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Abstract. In rational synthesis, we automatically construct a reactive
system that satisfies its specification in all rational environments, namely
environments that have objectives and act to fulfill them. We complete
the study of the complexity of LTL rational synthesis. Our contribution
is threefold. First, we tighten the known upper bounds for settings that
were left open in earlier work. Second, our complexity analysis is para-
metric, and we describe tight upper and lower bounds in each of the
problem parameters: the game graph, the objectives of the system com-
ponents, and the objectives of the environment components. Third, we
generalize the definition of rational synthesis, combining the cooperative
and non-cooperative approaches studied in earlier work, and extend our
complexity analysis to the general definition.

1 Introduction

Synthesis is the automated construction of a system from its specification. The
basic idea is simple and appealing: instead of developing a system and verifying
that it adheres to its specification, we use an automated procedure that, given a
specification, constructs a system that is correct by construction, thus enabling
the designers to focus on what the system should do rather than how to do it. A
reactive system interacts with its environment and should satisfy its specification
in all environments [9, 25]. Accordingly, synthesis corresponds to a zero-sum
game between the system and the environment, where they together generate a
computation, the system wins if the computation satisfies the specification, and
otherwise, the environment wins.

In practice, the requirement to satisfy the specification in all environments
is often too strong. Therefore, it is common to add assumptions on the envi-
ronment. An assumption may be direct, say a specification that restricts the
possible behaviors of the environment [6], or less direct, say a bound on the size
of the environment or other resources it uses [14]. In [12], the authors suggest
a conceptual assumption on the environment, namely its rationality: Rational
synthesis is based on the idea that the components composing the environment
typically have objectives of their own, and they act to achieve their objectives.
For example, clients interacting with a server typically have objectives other
than to fail the server. As shown in [12], the system can capitalize on the ra-
tionality and objectives of components that compose its environment. Adding
rationality into the picture makes the corresponding game non-zero-sum [22],
thus objectives of different players may overlap.



The interesting questions about non-zero-sum games concern stable out-
comes, in particular Nash equilibria (NE) [21]. More formally, each of the players
in the game has a strategy that directs her which actions to take; a profile is a
vector of strategies, one for each player; each profile has an outcome (in our case,
the computation generated when the system and the environment follow their
strategies); and a profile is an NE if no player has an incentive to deviate from
it (in our case, to change her strategy in a way that would cause the outcome of
the new profile to satisfy her objective).

Two approaches to rational synthesis have been studied. In cooperative ra-
tional synthesis (CRS) [12], the desired output is an NE profile whose outcome
satisfies the objective of the system. Thus, in CRS, we assume that we can sug-
gest strategies to the environment players, and once they have no incentive to
deviate from these strategies, they follow them. Then, in non-cooperative ratio-
nal synthesis (NRS) [15], the desired output is a strategy for the system player
such that the objective of the system is satisfied in the outcome of all NE profiles
that include this strategy. Thus, in NRS, the environment players are rational,
but we cannot suggest them a strategy.

The cooperative and non-cooperative approaches correspond to different set-
tings in reality, having to do both with the technical ability to communicate a
strategy to the environment players, say due to different architectures, as well
as the willingness of the environment players to follow a suggested strategy. As
shown in [1], the two approaches are related to the two stability-inefficiency mea-
sures of price of stability [3] and price of anarchy [16, 23]. Additional related work
includes rational verification [27, ?], where we check that a given system satisfies
its specification when interacting with a rational environment, and extensions of
rational synthesis to richer settings (multi-valued, partial visibility, and more)
[4, 13, 18].

The complexity of rational synthesis was first studied for the case the in-
put to the problem is the objectives of the players, given by LTL formulas. In
this setting, CRS is in 2EXPTIME [12], whereas the best known upper bound
for NRS until recently was 3EXPTIME [15] (the paper specifies a 2EXPTIME
upper bound, but a careful analysis of the algorithm reveals that it is actu-
ally in 3EXPTIME), improved to 2EXPTIME for turn-based games with two
players [18]. The complexity analysis above suggests that rational synthesis is
not harder than traditional synthesis. One may wonder whether this has to do
with the doubly-exponential translation of LTL to deterministic automata, which
dominates the complexity. To answer this question, [10] studies the complexity
of rational synthesis where the objectives of the players are given by ω-regular
winning conditions in a game graph (e.g., reachability, Büchi, and parity). The
analysis in [10] also distinguishes between the case the number of players is fixed
and the case it is not. As shown there, in most cases the complexity of the ratio-
nal variant coincides with the complexity of the zero-sum game. In some cases,
however, it does not. For example, while the problem of deciding Rabin games
is NP-complete [11], the best algorithm for solving CRS with Rabin objectives
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is in PNP, going up to PSPACE-complete in NRS, and going higher when the
number of players is not fixed [10].

In this work, we complete the study of the complexity of LTL rational syn-
thesis. Our contribution is threefold. First, we tighten the known upper bound
for NRS for settings with three or more players and for concurrent games, which
were left open in [10, 18]. Second, our complexity analysis is parametric, and
we describe tight upper and lower bounds in each of the problem parameters:
the game graph, the objectives of the system players, and the objectives of
the environment players. Third, we generalize the definition of rational synthe-
sis, combining the cooperative and non-cooperative approaches, and extend our
complexity analysis to the general definition. Below we elaborate on each of the
contributions.

Let us start with the generalization of the problem. In our general definition,
we may suggest a strategy only to a subset of the environment players. Thus,
we distinguish between three types of players: controllable, cooperative uncon-
trollable, and non-cooperative uncontrollable. Then, in the (general) rational-
synthesis (RS) problem, we are given a labeled graph and LTL formulas that
specify the objectives of the players, and we seek strategies for the controllable
and the cooperative-uncontrollable players such that the objectives of the con-
trollable players are satisfied in the outcome of every NE profile that extends
these strategies. Note that CRS and NRS can be viewed as special cases of RS
where the uncontrollable players are all cooperative or all non-cooperative.

In the tight-complexity front, our algorithms reduce rational synthesis to the
nonemptiness problem of tree automata. The automata accept certified strategy
trees: trees that are labeled by both a strategy for the controllable player1 and
information about uncontrollable players that deviate and the strategies to which
they deviate. The most technically-challenging algorithm we describe is for NRS
in the concurrent setting. While in the turn-based setting, we need a single player
that deviates in order to justify a path in which the objective of the controllable
player is not satisfied, in the concurrent setting, where the players choose actions
simultaneously and independently, we need to consider sets of uncontrollable
players. This makes the certificate much more complex. In particular, it involves
labels from an exponential alphabet, which introduces an additional challenge,
namely a need to decompose labels along branches in the tree. Also, while in the
turn-based setting, an NE always exists, concurrent games with three or more
players need not have an NE [8], and so a certified strategy tree should also
certify the existence of an NE.

Finally, in the parameterized-complexity front, the fact our algorithms use
tree automata (rather than a translation to Strategy Logic [7], which has been the
case in [12, 15]), enables us to analyze the complexity in each of the parameters of
the problem: the game graph G, the objective ψ1 of the controllable player, and
the objectives ψ2, . . . , ψk of the uncontrollable players. For CRS, [18] studies the

1 It is easy to see that several controllable components can be merged to a single one.
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parameterized complexity in turn-based games with two players.2 The algorithm
there is based on a distinction between the case the uncontrollable player satisfies
her objective and the case she does not. Generalizing this to an arbitrary number
of players, we parameterize solutions with the set of the uncontrollable players
whose objectives are satisfied, and give a uniform solution to all cases. This also
enables us to seek solutions that favor some or all uncontrollable players.

We show that the complexity of CRS is polynomial in |G|, doubly-exponential
in |ψ2|, . . . , |ψk|, and only exponential in |ψ1|. Thus, in terms of the system
specification, CRS is in fact easier than traditional synthesis! Once we move to
NRS or RS, the complexity becomes doubly exponential in all objectives. We
describe tight lower bounds for the different parameters, and we show that they
are valid already for the case k = 2 and the game is turn based. Specifically,
we prove that CRS is EXPTIME-hard even when G and ψ2 are fixed, and is
2EXPTIME-hard even when G and ψ1 are fixed. Similarly, NRS is 2EXPTIME-
hard even when only one of ψ1 and ψ2 is not fixed. In order to see the technical
challenge in our lower-bound proofs, consider the current 2EXPTIME lower-
bound proof for CRS, where synthesis of an objective ψ for the system is reduced
to CRS with objectives ψ for the system and ¬ψ for the environment. The
reduction crucially depends on both objectives not being fixed, and just changing
either of them to True or False does not do the trick. In order to get 2EXPTIME-
hardness in |ψ2|, we need to cleverly manipulate both G and ψ1.

Together, our results complete the complexity picture for a generalized def-
inition of rational synthesis, for both turn-based and concurrent systems, with
any number of components, and with the exact dependencies in each of the
parameters of the problem.

2 Preliminaries

2.1 LTL, trees, and automata

The logic LTL is used for specifying on-going behaviors of reactive systems [24].
Formulas of LTL are constructed from a set AP of atomic propositions using
the usual Boolean operators and the temporal operators G (“always”) and F
(“eventually”), X (“next time”) and U (“until”). The semantics of LTL is de-
fined with respect to infinite computations in (2AP )ω. We are going to use LTL
for specifying the objectives of the system and the components composing the
environment.

Given a set D of directions, a D-tree is a set T ⊆ D∗ such that if x · d ∈ T ,
where x ∈ D∗ and d ∈ D, then also x ∈ T . The elements of T are called nodes,
and the empty word ε is the root of T . For every x ∈ T , the nodes x · d, for
d ∈ D, are the successors of x, and the direction of node x · d is d. A path h in
a tree T is a set h ⊆ T such that ε ∈ h and for every x ∈ h, either x is a leaf or

2 The study in [18] considers perspective games [19], which adds the challenge of partial
visibility on top of rational synthesis, but the results there imply the desired bounds
for the case of full visibility.
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there exists a unique d ∈ D such that x · d ∈ h. We sometimes refer to paths in
T as words in D∗ or Dω. For a finite path h ⊆ D∗ and a finite or infinite path
h′ ⊆ D∗, we use h � h′ to indicate that h is a prefix of h′, thus h ⊆ h′. Given an
alphabet Σ, a Σ-labeled D-tree is a pair 〈T, τ〉 where T is a tree and τ : T → Σ
maps each node of T to a letter in Σ.

Our algorithms use automata on infinite words and trees. An automaton A on
infinite words over an alphabet Σ defines a language L(A) ⊆ Σω. An automaton
A on Σ-labeled D-trees defines a language of such trees. Details can be found in
Appendix A. The size of A, denoted |A|, is the sum of lengths of the description
of its transition function. We denote different types of automata by three-letter
acronyms in {D,N,U,A}×{F,B,C, P}×{W,T}, where the first letter describes
the branching mode of the automaton (deterministic, nondeterministic, univer-
sal, or alternating), the second letter describes the acceptance condition (finite,
Büchi, co-Büchi, or parity), and the third letter describes the object over which
the automaton runs (words or trees). For example, UCT stands for a universal
co-Büchi tree automaton.

2.2 Concurrent multiplayer games

For k ≥ 1, let [k] = {1, . . . , k}. A k-player game graph is a tuple G = 〈AP, V, v0,
{Ai}i∈[k], {κi}i∈[k], δ, τ〉, where AP is a set of atomic propositions, V is a set of
vertices, v0 ∈ V is an initial vertex, and for i ∈ [k], the set Ai is a set of actions
of Player i, and κi : V → 2Ai specifies the set of actions that Player i can take
at each vertex.

A move in G is a tuple 〈a1, . . . , ak〉 ∈ A1×· · ·×Ak, describing possible choices
of actions for all k players. A move 〈a1, . . . , ak〉 is possible for vertex v ∈ V if
ai ∈ κi(v) for all i ∈ [k]. Then, the transition function δ : V ×A1×· · ·×Ak → V
is a deterministic function that maps each vertex and possible move for it to a
successor vertex. Finally, the function τ : V → 2AP maps each vertex to the set
of atomic propositions that hold in it.

A game is a tuple G = 〈G, {ψi}i∈[k]〉, where G is a k-player game graph, and
ψi, for i ∈ [k], is an LTL formula over AP , describing the objective of Player i.
In a beginning of a play in the game, a token is placed on v0. Then, at each
round, the players choose actions simultaneously and independently of the other
players, and the induced move determines the successor vertex. Repeating this,
the players generate a play ρ = v0, v1, . . . in G, which induces the computation
τ(ρ) = τ(v0), τ(v1), . . . ∈ (2AP )

ω
. For every i ∈ [k], Player i aims for a play

whose computation satisfies ψi. For an LTL formula ψ, let L(ψ) ⊆ (2AP )ω be
the set of computations that satisfy ψ.

A strategy for Player i is a function fi : V + → Ai that maps histories of
the game to an action suggested to Player i. The suggestion has to be consistent
with κi. Thus, for every v0v1 · · · vj ∈ V +, we have that fi(v0v1 · · · vj) ∈ κi(vj). A
profile is a tuple π = 〈f1, . . . , fk〉 of strategies, one for each player. The outcome
of a profile π = 〈f1, . . . , fk〉 is the play obtained when the players follow their
strategies. Formally, Outcome(π) = v0, v1, . . . is such that for all j ≥ 0, we
have that vj+1 = δ(vj , 〈f1(v0 · · · vj), · · · , fk(v0 · · · vj)〉). For a subset S ⊆ [k] of
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players, an S-profile is a set of strategies, one for each player in S. We say that
a profile π extends an S-profile π′ if the players in S use in π their strategies in
π′.

Consider a profile π. The set of winners in π, denoted Win(π), is the set
of players whose objectives are satisfied in Outcome(π). Formally, i ∈ Win(π)
iff τ(Outcome(π)) ∈ L(ψi). The set of losers in π, denoted Lose(π), is then
[k] \ Win(π), namely the set of players whose objectives are not satisfied in
Outcome(π).

A game G is zero-sum if the objectives of the players form a partition of all
possible behaviors. That is, for every i 6= j ∈ [k], we have that L(ψi)∩L(ψj) = ∅,
and

⋃
i∈[k] L(ψi) = (2AP )

ω
. Accordingly, for every profile π in a zero-sum game,

we have that |Win(π)| = 1 and |Lose(π)| = k−1. We then say that Player i wins
G if she has a winning strategy – a strategy that guarantees the satisfaction of
ψi no matter how the other players proceed. Formally, fi is a winning strategy
if for every profile π with fi, we have that Win(π) = {i}.

Games may be non zero-sum, thus the objectives of the players may over-
lap. In such games, we are interested in stable profiles. In particular, a profile
π = 〈f1, . . . , fk〉 is a Nash Equilibrium (NE, for short) [21] if, intuitively, no
(single) player can benefit from unilaterally changing her strategy. In our set-
ting, benefiting amounts to moving from the set of losers to the set of win-
ners. Formally, for i ∈ [k] and a strategy f ′i for Player i, let π[i ← f ′i ] =
〈f1, . . . , fi−1, f ′i , fi+1, . . . , fk〉 be the profile obtained from π by changing the
strategy of Player i to f ′i . We say that π is an NE if for every i ∈ [k], if i ∈ Lose(π),
then for every strategy f ′i , we have that i ∈ Lose(π[i ← f ′i ]). Thus, π is an NE
if no player has an incentive to deviate from π. For a subset W ⊆ [k] of players,
we say that π is a W-NE if π is an NE with W = Win(π).

The game G is turn-based if the transition function of its graph G is such that
for every vertex v ∈ V , there is a single player that “owns” v and determines
the successor vertex whenever the play is in v. Formally, for every v ∈ V , there
is i ∈ [k] such that for all moves 〈a1, . . . , ak〉 and 〈a′1, . . . , a′k〉 that are possible
for v, if ai = a′i, then δ(v, 〈a1, . . . , ak〉) = δ(v, 〈a′1, . . . , a′k〉). Accordingly, we
describe the game graph of a turn-based game as G = 〈AP, {Vi}i∈[k], v0, E, τ〉,
where V1, . . . , Vk is a partition of V to the sets of vertices owned by the different
players, and E ⊆ V ×V is the transition relation, modeling the fact that the set
of actions of Player i in a vertex v she owned is the set of v’s successors.

3 Rational Synthesis

Consider a k-player game G = 〈G, {ψi}i∈[k]〉. We distinguish between three types
of players: A player is controllable if she is guaranteed to follow a strategy as-
signed to her. Otherwise, she is uncontrollable. The uncontrollable players are
rational – they would not deviate from a profile unless they have a beneficial
deviation from it. We distinguish between cooperative uncontrollable players, to
which we can suggest a strategy (which they would follow unless they have a
beneficial deviation), and non-cooperative uncontrollable players, to which we
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cannot suggest a strategy. The distinction between the cooperative and non-
cooperative uncontrollable players may be induced by the architecture or the
nature of the players. We denote by C,CU, and NU the disjoint partition of [k]
into the classes of controllable, uncontrollable cooperative, and uncontrollable
non-cooperative players, respectively.

In rational synthesis, we seek a strategy for each of the players in C with
which their objectives are guaranteed to be satisfied, assuming rationality of the
other players. As we have the best interest of the players in C in mind, we assume
that C 6= ∅. We say that a profile π = 〈f1, . . . , fk〉 is a C-fixed NE, if no player
in CU ∪ NU has a beneficial deviation. Formally, we have the following.

Definition 1. [Rational Synthesis] Consider a k-player game G = 〈G, {ψi}i∈[k]〉.
The problem of rational synthesis (RS) is to return a (C∪CU)-profile π′ such that
there is a C-fixed NE that extends π′, and for every C-fixed NE π that extends
π′, we have that C ⊆Win(π).

Two special cases of rational synthesis have been studied in the literature.
The first is cooperative rational synthesis, where all uncontrollable players are
cooperative [12]. The second is non-cooperative rational synthesis, where all un-
controllable players are non-cooperative [15].

Definition 2. [Cooperative Rational Synthesis] Consider a k-player game
G = 〈G, {ψi}i∈[k]〉 with NU = ∅. The problem of cooperative rational synthesis
(CRS) is to return a C-fixed NE π such that C ⊆Win(π).

Definition 3. [Non-Cooperative Rational Synthesis] Consider a k-player
game G = 〈G, {ψi}i∈[k]〉 with CU = ∅. The problem of non-cooperative rational
synthesis (NRS) is to return a C-profile π′ such that there is a C-fixed NE that
extends π′, and for every C-fixed NE π that extends π′, we have that C ⊆Win(π).

Remark 1. The original rational synthesis problem does not include a game
graph [12]. Instead, the set AP over which the objectives are defined is par-
titioned among the players, and at each round of the game, each player chooses
an assignment to the subset of AP she controls. It is easy to see that this setting
is a special case of our setting, taking the graph to have vertices in 2AP . ut

Remark 2. In previous work, the definition of NRS does not require the existence
of a C-fixed NE that extends π′ [15, 18]. In some settings (in particular, turn-
based games), the existence of such an NE is guaranteed. In others (in particular,
concurrent games) there need not be an NE in games with three or more players
[8]. Note, however, that even with the requirement that a C-fixed NE that extends
π′ exists, there is no guarantee that best response dynamics from π′ would lead
to such a C-fixed NE. ut

As in traditional synthesis, one can also define the corresponding decision
problems, of rational realizability, where we only need to decide whether the
desired strategies exist. In order to avoid additional notations, we sometimes
refer to RS, CRS, and NRS also as decision problems.
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For a set W ⊆ [k], we say that a solution to the rational synthesis problem is
a W-solution iff it is a solution that guarantees the winning of exactly the players
in W. In particular, a (C∪CU)-profile π′ is a W-RS solution if it is an RS solution
such that for every C-fixed NE π that extends π′, we have that W = Win(π); a
profile π is a W-CRS solution if π is a CRS solution such that W = Win(π); and
a C-profile π′ is a W-NRS solution if π′ is an NRS solution such that for every
C-fixed NE π that extends π′, we have that W = Win(π).

It is easy to see that since the players in C are controllable, we can treat them
as a single player with an objective that is the conjunction of the objectives of
the players in C. Accordingly, in the sequel we assume that C = {1}.

Remark 3. It is easy to add to the setting uncontrollable hostile players, namely
players that, as in traditional synthesis, do not have an objective. Indeed, an
uncontrollable hostile player is equivalent to an uncontrollable (cooperative or
non-cooperative) player with objective ¬ψ1. ut

4 The Complexity of Cooperative Rational Synthesis

In this section we study the complexity of CRS. Consider a k-player concurrent
game G = 〈G, {ψi}i∈[k]〉. A strategy for Player i can be viewed as an Ai-labeled
V -tree, and a profile can be viewed as an (A1×· · ·×Ak)-labeled V -tree. Formally,
if π = 〈f1, . . . , fk〉 then for every node h ∈ V ∗ in the profile tree 〈V ∗, π〉, we have
π(h) = 〈f1(h), . . . , fk(h)〉, where 〈V ∗, fi〉 is the strategy tree that corresponds to
fi. Note that Outcome(π) then corresponds to a path in 〈V ∗, π〉.

Viewing profiles as labeled trees enables us to reduce CRS to the nonempti-
ness of a tree automaton. Essentially, the automaton accepts all profile trees that
are solutions to the CRS problem. We define the automaton by decomposing the
solutions according to the set of players that win. Given a set W of players with
1 ∈W, a profile π is a W-CRS solution iff π is a 1-fixed W-NE. Thus, iff exactly
the players in W win in Outcome(π), and for every i /∈ W, Player i loses in
Outcome(π[i ← f ′i ]), for every strategy f ′i . In Theorem 1 below, we construct
automata that check these conditions.

Theorem 1. Consider a set of players W with 1 ∈ W. We can construct the
following tree automata over (A1 × · · · ×Ak)-labeled V -trees:

– An NBT NW that accepts a profile tree 〈V ∗, π〉 iff Win(π) = W. The size of
NW is polynomial in |G| and exponential in |ψ1|, |ψ2|, . . . , |ψk|.

– For every i /∈ W, a UCT U iW that accepts a profile tree 〈V ∗, π〉 iff i ∈
Lose(π[i ← f ′i ]), for every strategy f ′i . The size of U iW is polynomial in |G|
and exponential in |ψi|.

Theorem 2. Solving CRS can be done in time polynomial in |G|, exponential
in |ψ1|, and doubly-exponential in |ψ2|, . . . , |ψk|. The problem is EXPTIME-hard
in |ψ1| and 2EXPTIME-hard in each of |ψ2|, . . . , |ψk|.
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Proof. We start with the upper bound. It is easy to see that for every set W ⊆ [k]
of players with 1 ∈ W, there is a W-CRS solution iff the intersection of the au-
tomata constructed in Theorem 1 is nonempty. We construct an NBT A such
that L(A) 6= ∅ iff L(NW)∩

⋂
i 6∈W L(U iW) 6= ∅, and |A| is polynomial in |G|, expo-

nential in |ψ1|, and doubly-exponential in |ψ2|, . . . , |ψk|. Since nonemptiness of
NBTs can be checked in quadratic time [26], the upper bound follows. Moreover,
when L(A) 6= ∅, the algorithm returns a witness to A’s nonemptiness, namely a
profile tree that is a solution to the CRS problem.

The construction of A involves two challenges. First, a naive analysis of the
blow-up involved in translating UCTs to NBTs is exponential in the state space
of the UCT. In our case, the state space of a UCT U iW is of the form V × S,
for some set S that is independent of G. Also, the V -component is updated
deterministically: all states sent to the same direction v of the tree agree on their
V -element. Consequently, the exponential blow up is only in the S-component,
which depends only on |ψi|. Second, the transformation of UCTs to NBTs that
is described in [20] preserves nonemptiness, whereas here we need to preserve
nonemptiness of an intersection of automata. As detailed in [17], where we coped
with a similar challenge, this can be handled by parameterizing the construction
in [20] by a rank (essentially, a bound on the size of transducers that generate
trees in the language of the automaton) that corresponds to the size of the
intersection.

We continue to the lower bounds, and we show they are valid already in the
case k = 2. Proving an EXPTIME lower bound in |ψ1|, we describe a reduc-
tion from the membership problem for linear-space alternating Turing machines
(ATM), defined in Appendix B.2. That is, given an ATM M with space com-
plexity s : N → N and a word w, we construct a 2-player turn-based game
G = 〈G, {ψ1, ψ2}〉, such that G and ψ2 are of a fixed size, ψ1 is of size linear in
s(|w|), and there is a CRS solution in G iff M accepts w.

Essentially, Player 1 and Player 2 generate a branch in the computation tree
of M on w. Player 1 chooses the letters of the current configuration one by
one, and chooses, at the end of each existential configuration, the successor
configuration to which the branch continues. Player 2, on the other hand, only
chooses successor configurations at the end of each universal configuration. The
objective of Player 1 is to reach an accepting configuration, and the objective of
Player 2 is to reach a rejecting configuration.

We prove that G has a {1}-NE that satisfies ψ1 iff M accepts w. First, if M
accepts w, then the profile in which Player 1 follows a strategy that generates
the configurations in the accepting computation and chooses the appropriate
successors to existential configurations, is a {1}-NE that satisfies ψ1. Also, if M
rejects w, then Player 2 can choose successors of universal configurations in a
way that leads to a rejecting configuration. Thus, there is no {1}-NE in G that
satisfies ψ1, as either Player 1 loses by not forming a valid branch, or Player 2
can deviate to a strategy where she wins and Player 1 loses. In Appendix B.2,
we give the details of the reduction.
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Proving a 2EXPTIME lower bound in |ψ2|, we use a reduction from decid-
ability of 2-player zero-sum games, which is 2EXPTIME-hard already for a game
with a game graph of a fixed size [2]. Given a 2-player zero-sum game G = 〈G,ψ〉,
we construct a 2-player game H = 〈H, {ψ1, ψ2}〉 such that the size of H is linear
in |G|, ψ1 is of a fixed size, ψ2 is of size linear in |ψ|, and there is a CRS solution
in H iff Player 1 wins G. Essentially, the game graph H contains two copies of
G, and a new initial vertex in which Player 2 chooses between proceeding to the
first or the second copy. Note that Player 1 has no influence in that decision.
Then, the objective of Player 1 is for the play to be generated in the first copy,
and the objective of Player 2 is for the play to be generated in the second copy
and for the computation to not satisfy ψ. In Appendix B.3, we describe H, ψ1,
and ψ2 formally. ut

Remark 4. Note that our algorithm finds W-CRS solutions for all W ⊆ [k], and
so it is exponential in k. As shown in [10], rational synthesis is PSPACE in k
already for rational synthesis with reachability objectives.

5 The Complexity of Non-Cooperative Rational Synthesis

In this section we study the complexity of NRS. We start with the turn-based
setting, and then proceed the concurrent setting.

5.1 Turn-based games

As in the CRS case, we construct a tree automaton that accepts strategy trees
that are NRS solutions. Here, however, the trees are labeled not only by a strat-
egy for Player 1, but also by information that certifies that the suggested strategy
is indeed a solution. Our construction follows the ideas developed for turn-based
games in [10], adding to them a treatment of the LTL objectives (the latter is
not too complicated, and our main goal in this section is to set the stage to the
concurrent setting, which was left open in [10]). In order to present our solution,
we first need some definitions and notations.

Consider a k-player turn-based game G = 〈G, {ψi}i∈[k]〉. Let G = 〈AP ,
{Vi}i∈[k], v0 ,E, τ〉. Recall that for a subset S ⊆ [k] of players, an S-profile is
a set of strategies, one for each player in S, and that a profile π extends an
S-profile π′ if the players in S use in π their strategies in π′. The outcome of
an S-profile π′, denoted Outcome(π′), is the union of plays that are outcomes
of profiles that extend π′. Thus, Outcome(π′) ⊆ V ω is the set of plays that are
possible outcome of the game when the players in S follow their strategies in π′.

Consider a profile π = 〈f1, . . . , fk〉 and a prefix h ∈ V ∗ of Outcome(π). For a
profile π′ = 〈f ′1, . . . , f ′k〉, we define the profile switch(π, π′, h) = 〈fh1 , . . . , fhk 〉 as
the profile in which the players first follow π and generate h, and then switch
to following π′. Formally, for every x ∈ V ∗ and Player i ∈ [k], if x � h, then
fhi (x) = fi(x), and if x = h · y, then fhi (x) = f ′i(y). Note that since the last
vertices in x and y coincide, then switch(π, π′, h) is well defined, in the sense that
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it returns only allowed actions. Also note that fhi (h) = f ′i(ε), thus, switching to
following π′, we reset the history of the game so far. The strategies in nodes that
are neither a prefix of h nor an extension of h are arbitrary and can follow π.

For i ∈ [k] \ {1} and a prefix h ∈ V ∗ · Vi of some play in Outcome({f1}),
we say that Player i wins from h if there exists a strategy f ′i for Player i such
that for every profile π = 〈f1, . . . , fk〉 with h � Outcome(π), we have that
i ∈ Win(switch(π, π[i ← f ′i ], h)). That is, Player i wins in every profile in which
the players first generate h, and then Player i switches to following f ′i , while the
other players adhere to their strategies in the original profile. The strategy f ′i is
then called an h-winning strategy for Player i.

Since turn-based games always have an NE, an NRS solution in G is a strategy
f1 for Player 1 such that for every 1-fixed NE π = 〈f1, . . . , fk〉, we have that
1 ∈ Win(π). Equivalently, for every profile π = 〈f1, . . . , fk〉, we have that either
1 ∈ Win(π), or there exists i ∈ Lose(π) such that i ∈ Win(π[i ← f ′i ]) for some
strategy f ′i for Player i. As detailed in [10], this implies that a strategy f1
for Player 1 is an NRS solution iff for every path ρ in Outcome({f1}), either
τ(ρ) ∈ L(ψ1), or there is i ∈ [k] \ {1} such that τ(ρ) 6∈ L(ψi), and there are a
prefix h � ρ and an h-winning strategy f ′i for Player i. We then say that h is a
good deviation point for Player i, and f ′i is a good deviation for Player i.

Our goal is to define a tree automaton that accepts a strategy tree for Player 1
iff it is an NRS solution. The tree automaton should check that every path in
Outcome({f1}) that does not satisfy ψ1 has a good deviation point for one of the
players that lose in it. For that purpose, a strategy f1 of Player 1 is going to be
certified by information about deviations: each path in Outcome({f1}) that does
not satisfy ψ1 is labeled by a player i that loses in the path, a good deviation
point for Player i, and a good deviation for Player i. Note that each deviation
may handle only a subset of the paths below the good deviation point, and thus
a subtree in the certified strategy tree may be labeled by strategies of different
players, each deviating at different points.

Formally, a certified strategy tree is a ((V ∪{�})×[k])-labeled V -tree 〈V ∗, g〉,
where each node is labeled by a pair 〈v, i〉, where v ∈ V ∪{�} is a strategy-label,
and i ∈ [k] is a player-label. We use gs and gp to refer to the projection of g on
the strategy and player components. Each path in the tree that corresponds to a
play in Outcome({f1}) has a suffix all whose nodes are labeled by the same player
label. If this label is 1, then the strategy labels describe a strategy of Player 1
and the path should satisfy ψ1. If this label is i ∈ [k]\{i}, then a deviation point
of Player i has been encountered, the strategy labels describe a good deviation
for Player i, and the path should not satisfy ψi. As long as a deviation point has
not been encountered, the strategy labels describe a strategy for Player 1 (and
so, they are in V in nodes with a direction in V1, and are � in nodes with a
direction not in V1). Once a deviation point for Player i is encountered (which
is indicated by the strategy label being changed from � to a vertex in V in a
node with direction Vi), the strategy labels describe a strategy for Player i.

By adjusting Lemma 7 in [10] to the setting with LTL objectives, we get the
following.
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Theorem 3. A strategy f1 for Player 1 is an NRS solution iff there is a certified
strategy tree 〈V ∗, g〉 that agrees with f1. Thus, for every h ∈ V ∗ and v ∈ V1 such
that h · v ∈ Outcome({f1}), we have that gs(h · v) = f1(h · v)

We now define a tree automaton that accepts certified strategy trees, which
we then use for solving NRS.

Theorem 4. We can construct a UCT U over ((V ∪{�})× [k])-labeled V -trees
such that U accepts a ((V ∪ {�}) × [k])-labeled V -tree 〈V ∗, g〉 iff 〈V ∗, g〉 is a
certified strategy tree. The size of U is polynomial in |G| and exponential in
|ψ1|, |ψ2|, . . . , |ψk|.

Proof. The requirements on a certified strategy tree 〈V ∗, g〉 for Player 1 can be
decomposed to the following conditions.

– (Ci
1) For every i ∈ [k] \ {1}, the subtree of every node h ∈ V ∗ ·Vi in the tree

that is labeled by V × [k] is labeled by an h-winning strategy for Player i.
– (C2) The (infinite) suffix of every path in the tree is p-labeled by a single
i ∈ [k].

– (Ci
3) For every i ∈ [k] \ {1}, every path in the tree with a suffix p-labeled by

i has a good deviation point for Player i.
– (C1

4) Player 1 wins in every path in the tree with suffix p-labeled by 1.
– (Ci

4) for every i ∈ [k] \ {1}, Player i loses in every path in the tree with
suffix p-labeled by i.

In Appendix B.4, we describe UCTs that check these conditions and whose
intersection is of the desired size. ut

Theorem 5. Solving NRS can be done in time polynomial in |G| and doubly-
exponential in |ψ1|, . . . , |ψk|. The problem is 2EXPTIME-hard in each of |ψ1|, . . . , |ψk|.

Proof. We start with the upper bound. By Theorems 3 and 4, we can reduce
NRS to nonemptiness of a UCT U over ((V ∪ {�})× [k])-labeled V -trees of size
polynomial in |G| and exponential in |ψ1|, |ψ2|, . . . , |ψk|. Using considerations
similar to these used in the proof of Theorem 2 (in particular, the fact U is
deterministic in its V -element), we can construct from it an NBT N of size
polynomial in |G| and doubly-exponential in |ψ1|, |ψ2|, . . . , |ψk| that preserves
the nonemptiness of U . Since the nonemptiness problem for NBT can be solved
in quadratic time [26], the desired complexity follows.

We continue to the lower bounds, and we show they are valid already in the
case k = 2. We again use reductions from deciding 2-player zero-sum games.
In order to prove 2EXPTIME-hardness in |ψ1|, consider a 2-player zero-sum
game G = 〈G,ψ〉, for a fixed-size G. We claim that the 2-player game G′ =
〈G, {ψ, true}〉 is such that G is of a fixed size and that there is an NRS solution
in G′ iff Player 1 wins G. Indeed, since the objective of Player 2 is true, every
profile π in G′ is a 1-fixed NE. So, in order for a strategy f1 to be an NRS
solution, it must satisfy that 1 ∈Win(〈f1, f2〉), for every strategy f2 for Player 2.
Equivalently, it is a winning strategy for Player 1 in G.
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In order to prove 2EXPTIME-hardness in |ψ2|, consider again a 2-player
zero-sum game G = 〈G,ψ〉, for a fixed-size G. We construct a 2-player game
G′ = 〈H, {ψ1, ψ2}〉 such that H and ψ1 are of a fixed size, the size of ψ2 is linear
in |ψ|, and there is an NRS solution in G′ iff Player 1 wins G. The game graph H
is as in the proof of Theorem 2. Thus, it has an initial vertex from which Player 2
chooses between two copies of G. The states of the first copy are labeled by a
fresh atomic proposition p. Then, ψ1 = XGp, and ψ2 = X((ψ ∧ Gp) ∨ ((¬ψ) ∧
G¬p)). Thus, the objective of Player 1 is for the play to be generated in the first
copy, and the objective of Player 2 is either to generate a play in the first copy
whose computation satisfies ψ, or to generate a play in the second copy whose
computation does not satisfy ψ.

If Player 1 has a winning strategy f1 in G, then there is an NRS solution f ′1 in
G′, where f ′1 follows f1 in the copy Player 2 chooses. Indeed, as f ′1 guarantees the
satisfaction of ψ for all possible behaviors of Player 2, a profile π is a 1-fixed NE
only if Player 2 chooses the first copy. If Player 1 loses G, then for every strategy
f1 for Player 1, there is a strategy f2 for Player 2 such that Outcome(〈f1, f2〉)
does not satisfy ψ. So, for every strategy f1 for Player 1 in G′, we have that there
is a 1-fixed NE π = 〈f1, f2〉 such that 1 ∈ Lose(π), where f2 is the strategy that
chooses the second copy, and ensures that ψ is not satisfied. Hence, there is no
NRS solution in G′. ut

5.2 Concurrent games

Consider a k-player concurrent game G = 〈G, {ψi}i∈[k]〉. Let G = 〈AP, V, v0,
{Ai}i∈[k], {κi}i∈[k], δ, τ〉. As our constructions in this section are loaded with
notations, we simplify the setting and assume that there is one set A of actions,
available to all players in all vertices. That is, A1 = A2 = · · · = Ak = A, and
for every v ∈ V and i ∈ [k], we have that κi(v) = A. All our constructions and
results can be easily extended to the general case.

As in the turn-based setting, we define a UCT that accepts certified strat-
egy trees for Player 1. In the concurrent setting, however, certification is much
more complicated. Below we explain the challenges in the concurrent setting
and how we overcome them. For i ∈ [k] \ {1} and a prefix h ∈ V ∗ of some
path in Outcome({f1}), we say that Player i wins from h if for every profile
π = 〈f1, . . . , fk〉 with h � Outcome(π), we have that there exists a strategy f ′i
for Player i such that i ∈Win(switch(π, π[i← f ′i ], h)). Thus, Player i wins from
h if she has a beneficial deviation to switch to from h, for every profile π with
h � Outcome(π). Note that for different profiles, Player i might have different
such beneficial deviations. Here, however, the prefix h need not end in Vi (in
fact, there is no Vi in the concurrent setting). We say that h is a winning point
for Player i. Also, we say that (h, 〈f1(h), . . . , fk(h))〉 is a good deviation pair for
Player i iff there exists a′i ∈ A such that h · δ(h, 〈f1(h), . . . , a′i, . . . , fk(h)〉) is a
winning point for Player i.

In order to understand better the difference between NRS solutions in the
turn-based and concurrent settings, recall that a strategy f1 for Player 1 is not an
NRS solution iff there is a 1-fixed NE π = 〈f1, . . . , fk〉 whose outcome ρ does not
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satisfy ψ1. Note that π being a 1-fixed NE means that for every prefix h·v ·u of ρ,
there exist actions 〈a2, . . . , ak〉 ∈ Ak−1 such that δ(v, 〈f1(h · v), a2, . . . , ak〉) = u
and for every i ∈ Lose(ρ), we have that (h ·v, 〈f1(h ·v), a2, . . . , ak〉) is not a good
deviation pair for Player i. In particular, we can choose ai = fi(h · v). Hence,
if f1 is an NRS solution, and there exists a path ρ ∈ Outcome({f1}) that does
not satisfy ψ1, then there must be a prefix h · v · u � ρ such that for every
〈a2, . . . , ak〉 ∈ Ak−1 with δ(v, 〈f1(h · v), a2, . . . , ak〉) = u, there exists i ∈ Lose(ρ)
such that (h · v, 〈f1(h · v), a2, . . . , ak〉) is a good deviation point for Player i. We
then say that h ·v ·u is a good deviation transition for Lose(ρ). Thus, while in the
turn-based settings it is sufficient to find in every path in which Player 1 loses
a good deviation point for one of the players that lose in it, in the concurrent
setting the definition of good deviation depends on the transition induced by the
specific profile being used, and so we have to consider deviating transitions, and
there may be several players in Lose(ρ) that deviate. Accordingly, in order to
certify a strategy for Player 1, we should describe a mapping from every vector
of actions to a set of players, along with their deviations.

Another difference between the turn-based setting and the concurrent setting
is that only in the first, the existence of some 1-fixed NE is guaranteed [8]. Hence,
we have to add to the algorithm such a check (which is in fact easy).

We can now define certified strategy trees for the concurrent setting. Every
node in a certified strategy tree is labeled by the following components:

1. An action a1 ∈ A, which is the strategy for Player 1.
2. A deviation function d : Ak−1 → (A ∪ {⊥})k−1, which maps a vector of

actions of players 2, . . . , k to the set of players that deviate from it, along
with their deviations. Specifically, 〈a2, . . . , ak〉 ∈ Ak−1 being mapped to
〈a′2, . . . , a′k〉 ∈ (A ∪ {⊥})k−1 indicates that for every i ∈ [k] \ {1}, if a′i ∈ A,
then a′i is the deviation for Player i from 〈a2, . . . , ak〉, and if a′i = ⊥ then no
deviation from 〈a2, . . . , ak〉 is specified for Player i. Let D denote the set of
all possible deviation functions.

3. A set L⊆ {2, . . . , k} of players, which describes the set of players that lose
in a given path and which are therefore expected to have a good deviation
transition. That is, if a suffix of a path is labeled by ∅, then Player 1 should
win in this path, and if a suffix of a path is labeled by L 6= ∅, then all the
players in L lose in this path.

4. A vector of actions 〈a2, . . . , ak〉 ∈ Ak−1, which describes the strategies for
the other players in the required 1-fixed NE.

Formally, a certified strategy tree is a (A×D×2{2,...,k}×Ak−1)-labeled V -tree
〈V ∗, g〉, where each node is labeled by both a strategy-label a1 ∈ A, a deviation-
label d ∈ D, a player-label L ∈ 2{2,...,k}, and an NE-label 〈a2, . . . , ak〉 ∈ Ak−1. We
use gs, gd, gp, and gNE to refer to the projection of g on its different components.

For a node h·v that is s-labeled by a1 and d-labeled by d, a possible successor
u of v, and a set of losers L, we say that h · v · u is marked as a good deviation
transition for L iff the following hold:

1. For every 〈a2, . . . , ak〉 ∈ Ak−1 such that δ(v, 〈a1, a2, . . . , ak〉) = u, there
exists i ∈ L such that (d(〈a2, . . . , ak〉))i ∈ A. That is, for every vector of
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actions 〈a2, . . . , ak〉 that leads to u, there is i ∈ L such that d assigns a
deviation for Player i from 〈a2, . . . , ak〉.

2. For every i ∈ L, there is a vector of actions 〈a2, . . . , ak〉 ∈ Ak−1 such that
δ(v, 〈a1, a2, . . . , ak〉) = u, and (d(〈a2, . . . , ak〉))i ∈ A. That is, for every i ∈ L
there exists a vector of actions that leads to u, from which d assigns a
deviation for Player i.

Now, an (A×D×2{2,...,k}×Ak−1)-labeled V -tree 〈V ∗, g〉 is a certified strategy
tree iff it satisfies the following conditions:

– (C1) If h · v · u ∈ V ∗ is marked as a good deviation transition for a set of
players L ⊆ {2, . . . , k}, L 6= ∅, then it is indeed a good deviation transition
for L.

– (C2) Every path ρ has a set L such that ρ is eventually always p-labeled by
L.

– (CL
3) For every L ⊆ {2, . . . , k}, L 6= ∅, every path in the tree with a suffix

p-labeled by L has a good deviation transition for L.
– (C1

4) Player 1 wins in every path in the tree with suffix p-labeled by ∅.
– (Ci

4) For every i ∈ [k] \ {1}, Player i loses in every path in the tree with
suffix p-labeled by L such that i ∈ L.

– (C5) The s and NE-labeling of the tree specifies a 1-fixed NE.

Theorem 6. A strategy f1 for Player 1 is an NRS solution iff there is a certified
strategy tree 〈V ∗, g〉 that agrees with f1. That is, for every h ∈ V ∗, we have that
gs(h) = f1(h).

Theorem 7. We can construct a UCT over (A×D×2{2,...,k}×Ak−1)-labeled V -
trees that accepts a (A×D×2{2,...,k}×Ak−1)-labeled V -tree 〈V ∗, g〉 iff 〈V ∗, g〉 is
a certified strategy tree. The size of the UCT is polynomial in |G| and exponential
in |ψ1|, |ψ2|, . . . , |ψk|.

Proof. We can construct UCTs for C2, CL
3, and Ci

4 that are very similar to
the UCTs for C2, Ci

3 and Ci
4 from the turn-based setting. The UCT for C5 is

similar to the UCT for CRS solutions. In Appendix B.5, we describe in detail
a UCT that checks the satisfaction of C1. Then, the conjunction of the above
UCTs results in a UCT that accepts certified strategy trees. ut

The number of deviation functions d : Ak−1 → (A ∪ {⊥})k−1 is exponen-
tial in |A|. Consequently, the UCT described in Theorem 7 has an exponential
alphabet, which causes the NBT generated in [20] to have exponentially many
transitions, making its nonemptiness problem exponential. In order to overcome
this problem, we introduce vertical annotation of certified strategy trees, which
essentially replace a node labeled by d ∈ D by a sequence of nodes, labeled by a
smaller alphabet.

Explaining our vertical annotation, we find it clearer to go back to a detailed
description of the actions of the different players, thus refer to Ai and κi rather
than assuming they are all equal to A. For every vertex v ∈ V and an action
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a1 ∈ κ1(v) for Player 1, we denote by Tv,a1 the set of possible vectors of actions
from v, given Player 1 chose a1. That is, Tv,a1 = {a1} × κ2(v)× · · · × κk(v). We
order the vectors in Tv,a1 arbitrarily, and, for 1 ≤ i ≤ |Tv,a1 |, denote by tiv,a1 the

i-th item in Tv,a1 . We also denote by tiv,a1 [j ← a′j ] the vector of actions obtained

from tiv,a1 by replacing the action for Player j by a′j .

For a given transition from v to v′, let Tv,v′,a1 be the restriction of Tv,a1
to vectors 〈a1, a2, . . . , ak〉 such that δ(v, 〈a1, a2, . . . , ak〉) = v′, and let tiv,v′,a1
denote the i-th item in Tv,v′,a1 . Also, let T =

⋃
v∈V

⋃
a1∈κ1(v)

Tv,a1 , and Σ =

A1 ∪ ((A2 × · · · ×Ak)∪
⋃
j∈L({j}×Aj))× (∅ ∪ (V × 2{2,...,k})). We also need an

additional 2{2,...,k} component, for annotating the set of losers in each path in
the tree, but we omit it for now, as it is not relevant for the vertical annotations.

A certified strategy tree is now a Σ-labeled (V ∪ T )-tree, where nodes with
direction in V are labeled by the strategy for Player 1, and nodes with direction
in T are labeled with deviation information. Consider a node that corresponds to
a vertex v and is labeled by a1. Following vertically there are nodes corresponding
to Tv,a1 , each labeled by a vector of actions. This information is for verifying good
deviation transitions. That is, after a good deviation transition is announced,
we need to verify that the involved players indeed have appropriate beneficial

deviations. The last node in the chain, which corresponds to t
|Tv,a1

|
v,a1 , is either not

labeled, or labeled by a vertex v′ and a set L of losers. If it is not labeled, it means
there are no good deviation transitions from v, in which case we continue to the
nodes corresponding to the possible successors of v. If it is labeled by 〈v′, L〉, it
means that v, v′ is a good deviation transition for L. Hence, the following nodes
correspond to Tv,v′,a1 , each labeled by a single deviation, followed by a chain
of good deviation transitions, using the appropriate V × 2{2,...,k} annotations,
or by nodes corresponding to successor vertices. In Appendix B.6, we describe
formally a UCT for verifying good deviation transitions in vertically annotated
certified strategy trees.

Theorem 8. Solving NRS in the concurrent setting can be done in time polyno-
mial in |G| and doubly-exponential in |ψ1|, |ψ2|, . . . , |ψk|. The problem is 2EXPTIME-
hard in each of |ψ1|, |ψ2|, . . . , |ψk|.

Proof. We start with the upper bound. We can easily modify the UCTs for C2,
CL

3, Ci
4, and C5 from the proof of Theorem 7 to accommodate the vertical anno-

tation. With conjunction with the UCT for verifying good deviation transitions,
described in Appendix B.6, we have a UCT U over Σ-labeled (V ∪T )-trees such
that U accepts aΣ-labeled (V ∪T )-tree 〈V ∗, g〉 iff 〈V ∗, g〉 is a vertically annotated
certified strategy tree. By Theorem 6, there is an NRS solution in G iff U is not
empty. The size of U is polynomial in |G| and exponential in |ψ1|, |ψ2|, . . . , |ψk|,
and its alphabet is polynomial in G. Also, U is deterministic in its V -element.
Hence, as detailed in the proof of Theorem 2, we can construct from U an NBT
N of size polynomial in |G| and doubly-exponential in |ψ1|, |ψ2|, . . . , |ψk| such
that L(U) 6= ∅ iff L(N ) 6= ∅. Since the nonemptiness problem for NBT can be
solved in quadratic time [26], the desired complexity follows.
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Finally, as turn-based games are a special case of concurrent ones, the lower
bound from Theorem 5 applies here. ut

5.3 General rational synthesis

Consider a k-player game G = 〈G, {ψi}i∈[k]〉. Recall that the problem of rational
synthesis is to return a ({1}∪CU)-profile π′ such that there is a 1-fixed NE that
extends π′, and for every 1-fixed NE π that extends π′, we have that 1 ∈Win(π).

A ({1}∪CU)-profile π′ is an RS-solution iff for every path ρ such that ρ 6|= ψ1,
there is no 1-fixed NE π that extends π′ and Outcome(π) = ρ. It is easy to
see that we can define certified ({1} ∪ CU)-profile trees in a similar way we
defined certified strategy trees for Player 1, inducing an algorithm of the same
complexity for checking the existence of a certified ({1} ∪CU)-profile tree. Also,
as NRS is a special case of RS, the NRS lower bound provide a lower bound for
RS. Hence, we can conclude with the following.

Theorem 9. Solving RS can be done in time polynomial in |G| and doubly-
exponential in |ψ1|, |ψ2|, . . . , |ψk|. The problem is 2EXPTIME-hard in each of
|ψ1|, |ψ2|, . . . , |ψk|.
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A Automata

For a set X, let B+(X) be the set of positive Boolean formulas over X (i.e.,
Boolean formulas built from elements in X using ∧ and ∨), where we also allow
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the formulas true and false. For a set Y ⊆ X and a formula θ ∈ B+(X),
we say that Y satisfies θ iff assigning true to elements in Y and assigning
false to elements in X \ Y makes θ true. An alternating tree automaton is
A = 〈Σ,D,Q, qin, δ, α〉, where Σ is the input alphabet, D is a set of directions,
Q is a finite set of states, δ : Q × Σ → B+(D × Q) is a transition function,
qin ∈ Q is an initial state, and α ⊆ Q specifies a Büchi or a co-Büchi acceptance
condition. For a state q ∈ Q, we use Aq to denote the automaton obtained from
A by setting the initial state to be q. The size of A, denoted |A|, is the sum of
lengths of formulas that appear in δ.

The alternating automaton A runs on Σ-labeled D-trees. A run of A over
a Σ-labeled D-tree 〈T, τ〉 is a (T × Q)-labeled IN-tree 〈Tr, r〉. Each node of Tr
corresponds to a node of T . A node in Tr, labeled by (x, q), describes a copy of
the automaton that reads the node x of T and visits the state q. Note that many
nodes of Tr can correspond to the same node of T . The labels of a node and its
successors have to satisfy the transition function. Formally, 〈Tr, r〉 satisfies the
following:

1. (1) ε ∈ Tr and r(ε) = 〈ε, qin〉.
2. (2) Let y ∈ Tr with r(y) = 〈x, q〉 and δ(q, τ(x)) = θ. Then there is a (possibly

empty) set S = {(c0, q0), (c1, q1), . . . , (cn−1, qn−1)} ⊆ D × Q, such that S
satisfies θ, and for all 0 ≤ i ≤ n−1, we have y · i ∈ Tr and r(y · i) = 〈x ·ci, qi〉.

For example, if 〈T, τ〉 is a {0, 1}-tree with τ(ε) = a and δ(qin, a) = ((0, q1) ∨
(0, q2))∧((0, q3)∨(1, q2)), then, at level 1, the run 〈Tr, r〉 includes a node labeled
(0, q1) or a node labeled (0, q2), and includes a node labeled (0, q3) or a node
labeled (1, q2). Note that if, for some y, the transition function δ has the value
true, then y need not have successors. Also, δ can never have the value false in
a run.

A run 〈Tr, r〉 is accepting if all its infinite paths satisfy the acceptance condi-
tion. Given a run 〈Tr, r〉 and an infinite path π ⊆ Tr, let inf(π) ⊆ Q be such that
q ∈ inf(π) if and only if there are infinitely many y ∈ π for which r(y) ∈ T×{q}.
That is, inf(π) contains exactly all the states that appear infinitely often in π. A
path π satisfies a Büchi acceptance condition α iff inf(π)∩α 6= ∅, and satisfies a
co-Büchi acceptance condition α iff inf(π) ∩ α = ∅. We also consider the parity
acceptance condition, where α : Q→ {0, 1, . . . , k} maps each state to a color in
{0, 1, . . . , k}, and a path π satisfies α if the minimal color visited infinitely often
is even, thus min{i : inf(π)∩ α−1(i) 6= ∅} is even. An automaton accepts a tree
iff there exists a run that accepts it. We denote by L(A) the set of all Σ-labeled
trees that A accepts.

The alternating automaton A is nondeterministic if for all the formulas that
appear in δ, if (c1, q1) and (c2, q2) are conjunctively related, then c1 6= c2. (i.e.,
if the transition is rewritten in disjunctive normal form, there is at most one ele-
ment of {c}×Q, for each c ∈ D, in each disjunct). The automaton A is universal
if all the formulas that appear in δ are conjunctions of atoms in D ×Q, and A
is deterministic if it is both nondeterministic and universal. The automaton A
is a word automaton if |D| = 1. Then, we can omit D from the specification of
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the automaton and denote the transition function of A as δ : Q×Σ → B+(Q).
If the word automaton is nondeterministic or universal, then δ : Q×Σ → 2Q.

B Proofs

B.1 Proof of Theorem 1

We start with the NBT NW. Recall that we want NW to accept a profile tree
〈V ∗, π〉 iff exactly the players in W win in Outcome(π). Let ψ =

∧
i∈W ψi ∧∧

i/∈W(¬ψi), and let A = 〈2AP , Q, q0, µ, α〉 be an NBW of size exponential in |ψ|
that corresponds to ψ. The NBT NW follows the outcome in the profile tree,
and checks if the players in W are exactly the winners of the profile. Formally,
NW = 〈A1 × · · · ×Ak, V,Q′, q′0, η, α′〉, where

1. Q′ = V ×Q.
2. q′0 = 〈v0, q0〉.
3. For every 〈v, q〉 ∈ V × Q and 〈a1, . . . , ak〉 ∈ A1 × · · · × Ak, we have that
η(〈v, q〉, 〈a1, . . . , ak〉) =

∨
q′∈µ(q,τ(v))(δ(v, 〈a1, . . . , ak〉), 〈δ(v, 〈a1, . . . , ak〉), q′〉).

4. α′ = V × α.

We continue to the UCT U iW. Recall that we want U iW to accept a profile tree
〈V ∗, π〉 iff Player i loses in Outcome(π[i ← f ′i ]), for every strategy f ′i . Let Ui =
〈2AP , Qi, q0i , δi, αi〉 and ¬Ui = 〈2AP , Si, s0i , µi, βi〉 be the UCWs corresponding
to ψi and ¬ψi, respectively. The UCT U iW follows every possible deviation for
Player i, and checks that indeed she always loses. Formally, U iW = 〈A1 × · · · ×
Ak, V,Q, q0, η, α〉, where

1. Q = V × Si.
2. q0 = 〈v0, s0i 〉.
3. For every 〈v, s〉 ∈ V × Si and 〈a1, . . . , ak〉 ∈ A1 × · · · × Ak, we have that
η(〈v, s〉, 〈a1, . . . , ak〉) =∧
a′i∈κi(v)

∧
s′∈µi(s,τ(v))

(δ(v, 〈a1, . . . , a′i, . . . , ak〉), 〈δ(v, 〈a1, . . . , a′i, . . . , ak〉), s′〉).
4. α = V × βi.

B.2 Proof of the EXPTIME lower bound in Theorem 2

We start with a definition of an alternating Turing machine (ATM). An ATM
is a tuple M = 〈Qe, Qu, Γ,∆, qinit, qacc, qrej〉, where Γ is the alphabet, Qe and
Qu are finite sets of existential and universal states, and we let Q = Qe ∪
Qu. Then, qinit, qacc, and qrej are the initial, accepting, and rejecting states,
respectively, and we assume that qinit ∈ Qe. Finally, ∆ ⊆ (Q× Γ )× ((Q× Γ ×
{L,R})× (Q×Γ ×{L,R})) is a transition relation that in our case has a binary
branching degree. When an existential or a universal state ofM branches into two
states, we distinguish between the left and right branches. Accordingly, we use
((q, γ), 〈(ql, γl, dl), (qr, γr, dr)〉) to indicate that when M is in state q ∈ Qe ∪Qu
reading input symbol γ, it branches to the left with (ql, γl, dl) and to the right

20



with (qr, γr, dr). Note that directions left and right here have nothing to do with
the movement direction of the head. These are determined by dl and dr.

A configuration of M on w = w1, . . . , wn describes its state, the content of
the working tape, and the location of the reading head. Assume s : N → N
is a linear function such that the number of cells used by the working tape in
every configuration of M on its run on w is bounded by s(n). We encode a
configuration of M by a string #γ1γ2 · · · (q, γi) · · · γs(n). That is, a configuration
starts with #, and all its other letters are in Γ , except for one letter in Q× Γ .
Then, M is in state q, the content of the j-th tape cell is γj , and the reading
head points to cell i. We say that the configuration is existential if q ∈ Qe and
that it is universal if q ∈ Qu. The initial configuration of M on w, is then
#(qinit, w1) · . . . · wn · s(n)−n, for the special letter ∈ Γ . We also assume that
the initial configuration is existential. If the current state is qacc or qrej , then
the configuration is final and has no successors. Otherwise, the left and right
successors of a configuration are determined by ∆.

For a configuration c of M , let succl(c) and succr(c) be the successors of c
when applying to it the left and right choices in ∆, respectively. Given an input
word w, a computation tree of M on w is a tree in which each node corresponds
to a configuration of M . The root of the tree corresponds to the initial configura-
tion. A node that corresponds to a universal configuration c has two successors,
corresponding to succl(c) and succr(c). A node that corresponds to an existen-
tial configuration c has a single successor, corresponding to either succl(c) or
succr(c). The tree is an accepting computation tree if all its branches reach an
accepting configuration. We can now encode a branch of the computation tree
of M by a sequence of configurations.

In the membership problem, we get as input an ATM M and a word w ∈ Γ ∗,
and we decide whether M accepts w. The membership problem is EXPTIME-
hard already for M of a fixed size, and when ∆ alternates between existential and
universal states, thus ∆ ⊆ (Qe×Γ×Qu×Γ×{L,R})∪(Qu×Γ×Qe×Γ×{L,R}).
So for simplicity, we assume that M behaves this way.

We now proceed to the reduction from the membership problem for a linear-
space ATM, which is known to be EXPTIME-complete [5], to CRS with G and
ψ2 are of a fixed size. That is, given an ATM M with space complexity s : N→ N
and a word w, we construct a 2-player turn-based game G = 〈G, {ψ1, ψ2}〉, such
that G and ψ2 are of a fixed size, ψ1 is of size linear in s(|w|), and there is a
CRS solution in G iff M accepts w.

Let n = |w|. Essentially, Player 1 generates a legal computation in the com-
putation tree of M on w by choosing the letters of the current configuration
one by one. Also, at the end of every existential configuration, Player 1 chooses
whether to continue to the left or right successor configuration by choosing l or
r, respectively. Player 2, on the other hand, only chooses the direction of the
successor configuration after every universal configuration. The play induces a
sequence that alternates between tape cell content and branching choices, thus a
sequence of the form . . .#dγ1γ2 . . . (q, γi) . . . γs(n)#d

′γ′1γ
′
2 . . . (q

′, γ′i′) . . . γ
′
s(n) . . .,

where d, d′ ∈ {l, r}. Note that the play describes both a sequence of consecutive
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configurations of M and a branch in the computation tree of M on w. Then, the
objective of Player 1 is to reach an accepting configuration, and the objective of
Player 2 is to reach a rejecting configuration.

The challenge is to force Player 1 to construct a correct branch in the com-
putation tree , and to do it with a game graph and objective for Player 2 of a
fixed size. To do that, we first describe the function nextl (the function nextr
is defined the same way for the right branch); Let Σ = {#} ∪ (Q × Γ ) ∪ Γ
and let #σ1 . . . σs(n)#σ

′
1 . . . σ

′
s(n) be two successive configurations c and succl(c)

of M . We also set σ0, σ
′
0 and σs(n)+1 to #. For each triple 〈σi−1, σi, σi+1〉,

with 1 ≤ i ≤ n, we know, by the transition relation of M , what σ′i should
be. In addition, the letter # should repeat exactly every s(n) + 1 letters. Let
nextl(〈σi−1, σi, σi+1〉) denote our expectation for σ′i in succl(c). That is:

1. nextl(〈σi−1, σi, σi+1〉) = nextl(〈#, σi, σi+1〉) = nextl(〈σi−1, σi,#〉) = σi.
2. nextl(〈(q, σi−1), σi, σi+1〉) = nextl(〈(q, σi−1), σi,#〉) ={

σi If ((q, σi−1), 〈(q′, σ′i−1, L), (qr, σr, dr)〉) ∈ ∆
(q′, σi) If ((q, σi−1), 〈(q′, σ′i−1, R), (qr, σr, dr)〉) ∈ ∆

3. nextl(〈σi−1, (q, σi), σi+1〉) = nextl(〈#, (q, σi), σi+1〉) = nextl(〈σi−1, (q, σi),#〉) =
σ′i, where ((q, σi), 〈(q′, σ′i, d), (qr, σr, dr)〉) ∈ ∆.

4. nextl(〈σi−1, σi, (q, σi+1)〉) = nextl(〈(#, σi, (q, σi+1)〉) ={
σi If ((q, σi−1), 〈(q′, σ′i+1, R), (qr, σr, dr)〉) ∈ ∆
(q′, σi) If ((q, σi−1), 〈(q′, σ′i+1, L), (qr, σr, dr)〉) ∈ ∆

5. nextl(〈σs(n),#, σ′1〉) = #.

Consistency with nextl and nextr now gives us a necessary condition for a
trace to encode a legal branch of a computation tree.

Fig. 1. The game graph G. The circles are vertices controlled by Player 1, and the
squares are vertices controlled by Player 2.

Now we specify the formal definitions of G,ψ1 and ψ2.
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1. The game graph G = 〈AP, V1, V2, v0, E, τ〉 is defined as follows (see Figure 1):
(a) AP = Σ ∪ {l, r}. We use Σe = (Qe × Γ ) ∪ Γ and Σu = (Qu × Γ ) ∪ Γ .
(b) V1 = {v0} ∪

⋃
t∈{e,u}{lt, rt, vt} ∪ ((Σe ∪ {#})× {e}) ∪ (Σu × {u}).

The vertex v0 is the initial vertex. The vertices Σe×{e} are the existential
content vertices, which are used to form the existential configurations.
The same way, Σu × {u} are the universal content vertices.
The vertices le, re, lu and ru represent the branching choices. At the
end of an existential configuration, Player 1 chooses what direction to
proceed to by moving to le or re from 〈#, e〉, and at the end of an
universal configuration, Player 2 makes that choice at the vertex 〈#, u〉,
by choosing either lu or ru. From both le and re, Player 1 moves to
vu, to start the successor universal configuration. The same way, from
both lu and ru, Player 1 moves to ve, to start the successor existential
configuration.

(c) V2 = {〈#, u〉}. the vertex 〈#, u〉 is the vertex that represent the end
of an universal configuration, and upon arriving to it, Player 2 chooses
what direction to proceed to by moving to lu or ru.

(d) The set E contains the following edges:
i. 〈v0, ve〉.
ii. For every t ∈ {e, u} we have the following edges:

– 〈vt, 〈σ, t〉〉 for every σ ∈ (Qt × Γ ) ∪ Γ ∪ {#}.
– 〈〈σ, t〉, 〈σ′, t〉〉 for every σ ∈ (Qt×Γ )∪Γ , σ′ ∈ (Qt×Γ )∪Γ ∪{#}.
– 〈〈#, t〉, lt〉 and 〈〈#, t〉, rt〉.
– 〈lt, vt′〉 and 〈rt, vt′〉 where t′ = {e, u} \ {t}.

(e) The labeling of the vertices is as follows:
i. τ(v) = ∅, for every v ∈ {v0} ∪

⋃
t∈{e,u}{vt}.

ii. τ(〈σ, t〉) = σ, for every σ ∈ (Qt × Γ ) ∪ Γ ∪ {#} and t ∈ {e, u}.
iii. τ(v) = l, for every v ∈ {le, lu}.
iv. τ(v) = r, for every v ∈ {re, ru}.

2. The objective of Player 2 is given by the LTL formula ψ2 =
∨
γ∈Γ F (qrej , γ).

3. The objective of Player 1 is the LTL formula ψ1 = ψinit ∧ ψnextl ∧ ψnextr ∧
ψacc, with the following conjuncts:
(a) The computation starts with the initial configuration: ψinit = # ∧

X((qinit, w1) ∧X(w2 ∧X(· · ·wn ∧X( ∧X(· · · ))))).
(b) The computation is consistent with nextl between the same tape cell

in consecutive configurations with the l branching choice between them:
ψnextl =

∧
σ1,σ2,σ3∈Σ3 G((σ1 ∧ X(σ2 ∧ X(σ3)) ∧ (¬#)U(# ∧ Xl)) →

Xs(n)+2nextl(〈σ1, σ2, σ3〉)).
(c) The computation is consistent with nextr between the same tape cell

in consecutive configurations with the r branching choice between them:
ψnextr =

∧
σ1,σ2,σ3∈Σ3 G((σ1 ∧ X(σ2 ∧ X(σ3)) ∧ (¬#)U(# ∧ Xr)) →

Xs(n)+2nextr(〈σ1, σ2, σ3〉)).
(d) The computation reaches an accepting configuration: ψacc =

∨
γ∈Γ F (qacc, γ).

The sizes of G and ψ2 are fixed because the size of M is fixed, and the size
of ψ1 is linear in s(n).
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B.3 Proof of the 2EXPTIME lower bound in Theorem 2

The game graph H = 〈AP ′, V ′, v′0, {A′1, A′2}, {κ′1, κ′2}, δ′, τ ′〉 is defined as follows
(see Figure 2):

1. AP ′ = AP ∪ {p}, where p /∈ AP is a new atomic proposition that is used to
distinguish between the two copies of G.

2. V ′ = {v′0} ∪ (V × {1, 2}). The vertex v′0 is the new initial vertex in which
Player 2 chooses the copy to proceed to.

3. A′1 = A1.
4. A′2 = A2 ∪ {c1, c2}. We add two actions for Player 2, for the purpose of

choosing between the copies. In the initial vertex, Player 2 can either choose
the action c1, and then the game proceeds to the first copy, or choose the
action c2, and then the game proceeds to the second copy.

5. For j ∈ {1, 2} and v ∈ V , we have that κ′1(〈v, j〉) = κ1(v), and κ′1(v′0) = A′1.
6. For j ∈ {1, 2} and v ∈ V , we have that κ′2(〈v, j〉) = κ2(v), and κ′2(v′0) =
{c1, c2}.

7. The transition function δ′ is defined as follows:

(a) δ′(v′0, 〈a1, c1〉) = 〈v0, 1〉, for every a1 ∈ A′1.
(b) δ′(v′0, 〈a1, c2〉) = 〈v0, 2〉, for every a1 ∈ A′1.
(c) δ′(〈v, j〉, 〈a1, a2〉) = 〈δ(v, 〈a1, a2〉), j〉, for every j ∈ {1, 2}, v ∈ V , a1 ∈

κ′1(〈v, j〉), and a2 ∈ κ′2(〈v, j〉).
8. The labeling of the vertices is as follows:

(a) τ ′(v′0) = ∅.
(b) τ ′(v) = τ(v) ∪ {p}, for every v ∈ V × {1}.
(c) τ ′(v) = τ(v), for every v ∈ V × {2}.

The objective of Player 1 is given by the LTL formula ψ1 = XGp, and the
objective of Player 2 is given by the LTL formula ψ2 = X(¬ψ ∧G¬p).

The size of H is linear in |G|, the size of ψ1 is fixed, and the size of ψ2 is
linear in |ψ|. Then, the size of H if fixed when the size of G is fixed, and as
deciding zero-sum games is 2EXPTIME complete already for a fixed size graph,
the above complexity holds.

If Player 1 wins G, then she has a winning strategy f1 that ensures the
satisfaction of ψ for all possible behaviors of Player 2. Let π = 〈f ′1, f2〉 be a
profile in H, where f ′1 follows the winning strategy f1 in the copy that Player 2
chose, and f2 is some strategy for Player 2 that chooses the first copy. Then, the
play is generated in the first copy, and the induced computation satisfies ψ. It
is easy to see that π is a {1}-NE in H. Indeed, Player 1 wins, as f ′1 ensures the
satisfaction of ψ for every possible strategy of Player 2, and there is no beneficial
deviation for Player 2.

If Player 1 loses G, she has no winning strategy in G, and so for every strategy
f1 for Player 1, there is a strategy f2 for Player 2 such that Outcome(f1, f2)
does not satisfy ψ. Then, there is no {1}-NE in H. Indeed, Player 2 always has
a beneficial deviation, in the form of a strategy that both chooses the second
copy, and force the computation to not satisfy ψ.
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Fig. 2. The game graph H. Player 2 chooses between the actions c1 and c2 at the
initial vertex v′0, and then the game proceed to the corresponding copy of G.

B.4 Proof of Theorem 4

We define a UCT U that accepts a ((V ∪{�})× [k])-labeled V -tree iff it is a cer-
tified strategy tree. Let Ui = 〈2AP , Qi, q0i , δi, αi〉 and ¬Ui = 〈2AP , Si, s0i , µi, βi〉
be the UCWs corresponding to ψi and ¬ψi, respectively. We define U as the
intersection of the following UCTs.

1. For every i ∈ [k] \ {1}, a UCT Ci1 that checks the satisfaction of (Ci
1). The

size of Ci1 is polynomial in |G| and |Ui|.
2. A UCT C2 that checks the satisfaction of (C2). The size of C2 is polynomial

in |G|.
3. For every i ∈ [k] \ {1}, A UCT Ci3 that checks the satisfaction of (Ci

3). The
size of Ci3 is polynomial in |G|.

4. For every i ∈ [k], A UCT Ci4 that checks the satisfaction of (Ci
4). The size

of C1
4 is polynomial in |G| and |U1|, and for every i ∈ [k] \ {1}, the size of

Ci4 is polynomial in |G| and in ¬Ui.

By the above, the UCT U is polynomial in |G| and in the UCWs for ψ1, ψ2,¬ψ2, . . . ,
ψk,¬ψk. Hence, it is polynomial in |G| and exponential in |ψ1|, |ψ2|, . . . , |ψk|.

Below we describe the construction of the underlying UCTs.

Ci
1: a UCT that checks (Ci

1) We construct a UCT Ci1 that checks the de-
viations of Player i in the certified strategy tree. In order to do so, the UCT
traverses the tree, and checks for sub-trees containing deviations for Player i.
The root of such a sub-tree is a node owned by Player i that is s-labeled by
some successor, rather than �. Then, for every such sub-tree, the UCT checks
that the deviation fi is indeed a winning strategy for Player i, by verifying the
satisfaction of ψi in paths that agree with f1 and the deviation for Player i in
the sub-tree.

We define Ci1 = 〈(V ∪ {�})× [k], V,Q, q0, δ, α〉, where

1. Q = V ×Qi×{in, out}. The in/out flag indicates whether we are in a sub-tree
that specifies a deviation for Player i or not.
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2. q0 = 〈v0, q0i , out〉.
3. For all 〈v, q, in〉 ∈ V ×Qi×{in} and 〈v′, l〉 ∈ (V ∪{�})× [k], the transition

function δ is defined as follows:
(a) If v ∈ V1 ∪ Vi, then Ci1 reads a sub-tree that contains a deviation

for Player i, and it reads a node that is s-labeled by the strategy of
Player 1 or by the deviation of Player i. Accordingly, δ(〈v, q, in〉, 〈v′, l〉) =∧
q′∈δi(q,τ(v))〈v

′, 〈v′, q′, in〉〉.
(b) Otherwise, Ci1 reads a sub-tree that contains a deviation for Player i, and

it reads a node owned by one of the other players. Accordingly,
δ(〈v, q, in〉, 〈v′, l〉) =

∧
{v′′:(v,v′′)∈E}

∧
q′∈δi(q,τ(v))〈v

′′, 〈v′′, q′, in〉〉.
4. For all 〈v, q, out〉 ∈ V ×Qi×{out} and 〈v′, l〉 ∈ (V ∪{�})× [k], the transition

function δ is defined as follows:
(a) If v ∈ V1, then δ(〈v, q, out〉, 〈v′, l〉) =

∧
q′∈δi(q,τ(v))〈v

′, 〈v′, q′, out〉〉.
(b) If v ∈ Vj for j ∈ [k] \ {1, i}, then

δ(〈v, q, out〉, 〈v′, l〉) =
∧
{v′′:(v,v′′)∈E}

∧
q′∈δi(q,τ(v))〈v

′′, 〈v′′, q′, out〉〉.
(c) If v ∈ Vi, the UCT has not yet entered a sub-tree that specifies a devi-

ation for Player i. Upon arriving to a node owned by Player i, it might
be still outside a deviation, or declares a beginning of a deviation. In the
first case, the node is not s-labeled by a successor of v. In the second
case, the node v is s-labeled by a possible successor, and the UCT moves
to an “in” mode:

i. If v′ = �, then
δ(〈v, q, out〉, 〈v′, l〉) =

∧
{v′′:(v,v′′)∈E}

∧
q′∈δi(q,τ(v))〈v

′′, 〈v′′, q′, out〉〉.
ii. If v′ ∈ V , then δ(〈v, q, out〉, 〈v′, l〉) =

∧
q′∈δi(q,τ(v))〈v

′, 〈v′, q′, in〉〉.
5. α = V ×αi×{in}. Note that only paths in sub-trees that specify deviations

are required to satisfy the αi acceptance condition.

C2: a DCT that checks (C2) We construct a DCT C2 that for every path in
the certified tree that is consistent with f1, checks that the suffix of the path
is p-labeled by a single i ∈ [k]. We define C2 = 〈(V ∪ {�}) × [k], V,Q, q0, δ, α〉,
where

1. Q = V × [k] × {Y,N}. The [k] component indicates the expected p-label.
The Y/N flag indicates whether the p-label of the current node is consistent
with the p-label of the predecessor node, or not. Our goal is to have a finite
number of instances of such inconsistencies in each path. If there is a finite
number of inconsistencies, we know that for each path, the suffix is p-labeled
by a single i ∈ [k].

2. q0 = 〈v0, 1, Y 〉.
3. For all 〈v, i, f lag〉 ∈ V × [k] × {Y,N} and v′ ∈ (V ∪ {�}), the transition

function δ is defined as follows:
(a) If v ∈ V1:

i. δ(〈v, i, f lag〉, 〈v′, i〉) = 〈v′, 〈v′, i, Y 〉〉
ii. δ(〈v, i, f lag〉, 〈v′, j〉) = 〈v′, 〈v′, j,N〉〉, for every j ∈ [k] \ {i}.

(b) Otherwise:
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i. δ(〈v, i, f lag〉, 〈v′, i〉) =
∧
{v′′:(v,v′′)∈E}〈v′′, 〈v′′, i, Y 〉〉.

ii. δ(〈v, i, f lag〉, 〈v′, j〉) =
∧
{v′′:(v,v′′)∈E}〈v′′, 〈v′′, j,N〉〉, for every j ∈

[k] \ {i}.
4. α = V × [k]× {N}.

Ci
3: a DCT that checks (Ci

3) We construct a DCT Ci3 that checks that for
every node x that is p-labeled by i, there is a good deviation point for Player i
in the path from the root to x. That is, that there was a node corresponding
to a vertex controlled by Player i, s-labeled by a possible successor. We define
Ci3 = 〈(V ∪ {�})× [k], V,Q, q0, δ, α〉, where

1. Q = V . When Ci3 sees a node p-labeled by i without detecting a good devi-
ation point for Player i earlier, it rejects the tree.

2. q0 = v0.
3. For all v ∈ V , the transition function δ is defined as follows:

(a) δ(v, 〈v′, i〉) = false.
(b) If v ∈ V1, then δ(v, 〈v′, j〉) = 〈v′, v′〉 for every j ∈ [k] \ {i}.
(c) If v ∈ Vi, then δ(v, 〈v′, j〉) = true, for every j ∈ [k] \ {i} and v′ ∈ V

such that (v, v′) ∈ E, and δ(v, 〈�, j〉) =
∧
{v′′:(v,v′′)∈E}〈v′′, v′′〉 for every

j ∈ [k] \ {i}.
(d) Otherwise, δ(v, 〈v′, j〉) =

∧
{v′′:(v,v′′)∈E}〈v′′, v′′〉 for every j ∈ [k] \ {i}.

4. α = ∅.

Ci
4: a UCT that checks (Ci

4) We construct a UCT Ci4 that checks the cor-
rectness of the p-labeling regarding Player i. That is, C1

4 checks that Player 1
wins in every path that its suffix is p-labeled by 1, and for every i ∈ [k] \ {1},
Ci4 checks that Player i loses in every path that its suffix is p-labeled by i. Thus,
every path whose suffix is p-labeled by i satisfies ¬ψi. Here we define Ci4 for
i ∈ [k] \ {1}. The definition for C1

4 is very similar, with the difference of using
U1 in the construction, instead of ¬U1.

We define Ci4 = 〈(V ∪ {�})× [k], V, S, s0, µ, β〉, where

1. S = V ×Si×{Y,N}. The automaton follows the current vertex of the game,
the state in the UCW corresponding to ¬ψi, and p-labeling of the nodes in
the tree. The Y/N flag indicates whether the current p-labeling is consistent
with i.

2. s0 = 〈v0, s0i , Y 〉.
3. For every 〈v, s, c〉 ∈ S and 〈v′, i〉 ∈ (V ∪ {�})× {i}, the transition function
µ is defined as follows:
(a) If v ∈ V1, then µ(〈v, s, c〉, 〈v′, i〉) =

∧
s′∈µi(s,τ(v))

〈v′, 〈v′, s′, Y 〉〉.
(b) Otherwise, µ(〈v, s, c〉, 〈v′, i〉) =

∧
{v′′:(v,v′′)∈E}

∧
s′∈µi(s,τ(v))

〈v′′, 〈v′′, s′, Y 〉〉.
4. For every 〈v, s, c〉 ∈ S and 〈v′, j〉 ∈ (V ∪ {�}) × ([k] \ {i}), the transition

function µ is defined as follows:
(a) If v ∈ V1, then µ(〈v, s, c〉, 〈v′, j〉) =

∧
s′∈µi(s,τ(v))

〈v′, 〈v′, s′, N〉〉.
(b) Otherwise, µ(〈v, s, c〉, 〈v′, j〉) =

∧
{v′′:(v,v′′)∈E}

∧
s′∈µi(s,τ(v))

〈v′′, 〈v′′, s′, N〉〉.
5. β = V ×βi×{Y }. When the suffix of a path in the tree is p-labeled by i and

it does not satisfy ¬ψi, then Ci4 visits infinitely many states in V × βi×{Y }
in its run along this path. In this case, the UCT rejects the tree as it should.
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B.5 Proof of Theorem 7

To simplify the explanation, we omit the suffix-labeling component (a.k.a., the
p-labeling) from the description. Note that indeed the good deviation transitions
labeling is only dependent on the s and d-labeling in the nodes. For a vertex v and
an action a1 ∈ A, let Vv,a1 be the set of vertices that can be successors of v, given
that Player 1 chooses the action a1. That is, Vv,a1 = {u ∈ V : ∃〈a2, . . . , ak〉 ∈
Ak−1 s.t. δ(v, 〈a1, a2, . . . , ak〉) = u}. Now we can define a UCT U over (A1×D)-
labeled V -trees such that U accepts a certified strategy tree 〈V ∗, g〉 iff every
good deviation transition annotation is correct. That is, if a node h · v is s-
labeled by a1, d-labeled by d, and there is a vector of actions 〈a2, . . . , ak〉 such
that (d(〈a2, . . . , ak〉))i ∈ A, then δ(v, 〈a1, a2, . . . , (d(〈a2, . . . , ak〉))i, . . . , ak〉) is a
winning point for Player i.

We define U = 〈A1 ×D, V,Q, q0, η, α〉, where

1. Q = V × (Q2×· · ·×Qk∪ (Q2∪· · ·∪Qk))× ({e}∪
⋃
i∈[k]\{1} vi). The flag e is

standing for explore, while for every i ∈ {2, ..., k}, the flag vi is standing for
verifying i. The {e, v2, . . . , vk} flags indicate whether the UCT is searching
for good deviation transitions, or that the automaton already found such
marking, and now it verifies the deviations.

2. q0 = 〈v0, q02 , . . . , q0k, e〉.
3. The transition function η regarding the exploring is defined as follows:

(a) For every 〈v, q2, . . . , qk, e〉 and 〈a1, d〉 ∈ Av1 ×D, we have that
η(〈v, q2, . . . , qk, e〉, 〈a1, d〉) =
(
∧
u∈Vv,a1

∧
q∈δ2(q2,τ(v))×···×δk(qk,τ(v))(u, 〈u, q, e〉)) ∧

(
∧
〈a2,...,ak〉∈Ak−1

∧
{i∈[k]\{1}:(d(〈a2,...,ak〉))i∈A}

∧
q′i∈δi(qi,τ(v))

(δ(v, 〈a1, a2, . . . , ai−1, (d(〈a2, . . . , ak〉))i, ai+1, . . . , ak〉),
〈δ(v, 〈a1, a2, . . . , ai−1, (d(〈a2, . . . , ak〉))i, ai+1, . . . , ak〉), q′i, vi〉)).
The first part of the conjunction makes sure the UCT goes over the entire
certified tree, and the second part verifies the deviations the UCT finds.

4. The transition function η is defined as follows:
(a) For every 〈v, qi, vi〉 and 〈a1, d〉 ∈ Av1×D such that for every 〈a2, . . . , ak〉 ∈

Ak−1 we have that (d(〈a2, . . . , ak〉))i ∈ A, we have that
η(〈v, qi, vi〉, 〈a1, d〉) =

∧
〈a2,...,ak〉∈Ak−1

∧
q′i∈δi(qi,τ(v))

(δ(v, 〈a1, a2, . . . ., ai−1, (d(〈a2, . . . , ak〉))i, ai+1, . . . , ak〉),
〈δ(v, 〈a1, a2, . . . ., ai−1, (d(〈a2, . . . , ak〉))i, ai+1, . . . , ak〉), q′i, vi〉).

5. α =
⋃
i∈[k]\{1} V ×αi×{vi}. That is, we want to ensure that once we initially

found a deviation for Player i, she can always has a beneficial deviation.

B.6 UCT for verifying good deviation transitions with vertical
annotation

We define a UCT U over Σ-labeled (V ∪T )-trees such that U accepts a certified
strategy tree 〈(V ∪ T )∗, f1〉 iff every good deviation transition annotation is
correct. That is, if v, v′ is marked as a good deviation transition for L, then
there are a beneficial deviations for the players that deviate.
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Fig. 3. A vertically certified strat-
egy tree. Information about devia-
tions from a given vector of actions is
stored in an intermediate node that
corresponds to that vector. There is
no good deviation transition starting
from v.

Fig. 4. v, v′ is a good deviation transition
for L.

The UCT U is the conjunction of UL, where L ∈ 2[k]\{1} \ ∅. We define
UL = 〈Σ,V ∪ T,Q, q0, η, α〉, where

1. Q = (V ∪ T ∪ (V × T )) × Q2 × · · · × Qk × [k] × {e, v}. The flags e and v
stand for explore and verify, respectively. The {e, v} flags indicate whether
the automaton is searching for good deviation transitions for L, or that the
automaton already found such a marking, and now it verifies the deviations.

2. q0 = 〈v, q02 , . . . , q0k, 1, e〉.
3. The transition function η regarding the exploring is defined as follows:

(a) For every 〈v, q2, . . . , qk, 1, e〉, and a1 ∈ κ1(v), we have that
η(〈v, q2, . . . , qk, 1, e〉, a1) =

∧
q∈δ2(q2,τ(v))×···×δk(qk,τ(v))(t

1
v,a1 , 〈t

1
v,a1 , q, 1, e〉).

(b) For every 〈tiv,a1 , q, 1, e〉, 1 ≤ i ≤ |Tv,a1 | − 1 and σ ∈ Σ, we have that

η(〈tiv,a1 , q, 1, e〉, σ) = (ti+1
v,a1 , 〈t

i+1
v,a1 , q, 1, e〉).

(c) For every 〈tiv,v′,a1 , q, 1, e〉, 1 ≤ i ≤ |Tv,v′,a1 | − 1 and σ ∈ Σ, we have that

η(〈tiv,v′,a1 , q, 1, e〉, σ) = (ti+1
v,v′,a1

, 〈ti+1
v,v′,a1

, q, 1, e〉).
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(d) For every 〈t|Tv,a1
|

v,a1 , q, 1, e〉, 〈t|Tv,a1
|

v,v′,a1
, q, 1, e〉 and a, we have that

η(〈t|Tv,a1
|

v,a1 , q, 1, e〉, a) = η(〈t|Tv,a1
|

v,v′,a1
, q, 1, e〉, a) =

∧
{u:(v,u)∈E}(u, 〈u, q, 1, e〉).

(e) For every 〈t|Tv,a1
|

v,a1 , q, 1, e〉 and 〈a, 〈v′, L〉〉, we have that

η(〈t|Tv,a1 |
v,a1 , q, 1, e〉, 〈a, 〈v′, L〉〉) = (t1v,v′,a1 , 〈t

1
v,v′,a1

, q, 1, v〉) ∧
(t1v,v′,a1 , 〈t

1
v,v′,a1

, q, 1, e〉).
(f) For every 〈t|Tv,a1

|
v,v′,a1

, q, 1, e〉 and 〈a, 〈v′′, L〉〉, we have that

η(〈t|Tv,a1
|

v,v′,a1
, q, 1, e〉, 〈a, 〈v′′, L〉〉) = (t1v,v′′,a1 , 〈t

1
v,v′′,a1

, q, 1, v〉) ∧
(t1v,v′′,a1 , 〈t

1
v,v′′,a1

, q, 1, e〉).
(g) For every 〈t|Tv,a1

|
v,a1 , q, 1, e〉 and 〈a, 〈v′, L′〉〉, we have that

η(〈t|Tv,a1
|

v,a1 , q, 1, e〉, 〈a, 〈v′, L′〉〉) = (t1v,v′,a1 , 〈t
1
v,v′,a1

, q, 1, e〉).
(h) For every 〈t|Tv,a1

|
v,v′,a1

, q, 1, e〉 and 〈a, 〈v′′, L′〉〉, we have that

η(〈t|Tv,a1
|

v,v′,a1
, q, 1, e〉, 〈a, 〈v′′, L′〉〉) = (t1v,v′′,a1 , 〈t

1
v,v′′,a1

, q, 1, e〉).
4. The transition function η is defined as follows:

(a) For every 〈tiv,v′,a1 , q, 1, v〉, 1 ≤ i ≤ |Tv,v′,a1 |−1 and aj , j ∈ L, we have that

η(〈tiv,v′,a1 , q, 1, v〉, 〈j, aj〉) = (ti+1
v,v′,a1

, 〈δ(v, tiv,v′,a1 [j ← aj ]), t
i+1
v,v′,a1

, q, j, v〉)∧
(ti+1
v,v′,a1

, 〈ti+1
v,v′,a1

, q, 1, v〉).
(b) For every 〈t|Tv,a1

|
v,v′,a1

, q, 1, v〉, aj , j ∈ L and 〈v′′, L′〉, we have that

i. η(〈t|Tv,a1 |
v,v′,a1

, q, 1, v〉, 〈j, aj〉) =

(δ(v, tiv,v′,a1 [j ← aj ]), 〈δ(v, tiv,v′,a1 [j ← aj ]), q, j, v〉).
ii. η(〈t|Tv,a1 |

v,v′,a1
, q, 1, v〉, 〈〈j, aj〉, 〈v′′, L′〉〉) =

(t1v,v′′,a1 , 〈δ(v, t
i
v,v′,a1

[j ← aj ]), t
1
v,v′′,a1

, q, j, v〉).
(c) For every 〈v, q2, . . . , qk, j, v〉, and a1 ∈ κ1(v), we have that

η(〈v, q2, . . . , qk, j, v〉, a1) =
∧
q∈δ2(q2,τ(v))×···×δk(qk,τ(v))(t

1
v,a1 , 〈t

1
v,a1 , q, j, v〉).

(d) For every 〈tiv,a1 , q, j, v〉, 1 ≤ i ≤ |Tv,a1 |−1 and 〈a2, . . . , ak〉, we have that

η(〈tiv,a1 , q, j, v〉, 〈a2, . . . , ak〉) = (ti+1
v,a1 , 〈δ(t

i
v,a1 [j ← aj ]), t

i+1
v,a1 , q, j, v〉) ∧

(ti+1
v,a1 , 〈t

i+1
v,a1 , q, j, v〉).

(e) For every 〈u, tiv,a1 , q, j, v〉, 1 ≤ i ≤ |Tv,a1 | − 1 and 〈a2, . . . , ak〉, we have
that
η(〈u, tiv,a1 , q, j, v〉, 〈a2, . . . , ak〉) = (ti+1

v,a1 , 〈u, t
i+1
v,a1 , q, j, v〉).

(f) For every 〈u, tiv,v′,a1 , q, j, v〉, 1 ≤ i ≤ |Tv,v′,a1 | − 1 and 〈a2, . . . , ak〉, we
have that
η(〈u, tiv,v′,a1 , q, j, v〉, 〈a2, . . . , ak〉) = (ti+1

v,v′,a1
, 〈u, ti+1

v,v′,a1
, q, j, v〉).

(g) For every 〈t|Tv,a1 |
v,a1 , q, j, v〉, 〈a2, . . . , ak〉 and 〈v′, L′〉 we have that:

i. η(〈t|Tv,a1 |
v,a1 , q, j, v〉, 〈a2, . . . , ak〉) =

(δ(v, t
|Tv,a1 |
v,a1 [j ← aj ]), 〈δ(v, t

|Tv,a1 |
v,a1 [j ← aj ]), q, j, v〉).

ii. η(〈t|Tv,a1 |
v,a1 , q, j, v〉, 〈〈a2, . . . , ak〉, 〈v′, L′〉〉) =

(t1v,v′,a1 , 〈δ(v, t
|Tv,a1 |
v,a1 [j ← aj ]), t

1
v,v′,a1

, q, j, v〉).
(h) For every 〈u, t|Tv,a1

|
v,a1 , q, j, v〉, 〈a2, . . . , ak〉 and 〈v′, L′〉 we have that:
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i. η(〈u, t|Tv,a1
|

v,a1 , q, j, v〉, 〈a2, . . . , ak〉) = (u, 〈u, q, j, v〉).
ii. η(〈u, t|Tv,a1

|
v,a1 , q, j, v〉, 〈〈a2, . . . , ak〉, 〈v′, L′〉〉) = (t1v,v′,a1 , 〈u, t

1
v,v′,a1

, q, j, v〉).
5. α =

⋃
i∈LQ−i × {αi} × {i} × {v}.
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