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Abstract. In recent years, there is growing need and interest in formalizing and
reasoning about the quality of software and hardware systems. As opposed to tra-
ditional verification, where one handles the question of whether a system satisfies,
or not, a given specification, reasoning about quality addresses the question of
how well the system satisfies the specification. One direction in this effort is to
refine the “eventually” operators of temporal logic to discounting operators: the
satisfaction value of a specification is a value in [0, 1], where the longer it takes to
fulfill eventuality requirements, the smaller the satisfaction value is.
In this paper we introduce an augmentation by discounting of Linear Temporal
Logic (LTL), and study it, as well as its combination with propositional quality
operators. We show that one can augment LTL with an arbitrary set of discount-
ing functions, while preserving the decidability of the model-checking problem.
Further augmenting the logic with unary propositional quality operators preserves
decidability, whereas adding an average-operator makes the model-checking prob-
lem undecidable. We also discuss the complexity of the problem, as well as various
extensions.

1 Introduction
One of the main obstacles to the development of complex hardware and software
systems lies in ensuring their correctness. A successful paradigm addressing this obstacle
is temporal-logic model checking – given a mathematical model of the system and
a temporal-logic formula that specifies a desired behavior of it, decide whether the
model satisfies the formula [5]. Correctness is Boolean: a system can either satisfy
its specification or not satisfy it. The richness of today’s systems, however, justifies
specification formalisms that are multi-valued. The multi-valued setting arises directly
in systems with quantitative aspects (multi-valued / probabilistic / fuzzy) [9–11, 16, 23],
but is applied also with respect to Boolean systems, where it origins from the semantics
of the specification formalism itself [1, 7].

When considering the quality of a system, satisfying a specification should no longer
be a yes/no matter. Different ways of satisfying a specification should induce different lev-
els of quality, which should be reflected in the output of the verification procedure. Con-
sider for example the specification G(request → F(response grant ∨ response deny))
(“every request is eventually responded, with either a grant or a denial”). There should be
a difference between a computation that satisfies it with responses generated soon after
requests and one that satisfies it with long waits. Moreover, there may be a difference
between grant and deny responses, or cases in which no request is issued. The issue
of generating high-quality hardware and software systems attracts a lot of attention



[13, 26]. Quality, however, is traditionally viewed as an art, or as an amorphic ideal.
In [1], we introduced an approach for formalizing quality. Using it, a user can specify
quality formally, according to the importance he gives to components such as security,
maintainability, runtime, and more, and then can formally reason about the quality of
software.

As the example above demonstrates, we can distinguish between two aspects of
the quality of satisfaction. The first, to which we refer as “temporal quality” concerns
the waiting time to satisfaction of eventualities. The second, to which we refer as
“propositional quality” concerns prioritizing related components of the specification.
Propositional quality was studied in [1]. In this paper we study temporal quality as
well as the combinations of both aspects. One may try to reduce temporal quality
to propositional quality by a repeated use of the X (“next”) operator or by a use of
bounded (prompt) eventualities [2, 3]. Both approaches, however, partitions the future
into finitely many zones and are limited: correctness of LTL is Boolean, and thus has
inherent dichotomy between satisfaction and dissatisfaction. On the other hand, the
distinction between “near” and “far” is not dichotomous. This suggests that in order to
formalize temporal quality, one must extend LTL to an unbounded setting. Realizing
this, researchers have suggested to augment temporal logics with future discounting [8].
In the discounted setting, the satisfaction value of specifications is a numerical value, and
it depends, according to some discounting function, on the time waited for eventualities
to get satisfied.

In this paper we add discounting to Linear Temporal Logic (LTL), and study it, as
well as its combination with propositional quality operators. We introduce LTLdisc[D] –
an augmentation by discounting of LTL. The logic LTLdisc[D] is actually a family of
logics, each parameterized by a set D of discounting functions – strictly decreasing
functions fromN to [0, 1] that tend to 0 (e.g., linear decaying, exponential decaying, etc.).
LTLdisc[D] includes a discounting-“until” (Uη) operator, parameterized by a function
η ∈ D. We solve the model-checking threshold problem for LTLdisc[D]: given a Kripke
structure K, an LTLdisc[D] formula ϕ and a threshold t ∈ [0, 1], the algorithm decides
whether the satisfaction value of ϕ in K is at least t.

In the Boolean setting, the automata-theoretic approach has proven to be very useful
in reasoning about LTL specifications. The approach is based on translating LTL formu-
las to nondeterministic Büchi automata on infinite words [28]. Applying this approach
to the discounted setting, which gives rise to infinitely many satisfaction values, poses
a big algorithmic challenge: model-checking algorithms, and in particular those that
follow the automata-theoretic approach, are based on an exhaustive search, which cannot
be simply applied when the domain becomes infinite. A natural relevant extension to
the automata-theoretic approach is to translate formulas to weighted automata [22].
Unfortunately, these extensively-studied models are complicated and many problems be-
come undecidable for them [15]. We show that for threshold problems, we can translate
LTLdisc[D] formulas into (Boolean) nondeterministic Büchi automata, with the property
that the automaton accepts a lasso computation iff the formula attains a value above
the threshold on that computation. Our algorithm relies on the fact that the language of
an automaton is non-empty iff there is a lasso witness for the non-emptiness. We cope
with the infinitely many possible satisfaction values by using the discounting behavior



of the eventualities and the given threshold in order to partition the state space into a
finite number of classes. The complexity of our algorithm depends on the discounting
functions used in the formula. We show that for standard discounting functions, such
as exponential decaying, the problem is PSPACE-complete – not more complex than
standard LTL. The fact our algorithm uses Boolean automata also enables us to suggest
a solution for threshold satisfiability, and to give a partial solution to threshold synthesis.
In addition, it allows to adapt the heuristics and tools that exist for Boolean automata.

Before we continue to describe our contribution, let us review existing work on dis-
counting. The notion of discounting has been studied in several fields, such as economy,
game-theory, and Markov decision processes [25]. In the area of formal verification, it
was suggested in [8] to augment the µ-calculus with discounting operators. The discount-
ing suggested there is exponential; that is, with each iteration, the satisfaction value of
the formula decreases by a multiplicative factor in (0, 1]. Algorithmically, [8] shows
how to evaluate discounted µ-calculus formulas with arbitrary precision. Formulas of
LTL can be translated to the µ-calculus, thus [8] can be used in order to approximately
model-check discounted-LTL formulas. However, the translation from LTL to the µ-
calculus involves an exponential blowup [6] (and is complicated), making this approach
inefficient. Moreover, our approach allows for arbitrary discounting functions, and the
algorithm returns an exact solution to the threshold model-checking problem, which is
more difficult than the approximation problem.

Closer to our work is [7], where CTL is augmented with discounting and weighted-
average operators. The motivation in [7] is to introduce a logic whose semantics is not
too sensitive to small perturbations in the model. Accordingly, formulas are evaluated
on weighted-systems or on Markov-chains. Adding discounting and weighted-average
operators to CTL preserves its appealing complexity, and the model-checking problem
for the augmented logic can be solved in polynomial time. As is the case in the Boolean
semantics, the expressive power of discounted CTL is limited. The fact the same
combination, of discounting and weighted-average operators, leads to undecidability in
the context of LTL witnesses the technical challenges of the LTLdisc[D] setting.

Perhaps closest to our approach is [19], where a version of discounted-LTL was
introduced. Semantically, there are two main differences between the logics. The first is
that [19] uses discounted sum, while we interpret discounting without accumulation,
and the second is that the discounting there replaces the standard temporal operators, so
all eventualities are discounted. As discounting functions tend to 0, this strictly restricts
the expressive power of the logic, and one cannot specify traditional eventualities in it.
On the positive side, it enables a clean algebraic characterization of the semantics, and
indeed the contribution in [19] is a comprehensive study of the mathematical properties
of the logic. Yet, [19] does not study algorithmic questions about to the logic. We, on
the other hand, focus on the algorithmic properties of the logic, and specifically on the
model-checking problem.

Let us now return to our contribution. After introducing LTLdisc[D] and studying its
model-checking problem, we augment LTLdisc[D] with propositional quality operators.
Beyond the operators min, max, and ¬, which are already present, two basic proposi-
tional quality operators are the multiplication of an LTLdisc[D] formula by a constant
in [0, 1], and the averaging between the satisfaction values of two LTLdisc[D] formulas



[1]. We show that while the first extension does not increase the expressive power of
LTLdisc[D] or its complexity, the latter causes the model-checking problem to become
undecidable. In fact, model checking becomes undecidable even if we allow averaging
in combination with a single discounting function. Recall that this is in contrast with
the extension of discounted CTL with an average operator, where the complexity of the
model-checking problem stays polynomial [7].

We consider additional extensions of LTLdisc[D]. First, we study a variant of the
discounting-eventually operators in which we allow the discounting to tend to arbitrary
values in [0, 1] (rather than to 0). This captures the intuition that we are not always
pessimistic about the future, but can be, for example, ambivalent about it, by tending to
1
2 . We show that all our results hold under this extension. Second, we add to LTLdisc[D]
past operators and their discounting versions (specifically, we allow a discounting-
“since” operator, and its dual). In the traditional semantics, past operators enable clean
specifications of many interesting properties, make the logic exponentially more succinct,
and can still be handled within the same complexity bounds [17, 18]. We show that the
same holds for the discounted setting. Finally, we show how LTLdisc[D] and algorithms
for it can be used also for reasoning about weighted systems.

Due to lack of space, most proofs are omitted, and can be found in the full version,
in the authors’ home pages.

2 The Logic LTLdisc[D]
The linear temporal logic LTLdisc[D] generalizes LTL by adding discounting temporal
operators. The logic is actually a family of logics, each parameterized by a set D of
discounting functions.

Let N = {0, 1, ...}. A function η : N → [0, 1] is a discounting function if
limi→∞ η(i) = 0, and η is strictly monotonic-decreasing. Examples for natural dis-
counting functions are η(i) = λi, for some λ ∈ (0, 1), and η(i) = 1

i+1 .
Given a set of discounting functions D, we define the logic LTLdisc[D] as follows.

The syntax of LTLdisc[D] adds to LTL the operator ϕUηψ (discounting-Until), for every
function η ∈ D. Thus, the syntax is given by the following grammar, where p ranges
over the set AP of atomic propositions and η ∈ D.

ϕ := True | p | ¬ϕ | ϕ ∨ ϕ | Xϕ | ϕUϕ | ϕUηϕ.
The semantics of LTLdisc[D] is defined with respect to a computation π = π0, π1, . . . ∈

(2AP )ω . Given a computation π and an LTLdisc[D] formula ϕ, the truth value of ϕ in π
is a value in [0, 1], denoted [[π, ϕ]]. The value is defined by induction on the structure of
ϕ as follows, where πi = πi, πi+1, . . ..

– [[π, True]] = 1. – [[π, ϕ ∨ ψ]] = max {[[π, ϕ]], [[π, ψ]]}.

– [[π, p]] =

{
1 if p ∈ π0,
0 if p /∈ π0.

– [[π,¬ϕ]] = 1− [[π, ϕ]].

– [[π,Xϕ]] = [[π1, ϕ]].
– [[π, ϕUψ]] = sup

i≥0
{min{[[πi, ψ]], min

0≤j<i
{[[πj , ϕ]]}}}.

– [[π, ϕUηψ]] = sup
i≥0
{min{η(i)[[πi, ψ]], min

0≤j<i
{η(j)[[πj , ϕ]]}}}.



The intuition is that events that happen in the future have a lower influence, and the
rate by which this influence decreases depends on the function η. 1 For example, the
satisfaction value of a formula ϕUηψ in a computation π depends on the best (supremum)
value that ψ can get along the entire computation, while considering the discounted
satisfaction of ψ at a position i, as a result of multiplying it by η(i), and the same for the
value of ϕ in the prefix leading to the i-th position.

We add the standard abbreviations Fϕ ≡ TrueUϕ, and Gϕ = ¬F¬ϕ, as well as their
quantitative counterparts: Fηϕ ≡ TrueUηϕ, and Gηϕ = ¬Fη¬ϕ. We denote by |ϕ| the
number of subformulas of ϕ.

A computation of the form π = u · vω, for u, v ∈ (2AP )∗, with v 6= ε, is called a
lasso computation. We observe that since a specific lasso computation has only finitely
many distinct suffixes, the inf and sup in the semantics of LTLdisc[D] can be replaced
with min and max, respectively, when applied to lasso computations.

The semantics is extended to Kripke structures by taking the path that admits the
lowest satisfaction value. Formally, for a Kripke structure K and an LTLdisc[D] formula
ϕ we have that [[K, ϕ]] = inf {[[π, ϕ]] : π is a computation of K}.

Example 1. Consider a lossy-disk: every moment in time there is a chance that some
bit would flip its value. Fixing flips is done by a global error-correcting procedure. This
procedure manipulates the entire content of the disk, such that initially it causes more
errors in the disk, but the longer it runs, the more bits it fixes.

Let init and terminate be atomic propositions indicating when the error-correcting
procedure is initiated and terminated, respectively. The quality of the disk (that is, a
measure of the amount of correct bits) can be specified by the formula ϕ = GFη(init ∧
¬Fµterminate) for some appropriate discounting functions η and µ. Intuitively, ϕ gets
a higher satisfaction value the shorter the waiting time is between initiations of the
error-correcting procedure, and the longer the procedure runs (that is, not terminated) in
between these initiations. Note that the “worst case” nature of LTLdisc[D] fits here. For
instance, running the procedure for a very short time, even once, will cause many errors.

3 LTLdisc[D] Model Checking
In the Boolean setting, the model-checking problem asks, given an LTL formula ϕ and
a Kripke structure K, whether [[K, ϕ]] = True. In the quantitative setting, the model-
checking problem is to compute [[K, ϕ]], where ϕ is now an LTLdisc[D] formula. A
simpler version of this problem is the threshold model-checking problem: given ϕ, K,
and a threshold v ∈ [0, 1], decide whether [[K, ϕ]] ≥ v. In this section we show how we
can solve the latter.

Our solution uses the automata-theoretic approach, and consists of the following
steps. We start by translating ϕ and v to an alternating weak automaton Aϕ,v such that
L(Aϕ,v) 6= ∅ iff there exists a computation π such that [[π, ϕ]] > v. The challenge
here is that ϕ has infinitely many satisfaction values, naively implying an infinite-
state automaton. We show that using the threshold and the discounting behavior of

1 Observe that in our semantics the satisfaction value of future events tends to 0. One may think
of scenarios where future events are discounted towards another value in [0, 1] (e.g. discounting
towards 1

2
as ambivalence regarding the future). We address this in Section 5.



the eventualities, we can restrict attention to a finite resolution of satisfaction values,
enabling the construction of a finite automaton. Complexity-wise, the size of Aϕ,v
depends on the functions in D. In Section 3.3, we analyze the complexity for the case of
exponential-discounting functions.

The second step is to construct a nondeterministic Büchi automaton B that is equiv-
alent to Aϕ,v. In general, alternation removal might involve an exponential blowup in
the state space [21]. We show, by a careful analysis of Aϕ,v, that we can remove its
alternation while only having a polynomial state blowup.

We complete the model-checking procedure by composing the nondeterministic
Büchi automaton B with the Kripke structure K, as done in the traditional, automata-
based, model-checking procedure.

The complexity of model-checking an LTLdisc[D] formula depends on the discount-
ing functions in D. Intuitively, the faster the discounting tends to 0, the less states there
will be. For exponential-discounting, we show that the complexity is NLOGSPACE
in the system (the Kripke structure) and PSPACE in the specification (the LTLdisc[D]
formula and the threshold), staying in the same complexity classes of standard LTL
model-checking.

We conclude the section by showing how to use the generated nondeterministic
Büchi automaton for addressing threshold satisfiability and synthesis.

3.1 Alternating Weak Automata

For a given set X , let B+(X) be the set of positive Boolean formulas over X (i.e.,
Boolean formulas built from elements in X using ∧ and ∨), where we also allow the
formulas True and False. For Y ⊆ X , we say that Y satisfies a formula θ ∈ B+(X)
iff the truth assignment that assigns true to the members of Y and assigns false to the
members of X \ Y satisfies θ. An alternating Büchi automaton on infinite words is a
tuple A = 〈Σ,Q, qin, δ, α〉, where Σ is the input alphabet, Q is a finite set of states,
qin ∈ Q is an initial state, δ : Q × Σ → B+(Q) is a transition function, and α ⊆ Q
is a set of accepting states. We define runs of A by means of (possibly) infinite DAGs
(directed acyclic graphs). A run of A on a word w = σ0 · σ1 · · · ∈ Σω is a (possibly)
infinite DAG G = 〈V,E〉 satisfying the following (note that there may be several runs of
A on w).

– V ⊆ Q×N is as follows. Let Ql ⊆ Q denote all states in level l. Thus, Ql = {q :
〈q, l〉 ∈ V }. Then, Q0 = {qin}, and Ql+1 satisfies

∧
q∈Ql δ(q, σl).

– For every l ∈ N, Ql is minimal with respect to containment.
– E ⊆

⋃
l≥0(Ql × {l})× (Ql+1 × {l + 1}) is such that for every state q ∈ Ql, the

set {q′ ∈ Ql+1 : E(< q, l >,< q′, l + 1 >)} satisfies δ(q, σl).

Thus, the root of the DAG contains the initial state of the automaton, and the states
associated with nodes in level l + 1 satisfy the transitions from states corresponding
to nodes in level l. The run G accepts the word w if all its infinite paths satisfy the
acceptance condition α. Thus, in the case of Büchi automata, all the infinite paths have
infinitely many nodes 〈q, l〉 such that q ∈ α (it is not hard to prove that every infinite
path in G is part of an infinite path starting in level 0). A word w is accepted by A if



there is a run that accepts it. The language of A, denoted L(A), is the set of infinite
words that A accepts.

When the formulas in the transition function of A contain only disjunctions, then
A is nondeterministic, and its runs are DAGs of width 1, where at each level there is a
single node.

The alternating automaton A is weak, denoted AWA, if its state space Q can be
partitioned into sets Q1, . . . , Qk, such that the following hold: First, for every 1 ≤ i ≤ k
either Qi ⊆ α, in which case we say that Qi is an accepting set, or Qi ∩ α = ∅, in
which case we say that Qi is rejecting. Second, there is a partial-order ≤ over the sets,
and for every 1 ≤ i, j ≤ k, if q ∈ Qi, s ∈ Qj , and s ∈ δ(q, σ) for some σ ∈ Σ, then
Qj ≤ Qi. Thus, transitions can lead only to states that are smaller in the partial order.
Consequently, each run of an AWA eventually gets trapped in a set Qi and is accepting
iff this set is accepting.

3.2 From LTLdisc[D] to AWA

Our model-checking algorithm is based on translating an LTLdisc[D] formula ϕ to an
AWA. Intuitively, the states of the AWA correspond to assertions of the form ψ > t
or ψ < t for every subformula ψ of ϕ, and for certain thresholds t ∈ [0, 1]. A lasso
computation is then accepted from state ψ > t iff [[π, ψ]] > t. The assumption about
the computation being a lasso is needed only for the “only if” direction, and it does not
influence the proof’s generality since the language of an automaton is non-empty iff
there is a lasso witness for its non-emptiness. By setting the initial state to ϕ > v, we are
done.

Defining the appropriate transition function for the AWA follows the semantics of
LTLdisc[D] in the expected manner. A naive construction, however, yields an infinite-
state automaton (even if we only expand the state space on-the-fly, as discounting
formulas can take infinitely many satisfaction values). As can be seen in the proof of
Theorem 1, the “problematic” transitions are those that involve the discounting operators.
The key observation is that, given a threshold v and a computation π, when evaluating a
discounted operator on π, one can restrict attention to two cases: either the satisfaction
value of the formula goes below v, in which case this happens after a bounded prefix,
or the satisfaction value always remains above v, in which case we can replace the
discounted operator with a Boolean one. This observation allows us to expand only a
finite number of states on-the-fly.

Before describing the construction of the AWA, we need the following lemma, which
reduces an extreme satisfaction of an LTLdisc[D] formula, meaning satisfaction with a
value of either 0 or 1, to a Boolean satisfaction of an LTL formula. The proof proceeds
by induction on the structure of the formulas.

Lemma 1. Given an LTLdisc[D] formula ϕ, there exist LTL formulas ϕ+ and ϕ<1 such
that |ϕ+| and |ϕ<1| are both O(|ϕ|) and the following hold for every computation π.

1. If [[π, ϕ]] > 0 then π |= ϕ+, and if [[π, ϕ]] < 1 then π |= ϕ<1.
2. If π is a lasso, then if π |= ϕ+ then [[π, ϕ]] > 0 and if π |= ϕ<1 then [[π, ϕ]] < 1.

Henceforth, given an LTLdisc[D] formula ϕ, we refer to ϕ+ as in Lemma 1.



Consider an LTLdisc[D] formula ϕ. By Lemma 1, if there exists a computation π
such that [[π, ϕ]] > 0, then ϕ+ is satisfiable. Conversely, since ϕ+ is a Boolean LTL
formula, then by [27] we know that ϕ+ is satisfiable iff there exists a lasso computation
π that satisfies it, in which case [[π, ϕ]] > 0. We conclude with the following.

Corollary 1. Consider an LTLdisc[D] formula ϕ. There exists a computation π such
that [[π, ϕ]] > 0 iff there exists a lasso computation π′ such that [[π′, ϕ]] > 0, in which
case π′ |= ϕ+ as well.

Remark 1. The curious reader may wonder why we do not prove that [[π, ϕ]] > 0 iff
π |= ϕ+ for every computation π. As it turns out, a translation that is valid also for
computations with no period is not always possible. For example, as is the case with
the prompt-eventuality operator of [14], the formula ϕ = G(Fηp) is such that the set of
computations π with [[π, ϕ]] > 0 is not ω-regular, thus one cannot hope to define an LTL
formula ϕ+.

We start with some definitions. For a function f : N → [0, 1] and for k ∈ N, we
define f+k : N→ [0, 1] as follows. For every i ∈ N we have that f+k(i) = f(i+ k).

Let ϕ be an LTLdisc[D] formula over AP . We define the extended closure of ϕ,
denoted xcl(ϕ), to be the set of all the formulas ψ of the following classes:

1. ψ is a subformula of ϕ.
2. ψ is a subformula of θ+ or ¬θ+, where θ is a subformula of ϕ.
3. ψ is of the form θ1Uη+kθ2 for k ∈ N, where θ1Uηθ2 is a subformula of ϕ.

Observe that xcl(ϕ) may be infinite, and that it has both LTLdisc[D] formulas (from
Classes 1 and 3) and LTL formulas (from Class 2).

Theorem 1. Given an LTLdisc[D] formula ϕ and a threshold v ∈ [0, 1], there exists an
AWA Aϕ,v such that for every computation π the following hold.

1. If [[π, ϕ]] > v, then Aϕ,v accepts π.
2. If Aϕ,v accepts π and π is a lasso computation, then [[π, ϕ]] > v.

Proof. We construct Aϕ,v = 〈Q, 2AP , Q0, δ, α〉 as follows.
The state space Q consists of two types of states. Type-1 states are assertions of the

form (ψ > t) or (ψ < t), where ψ ∈ xcl(ϕ) is of Class 1 or 3 and t ∈ [0, 1]. Type-2
states correspond to LTL formulas of Class 2. Let S be the set of Type-1 and Type-2
states for all ψ ∈ xcl(ϕ) and thresholds t ∈ [0, 1]. Then,Q is the subset of S constructed
on-the-fly according to the transition function defined below. We later show that Q is
indeed finite.

The transition function δ : Q × 2AP → B+(Q) is defined as follows. For Type-2
states, the transitions are as in the standard translation from LTL to AWA [27] (see the
full version for details). For the other states, we define the transitions as follows. Let
σ ∈ 2AP .

δ((True > t), σ) =

[
True if t < 1,
False if t = 1.

δ((False > t), σ) = False.

δ((True < t), σ) = False. δ((False < t), σ) =

[
True if t > 0,
False if t = 0.



δ((p > t), σ) =

[
True if p ∈ σ and t < 1,
False otherwise. δ((p < t), σ) =

[
False if p ∈ σ or t = 0,
True otherwise.

δ((ψ1 ∨ ψ2 > t), σ) = δ((ψ1 > t), σ) ∨ δ((ψ2 > t), σ).
δ((ψ1 ∨ ψ2 < t), σ) = δ((ψ1 < t), σ) ∧ δ((ψ2 < t), σ).
δ((¬ψ1 > t), σ) = δ((ψ1 < 1− t), σ) δ((¬ψ1 < t), σ) = δ((ψ1 > 1− t), σ).
δ((Xψ1 > t), σ) = (ψ1 > t). δ((Xψ1 < t), σ) = (ψ1 < t).

δ((ψ1Uψ2 > t), σ) =

 δ((ψ2 > t), σ) ∨ [δ((ψ1 > t), σ) ∧ (ψ1Uψ2 > t)] if 0 < t < 1,
False if t ≥ 1,

δ(((ψ1Uψ2)
+
), σ) if t = 0.

δ((ψ1Uψ2 < t), σ) =

 δ((ψ2 < t), σ) ∧ [δ((ψ1 < t), σ) ∨ (ψ1Uψ2 < t)] if 0 < t ≤ 1,
True if t > 1,
False if t = 0.

δ((ψ1Uηψ2 > t), σ) = δ((ψ2 >
t

η(0) ), σ) ∨ [δ((ψ1 >
t

η(0) ), σ) ∧ (ψ1Uη+1ψ2 > t)] if 0 < t
η(0) < 1,

False if t
η(0) ≥ 1,

δ(((ψ1Uηψ2)
+
), σ) if t

η(0) = 0 (i.e., t = 0).
δ((ψ1Uηψ2 < t), σ) = δ((ψ2 <

t
η(0) ), σ) ∧ [δ((ψ1 <

t
η(0) ), σ) ∨ (ψ1Uη+1ψ2 < t)] if 0 < t

η(0) ≤ 1,

True if t
η(0) > 1,

False if t
η(0) = 0 (i.e., t = 0).

We provide some intuition for the more complex parts of the transition function:
consider, for example, the transition δ((ψ1Uηψ2 > t), σ). Since η is decreasing, the
highest possible satisfaction value for ψ1Uηψ2 is η(0). Thus, if η(0) ≤ t (equivalently,
t

η(0) ≥ 1), then it cannot hold that ψ1Uηψ2 > t, so the transition is to False. If t = 0,
then we only need to ensure that the satisfaction value of ψ1Uηψ2 is not 0. To do so, we
require that (ψ1Uηψ2)

+ is satisfied. By Corollary 1, this is equivalent to the satisfiability
of the former. So the transition is identical to that of the state (ψ1Uηψ2)

+. Finally, if
0 < t < η(0), then (slightly abusing notation) the assertion ψ1Uηψ2 > t is true if either
η(0)ψ2 > t is true, or both η(0)ψ1 > t and ψ1Uη+1ψ2 > t are true.

The initial state of Aϕ,v is (ϕ > v). The accepting states are these of the form
(ψ1Uψ2 < t), as well as accepting states that arise in the standard translation of Boolean
LTL to AWA (in Type-2 states). Note that each path in the run of Aϕ,v eventually
gets trapped in a single state. Thus, Aϕ,v is indeed an AWA. The intuition behind the
acceptance condition is as follows. Getting trapped in a state of the form (ψ1Uψ2 < t)
is allowed, as the eventuality is satisfied with value 0. On the other hand, getting stuck in
other states (of Type-1) is not allowed, as they involve eventualities that are not satisfied
in the threshold promised for them.

This concludes the definition of Aϕ,v . Finally, observe that while the construction as
described above is infinite (indeed, uncountable), only finitely many states are reachable
from the initial state (ϕ > v), and we can compute these states in advance. Intuitively,
it follows from the fact that once the proportion between t and η(i) goes above 1, for
Type-1 states associated with threshold t and sub formulas with a discounting function
η, we do not have to generate new states.

A detailed proof of A’s finiteness and correctness is given in the full version.



SinceAϕ,v is a Boolean automaton, then L(A) 6= ∅ iff it accepts a lasso computation.
Combining this observation with Theorem 1, we conclude with the following.

Corollary 2. For an LTLdisc[D] formula ϕ and a threshold v ∈ [0, 1], it holds that
L(Aϕ,v) 6= ∅ iff there exists a computation π such that [[π, ϕ]] > v.

3.3 Exponential Discounting

The size of the AWA generated as per Theorem 1 depends on the discounting functions.
In this section, we analyze its size for the class of exponential discounting functions,
showing that it is singly exponential in the specification formula and in the threshold.
This class is perhaps the most common class of discounting functions, as it describes
what happens in many natural processes (e.g., temperature change, capacitor charge,
effective interest rate, etc.) [8, 25].

For λ ∈ (0, 1) we define the exponential-discounting function expλ : N → [0, 1]
by expλ(i) = λi. For the purpose of this section, we restrict to λ ∈ (0, 1) ∩ Q. Let
E = {expλ : λ ∈ (0, 1) ∩Q}, and consider the logic LTLdisc[E].

For an LTLdisc[E] formula ϕ we define the set F (ϕ) to be {λ1, ..., λk : the operator
Uexpλ appears in ϕ}. Let |〈ϕ〉| be the length of the description of ϕ. That is, in addition
to |ϕ|, we include in |〈ϕ〉| the length, in bits, of describing F (ϕ).

Theorem 2. Given an LTLdisc[E] formula ϕ and a threshold v ∈ [0, 1]∩Q, there exists
an AWA Aϕ,v such that for every computation π the following hold.

1. If [[π, ϕ]] > v, then Aϕ,v accepts π.
2. If Aϕ,v accepts π and π is a lasso computation, then [[π, ϕ]] > v.

Furthermore, the number of states of Aϕ,v is singly exponential in |〈ϕ〉| and in the
description of v.

The proof follows from the following observation. Let λ ∈ (0, 1) and v ∈ (0, 1). When
discounting by expλ, the number of states in the AWA constructed as per Theorem 1 is
proportional to the maximal number i such that λi > v, which is at most logλ v = log v

log λ ,
which is polynomial in the description length of v and λ. A similar (yet more complicated)
consideration is applied for the setting of multiple discounting functions and negations.

3.4 From Aϕ,v to an NBA

Every AWA can be translated to an equivalent nondeterministic Büchi automaton (NBA,
for short), yet the state blowup might be exponential BKR10,MH84. By carefully
analyzing the AWA Aϕ,v generated in Theorem 1, we show that it can be translated to
an NBA with only a polynomial blowup.

The idea behind our complexity analysis is as follows. Translating an AWA to an
NBA involves alternation removal, which proceeds by keeping track of entire levels in a
run-DAG. Thus, a run of the NBA corresponds to a sequence of subsets of Q. The key
to the reduced state space is that the number of such subsets is only |Q|O(|ϕ|) and not
2|Q|. To see why, consider a subset S of the states of A. We say that S is minimal if it
does not include two states of the form ϕ < t1 and ϕ < t2, for t1 < t2, nor two states



of the form ϕUη+iψ < t and ϕUη+jψ < t, for i < j, and similarly for “>”. Intuitively,
sets that are not minimal hold redundant assertions, and can be ignored. Accordingly, we
restrict the state space of the NBA to have only minimal sets.

Lemma 2. For an LTLdisc[D] formula ϕ and v ∈ [0, 1], the AWA Aϕ,v constructed in
Theorem 1 with state space Q can be translated to an NBA with |Q|O(|ϕ|) states.

3.5 Decision Procedures for LTLdisc[D]

Model checking and satisfiability. Consider a Kripke structure K, an LTLdisc[D]
formula ϕ, and a threshold v. By checking the emptiness of the intersection of K with
A¬ϕ,1−v, we can solve the threshold model-checking problem. Indeed, L(A¬ϕ,1−v) ∩
L(K) 6= ∅ iff there exists a lasso computation π that is induced byK such that [[π, ϕ]] < v,
which happens iff it is not true that [[K, ϕ]] ≥ v.

The complexity of the model-checking procedure depends on the discounting func-
tions in D. For the set of exponential-discounting functions E, we provide the following
concrete complexities, showing that it stays in the same complexity classes of standard
LTL model-checking.

Theorem 3. For a Kripke structure K, an LTLdisc[E] formula ϕ, and a threshold v ∈
[0, 1]∩Q, the problem of deciding whether [[K, ϕ]] > v is in NLOGSPACE in the number
of states of K, and in PSPACE in |〈ϕ〉| and in the description of v.

Proof. By Theorem 2 and Lemma 2, the size of an NBA B corresponding to ϕ and
v is singly exponential in |〈ϕ〉| and in the description of v. Hence, we can check the
emptiness of the intersection of K and B via standard “on the fly” procedures, getting
the stated complexities.

Note that the complexity in Theorem 3 is only NLOGSPACE in the system, since
our solution does not analyze the Kripke structure, but only takes its product with the
specification’s automaton. This is in contrast to the approach of model checking temporal
logic with (non-discounting) accumulative values, where, when decidable, involves a
doubly-exponential dependency on the size of the system [4].

Finally, observe that the NBA obtained in Lemma 2 can be used to solve the threshold-
satisfiability problem: given an LTLdisc[D] formula ϕ and a threshold v ∈ [0, 1], we
can decide whether there is a computation π such that [[π, ϕ]] ∼ v, for ∼∈ {<,>}, and
return such a computation when the answer is positive. This is done by simply deciding
whether there exists a word that is accepted by the NBA.

Threshold synthesis Consider an LTLdisc[D] formula ϕ, and assume a partition of the
atomic propositions in ϕ to input and output signals, we can use the NBA Aϕ,v in order
to address the synthesis problem, as stated in the following theorem (see the full version
for the proof).

Theorem 4. Consider an LTLdisc[D] formula ϕ. If there exists a transducer T all of
whose computations π satisfy [[π, ϕ]] > v, then we can generate a transducer T all of
whose computations τ satisfy [[τ, ϕ]] ≥ v.



4 Adding Propositional Quality Operators
As model checking is decidable for LTLdisc[D], one may wish to push the limit and
extend the expressive power of the logic. In particular, of great interest is the combining
of discounting with propositional quality operators [1].

4.1 Adding the Average Operator

A well-motivated extension is the introduction of the average operator ⊕, with the
semantics [[π, ϕ ⊕ ψ]] = [[π,ϕ]]+[[π,ψ]]

2 . The work in [1] proves that extending LTL by
this operator, as well as with other propositional quantitative operators, enables clean
specification of quality and results in a logic for which the model-checking problem can
be solved in PSPACE.

We show that adding the⊕ operator to LTLdisc[D] gives a logic, denoted LTLdisc⊕ [D],
for which the validity and model-checking problems are undecidable. The validity prob-
lem asks, given an LTLdisc⊕ [D] formula ϕ over the atomic propositions AP and a
threshold v ∈ [0, 1], whether [[π, ϕ]] > v for every π ∈ (2AP )ω .

In the undecidability proof, we show a reduction from the 0-halting problem for two-
counter machines. A two-counter machineM is a sequence (l1, . . . , ln) of commands
involving two counters x and y. We refer to {1, . . . , n} as the locations of the machine.
There are five possible forms of commands:

INC(c), DEC(c), GOTO li, IF c=0 GOTO li ELSE GOTO lj , HALT,

where c ∈ {x, y} is a counter and 1 ≤ i, j ≤ n are locations. Since we can always
check whether c = 0 before a DEC(c) command, we assume that the machine never
reaches DEC(c) with c = 0. That is, the counters never have negative values. Given a
counter machineM, deciding whetherM halts is known to be undecidable [20]. Given
M, deciding whetherM halts with both counters having value 0, termed the 0-halting
problem, is also undecidable: given a counter machineM, we can replace every HALT
command with a code that clears the counters before halting.

Theorem 5. The validity problem for LTLdisc⊕ [D] is undecidable (for every nonempty
set of discounting functions D).

The proof goes along the following lines: We construct fromM an LTLdisc⊕ [D]
formula ϕ such thatM 0-halts iff there exists a computation π such that [[π, ϕ]] = 1

2 .
The idea behind the construction is as follows. The computation that ϕ is verified with
corresponds to a description of a run ofM, where every triplet 〈li, α, β〉 is encoded as
the string ixαyβ#.

The formula ϕ will require the following properties of the computation π (recall that
the setting is quantitative, not Boolean):

1. The first configuration in π is the initial configuration ofM, namely 〈l1, 0, 0〉, or
1# in our encoding.

2. The last configuration in π is 〈HALT, 0, 0〉, or k in our encoding, where k is a line
whose command is HALT.

3. π represents a legal run of M, up to the consistency of the counters between
transitions.



4. The counters are updated correctly between configurations.

Properties 1-3 can easily be captured by an LTL formula. Property 4 utilizes the expres-
sive power of LTLdisc⊕ [D], as we now explain. The intuition behind Property 4 is the
following. We compare the value of a counter before and after a command, such that
the formula takes a value smaller than 1

2 if a violation is encountered, and 1
2 otherwise.

Since the value of counters can change by at most 1, the essence of this formula is the
ability to test equality of counters.

We start with a simpler case, to demonstrate the point. Let η ∈ D be a discounting
function. Consider the formula CountA := aUη¬a and the computation aibj#ω. It
holds that [[aibj , CountA]] = η(i). Similarly, it holds that [[aibj#ω, aU(bUη¬b)]] =
η(j). Denote the latter by CountB. Let CompareAB := (CountA ⊕ ¬CountB) ∧
(¬CountA⊕ CountB). We now have that

[[aibj#ω, CompareAB]] = min
{
η(i)+1−η(j)

2 , η(j)+1−η(i)
2

}
= 1

2−
|η(i)−η(j)|

2 , and

observe that the latter is 1
2 iff i = j (and is less than 1

2 otherwise). This is because η is
strictly decreasing, and in particular an injection.

Thus, we can compare counters. To apply this technique to the encoding of a com-
putation, we use formulas that “parse” the input and find successive occurrences of a
counter.

Since, by considering a Kripke structure that generates all computations, it is easy to
reduce the validity problem to the model-checking problem, we can conclude with the
following.

Theorem 6. The model-checking problem for LTLdisc⊕ [D] is undecidable.

4.2 Adding Unary Multiplication Operators

As we have seen in Section 4.1, adding the operator ⊕ to LTLdisc[D] makes model
checking undecidable. One may still want to find propositional quality operators that
we can add to the logic preserving its decidability. In this section we describe one such
operator. We extend LTLdisc[D] with the operator Oλ, for λ ∈ (0, 1), with the semantics
[[π,Oλϕ]] = λ · [[π, ϕ]]. This operator allows the specifier to manually change the satisfac-
tion value of certain subformulas. This can be used to express importance, reliability, etc.
of subformulas. For example, in G(request → (response ∨ O 2

3
Xresponse), we limit

the satisfaction value of computations in which a response is given with a delay to 2
3 .

Note that the operator Oλ is similar to a one-time application of Uexp+1
λ

, thus Oλϕ is
equivalent to FalseUexp+1

λ
ψ. In practice, it is better to handle Oλ formulas directly, by

adding the following transitions to the construction in the proof of Theorem 1.

δ(Oλϕ > t, σ) =

{
δ(ϕ > t

λ , σ) if t
λ < 1,

False if t
λ ≥ 1,

δ(Oλϕ < t, σ) =

{
δ(ϕ < t

λ , σ) if t
λ ≤ 1,

True if t
λ > 1.

5 Extensions
LTLdisc[D] with Past Operators A useful augmentation of LTL is the addition of past
operators [18]. These operators enable the specification of clearer and more succinct



formulas while preserving the PSPACE complexity of model checking. In the full
version, we add discounting-past operators to LTLdisc[D] and show how to perform
model checking on the obtained logic. The solution goes via 2-way weak alternating
automata and preserves the complexity of LTLdisc[D].

Weighted Systems In LTLdisc[D], the verified system need not be weighted in order to
get a quantitative satisfaction – it stems from taking into account the delays in satisfying
the requirements. Nevertheless, LTLdisc[D] also naturally fits weighted systems, where
the atomic propositions have values in [0, 1]. In the full version we extend the semantics
of LTLdisc[D] to weighted Kripke structures, whose computations assign weights in
[0, 1] to every atomic proposition. We solve the corresponding model-checking problem
by properly extending the construction of the automaton Aϕ,v .

Changing the Tendency of Discounting One may observe that in our discounting
scheme, the value of future formulas is discounted toward 0. This, in a way, reflects
an intuition that we are pessimistic about the future. While in some cases this fits the
needs of the specifier, it may well be the case that we are ambivalent to the future. To
capture this notion, one may want the discounting to tend to 1

2 . Other values are also
possible. For example, it may be that we are optimistic about the future, say when a
system improves its performance while running and we know that components are likely
to function better in the future. We may then want the discounting to tend, say, to 3

4 .
To capture this notion, we define the operator Oη,z , parameterized by η ∈ D

and z ∈ [0, 1], with the semantics. [[π, ϕOη,zψ]] = supi≥0{min{η(i)[[πi, ψ]] + (1 −
η(i))z,min0≤j<i η(j)[[π

j , ϕ]] + (1− η(j))z}}. The discounting function η determines
the rate of convergence, and z determines the limit of the discounting. In the full version,
we show how to augment the construction of Aϕ,v with the operator O in order to solve
the model-checking problem.

6 Discussion
An ability to specify and to reason about quality would take formal methods a significant
step forward. Quality has many aspects, some of which are propositional, such as
prioritizing one satisfaction scheme on top of another, and some are temporal, for
example having higher quality for implementations with shorter delays. In this work we
provided a solution for specifying and reasoning about temporal quality, augmenting
the commonly used linear temporal logic (LTL). A satisfaction scheme, such as ours,
that is based on elapsed times introduces a big challenge, as it implies infinitely many
satisfaction values. Nonetheless, we showed the decidability of the model-checking
problem, and for the natural exponential-decaying satisfactions, the complexity remains
as the one for standard LTL, suggesting the interesting potential of the new scheme. As
for combining propositional and temporal quality operators, we showed that the problem
is, in general, undecidable, while certain combinations, such as adding priorities, preserve
the decidability and the complexity.

Acknowledgement. We thank Eleni Mandrali for pointing to an error in an earlier
version of the paper.
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