
On Verifying Fault Tolerance of Distributed Protocols

Dana Fisman1,2 Orna Kupferman1 Yoad Lustig1

1School of Computer Science and Engineering, Hebrew University, Jerusalem 91904, Israel.
2 IBM Haifa Research Lab, Haifa University Campus, Haifa 31905, Israel.

Email:{danafi,orna,yoadl}@cs.huji.ac.il

Abstract. Distributed systems are composed of processes connected in some network.
Distributed systems may suffer from faults: processes may stop, may be interrupted,
and may be maliciously attacked. Fault-tolerant protocols are designed to be resistant
to faults. Proving the resistance of protocols to faults is a very challenging problem,
as it combines the parameterized setting that distributed systems are based-on, with
the need to consider a hostile environment that produces the faults. Considering all the
possible fault scenarios for a protocol is very difficult. Thus, reasoning about fault-
tolerance protocols utterly needs formal methods.
In this paper we describe a framework for verifying the fault tolerance of (synchronous
or asynchronous) distributed protocols. In addition to the description of the protocol
and the desired behavior, the user provides the fault type (e.g., fail-stop, Byzantine,
. . .) and its distribution (e.g., a strict minority of the processes are faulty, . . .). Our
framework is based on augmenting the description of the configurations of the system
by a mask describing which processes are faulty. We focus on regular model checking
and show how it is possible to compile the input for the model-checking problem to one
that takes the faults and their distribution into an account, and perform regular model-
checking on the compiled input. We demonstrate the effectiveness of our framework
and argue for its generality.

1 Introduction
Distributed systems are composed of processes connected in some network [25, 30]. In a
typical setting, the processes are isomorphic, in the sense that they execute the same protocol
up to renaming. Thus, the systems are parameterized by the number of processes, and a
protocol is correct if it is correct for any number of processes.

With the implementation of distributed protocols, it has been realized that the model of
computation that basic protocols assume is often unrealistic. In reality, the processes and the
communication between them may suffer from faults: messages may be omitted, processes
may stop, may be interrupted, and may be maliciously attacked, causing them not to follow
their protocol. For example, in the fail-stop fault, processes may fail before completing the
execution of their code [29]. Even a simple task like broadcasting a message from a sender
process to all other processes becomes difficult in the presence of such faults. Indeed, the
sender may fail after sending the message to only a subset of the other processes, resulting
in disagreement about the content of the message among processes that have not failed.

The realization of faults has led to the development of fault-tolerant protocols, which are
designated to be resistant to faults. For example, for the broadcasting task, a protocol of n
rounds (n is the number of processes) in which the sender broadcasts the message in the first
round and every process that has received the message for the first time in the same round
broadcasts it to all other processes in the next round, ensures that all processes that have not
failed agree on the content of the message [14].

Proving the resistance of protocols to faults is a very challenging problem, as it combines
the multi-process setting that distributed protocols are based-on, with the need to consider

a hostile environment that produces the faults. Considering all the possible fault scenarios
for a protocol is very difficult. This is reflected in the very complicated manual proofs that
new protocols are accompanied with, and in the unfortunate fact that it is not rare that errors
escape these manual proofs [12, 7, 19]. Thus, verification of fault-tolerance protocols utterly
needs formal methods.

Current applications of model checking to reasoning about fault-tolerant distributed pro-
tocols are very elementary [5]. For example, [27] reports an error in the Byzantine self-
stabilizing protocol of [13]. The error has been detected using the model checker SMV for
the case n = 4. Likewise, a corrected version of the protocol has been proven correct in SMV
for the case n = 4 [26]. While these works clearly demonstrate the necessity and effective-
ness of model checking, there is no general methodology for reasoning about fault-tolerant
protocols. Moreover, these works ignore the unbounded state-space that the parameterized
setting involves; proving that a protocol is correct for the case n = 4 does not guarantee the
protocol is correct for any number of processes. Thus, formal reasoning about distributed
protocols, which is so utterly needed, requires the development and application of parame-
terized verification methods.

The parameterized setting is, in general, undecidable [4]. There has been extensive re-
search in the last decade on finding settings for which the problem is decidable (c.f., [17])
and on developing methods that are sound but incomplete. Efforts in this direction include
induction, network invariants, abstraction, and more [18, 24, 20].

A direction that has received a lot of attention is that of regular model checking [23,
3]. In regular model checking, we describe configurations of the system as well as transi-
tions between configurations by regular languages. In more details, in a regular description
of a protocol, letters in the alphabet Σ describe states of the underlying processes, and a
configuration of the system corresponds to a word in Σ∗. The protocol is then given by a
regular language I ⊆ Σ∗ describing the possible initial configurations, and a regular lan-
guage R ⊆ (Σ × Σ)∗ describing the transition relation (a letter [σ, σ′] describes the cur-
rent (σ) and next (σ′) state of a certain process). For example, if each process may either
have a token or not have it, then a letter in Σ = {N, T} describes a state of each process,
I = T · N∗ describes a set of configurations in which only the leftmost process has the
token, and R = ([T, T] + [N, N] + [T, N] · [N, T])∗ describes a set of transitions in which
processes either maintain their state or participate in a pass of a token from a process to its
right. In this example all processes make a step simultaneously, thus they represent a syn-
chronous distributed systems. However, we can also represent asynchronous systems using a
regular description by coding a transition in which only one process can make a step at each
time unit. It is sometimes more convenient to describe the protocol in a monadic second
order logic over finite words (FMSO) [23], which is as expressive as regular expressions [11,
16]. Then, a formula over Σ describes the initial configurations, and a formula over Σ ∪Σ′

describes the transitions, with Σ′ referring to the letters in the successor state.
A weakness of regular model checking is that not all protocols have a regular descrip-

tion. Moreover, even when a regular description exists, reasoning about it may diverge. The
good news is that many interesting protocols do have a regular description. Also, various ac-
celeration, abstraction, and symmetry-reduction techniques are successfully combined with
regular model checking and lead the model-checking algorithm into termination [10, 1, 28,
9, 8]. Regular model checking has successfully been applied for the verification of a variety
of protocols, including ones involving systems with queues, counters, and dynamic linked
data structures [10, 1]. In particular, termination of regular model checking is guaranteed for
systems in which the set of reachable configurations is regular [22].

In this paper we suggest a methodology for reasoning about the fault tolerance of (syn-
chronous or asynchronous) distributed protocols.1 In addition to the description of the pro-
tocol, the user provides the following parameters:

1. Fault type: the user can specify the type of faults with which he wishes to challenge
the protocol. We support faults like fail-stop (processes halt before completing the execu-
tion of the code), Byzantine (processes do not follow their code, and we also allow variants
of Byzantine faults, like omission and timing faults), and transient (the state of the faulty
processes is perturbed for a finite duration) faults. The methodology is compositional in the
sense that the faults can be combined. For example, the user can check self-stabilization
(resistance to transient faults) of a protocol in the presence of Byzantine faults.

2. Fault distribution: the user can specify the distribution of the faulty processes. The
distribution is specified as a bound on the number of the sound/faulty processes, or on their
ratio (e.g., a strict minority of the processes are faulty).2 In fact, as explained shortly, we
support all fault distributions that can be specified by a context-free language (CFG).

3. Desired behavior: the user specifies the desired property in LTL(FMSO) — an exten-
sion of LTL in which the propositional layer is replaced by a second-order layer describing
the unbounded configurations [2]. We show how, using LTL(FMSO), the user can specify
both properties of the global setting (e.g., all processes eventually agree on the content of the
message) or properties that refer to the underlying processes (e.g., every sound process that
tries to enter the critical section, eventually enters it).

Our methodology is based on augmenting the description of the configurations of the
system by a mask describing which processes are faulty. We describe our methodology in
the framework of regular model checking. Technically, we replace the alphabet Σ by the
alphabet Σ × {S, F}, in which each letter describes not only the state of the corresponding
process but also whether it is sound (S) or faulty (F). We then compile the languages I ⊆ Σ∗

of the initial configurations into a language I ′ ⊆ (Σ × {S, F})∗, and compile the language
R ⊆ (Σ × Σ)∗ of transitions into a language R′ ⊆ ((Σ × {S, F}) × (Σ × {S, F}))∗. The
type of the fault is reflected in the way faulty processes behave in I ′ and R′. The compilation
is automatic and is done on top of the FMSO description of the underlying process. We can
determine the distribution of the faults by restricting I ′ to configurations whose projection
on {S, F} belongs to a language that describes the desired distribution. Here, we may use
either a regular language (say, for bounding the number of faulty processes by a constant) or
a context-free language (say, for bounding the ratio of the faulty processes). 3

We demonstrate the application of our methodology in a toy example of a token-ring-
based mutual-exclusion protocol, and in a real example of the reliable broadcasting protocol
of [14].

1 A different approach to reasoning about fault-tolerant systems is taken in [6]. There, following the
classification of faults in [5], faults are modeled by transitions that perturb the state of the system.
The problem studied in [6] is that of closed-system synthesis. Thus, this work is orthogonal to ours
and, in particular, it does not address the parametric setting.

2 Proving the correctness of a system, one is typically interested in an upper bound on the faulty
processes and/or a lower bound on the sound processes. Refuting the correctness of a system, one
is typically interested in an upper bound on the sound processes and/or a lower bound on the faulty
processes.

3 The restriction of I ′ can be done after the fixed-point computation that model checking involves is
completed. This enables us to proceed with both forward and backward model checking. This is also
why we do not sacrifice decidability in the richer context-free setting.

2 Preliminaries

2.1 Regular Description of a Protocol

A regular description of a protocol is a tuple P = 〈Σ, I, R〉, where Σ is an alphabet, each
letter of which describes a possible state of one process. Intuitively, each configuration of a
system composed of processes that follow the protocol P is a word w ∈ Σ∗. The length of
w is the number of underlying processes, with the first letter describing the state of the first
process, the second letter describing the state of the second process, and so on. Accordingly,
I ⊆ Σ∗ is a regular language describing the initial configuration of the system for any
number of processes, and R ⊆ (Σ × Σ)∗ is a regular language describing its transition
relation. A computation of the system is a sequence w0, w1, w2, . . . of words over Σ such
that w0 ∈ I , and for every i ≥ 0, we have [wi, wi+1] ∈ R; that is, if wi = σ1

i · σ2
i · · ·σn

i and
wi+1 = σ1

i+1 · σ2
i+1 · · ·σn

i+1, then [σ1
i , σ1

i+1] · [σ2
i , σ2

i+1] · · · [σn
i , σn

i+1] ∈ R.
For a regular language L ⊆ Σ∗, let preR(L) = {w : ∃w′ ∈ L such that [w, w′] ∈

R} and postR(L) = {w : ∃w′ ∈ L such that [w′, w] ∈ R} be the pre- and post-images
of L, respectively. We use pre∗R and post∗R to denote the transitive closure of preR and
postR, respectively. Thus, if L describes a set of configurations, then pre∗R(L) is the set of
configurations that can reach a configuration in L, and dually for post∗R(L).

Example 1. Consider the Token-Ring protocol described below. Each process has a boolean
variable token is mine indicating whether it holds the token. The process may be in one
of the three locations `0, `1,
and `2. Location `2 is a crit-
ical section. A process that
enters `2 exits it (and returns
to `0) in the next transition.
Location `1 is a trying sec-
tion. A process in `1 waits
for the token, and once it
has it, it moves to the critical
section in the next transi-
tion. Location `0 is the non-

Protocol 1: Token-Ring
boolean token is mine
repeat

`0 : if token is mine then pass token to right();
goto {`0, `1};

`1 : await token is mine;
`2 : critical;

until forever ;

critical section. A process in `0 may either stay in `0 or proceed to `1. In addition, if the
process has the token, it passes it to the process to its right.

We now present a regular description of the token-ring protocol. Let Σloc = {`0, `1, `2}
and Σtok = {N, T}. A state of a process is a letter in Σ = Σloc × Σtok , describing
both the location of the process and the value of token is mine. For example, the letter
〈`2, T 〉 indicates a process in location `2 that has the token. For simplicity, we use the letters
0T, 1T, 2T, 0N, 1N , and 2N to describe the letters in Σ.

The initial configuration of a system in which all processes are in location `0 and the
token is owned by one4 process is given by 0T · 0N∗. In order to describe the transition
relation, we distinguish between three types of actions a process may be involved at during a
transition. Each action corresponds to a letter [σ, σ′] ∈ Σ×Σ, where σ describes the current
state of the process and σ′ describes the next state.

4 Since we use words to model a ring architecture, we arbitrarily set the token owner to be the leftmost
process. Nevertheless, the transitions are defined so that the so called rightmost process has this
leftmost process as its neighbor to the right.

• The process does not pass or receive the token. These actions correspond to the letters
SN = {[0N, 0N], [0N, 1N], [1N, 1N], [2N, 0N], [1T , 2T], [2T , 0T]}.
• The process has the token in location `0, in which case it passes it to the right. These
actions correspond to the letters SP = {[0T , 0N], [0T , 1N]}.
• The process does not have the token and receives it from the left. These actions correspond
to the letters SR = {[0N, 0T], [0N, 1T], [1N, 1T], [2N, 0T]}.

The transition function R then allows all processes to proceed with actions in SN and
allows adjacent processes to proceed with SP (the left process) and SR (the right process)
simultaneously. Accordingly,5 R = (SN + SP · SR)∗ + (SR · (SN + SP · SR)∗ · SP).

Note that R indeed reflects the protocol. In particular, the transition function is defined
also for processes that are in the critical section without the token, and for configurations
in which there is more than a single token. Indeed, for different initial configurations, such
transitions may be taken.6

2.2 FMSO and LTL(FMSO)
In Section 2.1, we used regular expressions in order to specify configurations of the dis-
tributed system. In this section we present finitary monadic second order logic (FMSO) [11,
16, 31] – an alternative formalism for specifying regular languages. Describing configura-
tions of a parameterized system by a monadic second order logic is suggested in [23], where
the logic used is FS1S. A similar direction was taken in [2], where LTL is augmented with
MSO. We choose to work with FMSO, which unifies both approaches.

FMSO formulas are interpreted over finite words over Σ. Formulas are defined with re-
spect to a set F of first-order variables ranging over positions in the word, and a set S of
second-order variables ranging over sets of positions in the word. Let us emphasize to read-
ers who are familiar with temporal logic that the variables in F and S do not point to points
in time (or sets of such points) — an FMSO formula describes a configuration of the system
at a single time point, and the variables in F and S point to positions (or sets of positions) in
the configuration, namely to identity of processes in the parameterized system.

In our application, the alphabet Σ describes a state of a process, and a word of length n
describes a configuration consisting of n processes. Typically, Σ = Σ1 × · · · × Σk is the
product of underlying alphabets, each describing a propositional aspect of a state of a pro-
cess. For example, in Example 1, we had Σ = Σloc×Σtok . We refer to the set {Σ1, . . . , Σk}
as the signature of Σ and refer to the set Σ1 ∪ · · · ∪ Σk as the set of underlying letters. An
advantage of FMSO is that it enables convenient reference to the underlying letters. Given a
word in Σ∗, a position term p ∈ F points to a letter in Σ, and preceding it by an underlying
alphabet points to an underlying letter. For example, the letter term Σtok [p] is evaluated to
the status of the token of the process in position p. Thus, if p is evaluated to 3, then the letter
term Σtok [p], when interpreted over the word 〈`0, T 〉, 〈`0, N〉, 〈`0, N〉, 〈`0, N〉, is evaluated
to N – the projection on {N, T} of the third letter. We now describe the syntax and the
semantics of FMSO formally.

Syntax Let F, S be sets of variables as above, and let Σ = Σ1 × · · · × Σk. Terms and
formulas of FMSO are defined inductively as follows.

5 The second term corresponds to the rightmost process closing the ring.
6 We note that the common description of token-passing protocols in the regular model-checking

literature allows only a single pass to take place in a transition. In a transition in our model, all
processes proceed together and any number of tokens may be passed simultaneously (yet a process
cannot receive and pass a token at the same transition).

– A position (first order) term is of the form 0, i, p⊕ 1, or pª 1, for i ∈ F and a position
term p.

– A letter term is of the form τ or x[p], for τ ∈ Σ1 ∪ · · · ∪Σk, a position term p, and x an
underlying alphabet in {Σ1, . . . , Σk}.

– A formula is of the form a1 = a2, p1 ≤ p2, I1 ⊆ I2, p ∈I,¬ϕ,ϕ∨ψ,∃iϕ, or ∃Iϕ,
for letter terms a1 and a2, position terms p, p1 and p2, formulas ϕ and ψ, i ∈ F, and
I1, I2, I ∈ S.

Writing formulas, we use the standard abbreviation =, <, 6=, ∧, →, and ∀. In addition, we
use Σ[p] = 〈σ1, . . . , σk〉 as an abbreviation for Σ1[p] = σ1 ∧ . . . ∧ Σk[p] = σk. An FMSO
formula is closed if all the occurrences of variables in F and S are in a scope of a quantifier.

Semantics For an integer n ∈ N, let Zn denote the set {0, 1, . . . , n − 1}. We define the
semantics of an FMSO formula with respect to a tuple I = 〈n, IF , IS , IΣ〉, where n ∈ N
is the length of the word that I models, IF : F → Zn assigns the first-order variables with
locations in Zn, IS : S → 2Zn assigns the second-order variable with subsets of Zn, and
IΣ : Zn → Σ is the word that I models. Given a letter σ ∈ Σ and an underlying alphabet
x ∈ {Σ1, . . . , Σk}, we denote the projection of σ on x by σ|x.

Position terms are evaluated with respect to n and IF as follows: [[0]] = 0, [[i]] = IF (i),
[[p⊕ 1]] = ([[p]]+1) mod n, and [[pª 1]] = ([[p]]−1) mod n. Letter terms are evaluated with
respect to IΣ as follows: [[τ]] = τ and [[x[p]]] = IΣ(p)|x. Satisfaction of formulas is defined
as follows:

I |= a1 = a2 iff [[a1]] = [[a2]] I |= ¬ϕ iff I |=/ ϕ
I |= p1 ≤ p2 iff [[p1]] ≤ [[p2]] I |= ϕ ∨ ψ iff I |= ϕ or I |= ψ
I |= I1 ⊆ I2 iff IS(I1) ⊆ IS(I2) I |= ∃iϕ iff ∃m ∈ Zn s.t. I[i 7→ m] |= ϕ
I |= p1 ∈ I iff [[p1]] ∈ IS(I) I |= ∃Iϕ iff ∃S ⊆ Zn s.t. I[I 7→ S] |= ϕ,
where I[i 7→ m] is obtained from I by letting IF (i) be m, and similarly for I[I 7→ S].

LTL(FMSO) The logic LTL is traditionally defined over computations in which each point
in time can be characterized by a propositional formula. In the parameterized setting, each
point in time is an unbounded configuration, and can be characterized by an FMSO formula.
The logic LTL(FMSO) is an extension of LTL in which the propositional layer is replaced by
FMSO. Thus, the FMSO formulas are used to describe a configuration of the computation at a
given instance of time, and the LTL operators are used to reason about the on-going behavior
of the system. The internal FMSO formulas may contain a free variable whose quantification
is external to the temporal operators. A regular model-checking procedure for LTL(FMSO) is
described in [2]. The syntax and semantics of LTL(FMSO) are given in the full version of the
paper, section A. Here, we give some examples.
Example 2. Consider the token-ring protocol given in Example 1. We use LTL(FMSO) in
order to specify its desired properties:

– Mutual exclusion (there is always at most one process in the critical section):
2(∀i, j : (i 6= j) → ¬(Σloc [i] = `2 ∧Σloc [j] = `2)).

– Non-starvation (whenever a process tries to enter the critical section, it eventually does):
2∀i : (Σloc [i] = `1 → 3(Σloc [i] = `2)).

2.3 An FMSO-based Description of a Protocol

In this section we explain how FMSO can be used to define protocols and the parameter-
ized system they induce. A similar description appears in [23].7 There, however, formulas

7 The monadic second order used in [23] is FS1S (rather than FMSO).

describe the parameterized system whereas here formulas describe an underlying process
parameterized by its identity. An FMSO description of the parameterized system is then au-
tomatically derived from the description of its underlying process. The ability to describe a
single process is fundamental to our method since the input to our application carries infor-
mation on how a fault affects a single process rather than how it affects the parameterized
system (In Remark 5, we elaborate on the significance of this ability further).

A protocol parameterized by i ∈ F is a tuple P [i] := 〈Σ,Θ[i],∆[i]〉, where Σ =
Σ1 × · · · ×Σk is the alphabet, Θ[i] is an FMSO formula that specifies the initial state of the
process i, and ∆[i] is an FMSO formula over Σ ∪ Σ′ where Σ′ is a primed version of the
alphabet Σ. The formula ∆[i] relates the current configuration (over the alphabet Σ) with the
successor configuration (over the alphabet Σ′). The only free variable in the formulas Θ[i]
and ∆[i] is i. Note that the formulas may refer to the current as well as the successor state of
other processes, but this reference is either relativized by i (say, to i ⊕ 1) or is universal or
existential.8

The parameterized system induced by P [i] is given by P = 〈Σ,Θ, ∆〉, where the initial
configuration is Θ = ∀iΘ[i], and the transition relation is ∆ = ∀i∆[i]. Thus, as expected,
each process starts in an initial state, and in each point in time, all processes simultaneously
proceed according to the protocol. Note that, as in the regular description of a protocol, this
does not prevent us from describing asynchronous systems. Asynchronous systems can be
modeled by adding to ∆[i] a disjunct of the form Σ[i]=Σ′[i] that allows a process to remain
in its state.
Example 3. Consider the Token-Ring protocol discussed in Example 1. We can provide an
FMSO description of the protocol P [i] := 〈Σ, Θ[i],∆[i]〉 as follows. The alphabet is Σ =
Σloc ×Σtok. The initial state stipulates that the control location is `0 and the token is owned
by the process iff its identity is 1. Thus Θ[i] := (Σloc [i]=`0) ∧ ((i=1 ∧Σtok[i]=T) ∨ (i 6=
1 ∧ Σtok[i]=N)). Following the regular description given in Example 1, we define three
transitions δN [i], δP [i], and δR[i], where δN [i] corresponds to the case where the process
does not pass or receive the token, δP [i] corresponds to the case where the process passes
the token and δR[i] corresponds to the case where the process receives the token. Since a
token may pass from a process to its right neighbor, the overall transition relation is then
∆[i] := δN [i] ∨ (δP [i] ∧ δR[i⊕ 1]) ∨ (δR[i] ∧ δP [iª 1]).

The transitions δN [i], δP [i], and δR[i] are defined as follows:
– δN [i] := (Σtok[i]=Σ′

tok[i]) ∧ (Σloc [i]=`0 → (Σ′
loc [i]=`0 ∨ Σ′

loc [i]=`1)) ∧ (Σ[i]=
〈`1, N〉 → Σ′[i]= 〈`1, N〉) ∧ (Σ[i]= 〈`1, T 〉 → Σ′[i]= 〈`2, T 〉) ∧ (Σloc [i]= `2 →
Σ′

loc [i]=`0).
– δP [i] := (Σtok[i]=T ∧Σ′

tok[i]=N) ∧ (Σloc [i]=`0 ∧ (Σ′
loc [i]=`0 ∨Σ′

loc [i]=`1)).
– δR[i] := (Σtok[i] = N ∧ Σ′

tok[i] = T) ∧ (Σloc [i] = `0 → (Σ′
loc [i] = `0 ∨ Σ′

loc [i] =
`1)) ∧ (Σloc [i]=`1 → Σ′

loc [i]=`1) ∧ (Σloc [i]=`2 → Σ′
loc [i]=`0).

3 Verifying Resistance to Faults
In this section we describe our methodology for verifying the resistance of distributed pro-
tocols to faults. The idea behind our methodology is as follows.

8 The ability of process i to refer to other processes may seem to give it a power to force another
process into doing something. However, in the induced parameterized system all processes take a
transition simultaneously. Thus, there should be an agreement between what the other process does
and what process i stipulates it does.

• Recall that each process is defined with respect to a set of underlying alphabets. We
add to this set the underlying alphabet Σf = {S, F}. Doing so, each process i may be either
sound (Σf [i] = S) or faulty (Σf [i] = F).

• Given a protocol P [i] parameterized by i ∈ F, we automatically modify P [i] to include
also transitions that correspond to a faulty behavior. The modification depends on the type
of fault, and is described in Section 3.2. A process follows the new transitions iff it is faulty.
Transitions may not change the classification to faulty and sound.9

• Given the modified protocol, we (automatically, see Section 2.3) generate from it a
parameterized system. Note that each of the processes in the parameterized system may be
either faulty or sound, and that this classification is indicated in Σf . By translating the FMSO

formulas to regular expressions, we obtain a regular description P̃ = 〈Σ ×Σf , I, R〉 of the
system. For some types of faults, we need to exclude from P̃ computations that do not satisfy
some fairness conditions. Rather than augmenting P̃ with a fairness constraint, we associate
with it an LTL(FMSO) formula ψfair that we later use as an assumption in the specification.10

• Given a fault distribution in terms of an upper/lower bound on the faulty/sound pro-
cesses or an upper/lower bound on the ratio between the faulty and sound processes, we
translate it into a CFG language D ⊆ Σ∗

f . A configuration of P̃ agrees with the fault dis-
tribution if its projection on Σf is in D. The translation is automatic (see Section 3.3). The
user may also describe D directly. For a language L ⊆ (Σ ×Σf)∗ and a language D ⊆ Σ∗

f ,
let agree(L,D) denote the subset of L whose projection on Σf agrees with D. Formally,
[σ1, σ

′
1] · · · [σn, σ′n] ∈ agree(L,D) iff [σ1, σ

′
1] · · · [σn, σ′n] ∈ L and σ′1 · · ·σ′n ∈ D.

• It is left to check P̃ with fault distribution D with respect to the desired LTL(FMSO)
property ψ. We proceed with the regular model-checking algorithm of [2], applied to ψfair →
ψ. Whenever a computation of the algorithm refers to the language I of initial configurations,
we refer instead to agree(I,D). It is possible to restrict I to configurations that agree with
D at various steps in the model-checking procedure. Also, restricting I can be replaced by
restricting fixed-points calculated during the computation. As detailed in Section 3.4, this
flexibility has helpful practical implication.

Remark 1. While the methodology is presented for the general parametric setting, its idea
can be applied also for a bounded finite number of processes. In particular, it is easy to adapt
existing BDD based model checkers to apply for this case. Needless to say, some simple
technical updates must be made, such as replacing FMSO with the model-checker language,
and providing the fault distribution in a way suitable for BDD. Note also that when the
number of processes is bounded but big, the parametric setting may still be advantageous.

We now provide the details of our methodology, starting by reviewing types of faults.

3.1 Types of Faults

The theory of fault-tolerant distributed systems studies a large variety of types of faults. We
consider here the most common types. As we explain in Section 3.2, our method is versatile
and one should be able to apply it to more types.

• Fail-stop A process that suffers from a fail-stop failure halts before the termination
of its protocol. Such a process has a well-defined failure-mode operating characteristics, and
indeed the idea behind fail-stop faults is to minimize the effect of failures – the faulty process

9 As we show in Section 3.2 this does not prohibit us from modeling fail-stop and transient failures.
10 One could also consider protocols with fairness constraints [28]. We found the description via

LTL(FMSO) simpler.

halts in response to a failure, and it often does so in a detectable manner and before the effect
of the failure becomes visible [29].

• Byzantine In general, a Byzantine process is not committed to the protocol. Thus, it
can take arbitrary transitions, changing its state and the values of variables it shares. The fact
the process is Byzantine is undetectable. Byzantine faults are the most general type of faults
and model a wide variety of problems ranging from hardware failures (causing unexpected
system behavior) to malicious attack of hackers on the system. One often consider variants
of Byzantine faults, like timing faults (the process does follow the protocol, but there are
arbitrary delays between the execution of successive statements) and omission faults (the
messages sent by and/or to the process do not get to their destination. The process might or
might not be aware of the fact that the transmission went wrong).

• Transient A transient fault occurs when a process suffers from a temporal failure, say
part of its memory is corrupted. Technically, transient faults are similar to Byzantine faults,
only that the duration of the Byzantine behavior is bounded. In addition, the fault may be
restricted to specific elements of the process (memory, clock, etc.). Protocols that tolerant
transient faults are often termed self-stabilizing, as they recover from faults in the prefix of
the computation.

3.2 Generating the Faulty Protocol

Let P [i] := 〈Σ, Θ[i],∆[i]〉 be a protocol parameterized by position variable i. For each type
of fault discussed in section 3.1, we show how to construct a process P̃ [i] := 〈Σ̃, Θ̃[i], ∆̃[i]〉
in which the process may be either sound or faulty. In the latter case, the process may exhibit
a faulty behavior of the corresponding type.

For all types of faults, the signature of Σ̃ consists of the signature of Σ and contains,
in addition, the underlying alphabet Σf = {S, F} (and possibly more underlying alphabets,
according to the specific fault). Recall that the classification of processes to sound and faulty
may not change. Accordingly, for all types of faults, the transition formula ∆̃[i] is of the
form ∆f [i] ∧ (Σf [i] = Σ′

f [i]), where ∆f [i] is a modification of ∆[i] that depends on the
specific fault. Below we describe the compilation of ∆[i] into ∆f [i] for the various faults.
Also, for some faults, we also generate an LTL(FMSO) formula ψfair that serves as a fairness
condition for the faulty system. Unless we state differently, ψfair = true, thus no fairness is
required.

Fail-stop faults Recall that Σf classifies the processes to sound and faulty. In the fail-stop
fault, the faulty processes start their execution as sound processes, but may halt before the
completion of the protocol. In order to model fail-stop faults, we add to the signature the
underlying alphabet Σt = {A, H}, which indicates whether a faulty process is still alive (A)
or has already halted (H). Sound processes and faulty, yet alive, processes should satisfy the
original initial formula, thus Θ̃[i] := (Σf [i]=S ∨Σt[i]=A) → Θ[i]. The transition formula
∆f [i] makes sure that (1) only a faulty process may halt (2) once a process halts, it cannot
become alive, (3) the state of a process that halts does not change, and (4) processes that
are sound or alive respect ∆[i]. Formally, ∆f [i] = [(Σt[i] = H) → (Σf [i] = F ∧ Σ′

t[i] =
H)] ∧ [(Σt[i]=H) → Σ[i]=Σ′[i]] ∧ [(Σt[i]=A) → ∆[i]].
Remark 2. Recall that fail-stop faults are detectable. Detectability can be modeled by mak-
ing Σt observable to the other processes (either by putting it in a shared memory, or by
letting the failing processes broadcast a failure notification before they halt). Thus, the orig-
inal protocol, which is likely to be designed towards fail-stop faults, already has Σt in its
signature, and the transitions in ∆[i] may refer to it.

Byzantine faults Under a Byzantine failure, no assumption is made on the behavior of a
faulty processes. A Byzantine process may start in an arbitrary configuration (which may
or may not be valid for a sound process) and in each time unit it can transit to any other
(valid/invalid) configuration . Accordingly, in P̃ [i], the requirement to respect Θ[i] and ∆[i]
is restricted to sound processes. Formally, Θ̃[i] := (Σf [i]=S) → Θ[i] and ∆f [i] := (Σf [i]=
S) → ∆[i]. In the full version of the paper, section B, we expand on timing and omission
faults.

Transient faults A process i affected by a transient fault need not respect Θ[i] and ∆[i].
Unlike a Byzantine fault, however, the duration of the fault is finite. Thus, at some point,
the process recovers and proceeds (from the arbitrary state it has reached in its perturbed
behavior) according to ∆i. In order to model transient faults, we add to the signature the
underlying alphabet Σt = {P, R}, which indicates whether a faulty process is still perturbing
(P) or has already recovered (R). Only faulty processes may perturb, and perturbed processes
need not satisfy the initial formula.11 Thus, Θ̃[i] := (Σt[i] = P → Σf [i] = F) ∧ (Σf [i] =
S → Σt[i]=R) ∧ (Σt[i]=R → Θ[i]). In addition, perturbed processes need not satisfy the
transition formula, and a recovered process cannot perturb again. Thus, ∆f [i] := (Σt[i]=
R) → (∆[i] ∧ Σ′

t[i]= R). Finally, to ensure that a process can perturb only during a finite
prefix of the computation, we add the assumption formula ψfair = ∀i(32 Σt[i]=R).

Remark 3. Transient faults are often associated with specific components of the process.
For example, it may be known that certain areas in the memory of the protocol may be
temporarily corrupted. Accordingly, rather than letting the affected processes ignore Θ[i]
and ∆[i], we let them satisfy the projection of Θ[i] and ∆[i] on the underlying alphabets in
the signature that have not been affected.

Remark 4. An approach that is taken in the distributed-algorithm community is to reason
about the self-stabilization of a protocol by reasoning about the protocol when starting from
an arbitrary initial configuration (or, per Remark 3, from a set of allowed initial configura-
tions that extends the original set). Such a reasoning can be easily done in our model by
leaving P [i] as is, except for Θ[i].

Remark 5. It is easy to see that the computation of faulty processes need not respect the
original protocol. Note, however, that sound processes may also follow computations that
were not possible for them in the original protocol although they are obeying the protocol.
For example, if the transition of process i is of the form α ∨ (Σ[i ⊕ 1]=σ ∧ α′), for some
formulas α and α′, and process i+1, when respecting the protocol, never satisfies Σ[i⊕1]=σ,
then process i always proceeds with α. In a faulty system, however, process i+1 may satisfy
Σ[i⊕ 1]=σ, letting process i, which is sound, to proceed with either α or α′. By compiling
P [i] rather than the parameterized system P we make sure that such scenarios do not escape
the resulting faulty parameterized system. Another reason to compile underlying processes
is practical: one of the heuristics that are applied to regular-model checking is symmetry
reduction. Keeping the protocol of all (either sound or faulty) processes identical, reasoning
about the compiled system can apply these reductions.
11 We could give up Σt and model a recovery by modifying the F indication in Σf to S. The reason

we do use Σt is practical: as we explain in Section 3.4, by keeping F and S fixed, we can sample the
fault distribution at any time in the computation, which enables us to proceed with both forward and
backward model checking.

3.3 Handling Fault Distributions
The specification of fault-tolerance includes assumptions about the distribution of faults
(e.g., a strict minority of the processes are faulty). We model a fault distribution by a lan-
guage over {S, F}. To ease the work of the specification engineer, we suggest a simple and
readable formalism in which common distributions can be specified. Formally, a distribution
bound is a word γ ∈ {U,L}×{S, F}×(N∪(N×N)). The first letter indicates whether γ im-
poses an upper (U) or lower (L) bound, the second letter indicates whether the bound refers
to the sound or faulty processes, and the third indicates whether it is a constant bound k ∈ N
or a ratio bound k1

k2
, for k1, k2 ∈ N. For example, γ = 〈U, F, k〉 (resp. 〈L, S, k〉) checks

tolerance for a parameterized system with at most k faulty (at least k sound) processes, and
γ = 〈U, F, k1, k2〉 checks tolerance for a parameterized system in which at most k1

k2
of the

processes are faulty. Given a distribution bound, we generate a language over {S, F} that
describes it. For a word w over {S, F} and a letter σ ∈ {S, F}, let #(σ,w) denote the number
of occurrences of σ in w. Then (other bounds are isomorphic to the ones below),

– 〈U, F, k〉 induces the regular language S∗ · ((F + S) · S∗)k

– 〈L, S, k〉 induces the regular language F∗ · (S · F∗)k · (F + S)∗

– 〈U, F, k1, k2〉 induces the context-free language {w | k1#(F, w) ≤ (k2 − k1)#(S, w)}.

The user may also provide the distribution language directly, thus describing richer types of
distributions, like (S + F)∗ · Fk · (S + F)∗ (there exists a neighborhood of k faulty processes),
(Sk−1·(S+F))∗ (only every other k processes may be faulty), etc. Such distribution languages
are particularly appropriate in architectures like rings, where the position of the process in
the word describing the configuration is important. Also, a conjunction of bounds may be
obtained by intersecting the corresponding (at most one context-free) languages.

We are now ready to model check the system with the faults according to the fault dis-
tribution in D. We first formalize properties of the compilation that are useful in the model-
checking procedure. For simplicity, we assume that the alphabet of the compiled system is
Σ ×Σf (when its alphabet contains additional underlying alphabets, we project them in an
existential manner). Theorem 1 bellow asserts that (1) any computation of the parameterized
system whose components where designed to carry protocol P [i] but may be subjected to
faults of type β, under fault distribution D, may be obtained as a computation of P̃ and a
mask from D, and (2) the mask can be taken into consideration in any stage of the compu-
tation of the backward/forward model checking. The theorem follows from the fact that the
Σf component of the faulty protocol is fixed throughout the execution of the protocol. For
two words of the same length w ∈ Σ∗ and d ∈ Σ∗

f , let w ⊗ d be the word over Σ × Σf

obtained by merging the letters of w and d.

Theorem 1. Consider an FMSO description P [i] over Σ of a protocol parameterized by
position variable i, a type β of a fault, and a distribution language D ⊆ Σ∗

f . Let P be the

parameterized system induced by P [i] and let P̃ and ψfair be the parameterized system over
Σ ×Σf to which P [i] is compiled.

1. w0, w1, w2 . . . is a computation of the system P when suffering from a fault of type β
with fault distribution D iff there is a word d ∈ D such that w0 ⊗ d,w1 ⊗ d, w2 ⊗ d . . .
is a computation of P̃ that satisfies ψfair .

2. Let R̃ be the transition relation of P̃ . For a set S ⊆ (Σ×Σf)∗, we have pre∗
R̃
(agree(S, D)) =

agree(pre∗
R̃
(S), D) and post∗

R̃
(agree(S,D)) = agree(post∗

R̃
(S), D).

3.4 Model Checking the Faulty System

We now describe how we adjust the LTL(FMSO) regular model-checking algorithm of [2] to
consider the distribution language. Let us first review the procedure in [2].

Given an LTL(FMSO) specification ψ, it is possible to extend the translation of LTL for-
mulas to Büchi automata [32] and generate from ψ a Büchi transducer Aψ (automaton over
Σ×Σ, in the terminology of [2]) that accepts exactly all the models of ψ. The transducer con-
sists of three regular languages: initial configurations Iψ ⊆ Σ∗, transitions Rψ ⊆ (Σ×Σ)∗,
and acceptance condition α ⊆ Σ∗. LetA¬ψ = 〈Σ, I¬ψ, R¬ψ, α¬ψ〉 be the Büchi transducer
for an LTL(FMSO) formula ¬ψ. A parameterized system P = 〈Σ, I, R〉 then violates ψ if
the product of P with A¬ψ, namely the Büchi transducer 〈Σ, I ∩ I¬ψ, R ∩R¬ψ, α¬ψ〉, has
a fair computation. It is shown in [28, 2] how bad-cycle detection algorithms can be lifted to
the regular setting.

Let S = 〈Σ×Σf , I, R, α〉 be the product of the regular description of the faulty protocol
with a Büchi transducer A¬(ψfair→ψ) for ¬(ψfair → ψ), and let D ⊆ Σ∗

f be the distribution
language with respect to which the protocol is checked. By Theorem 1 (1), the system P
tolerates the fault with distribution D iff S does not contain a computation that visits α
infinitely often and whose projection on Σf is in D.

Thus, searching for bad cycles in S , we should restrict attention to computations whose
projection on Σf is in D. By Theorem 1 (2), we can sample the projection of the computa-
tion on Σf at any point, and can also do it after the computations of fixed-points converge.
Accordingly, for forward model checking, we can start with I and restrict to computations
that agree with D after the calculations of post∗. Likewise, for backward model checking,
we can start with α and restrict to computations that agree with D after the calculations
of pre∗. Note that, as observed in [21], it is possible to conduct backward/forward model
checking in which the last step uses a context-free rather than a regular language. This is
possible due to the fact that context free languages are closed under intersection with regular
languages and the emptiness of a context free language is decidable. Therefore, we can use
a context-free language for ratio bounds.

Remark 6. The compilation of P [i] to P̃ [i] is easy to describe when P [i] is given in FMSO.
The model-checking algorithm, however, requires the translation of the FMSO formulas to
automata or regular expressions. In general, the translation is non-elementary. The blow-up,
however, is caused by nested negations, which are not typical in our setting, and is quite rare
in practice [15]. For many faults, we can do the compilation on top of the regular description
of the protocol and circumvent FMSO. In some cases, however, such as the one described in
Remark 5, going through FMSO is much simpler.

Remark 7. It is sometimes desirable to check a protocol with respect to a combination of
faults (for example, whether it is self-stabilized in the presence of a Byzantine fault). It is
easy to see that our method is compositional, in the sense that the compilations described
in Section 3.2 can be applied on top of each other, each with its distribution of faults (at
most one distribution, however, can induce a context-free language). Also, by relating the
underlying alphabets that specify the mask for the faulty processes in each type fault, it
is possible to relate the faulty processes in the different faults (for example, the processes
that suffer from the transient faults are necessarily different from these that suffer from the
Byzantine fault).

Remark 8. The user may use the methodology in a query mode, in which the bound in the
fault distribution is not specified. Thus, the bound is of the form {L,U} × {S, F} × {?},

and the user asks for the maximal/minimal number m of faulty/sound processes with which
the property holds/is violated. Since the language D plays a role only in the last step of the
model-checking procedure, an algorithm that does a binary search for m can reuse the result
of the fixed-point computation that the steps that are independent of D have calculated, and
only project it iteratively on different distribution languages. A similar approach can be used
for ratio bounds.

We now demonstrate the application of our methodology for the verification of the token-
ring protocol presented in Example 1. In the full version of the paper, section C, we consider
a more impressive application, to the reliable broadcasting protocol of [14].

Example 4. Consider the token-ring protocol given in Example 1. We would like to verify
whether it satisfies the mutual-exclusion and non-starvation properties specified in Exam-
ple 2, in the presence of fail-stop, and Byzantine faults.

We start with fail-stop faults. We first follow the compilation described in Section 3.2
and compile the protocol P [i] that is described in Example 3 to a protocol P̃ [i] that takes the
fail-stop faults into an account. Recall that P [i] is over Σ = {`0, `1, `2} × {N, T} and P̃ [i]
is over Σ̃ = Σ×{A, H}×{S, F}. For Sloc ⊆ {`0, `1, `2}, Stok ⊆ {N, T}, St ⊆ {A, H}, and
Sf ⊆ {S, F}, we use [Sloc , Stok , Sl, Sf] to abbreviate the regular expression that is the union
of all letters 〈sloc , stoc , st, sf 〉 ∈ Sloc × Stoc × St × Sf . When Sloc = Σloc , we replace
Sloc by . When Sloc is a singleton {sloc}, we simply write sloc , and similarly for the other
underlying alphabets.

Since mutual exclusion is a safety property, the model-checking procedure is simple,
and we only have to check whether the set of reachable states (per a given distribution lan-
guage) intersects the language Lbad of configurations that violate the property (the language
is generated automatically from the Büchi transducer for the negation of the formula, and it
is extended to the alphabet Σ̃). Formally, Lbad := Σ̃∗ · [`2, , ,] · Σ̃∗ · [`2, , ,] · Σ̃∗.

Using acceleration methods such as in [28, 22], we can calculate the set Lreach of reach-
able configurations of P̃ . Lreach = [{`0, `1}, N, ,]∗ · [, T, ,] · [{`0, `1}, N, ,]∗.

It is easy to see that the intersection of Lbad and Lreach is empty, regardless of the
distribution bound. Thus, even if all processes are faulty, mutual exclusion holds.

As for non-starvation, the product of P̃ with the Büchi transducer for the negation of
the property is not empty even for the distribution bound 〈U, F, 1〉. Indeed, the computation
that begins in the configuration 〈`0, T, H, F〉 · 〈`0, N, A, S〉∗, and then loops forever in the
configuration 〈`0, T, H, F〉 · 〈`1, N, A, S〉∗, is a computation of P̃ that is accepted by the
Büchi transducer. Also, all the configurations along it belong to the distribution language
S∗ · (S + F) · S∗ that is induced by 〈U, F, 1〉. Note that the computation corresponds to the
case the first process fail-stops as soon as the execution of the protocol begins, causing the
token not to be passed at all.

Let us now move to Byzantine faults. Since a Byzantine process can produce or destroy
tokens as he sees fit, the protocol is not resistant to Byzantine faults, even with a single
Byzantine process. Recall that when modelling Byzantine faults, we have Σ̃ = Σloc ×
Σtok × {S, F}. The protocol P̃ contains the computation that begins with the configuration
〈`0, T, F〉 · 〈`0, N, S〉∗, then moves to 〈`1, T, F〉 · 〈`1, T, S〉 · 〈`0, N, S〉∗, and then moves to
〈`2, T, F〉 · 〈`2, T, S〉 · 〈`0, N, S〉∗. Clearly, the third configuration intersects the language
of bad configurations. Thus, mutual exclusion does not hold. Intuitively, the computation
corresponds to the faulty process passing the token to the right but keeping a copy of the
token to itself. The protocol also contains the computation that begins with the configuration
〈`0, T, F〉 · 〈`0, N, S〉∗, and then loops forever in the configuration 〈`0, N, F〉 · 〈`1, N, S〉∗.

This computation is accepted by the Büchi transducer for the negation of the non-starvation
property. Intuitively, it corresponds to a scenario where the faulty process destroys the to-
ken. Also, both computations are consistent with the fault distribution 〈U, F, 1〉. Thus, the
properties do not hold in the presence of even a single Byzantine process.

Finally, in timing faults, the set of reachable states is similar to the set of reachable states
in the original protocol (lifted by the new underlying alphabets), thus mutual exclusion holds.
Non-starvation holds too, as the computations in the product that do violate the property are
not fair.

4 Discussion
State-of-the-art work on verifying fault tolerance of distributed systems is restricted to the
non-parametric setting. This is true both in work studying specific protocols, as [27, 26],
which model-check protocols for the case of four processes; as well as in work describing a
general methodology, as [6], which studies synthesis of distributed systems with a bounded
number of processes.

The idea behind our methodology is simple: it is possible to augment the description of
a process by an indication of whether the process is faulty or sound, it is possible to let the
process proceed with both indications (in case it is sounds it follows the original protocol,
in case it is faulty it follows a modified protocol that is automatically generated according
to the type of fault), and it is possible to use a symbolic description of the fault distribution
in order to control the number or the fraction of the faulty processes. The methodology is
generic in the sense that it can be applied to both synchronous and asynchronous systems,
considering a large variety of faults, and taking into account a large variety of distribution
faults (any distribution that can be specified by a context-free language).

We demonstrated our methodology in the framework of regular model checking (aug-
mented to support a context-free language describing the fault-distribution). We are opti-
mistic about the application of the methodology in other approaches that address the param-
eterized setting. In particular, in the approach of network invariants [33], one tries to find a
system I such that (1) I abstracts P or P‖P and (2) I abstracts I‖P . Our initial results in
this front show that assuming the composition is symmetric, it is possible to replace P in
the above conditions by finite compositions of P with faulty versions of it. For example, in
order to prove resistance to c faults, one can replace P by a composition of P with c faulty
versions of it; likewise in order to prove the resistance to a k1

k2
fraction of faulty processes,

one can replace P by a combination of k1 instances of P with k2 − k1 instances of a faulty
version of P . Our future research aims at generalizing these ideas further.

Acknowledgment We thank Danny Dolev and Ezra Hoch for many helpful discussions
on distributed systems and fault-tolerant protocols.

References
1. P.A. Abdulla, J. d’Orso, B. Jonsson, and M. Nilsson. Algorithmic improvements in regular model

checking. In Proc. 15th CAV, LNCS 2725, pages 236–248, 2003.
2. P.A. Abdulla, B. Jonsson, M. Nilsson, J. d’Orso, and M. Saksena. Regular model checking for

LTL(MSO). In Proc. 16th CAV, LNCS 3114, pages 348–360, 2004.
3. P.A. Abdulla, B. Jonsson, M. Nilsson, J. d’Orso, and M. Saksena. A survey of regular model

checking. In Proc. 15th CONCUR, LNCS 3170, pages 35–48, 2004.
4. K. Apt and D. Kozen. Limits for automatic verification of finite-state concurrent systems. IPL,

22(6):307–309, 1986.
5. A. Arora and M.G. Gouda. Closure and convergence: A foundation of fault-tolerant computing.

Software Engineering, 19(11):1015–1027, 1993.

6. P.C. Attie, A. Arora, and E.A. Emerson. Synthesis of fault-tolerant concurrent programs. ACM
TOPLAS, 26:128–185, 2004.

7. B. Awerbuch. Optimal distributed algorithms for minimum weight spanning tree, counting, leader
election and related problems. In Proc. 19th STOC, pages 230–240, 1987.

8. C. Baier, N. Bertrand, and P. Schnoebelen. On computing fixpoints in well-structured regular
model checking, with applications to lossy channel systems. In Proc. 13th LPAR, LNAI 4246,
pages 347–361, 2006.

9. S. Bardin, A. Finkel, J. Leroux, and P. Schnoebelen. Flat acceleration in symbolic model checking.
In Proc. 3rd ATVA, LNCS 3707, pages 474–488, 2005.

10. A. Bouajjani, P. Habermehl, and T. Vojnar. Abstract regular model checking. In Proc. 16th CAV,
LNCS 3114, pages 372–386, 2004.

11. J.R. Büchi. Weak second-order arithmetic and finite automata. Zeit. Math. Logik und Grundl.
Math., 6:66–92, 1960.

12. Keneddey Space Center. NASA space shuttle launch archive, mission STS-1.
http://science.ksc.nasa.gov/shuttle/missions/sts-1/mission-sts-1.html, 1981.

13. A. Daliot, D. Dolev, and H. Parnas. Linear time byzantine self-stabilizing clock synchronization.
In Proc. of 7th PODC, pages 7–19, 2003.

14. D. Dolev and H.R. Strong. Authenticated algorithms for byzantine agreement. SIAM Journal on
Computing, 12:656–666, 1983.

15. J. Elgaard, N. Klarlund, and A. Möller. Mona 1.x: new techniques for WS1S and WS2S. In Proc.
10th CAV, LNCS , pages 516–520, 1998.

16. C. Elgot. Decision problems of finite-automata design and related arithmetics. Trans. Amer. Math.
Soc., 98:21–51, 1961.

17. E.A. Emerson and V. Kahlon. Reducing model checking of the many to the few. In Proc. 17th
CAD, pages 236–255, 2000.

18. E.A. Emerson and K.S. Namjoshi. On reasoning about rings. IJFCS, 14(4):527–550, 2003.
19. M. Faloutsos and M. Molle. Optimal distributed algorithm for minimum spanning trees revisited.

In Proc. 14th PODC, pages 231–237, 1995.
20. Y. Fang, N. Piterman, A. Pnueli, and L. Zuck. Liveness with invisible ranking. STTT, 8(3):261–

279, 2004.
21. D. Fisman and A. Pnueli. Beyond regular model checking. In Proc. 21st FST&TCS, LNCS 2245,

pages 156–170, 2001.
22. P. Habermehl and T. Vojnar. Regular model checking using inference of regular languages. In

ENTCS 138(3) 21–36, 2005.
23. Y. Kesten, O. Maler, M. Marcus, A. Pnueli, and E. Shahar. Symbolic model checking with rich

assertional languages. TCS, 256:93–112, 2001.
24. D. Lesens, N. Halbwachs, and P. Raymond. Automatic verification of parameterized linear net-

works of processes. In Proc. 24th POPL, pages 346–357, 1997.
25. N.A. Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.
26. M.R. Malekpour. A byzantine fault-tolerant self-stabilization synchronization protocol for dis-

tributed clock synchronization systems. TR NASA/TM-2006-214322, NASA STI, 2006.
27. M.R. Malekpour and R. Sinimiceanu. Comments on the “byzantine self-stabilization synchroniza-

tion” protocol: counterexamples. TR NASA/TM-2006-213951, NASA STI, 2006.
28. A. Pnueli and E. Shahar. Liveness and acceleration in parameterized verification. In Proc. 12th

CAV, pages 328–343, 2000.
29. R.D. Schlichting and F.B. Schneider. Fail-stop processors: An approach to designing fault-tolerant

computing systems. Computer Systems, 1(3):222–238, 1983.
30. A. Tanenbaum and M. van Steen. Distributed Systems: Principles and Paradigms Prentice Hall,

2007.
31. W. Thomas. Automata on infinite objects. Handbook of Theoretical Computer Science, pp. 133–

191, 1990.
32. M.Y. Vardi and P. Wolper. Reasoning about infinite computations. I&C, 115(1):1–37, 1994.
33. P. Wolper and V. Lovinfosse. Verifying properties of large sets of processes with network invari-

ants. Proc. Automatic verification methods for finite state systems, pp. 68–80, 1990.

A Syntax and Semantics of LTL(FMSO)

Let ϕ be an FMSO formula. A basic LTL(FMSO) formula is given by the grammar

Ψ ::= ϕ | ¬Ψ | Ψ ∨ Ψ | 2Ψ | 3Ψ | , Ψ | ΨUΨ.

A (non-basic) LTL(FMSO) formula may involve FMSO formulas with at most one free
variable i ∈ F. Such a variable is bounded to an external quantification. For example,
∃i2(Σtok [i] = T) involves the FMSO formula Σtok [i] = T in which i ∈ F is free and
is bounded to the an existential quantification that is external to the temporal operator 2.

Formally, an LTL(FMSO) formula is either a closed basic LTL(FMSO) formula, a formula
of the form ∃iΨ and ∃IΨ , for an LTL(FMSO) formula Ψ in which i ∈ F and I ∈ S, respec-
tively, are free, or a boolean assertion of LTL(FMSO) formulas,

We interpret LTL(FMSO) formulas over a model I = 〈n, IF , IS , IM 〉 where IF and IS

are as in FMSO and IM : (N × Zn) → Σ is an infinite matrix whose elements are letters
in Σ. Intuitively, for t ∈ N and i ∈ Zn, the element IM (t, i) describes the state of process
i at time t. Accordingly, the t-th row of the matrix is a word of length n over Σ, describing
the configuration of the system at time t. Also, the i-th column in the matrix describes the
on-going behavior of process i. We use IM [t] to denote the t-th row of IM and I[t] to denote
the tuple 〈n, IF , IS , IM [t]〉.

We use the notation 〈I, t〉 |= ϕ to indicate that the suffix of the model starting at
time t satisfies the formula ϕ. We define the relation |= inductively as follows. For a ba-
sic LTL(FMSO) formula, we have

〈I, t〉 |= ϕ iff I[t] |= ϕ

The semantics of the boolean operators ¬ and ∨ is defined as usual. The semantics of the
temporal operators and the external quantifiers is defined as follows:

〈I, t〉 |= 2Ψ iff ∀t′ ≥ t : 〈I, t′〉 |= Ψ
〈I, t〉 |= 3Ψ iff ∃t′ ≥ t : 〈I, t′〉 |= Ψ
〈I, t〉 |= ,Ψ iff 〈I, t + 1〉 |= Ψ
〈I, t〉 |= Ψ1UΨ2 iff ∃t′′ ≥ t : 〈I, t′′〉 |= Ψ2 and

∀t ≤ t′ < t′′ : 〈I, t′〉 |= Ψ1

〈I, t〉 |= ∃iΨ iff ∃m ∈ Zn s.t. 〈I[i 7→ m], t〉 |= Ψ
〈I, t〉 |= ∃IΨ iff ∃S ⊆ Zn s.t. 〈I[I 7→ S], t〉 |= Ψ

For example, 〈I, 0〉 |= ∃i2(Σtok [i] = T) iff there is m ∈ Zn such that (IM (t,m))|Σtok=T

for all t. Equivalently, it asks whether there is a process m that always holds the token.

B Timing and omission faults
In order to model timing faults, we add to the signature the underlying alphabet Σt = {D, A},
which indicates whether a faulty process is now in a delay (D) or active (A) mode. Only faulty
processes may be delayed, and when the process is in a delay mode, we keep its state fixed.
Formally,

– Θ̃[i] := Θ[i] ∧ ((∆t[i] = D) → (∆f [i] = F)),
– ∆f [i] := ((Σt[i]=A) → ∆[i]) ∧ ((Σt[i]=D) → (Σ[i] = Σ′[i])).

Finally, to ensure that all processes are active infinitely often, we add the assumption formula
ψfair = ∀i(23Σt[i] = A).

There are several variants of timing faults in the literature, allowing the delayed process
to behave as a Byzantine process until it is active again. Modeling such faults requires some
assumptions on the description of the protocol. For example, if the delayed process can ig-
nore ∆[i] as long as it is in a delay mode, we only need it to remember its location, thus
assuming that some underlying alphabet maintains it. A similar phenomena exists in omis-
sion faults. Essentially, the idea there is to let the sending process proceed as if a message
has been sent, without the receiving process proceeding as if a message has been received, or
vice versa. Each protocol, however, has its mechanism for message passing, and the details
of the compilation depends on this mechanism. In Appendix C, we demonstrate the modeling
of a particular mechanism.

C Example: Reliable Broadcast
The problem of broadcasting is simple: a distinguished process wants to broadcast some
message m to the other processes. The infrastructure for broadcast exists, thus problems arise
only due to faults. Analysis of broadcasting protocols in the distributed-algorithm literature
assumes that if a process fail-stops while broadcasting, then the message is received by a
nondeterministically chosen subset of the processes. The justification for this interpretation
is that a broadcast operation actually consists of many small transitions (sending the message
to one processor at a time). If we apply the usual interpretation of fail-stop to the many small
transitions (which are nondeterministically ordered), the result is equivalent to the usual
interpretation of fail-stop.

It is not hard to see that if the distinguished process never fail-stops or fail-stops after
broadcasting, then all the sound processes receive m and no problem arises. It is unavoidable
that if the distinguished process fails before starting the broadcast, no other process receives
m. However, even in this case, all sound processes agree that no message was received. The
problem is that the distinguished process might fail during the broadcast operation. If this is
the case, then some of the sound processes may have received m while others have not, and
the views of the sound processes differ. An algorithm for reliable broadcast ensures that the
sound processes eventually agree on their view, regardless of faults.

The following reliable broadcast protocol was suggested in [14].

Protocol 2: reliable-broadcast
sent ← 0
for i = 1 to ∞ do

if received message m and sent = 0 then
broadcast message m
sent ← 1

end
end

In fact, it is argued in [14], that if it is known in advance that the number of faulty
processes is at most k, then the for loop can be executed for only k iterations. Our goal is to
verify this claim using our methodology.

The state of a faulty process is a letter in the alphabet Σ = Σr ×Σv ×Σs ×Σf ×Σt,
where

1. Σr = {rec,¬rec} indicates whether the process received a message in the past or not.

2. Σv = {m1, . . . , mt} ∪ {⊥,>} represents the process’s view of the message, where mi

for 1 ≤ i ≤ t is a possible message, ⊥ stands for “no message” and > stands for “more
than one message”. We use M to denote the set of possible messages {m1, . . . , mt}.

3. Σs = {snt,¬snt} indicates whether the process has sent the message in the past or not.
4. Σf = {S, F} indicates whether the process is sound or faulty.
5. Σt = {A, H} indicates whether the process is alive or halted.

For example, the letter 〈¬rec,⊥,¬snt, F, A〉 characterizes a process that has not received
a message yet, its view of the message is⊥ (i.e. “no message seen”), it has not sent a message
yet, it is a faulty process, and it is (still) alive.

We can now approach the modeling of the protocol. Our approach towards modeling
the non-determinism in the fail-stop broadcast is as follows: when a successful broadcast of
message m is completed, it implies that all sound processes has received it, and therefore
their view of the message must be either m or >. On the other hand, if a process view of the
message is m, this should be justified, either by the view being m before, or by the existence
of some broadcast operation of m. The non-determinism (if it exists) is modeled by the gap
between these two types of implication.

Describing the transition formulas, we are going to use the following subformulas: the
formula sbc[j] holds iff process j has performed a successful broadcast. Similarly, the for-
mula fbc[j] holds iff process j has performed a broadcast but fail-stopped during the broad-
cast. The formula bc[j] holds iff process j has performed either a successful or an unsuccess-
ful broadcast. In addition, for each message m ∈ M , the bcm and sbcm hold iff some (resp.
successful) broadcast of m has been performed. Formally,

– sbc[j] := (Σs[j] = ¬snt ∧Σ′
s[j] = snt ∧Σ′

t[j] = A)
– fbc[j] := (Σs[j] = ¬snt ∧Σ′

s[j] = snt ∧Σ′
t[j] = H)

– bc[j] := sbc[j] ∨ fbc[j].
– sbcm := ∃j sbc[j] ∧ (Σv[j]=m)
– bcm := ∃j bc[j] ∧ (Σv[j]=m)

With each v ∈ Σv , we associate the formula jv[i]v that holds iff the view of process i in
the next state may be v. Formally,

– jv[i]⊥ := Σv[i]=⊥
– jv[i]m := (Σv[i]=m) ∨ bcm

– jv[i]> := (Σv[i]=>) ∨ (
∧

m1 6=m2

Σv[i]=m1 ∧ bcm2) ∨ (
∧

m1 6=m2

bcm1 ∧ bcm2).

We are now ready to provide the definition P̃ [i] := 〈Σ, Θ[i],∆[i]〉 of a process that
may suffer from fail-stop faults. Initially all processes are alive. In addition, the view of
all processes but the distinguished one, whose identity is set to 1, is that no message has
been seen. The view of the distinguished process is some message m in M . Accordingly,
Θ[i] := ((i = 1) → Θ=1[i]) ∧ ((i 6= 1) → (Θ6=i[i])), where

– Θ=1[i] := (Σt[i] = A)∧ (Σr[i] = rec)∧ (Σv[i] 6= ⊥)∧ (Σv[i] 6= >)∧ (Σs[i] = ¬snt).
– Θ 6=1[i] := (Σt[i] = A) ∧ (Σr[i] = ¬rec) ∧ (Σv[i] = ⊥) ∧ (Σs[i] = ¬snt).

The transition relation ∆[i] is a conjunction of three transition ∆F[i], ∆H[i], and ∆A. The
formula ∆F[i] is identical to ∆(1)+(2) from Section 3.2 and asserts the faulty components
Σf and Σt behave as expected, the formula ∆H[i] is identical to ∆(3) from Section 3.2 and
makes sure that if a process has halted, then it does not change its state. The formulas are
defined as follows:

– ∆F[i] :=

∧ Σ′

f [i]=Σf [i]
Σf [i]=H → Σt[i]=F
Σt[i]=H → Σ′

t[i]=H

– ∆H[i] := (Σt[i]=H) →

∧ Σ′

r[i]=Σr[i]
Σ′

v[i]=Σv[i]
Σ′

s=Σs[i]

– ∆A[i] := (Σt[i]=A) → (δr[i] ∧ δm[i] ∧ δs[i]), where

• δr[i] :=
(∧ (∃j sbc[j]) → Σ′

r[i]=rec)
(∀j ¬bc[j]) → Σ′

r[i] = Σr[i])

)

• δm[i] :=

∧

∧
m∈M

(sbcm → Σ′
v[i] ∈ {m,>})

∧
v∈Σv

(Σ′
v[i]=v → jv[i]v)

• δs[i] := (Σr[i] = rec ↔ Σ′
s[i] = snt)

The next step is to formalize the specification and the faults distribution. The informal
specification is that all the sound processes should eventually reach agreement regarding
their view of the message. The corresponding LTL(FMSO) formula is

32(
∨

v∈M∪{⊥}
∀i((Σf [i] = S) → (Σv[i] = v))).

As a fault distribution we choose 〈U, F, 17〉, thus at most 17 faulty processes are allowed.
We can now run a regular model-checking tool and conclude the specification holds. In

fact, an intelligent user can learn more than the satisfaction of the specification: a reachability
analysis teaches that a fixed-point is reached within 17 steps. That is, the set of states reach-
able in i steps for i ≥ 17 coincides with the set of states reachable in 17 steps. Furthermore,
all the states reachable in 17 steps or more satisfy

∨
v∈M∪{⊥} ∀i((Σf [i] = S) → (Σv[i] =

v)). Thus, the time in which the eventuality of the specification is reached is bounded by 17
steps.

