (T, Cy).

v. (C;,l7), for every i € [k] and j € {1,2,3}. That is, Player 1 states
that the literal lg is evaluated to true in the chosen assignment by
proceeding from C; to the clause-literal vertex 7.

vi. (IJ,Ciy1), for every 1 <i <k and j € {1,2,3}.

Vvii. <li,v1>, for every j € {1,2,3}.
2. The objectives for the players are defined as follows.
(a) g =g ={L}. , _
(b) ay = {1} U{ll : i € [k],j € {1,2,3}, and I = [}, for every |l € X U X.
That is, the objective of Player [ is to visit vertices that correspond to
the literal [ infinitely often.
3. The rewards for the players are defined as follows.
(a) Rl =1.
(b) R2 =n.
(c) Ri=2,foreveryl € X UX.

The payment function p has p(l,2) = 1, for every [ € X U X, and p(i, j) = 0 for
all i ¢ X UX or j # 2. That is, every literal player pays 1 to Player 2 when o
is satisfied, and these are the only payments.

We prove the correctness of the construction.

Note that the utility for Player 1 is 1 only in plays that reach L. Thus, it is
sufficient to show that ¢ is satisfiable iff there exists a 1-fixed NE whose outcome
reaches |.
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For the first direction, assume ¢ is satisfiable. Consider a profile m whose
outcome reaches 1, and the strategy for Player 1 in the assignment sub-graph
visits infinitely often literal vertices only if they correspond to literals evaluated
to true in the satisfying assignment. Since there exactly n such literals, there are
n literal players that their objectives are satisfied in the play in the assignment
sub-graph, thus Player 2 does not benefit from deviating. Indeed, her utility in
7 is n from her reward, and by deviating she would get the same utility from
the payments from the other players.

For the second direction, assume ¢ is not satisfiable. Note that it implies that
every play in the assignment sub-graph satisfies at least n+1 different objectives
from {a; : | € XUX}. Thus, there does not exist a 1-fixed NE in which Player 2
proceeds from the initial vertex to L. Indeed, by deviating, she increases her
utility to at least n + 1. a

7.1 Monetary-based repair of Biichi games

Consider a k-player Biichi game G = (G, {a;}ic[k), {Ri}icx]). For a payment
function p : [k] x [k] — IN and a set S C [k] of system players, we say that p
incentivizes [k]\.S if p(¢,j) = 0 for all ¢ € [k]\.S and j € [k]. That is, only system
players may suggest payments.

In the monetary-based system-repair problem, we are given a k-player game
G, a set of system players S C [k], and a utility predicate P C ZF | and we
seek a payment function that incentivizes [k] \ S to follow strategies with which
P is satisfied. Formally, a repair solution for (G, S, P) is a pair (p,w), where p
is a payment function p that incentivizes [k] \ S and 7 is a DNE solution for
((G,p), S, P). Note that since the system players are under our control (formally,
7 is an S-fixed NE), they need not be incentivized. Still, p may include transfers
within the system players in order to satisfy P.

Theorem 15. Given a k-player game G, a set S C [k] of system players, and
a utility predicate P C Z¥, deciding whether there exists a repair solution for
(G, S, P) is NP-complete. Hardness in NP already applies when S =1 and P =
{’LLl Z ].}

Proof. For the upper bound, an NP algorithm guesses a payment function p that
incentivizes [k] \ S, and then finds a DNE solution for (G, p, S, P), as described
in Theorem 14. Note that the sum of payments that a given player offers is
bounded by the sum of rewards of all the other players in the game, thus it is
sufficient to guess a payment function that is polynomial in the input.

We continue to the lower bound. We describe a reduction from 3SAT. That
is, given a formula ¢ = C; A ... A Cy with C; = (I} V12 V I3), for every i € [K],
over a set of variables X = {x1,...,2,}, we construct a Biichi game G such that
there exists a repair solution for (G, {1},u; > 1) iff ¢ is satisfiable.

Intuitively, we define a (2n + 1)-player game G with Player 1 as the single
system player and literal players Player [, for every | € X U X, so the literal
players choose to help Player 1 to satisfy her objective and have utility of at
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least 1 iff Player 1 can pay n literal players such that only those players can
satisfy their objectives by not helping her. Similar to the previous reduction,
when the literal players do not help Player 1, Player 1 is required to choose an
assignment to the variables in X and prove that the chosen assignment satisfies
@, and Player [ wins there iff Player 1 states the literal [ is evaluated to true.
We then define the reward for Player 1 so she can afford to pay at most n literal
players and still have a utility of at least 1. Accordingly, Player 1 can ensures
her utility is at least 1 iff ¢ is satisfiable.

The game graph G proceeds as follows. Let G, be the assignment sub-graph
from the proof of Theorem 14, and recall that this is a game graph in which all the
vertices are controlled by Player 1, that chooses assignments to every variable in
X, then chooses a literal for every clause in ¢, and repeats the process infinitely
often.

From the initial vertex, the play traverses a string of vertices _L;, controlled
by Player [, for every literal [ € X U X. From 1;, Player [ chooses between
proceeding to the assignment sub-graph G, or proceeding to the next vertex
in the string. At the last 1; vertex, Player | chooses between proceeding to G,
and proceeding to a self-looped sink L.

The objective of Player 1 is to reach 1, and the objective of the literal player
Player [ is oy from the proof of Theorem 14. That is, o consists of all the vertices
that correspond to the literal [ in G,. Then, the rewards for the players are n+1
for Player 1, and 1 for every literal player. Note that the utility for Player 1 is at
least 1 only in plays that reach L. Intuitively, there exists a payment function p
and a 1-fixed NE in (G, p) such that the utility for Player 1 can be at least 1 iff
the play in the assignment sub-graph satisfies the objectives of exactly n players.
Since Player 1 can generate a play in the assignment sub-graph that satisfies the
objectives of exactly n players iff ¢ is satisfiable, it would then follow that there
exists a repair solution for (G, {1}, {u; > 1}) iff ¢ is satisfiable.

Formally, G = (G,{a1} U {ai};c xuxr 181, Re} U {Ri};cxux) contains the
following components.

1. Recall the assignment game graph G, = (V4,0,v1, E) from the proof of
Theorem 14. The game graph G = ({Vi U {vo, L}} U {Vi},cxux>v0, E)
contains the following components.

(a) The set of vertices owned by Player 1 is V3 U {wvg, L}, and V; = {L1;}, for

every | € X U X.

(b) The set of edges E’ contains F, and the following edges.
i. (vo, Ly, ). That is, from the initial vertex, the play proceed to traverse
the L; vertices.

il. (Lg,, Lls), for every i € [n].

iii. (Lgr, La,,,), for every 1 <i <n. (Lgr L).

iv. (1L;,v1), for every I € X U X. That is, from 1;, Player I chooses
between proceeding to the next 1 vertex, and proceeding to the
assignment sub-graph.

v. (L, 1).

2. The objectives for the players are defined as follows.
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(a) a; ={L}. ‘ B
(b) ay = {1y U{l! :i€lk],j € {1,2,3}, and I/ =1}, for every l € X U X.
That is, the objective of Player [ is to visit vertices that correspond to
the literal [ infinitely often.
3. The rewards for the players are defined as follows.
(a) Ry =n+1.
(b) Ry =1, forevery l € X UX.

We prove the correctness of the construction.

Note that the utility for Player 1 is at least 1 only in plays that reach L.
Also note that for every payment function p, a profile 7 in (G, p) that reaches
1 is a 1-fixed NE iff Player 1 pays every player that her objective is satisfied in
the play in the assignment sub-graph. Thus, there exist such payment function
p and 1-fixed NE iff Player 1 can generate a play in the assignment sub-graph
that satisfies the objectives of (at most) n players. Since there exists such a play
iff ¢ is satisfiable, the correctness of the construction follows. O

8 Discussion

l general ‘non-decreasing‘ additive ‘almost positive‘additive + polarities‘

[PSPACE (Th. 3)] NP (Th. 5) [PSPACE (Th. 8)] NP (Th. 10) [ PSPACE (Th. 12) |
Table 4. The complexity of deciding if there exists a DNE solution for (G, S, P) for a
game G with some restriction on the weight function.

A major challenge in automated synthesis is the design of high-quality sys-
tems. The specification of such systems combines different aspects of the behavior
of the system. Multiple weighted objectives enable a rich and convenient way to
specify these combinations. We showed that the different classes of weight func-
tions offer a hierarchy of expressiveness and complexity that is different from the
one induced by the different classes of w-regular objectives, and that is very rele-
vant in the context of high-quality synthesis. In particular, it brings the analysis
closer to the one used in classic game theory (c.f., [34] Chapter 11). We showed
that the different classes of weight functions offer a hierarchy of expressiveness
and complexity that is different from the one induced by the different classes
of w-regular objectives, and that is very relevant in the context of high-quality
synthesis. In particular, it brings the analysis closer to the one used in classic
game theory (c.f., [34] Chapter 11).

From a practical point of view, multiple weighted objectives also make it
possible to calibrate expenses on different resources. In particular, it enables
reasoning about settings in which money can be used as a resource. Such an
approach is used, for example, when the system is composed from a library of
priced components [6, 30], or when agents need to pay in order to sense a signal
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[15] or to take an action, as in bidding games [5] or networks with tolls [29]. Here,
we suggested to use payments in order to repair systems, by incentivizing the
environment to follow a strategy in which the objective of the system is satisfied.
It is interesting to study additional types of monetary-based repair in non-zero-
sum games, for example when payments are used in order to buy control [27] or
generate coalitions [11].
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