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Abstract. There has been a major emphasis recently in the semiconductor indus-
try on designing industrial-strength property specification languages nTajor
languages are ForSpec and Sugar 2.0, which are both extensiomsadf$LTL.

Both ForSpec and Sugar 2.0 directly support reset/abort signalsjéh witheck

for a propertyyy may be terminated and declared successful by a reset/abort sig-
nal, provided the check has not yet failed. ForSpec and Sugar@vever, differ

in their definition of failure. The definition of failure in ForSpec is syntactibiles

the definition in Sugar 2.0 is semantic. In this work we examine the implications
of this distinction between the two approaches, which we refer to agske¢ap-
proach (for ForSpec) and tladort approach (for Sugar 2.0). In order to focus on
the reset/abort issue, we do not consider the full languages, whictuieerich,

but rather the extensions of LTL with the reset/abort constructs.

We show that the distinction between syntactic and semantic failure has a dra-
matic impact on the complexity of using the language in a model-checking tool.
We prove thaReset-LTL enjoys the “fast-compilation property”: there is a linear
translation ofReset-LTL formulas into alternating Bchi automata, which im-
plies a linear translation dReset-LTL formulas into a symbolic representation

of nondeterministic Bchi automata. In contrast, the translatiomobrt-LTL for-
mulas into alternating Bchi automata is nonelementary (i.e., cannot be bounded
by a stack of exponentials of a bounded height); edmirt yields an exponential
blow-up in the translation. This complexity bounds also apply to model ¢hgck
model checkingreset-LTL formulas is exponential in the size of the property,
while model checkingdbort-LTL formulas is nonelementary in the size of the
property (the same bounds apply to satisfiability checking).

1 Introduction

A key issue in the design of a model-checking tool is the ahaitthe formal spec-
ification language used to specify properties, as this laggus one of therimary
interfaces to the tool [7]. (The other primary interfacehis modelling language, which
is typically the hardware description language used by gségthers). In view of this,
there has been a major emphasis recently in the semicomdudiastry on design-
ing industrial-strength property specification languaffeSLs), e.g., Cadence’s For-
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malCheck Specification Language [8], Intel's ForSpeé,[IBM’s Sugar 2.0 [2}, and
Verisity's Temporale [11]. These languages are &tlear temporal languages (Sugar
2.0 has also a branching-time extension), in which timegiatéd as if each moment in
time has a unique possible future. Thus, linear temporahfitas are interpreted over
linear sequences, and we regard them as describing theibeb&e single computa-
tion of a system. In particular, both ForSpec and Sugar hbeaviewed as extensions
of Pnueli’'sLTL [13], with regular connectives and hardware-orientedufiess.

The regular connectives are aimed at giving the languagithexpressive power
of Buchi automata (cf. [1]). In contrast, the hardware-oridrfeaturesclocksandre-
sets/abortsare aimed at offering direct support to two specificatiordesoften used
by verification engineers in the semiconductor industryihBibocks and reset/abort are
features that are needed to address the fact that moderosetactor designs consist
of interacting parallel modules. Today’s semiconductaigie technology is still dom-
inated by synchronous design methodology. In synchronioasits, clock signals syn-
chronize the sequential logic, providing the designer wigimple operational model.
While the asynchronous approach holds the promise of grepead ([5]), designing
asynchronous circuits is significantly harder than desigisiynchronous circuits. Cur-
rent design methodology attempt to strike a compromisedatmhe two approaches by
using multiple clocks. This methodology results in arottiiees that are globally asyn-
chronous but locally synchronous. ForSpec, for examplgpeus local asynchrony via
the concept ofocal clocks which enables each subformula to sample the trace accord-
ing to a different clock; Sugar 2.0 supports local clocks girailar way.

Another aspect of the fact that modern designs consist aflpamodules interact-
ing asynchronously is the fact that a process running on argiuta can be reset by a
signal coming from another module. As noted in [15], resetied has long been a crit-
ical aspect of embedded control design. Both ForSpec andr&ug directly support
reset/abort signals. The ForSpec formudecept a in ¢" asserts that the property
should be checked only until the arrival of the reset signalt which point the check
is considered to havaucceededSimilarly, the Sugar 2.0 formula/* abort on a” as-
serts that property should be checked only until the arrival of the abort signaht
which point the check is considered to have succeeded. mHmiSpec and Sugar 2.0
the signak: has to arrive before the propertyhas “failed”; arrival after failure cannot
“rescue”y. ForSpec and Sugar 2.0, however, differ in their definitibfadure.

The definition of failure in Sugar 2.0 is semantic; a formwdsf at a point in a
trace if the prefix up to (and including) that point cannot lxéeeded in a manner
that satisfies the formula. For example, the formutekt false’ fails semantically at
time 0, because it is impossible to extend the point at tine&®ttace that satisfies the
formula. In contrast, the definition of failure in ForSpesysitactic. Thus, hext false’
fails syntactically at time 1, because it is only then thatftilure is actually discovered.
As another example, consider the formufagfobally —p) A ( eventually p)”. It fails

! ForSpec 2.0 has been designed in a collaboration between Intel, GgnPegomation, Syn-
opsys, and Verisity, and has been incorporated into the hardwareasafi language Open
Vera, seéht t p: / / www. open-ver a. com

2See http://ww. haifa.il.ibmconfprojects/verification/sugar/ for
description of Sugar 2.0. We refer here to Version 0.8 (Draft 1p1.9e2, 2002.



semantically at time 0, but it never fails syntacticallycs it is always possible to wait
longer for the satisfaction of the eventuality (Formallye thotion of syntactic failure
correspond to the notion ahformative prefixin [6].) Mathematically, the definition
of semantic failure is significantly simpler than that of &gatic failure (see formal
definitions in the sequel), since the latter requires andtide definition with respect to
all syntactical constructs in the language.

In this work we examine the implications of this distinctibatween the two ap-
proaches, which we refer as thesetapproach (for ForSpec) and thbort approach
(for Sugar 2.0). In order to focus on the reset/abort issuweda not consider the full
languages, which are quite rich, but rather the extensiéh3lo with the reset/abort
constructs. We show that while both extensions result ifrctothat are as expressive
aslLTL, the distinction between syntactic and semantic failuseehdramatic impact on
the complexity of using the language in a model-checking. toolinear-time model
checking we are given a desigi (expressed in an HDL) and a propetty(expressed
in a PSL). To check that/ satisfiesy) we construct a state-transition systéfyy that
corresponds ta/ and a nondeterministic iBhi automaton4._,,, that corresponds to
the negation of). We then check if the compositidh, ||.A-,;, contains a reachable fair
cycle, which represents a traceldf falsifying «» [19]. In a symbolic model checker the
construction ofly, is linear in the size of\f [3]. For LTL, the construction ofd-, is
also linear in the size af [3, 18]. Thus, the front end of a model checker is quite fast; i
is the back end, which has to search for a reachable fair aydig;||.A-,;, that suffers
from the “state-explosion problem”.

We show here thaReset-LTL enjoys that “fast-compilation property”: there is a
linear translation oReset-LTL formulas into alternating Bchi automata, which are
exponentially more succinct than nondeterministiccBi automata [18]. This implies
a linear translation oReset-LTL formulas into a symbolic representation of nondeter-
ministic Biichi automata. In contrast, the translatiorAdfort-LTL formulas into alter-
nating Bichi automata is nonelementary (i.e., cannot be boundedtack of exponen-
tials of a bounded height); eaalbort yields an exponential blow-up in the translation.
These complexity bounds are also shown to apply to modekamhgcmodel checking
Reset-LTL formulas is exponential in the size of the property, whiledelochecking
Abort-LTL formulas is nonelementary in the size of the property (theeséounds
apply to satisfiability checking).

Our results provide a rationale for the syntactic flavor dirdeg failure in ForSpec;
it is this syntactic flavor that enables alternating aut@ntatcheck for failure. This
approach has a more operational flavor, which could be arguedatch closer the
intuition of verification engineers. In contrast, alteingtautomata cannot check for
semantic failures, since these requires coordination émtwndependent branches of
alternating runs. Itis this coordination that yields anaxgntial blow-up peabort. Our
lower bounds for model checking and satisfiability show thét blow-up is intrinsic
and not a side-effect of the automata-theoretic approach.



2 Preliminaries

A nondeterministic Bchi word automatorfNBW) is A = (X, S, Sy, 6, F'), whereX

is a finite set of alphabet letterS, is a set of states), : S x X — 29 is a transition
function, So C S is a set of initial states, anBl C S is a set of accepting states. Let
w = wp, w1, ... be an infinite word ovel. Fori € N, let w’ = w;, wi;1, ... denote
the suffix ofw from itsith letter. A sequencg = sg, s1,...In S¥ is arun of 4 over
an infinite wordw € X, if s € Sy and for everyi > 0, we haves; 1 € §(s;, w;). We
useinf(p) to denote the set of states that appear infinitely oftem it run p of A is
acceptingdf inf(p) N F # 0. An NBW A accepts a word if .4 has an accepting run
overw. We useL(.A) to denote the set of words that are acceptedlbffors € S, we
denote by4® the automatomd with a single initial state.

Before we define an alternatingiBhi word automaton, we need the following def-
inition. For a given sefX, let B7(X) be the set of positive Boolean formulas ovér
(i.e., Boolean formulas built from elements ¥ usingA andV), where we also allow
the formulagrue andfalse LetY C X. We say thal” satisfiesa formulad € B+ (X)
if the truth assignment that assigmae to the members oY and assign$alseto the
members of' \ Y satisfied). Atreeis ase’ C N*, such that forr € N* andn € N,
if xn € X thenx € X. We denote the length af by |z|.

An alternating Bichi word automatorfABW) is A = (X, S, 5%, 6, F), where X,
S, and F are as in NBW;s” € S is a single initial state, and : S x X — BT(9)
is a transition function. A run afd on an infinite wordw = wg, w1, ... is a (possibly
infinite) S-labelled treer such thatr(¢) = s° and the following holds: ifiz| = i,
T(z) = s, andd(s,w;) = 0, thenx hask childrenzy, ..., xy, for somek < |5,
and{r(z1),...,7(zk)} satisfiesd. The runr is acceptingf every infinite branch in-
includes infinitely many labels i&". Note that the run can also have finite branches; if
|z| =i, 7(x) = s, andd(s, a;) = true, thenz need not have children.

An alternating weak word automatdAWW) is an ABW such that for every strongly
connected componeldt of the automaton, eithef’ C F or C N F = (. Given two
AWW A; and A,, we can construct AWW fo2 \ L(A;), L(A;) N L(As), and
L(Ay) U L(As), which are linear in their size, relative #, and.A; [12].

Next, we define the temporal logid L over a set of atomic propositionsP. The
syntax ofLTL is as follows. An atonp € AP is a formula. Ify; andy. areLTL
formulas, then so areyq, Y1 A 9, Y1 V ¥, X 11, andyy U 1)y, For the semantics of
LTL see [13]. EachTL formulat induces a languagg(x) C (247)« of exactly all
the infinite words that satisfy.

Theorem 1. [18] For everyLTL formulay, there exists an AWW,, with O(]|) states
such thatL () = L(Ay).

Proof. For every subformula of ¢, we construct an AWWA,, for . The construction
proceeds inductively as follows.

— Forg = p € AP, we defined, = (247 {s9},59.6,,0), whered, (s), o) = true
if pis true ino andd, (s), o) = falseotherwise.

— Let ¢, andi), be subformulas of) and letA;, and.A,, the automata for these
formulas. The automata fori)y, 11 A 12, andi; V i, are the automata fat* \
L(A1), L(A1) N L(Az), andL(A;) U L(As), respectively.



— For o = X1y, we defined, = (247 {s0} U Sy,,s0,80 U éy,, Fy,) where
do(s%,0) = 52)1.

— Forp = ¢ Uy, we defined,, = (247, {s) }US¢1US¢2, 50, 00Uby, Udy,, Fy, U
Fy,) wheredy (s, 0) = 5w2(8w2a o)V (5w1(8¢1 o) AsQ).

An automata-theoretic approach fofL satisfiability and model-checking is pre-
sented in [20, 21]. The approach is based on a constructibiB@¥ for LTL formulas.
Given anLTL formula v, satisfiability of) can be checked by first constructing an
NBW A, for ¢ and then checking if.(A,,) is empty. As for model checking, assume
that we want to check whether a system that is modelled by aWNB,; satisfiesy.
First construct an NBWA_, for -+, then check whethelt (A ) N L(A-y) = 0. (The
automatonA_,;, can also be used as a run-time monitor to check thelbes not fail
during a simulation run [6].)

Following [18], given arL TL formulas, the construction of the NBW fap is done
in two steps: (1) Construct an AB\M; that is linear in the size of. (2) Translate
A, to Ay. The size ofA, is exponential in the size oft;, [10], and hence also in
the size ofyy. Since checking for emptiness for NBW can be done in lingaetor in
nondeterministic logarithmic space [21], both satisfioind model checking can be
solved in exponential time or in polynomial space. Sincénhwbblems are PSPACE-
complete [14], the bound is tight.

3 Reset-LTL

In this section we define and analyze the logieset-LTL. We show that for every
Reset-LTL formula ¢, we can efficiently construct an AB\M,;, that acceptd.(v)).
This construction allows us to apply the automata-theosgiproach presented in Sec-
tion 2 toReset-LTL. The logicReset-LTL is an extension ofTL, with the operators
accept in andreject in. Let ¢ be aReset-LTL formula over24” and letb be a
Boolean formula over P. Then,accept b in ¢ andreject b in ¢) areReset-LTL for-
mulas. The semantic &teset-LTL is defined with respect to tuplés), a, ), wherew
is an infinite word oveR4”, anda andr are Boolean formulas ovet P. We refer to
a andr as thecontextof the formula. Intuitively,a describes aacceptsignal, whiler
describes aejectsignal. Note that every letterin w is in 247, thusa andr are either
true or false inr. The semantic is defined as follows:

— Forp € AP, we have thatw, a,r) E pif wo EaV (p A 7).

= (w,a,r) E-if (w,r,a) .
< > l—wl/\l/ﬁ if <w7a,r> ):wl and(w,a,r} ):1/12
- (w,a r) E iy Vs if (w,a,r) =y or {w,a,r) = .

— (w,a,r) E X if wy = aor ((w!,a,r) = andwg [~ 7).

— {w,a,r) = 11 Uy if there existsk > 0 such thatw”, a,r) |= 1, and for every
0 <j <k, we have(w’,a,r) = ;.

— (w,a,r) Eacceptbin if (w,aV (bA-r),r)y = .

— (w,a,r) Erejectbin ¢ if (w,a,rV (b A -a)) E .



An infinite wordw satisfies a formula if (w, false false) |= . The definition ensures
thata andr are always disjoint, i.e., there is moc 247 that satisfies both andr.
It can be shown that this semantics satisfies a natural gymbperty:—accept a in v
is logically equivalent taeject b in —. For a discussion of this semantics, see [1]. Its
key feature is that a formula holds if the accept signal irsd before the formula
“failed”. The notion of failure is syntax driven. For examapK false cannot fail before
time 1, since checkin¥ false at time 0 requires checkirfglseat time 1.

Before we analyze the complexity &feset-LTL, we characterize its expressive-
ness.

Theorem 2. Reset-LTL is as expressive dJ L.

The proof of Theorem 2 relies on the fact that although thespicand reject condi-
tionsa andr of the subformulas are defined by the semanti®e$et-LTL, they can

be determined syntactically. We can use this fact to reviR#geet-LTL formulas into

equivalent.TL formulas.

We now present a translation &eset-LTL formulas into ABW. Note, that the
context that is computed during the evaluatiorRefset-LTL formulas depends on the
part of the formula that “wraps” each subformula. Given arfola ), we define for
each subformula of ¢ two Boolean formulagcc, [¢] andrej,[¢] that represent the
context ofp with respect ta).

Definition 1. For a Reset-LTL formula and a subformulap of ¢, we define the
acceptance context @f, denotedaccy, (], and therejection context ofp, denoted
rejy|e]. The definition is by induction over the structure of the folarin a top-down
direction.

— If ¢ = 9, thenacey [p] = falseandrej,[¢] = false
— Otherwise, let be the innermost subformulaofthat hasy as a strict subformula.
o If £ = accept b in ¢, thenacey o] = accy €]V (bA—rejy[€]) andrejy (o] =
rejylE].
o If & = reject bin ¢, thenaccy[p] = acey €] andrejy (] = rejyé] V (b A
—acey [€])-

o If & = g, thenacey [p] = rejy €] andrejy (o] = accy[€].
o In all other casesgaccy [¢] = accy[€] andrejy o] = rejyl€].

A naive tree representation of the Boolean formulas; [¢] andrej,;[¢] can lead to an
exponential blowup. This can be avoided by using DAG repriad®n of the formulas.
Note that two subformulas that are syntactically identiogght have different contexts.
E.g., for the formula) = accept pg in p; Vaccept ps in py, there are two subformulas
of the formp; in ¢. For the left subformula we havec, [p1] = po and for the right
subformula we havecc[p1] = pa.

Theorem 3. For everyReset-LTL formula 1, there exists an AWM., with O(|y])
states such thak () = L(Ay).

Proof. For every subformula of 1), we construct an automatofy, .. The automaton
Ay, accepts an infinite word iff (w, accy (o], rejyle]) = . The automatom,, is
then A, . The construction ofd,, , proceeds by induction on the structurehs
follows.



— Forp = p € AP, we definedy , = (247 {s9},50,6,,0), whereg,(s),0) =
true if accy[p] V (p A —rejyle]) is true ino andd, (s, o) = falseotherwise.

— For Boolean connectives we apply the Boolean closure of AWW.

— Forp = X4y, we defined,, , = (247, {s0} U Sy, 50,80 U by, , Fy,) where

true if o = accyly),
50(5370) = |false if o = rejy (o],
52}1 otherwise.

— For ¢ = 11 U 4, we defirgeAwW = <2(‘)“P, {s2}u wa U Sy, sé},,éo U Gy, U
(5¢2, Fy, U F¢2>, Whereéo(sw 0’) = 51112 (sw,a) V ((5¢1 (SIZH’ O’) A S@).

— Foryp = accept b in ¢, we defined,, , = Ay 4,

— Fory = reject b in ¢; we defined,, , = Ay 4,

Note thatA,, , depends not only om but also oruccey [¢] andrejy, (], which depend
on the part of) that “wraps”y. Thus, for example, the automatety, ,,, we get forp =
accept b in ¢, is different from the automator,, ,,, we get fory = reject b in ¢,
and both automata depend an

The construction of ABW foReset-LTL formulas allows us to use the automata-
theoretic approach presented in Section 2. Accordinglyhese the following (the
lower bounds follow from the known bounds for LTL).

Theorem 4. The satisfiability and model-checking problemRe&et-LTL are PSPACE-
complete.

Theorems 3 and 4 imply that the standard automata-the@appiooach to satisfi-
ability and model checking extends Reset-LTL in a fairly straightforward fashion.
In particular, translation to alternating automata uridsrthe standard approaches to
compilation of LTL to automata. Current compilers of LTL totamata, either explicit
[4] or symbolic [3], are syntax driven, recursively applyifairly simple rules to each
formula in terms of it subformulas. For example, to compiie formula Xy sym-
bolically, the compiler generates symbolic variablgsand zx,, adds the symbolic
invariancezx, < z;, (by convention primed variables refer to the next point inef),
and proceeds with the processingyafAs the proof of Theorem 3 shows, the same
approach applies also Reset-LTL.

Remark 1.Theorem 4 holds only for formulas that are represented as,tvehere ev-

ery subformula ofy has a unique occurrence. It does not hold in DAG representati
where subformulas that are syntactically identical ardienhi In this case one occur-
rence of a subformula could be related to many automata tfiat th their context.
Thus, the size of the automaton could be exponential in thgtheof the formula, and
the automata-based algorithm runs in exponential spac&¥@SPACE lower bound

for the satisfiability oReset-LTL formulas that are represented as DAGs can be shown,
s0, the bounds are tight.



4 Abort-LTL

In this section we define and analyze the lo§kmwort-LTL. We first present a construc-
tion of AWW for Abort-LTL formulas with size nonelementary in the size of the for-
mula. This implies nonelementary solutions for the satidiitg and model-checking
problems, to which we later prove matching lower bounds.

The Abort-LTL logic extendd.TL with an abort on operator. Formally, if) is an
Abort-LTL formula over24” andb is a Boolean formula oved P, then> abort on b
is anAbort-LTL formula. The semantic of the abort operator is defined asvisi

— w = ¢ abort on b iff w = 9 or there is a prefixw’ of w and an infinite wordov”
such thab is true in the last letter of’ andw’ - w” = 4.

For example, the formula G p) abort on b” is equivalent to the formulgpU (pAb)) v
G p. Thus, in addition to words that satis@yp, the formula is satisfied by words with
a prefix that ends in a letter that satisfieand in whichp holds in every state. Such a
prefix can be extended to an infinite word wh&e holds, and thus the word satisfies
the formula.

Before we analyze the complexity ébort-LTL, we characterized its expressive-
ness.

Theorem 5. Abort-LTL is as expressive dSL.

The proof of Theorem 5 relies on the fact that for evefy. formula ¢ there exists
a counter-free deterministic Rabin word automaton (DRW) such thatL(y) =
L(Ay), and vice versa [16]. Given aTL formula i) we use the counter-free DRW
A, to construct a counter-free DRW’ such thatL(A’) = L(v abort on b). Thus,
there exists ahTL formula+)’ that is equivalent t@> abort on b.

We now describe a construction of AWW fébort-LTL formulas. The construc-
tion involves a nonelementary blow-up. This implies normedatary solutions for the
satisfiability and model-checking problems, to which welgtrove matching lower
bounds. For two integers andk, let exp(1,n) = 2" andexp(k,n) = 2¢eP(k=1n),
Thus,exp(k, n) is a tower ofk exponents, withn at the top.

Theorem 6. For everyAbort-LTL formula of lengthn and abort on nesting depth
k, there exists atdW W A, with exp(k, n) states such thak () = L(Ay).

Proof. The construction of AWW foLTL presented in Theorem 1 is inductive. Thus, in
order to extend it foAbort-LTL formulas, we need to construct, giveand an AWW
Ay for o, an AWW A, for ¢ = ¢ abort on b. Once we constructl,, the inductive
construction is as described in Theorem 1. Givand.A,,, we construci4,, as follows.

- Let A, = (247, S,,s" §,, F,) be an NBW such that.(A4,) = L(A,). Ac-
cording to [10],.4,, indeed has a single initial state and its size is exponeintial
Ay

— Let A/, = (2475 5™ 8/ F') be the NBW obtained fromd,, by removing

all the states from which there are no accepting runs, ilestaless such that
L(A%) = 0.



— LetAg, = (247,575 5,0), be an AWW wherd is defined, for alk € S and
o € X as follows.

true if o E=bandd,(s,o) # 0,

0s,0) = Vies, syt Otherwise.

Thus, wheneverd!, reads a letter that satisfiésthe AWW accepts. Intuitively,
Ay, accepts words that contain prefixes whetelds in the last letter and has
not yet “failed”.

— We defineA,, to be the automaton fdt(A,) U L(Ay;, ). Note that since botht,,
andAy;, are AWW, so isA,,. The automatom,, accepts a wora if either A,,
has an accepting run over, or if A/, has a finite run over a prefix’ of w, which
ends in a lettes that satisfies$.

ForLTL, every operator increases the number of states of the atdorbgone, making
the overall construction linear. In contrast, here evabort on operator involves an
exponential blow up in the size of the automaton. In the woase, the size ofl,; is
exp(k,n) wherek is the nesting depth of thebort on operator and: is the length of
the formula.

The construction of ABW foAbort-LTL formulas allows us to use the automata-
theoretic approach presented in Section 2, implying nonefgary solutions to the sat-
isfiability and model-checking problems fAbort-LTL.

Theorem 7. The satisfiability and model-checking problem#bbrt-LTL are in
SPACE¢zp(k, n)), wheren is the length of the specification akds the nesting depth
of aborton.

Note that the proof of Theorem 6, buttressed by lower bouettsAy shows that to
have a general compilation éfbort-LTL to automata one cannot proceed in a syntax-
directed fashion; rather, to compifeabort on b one has to construct in sequendg,
Ap, AL, Agin, and finaIIy_AgD abort on » (Of course, these steps can be combined).

We now prove matching lower bounds. We first prove that theetementary blow-
up in the translation described in Theorem 6 cannot be agloifleis proves that the
automata-theoretic approach Adort-LTL has nonelementary cost. We construct in-
finitely many Abort-LTL formulasy* such that every AWW that accefit(v*) is of
size exp(k,n). The formulasy®, are constructed such tha(y*) is closely related
to {wwX¥ : |w| = exp(k,n)}. Intuitively, we use theabort on operator to require
that every letter in the first word is identical to the lettéittze same position in the
next word. It is known that every AWW that accept this langubge at leastzp(k, n)
states. The proof that every AWW that accepts)”) has at leastzp(k, n) states is
similar to the known proof fofwwX* : |w| = exp(k,n)} and is discussed later.

We then show that the nonelementary cost is intrinsic andtis iside-effect of the
automata-theoretic approach by proving a nonelementesgribounds for satisfiability
and model checking okbort-LTL.

We start by considering words of leng?h; that is, whenk = 1. Let ¥ = {0, 1}.
For simplicity, we assume thatand1 are disjoint atomic propositions. Each lettergf
andws is represented by block of “cells”. The letter itself is stored in the first cell of



the block. In addition to the letter, the block stores itsippis in the word. The position
is a number betweetand2™ — 1, referred to as thealueof the block, and we use an
atomic propositiorr; to encode it as an-bit vector. For simplicity, we denotec; by
co. The vector is stored in the cells of the block, with the lesaghificant bit stored at
the first cell. The position is increased by one from one btodke next. The formulas
in I" requires that the first cell of each block is marked with thrat proposition#,
that the first cell in the first block af, is marked with the atomic proposition, and
that the first cell aftervs is marked bys. An example of a legal prefix (structure wise)
is shown in Figure 1. Formally contains the following formulas.

$

@

# # # # # # # # #
o?o0?71?71721?207?7172177
CoChoChC1 C1 CHhCl C1 CyCpCpC1lC1CocC Cl?

Fig. 1. An example forn = 2 that represents the case whare = 0011 andws = 1011. Each
row represents a unique atomic proposition, which should hold at exaetigethin which it is
marked. An exception are the propositidhand1 whose values are checked only in the first cell
in each block (other cells are markep

-1 =#AN (CO AN (XC()/\ S /\XC())
After every # before the first@ there aren — 1 cells without# or @, and then
anothers#. ,

- Y= (#— /\1§1’,<n X' (—~# A-@)AX"#)U @
The first cell is marked by# and the first block counter valueG§0. . . 0.

The following four formulas make sure that the position {iseencoded by, ¢;) is
increased by one ever¢. We use an additional propositiarthat represents the carry.
Thus, we add to the least significant bit and then propagate the carrydmther bits.
Note that the requirement holds until the lgsbefore@.

— 73 = ((# V 2) Aeo) = (X(22) AX™ e1)) U (# A X((~#) U @))
—m = ((0F# V2) Aco) = (X(=2) AX" o)) U (# AX((—#) U @))
=% = ((#V2)Aer) = (X2 A X)) U (# A X((=7) U @))

— %6 = ((0(# V 2) Aer) = (X(=2) AX"er)) U (7 A X((—#) U @))

The following formulas require that the firgtis true immediately aftew .

= 77 = ((# A Vocicn X'c0) = (@) UX(# A -@)) U@
as long as the counter is nbt1 . .. 1 there not going to be.
=8 = ((# AN Nocicn X'c1) = X"@)UQ
When the counter i$11 ... 1 the next value going to be.

The formulas forw, are similar, except that they begin with-&@ U (@ A .. .), and$
replaces@. We add the formuld—$) U @ to make sure that the fir§tis immediately
afterw,.



Next, we describe the formuta which requires that for all positiors< j < 271,
the j-th letter inw; is equal to the-th position inw,. While such a universal quantifi-
cation onj is impossible irLTL, it can be achieved using thabort on operator.

We start with some auxiliary formulas:

n—1

O =#N N\ (XicoA((=8)U (S AXTLeo))) Vv (XTer A((=8) U (8 AXHer))))
=0

The formula requires the current position value to agreé wie position value right
after$. Then, the formula

Oneato = (6= A ((-@) U (@A (((# A 0=) — 0) U§$)))) aborton §.

requires that we are in a beginning of a blockiipn, and every block betweea and$
whose position is equal to the position of the current blooité that there is exactly
one such block) is marked with Intuitively, let

Oneaio = 0= A ((-@) U (@A (((# 1 0=) — 0) U $)))

Then,@),..,, requires that we are in a beginning of a blockun, the block position
is equal to the position of the block that starts afteand every block betweea and

$ whose position is also equal to the position of the block statts aftei$ is marked
with 0. Thus,b.,. ..., is equivalent td,,....o except that it fails when the current block
does not match the block aftrThis is where the abort operator enters the picture. For
every position, if the corresponding block is markedhe prefix of the word that ends
at$ can be extend such that the current block position matchdbgipn of the block
that starts afte§. This extension would satisf, ..., thus the word satisfie®,¢..o.

The formulad,,..;1 is defined similarly.

Now, the formulad requires thaty; = ws.

0= (((#N0) = Onexto) N ((FHAL) = Opearn)) UQ

Words of length exp(k, n) So far we have shown how to construgt, which defines
equality between words of lengthrp(1, 7). We would like to scale up the technique
to construct formulag’® that define equality between words of lengtip(k, n). (As
before, we usé to mark the end of the first word and we usto mark the end of the
second word.) To do that, we encode such words by sequenosistiog ofexp(k, n)
(k—1)-blocks, of lengthezp(k — 1, n) each. Each sudfk — 1)-block, whose beginning
is marked by#;_1, represents one letter, encoding both the letter itself alt as
its position in the word, which requirescp(k — 1,n) bits. We need to require that
(1) (k — 1)-blocks behave as arxp(k — 1, n)-counter, i.e., the firstk — 1)-block is
identically 0, and subsequefi — 1)-blocks count modulexzp(k, n), and (2) if there
are two(k — 1)-blocks,b; in the first word and in the second word that encode the
same position, then they must encode the same letter. Tesx(k) and (2), we have to
refer to bits inside thék — 1)-blocks, which we encode usirig — 2)-blocks, of length
exp(k —2,n).



Thus, we need an inductive construction. We start Wittiocks, of lengthn, and
use formulasl™ to require that the)-blocks behave as am-bit counter (using the
formulas~y, ...,y from earlier). Inductively, suppose we have already rexfliithe
(k — 2)-blocks to behave as ap(k — 2,n) counter. We now want every sequence of
exp(k — 1,n) (k — 2)-blocks, initially marked with#;_1, to encode &k — 1) block.
We use the values of a propositiefr! at the start of eactk — 2)-block to encode the
bits of the(k — 1)-block.

We now need to write formulas analogousAtg . . ., s to require that’k — 1)-
block to behave as arxp(k — 1, n)-bit counter. The difficulty is in referring to bits in
the same position of successie— 1)-blocks using formulas of size polynomialin
(for £ = 1 we can useX™ to refer to corresponding bits in successbsblocks). To
refer to corresponding bits in successfée— 1)-blocks, we use the fact that each such
bit is encoded usingk — 2)-blocks. Thus, referring to such bits require the compariso
of (k — 2)-blocks. Also, to say that the two words, each of lengtp(k, n) are equal
we need to express the analogfpfwhich requires the analogue 6f. But the latter
use a conjunction of size to range over all thex-bits of a0-block. Here we need to
range over al(k — 2) blocks and compare pair of such blocks.

Thus, the key is to be able to compatsblocks, fori = 0,...,k — 1. Once we are
able to compareé-blocks we can go ahead and construct and comfiatel )-blocks.

To comparei-blocks fori > 1 we use the marke$;. Instead of directly comparing
two i-blocks, we compare them both to thblock that come immediately aft&, just

as in6— we compared twad-blocks to the 0-block that comes immediately after the
$ marker. By “aborting on'$; we make sure that we are comparing the tinmocks

to somei-block that could come aftef;; this way we are not bound to some specific
1-block that actually comes afté&.

¥F is a conjunction of a sequence of sets of formulas. The asctgin of the sets
of formulas is inductive, for every level0 < i < k), we definel"* and©’ that require
level i to be “legal” and make some “tools” for levél+ 1. The setl™ requires the
followings:

- 7{: requires that the counter value of the firdtlock is000. . . 0.

— ~4 requires that after ever}; before the nex#; there areexp(i, n) many(i — 1)-
blocks without#;. This formula is only needed in leve] after that it is taken care
of by v~ and~i~*. - .

— The following four formulas %, 74, 7%, and~%) make sure that the counter (that
is encoded by, ¢i) value is increased by one evefy;. We use an additional
propositionz® that represents the carry.

— In the following two formulas4% and~), the firstk — 1 levels are a bit different
from the kth level. The firstt — 1 levels require that at thg; ., proposition will
be true only at the beginning of evefy+ 1)-block. The formulas of théth level

require that the@ will be true exactly at the beginning af;.

A similar set of formulas is used fav,. In addition fori > 0, we require that the first
$; marker appears after, andws, and that the firs$; is proceeded by a legélblock,
and thati-block is proceeded by the fir$f_;. These requirements can be formulated
easily using formulas similar of formulas &F.

The ©' set requires two basic conditions:



1. Aformulafy,,..,, that requires that theblock between the nex ;1) and the
one after, which has the same position value as the cuitiglock, represents the
letterci™t. (A similar formula is needed far,t').

2. Aformuladi, ., that requires that theblock in the(i + 1)-block that starts after
the first$;; 1), and has the same position value as the curidatbck, represents

the letterc,™. (A similar formula is needed far, ™).

both formulas uses the auxiliary formufd that requires the curreritblock to be
equivalent to thé-block that starts right after the fir$y.

We present some examples that demonstrate the inductigéraotion. The base of
the induction is the construction ¢f° and©°. The formulas ofl, are similar to the
formulas that are presented in the former section, the m#i@rehce is that th@-block
with 11...1 value does not imply the end of the first word, but that the Bekock
should be marked with1. Thusyg = ((#0 A Ag<icn X'c) = X" #1) U@

As for the formulas 0B°, they are similar to the formulas that presented in the forme
section, only here we also need formulas that determineahg=\of the matching ad-
dress in the next-block. For exampleg),,, ., requires the matching-block in the
next1-block to represents. Thus,

O ineato = (0L AX((=#£1) U (F1 A (((#o A 02) — cg) UX #£1)))) abort on $g

Assume that for some < i < k, we already constructeld and©’ for every; < i.
The structure of “~! is the base for ™. For exampley! = (#;_1 — ci) U X #,.

In the formulas that require the positions of thblocks to increased by one form

one block to the next, we use ti, . ,, andd’, ' ,, formulas instead of th&"

operator. For example; =
(#ia AV )ACh) = (X(#i-1) U F#Him1 A (229) Ay U (#i AX (=) U @)
Next, we describ@?, the main change is i, which requires that the current
i-block position value is equal to theblock that starts afte;. Thus,
0L = ((#im1 N ) — %;;xto) AN((F#iciNct) — (%;;ﬂ))) U X #;
In the rest of the formulas we use similar techniques. Fomgte,
O nesto = (02 A ((5#i41) U (Fiv1 A (((# AOZ) — ¢f) U X #441)))) abort on §;,
which requires that the matchirigblock in the nexti + 1)-block representsé“.
The last formula that we define requires andw- to be equivalent. First we define
0% enio = (OE71 A (@) U @A X(((#1-1 A OE) — 0) U X @)) abort on $;,_1,
which requires that the matchirig — 1)-block in w» represent$). Next, we define
0%+, in @ similar way. Then, we define
O = (#1-1 N 0) = Ogerio) AN (#Hr1 AL) = (anen)) UXQ,
which requires thaty; = w-
We now discuss the length of the formulas in the above coctiru For every
0 < i < k, we have a constant number of formulagihand©?, thus the number of
formulas isO(k). The problem is in formulas that recursively use other fderauSince
formulas liked” contains four sub-formula&—", the length ob* is O(4%). Thus the
total length of the formulas i©(4* + n).

Lemma 1. Every ABW that accepts! has at leastxp(k,n) states.



Lemma 1 shows that the the automata-theoretic approadbaat-LTL has a nonele-
mentary cost. We now show that this cost is intrinsidbmrt-LTL and is not an artifact
of the automata-theoretic approach.

Satisfiability and model-checking for Abort-LTL We now prove that satisfiability
checking forAbort-LTL is SPACE¢éxp(k, n))-hard. We show a reduction from a hyper-
exponent version of th#éling problem[22,9,17]. The problem is defined as follows
relative to a parametér > 0. We are given a finite séf, two relationsV C T' x T
andH C T x T, an initial tilety, a final tilet,,and a bound, > 0. We have to decide
whether there is some > 0 and an a tiling of arxzp(k, n) x m-grid: such that: (1},
is in the bottom left corner antj, is in the top left corner, (2) Every pair of horizontal
neighbors is in, and (3) Every pair of vertical neighbors is¥ Formally: Is there a
function f : (exp(k,n) x m) — T such that (1)f(0,0) = to andt(0,m — 1) = t,, (2)
for every0 < i < exp(k,n), and0 < j < m, we have thatf (i, j), f(i + 1,7)) €
and (3) for every) < i < exp(k,n), and0 < j < m— 1, we have tha{f (7, ),f(j7z+
1)) € V. This problem is known to be SPACE(p(k, n))-complete [9, 17].

We reduce this problem to the satisfiability problemAdiort — LTL. Given a tiling
problemr = (T, H,V.to,ts,n), we construct a formula, such thatr admits tiling
iff ¢, is satisfiable. The idea is to encode a tiling as a word @veconsisting of a
sequence of blocks of length= exp(k, n), each encoding one row of the tiling. Such
a word represents a proper tiling if it starts with ends with a block that starts witf,
every pair of adjacent tiles in a row are h, and every pair of tiles that arerp(k, n)
tiles apart are if/. The difficulty is in relating tiles that are far apart. To dat we
represent every tile by @& — 1)-block, of lengthezp(k — 1,n), which represent the
tiles position in the row. As we had earlier, to require thet(& — 1)-blocks behave as a
exp(k—1,n)-bit counter and to compafé—1)-blocks, we need to construct them from
(k — 2)-blocks, which needs to be constructed froim- 3)-blocks, and so on. Thus, as
we had earlier, we need an inductive constructioftlolocks, fori =1,...,k—1, and
we need to adapt the machinery of the previous nonelemelataey-bound proof.

It can be shown that there exists an exponential reductiom fhe nonelemen-
tary domino problem to the satisfiability &bort-LTL formulas. Thus the satisfiability
problem of theAbort-LTL is non-elementary hard.

Theorem 8. The satisfiability and model-checking problems Adrort-LTL formulas
nesting deptft of abort on are SPACE{zp(k, n))-complete.

5 Concluding Remarks

We showed in this paper that the distinction between reseastcs and abort seman-
tics has a dramatic impact on the complexity of using thedagg in a model-checking
tool. While Reset-LTL enjoys the “fast-compilation property”—there is a lingansla-
tion of Reset-LTL formulas into alternating &chi automata, the translation Abort-

LTL formulas into alternating &chi automata is nonelementary, as is the complexity of
satisfiability and model checking fébort-LTL. This raises a concern on the feasibility
of implementing a model checker for logics basedAdort-LTL(such as Sugar 2.0).



While the nonelementary blow-up is a worst-case predictiorg can conclude from
our results that whildReset-LTL can be efficiently compiled using a rather modest
extension to existingTL compilers (e.qg., [4, 3]), a much more sophisticated autamat
theoretic machinery is needed to implement an compileAfmrt-LTL.

Itis important to understand that the issue here is not sitiygl complexity blow-up
for some convoluted formulas éfort-LTL. As noted earlier, the proof of Theorem 3
shows that the standard syntax-driven approach to corgdilit. to automata applies
also toReset-LTL; in fact, the ForSpec compiler applies syntax-driven pssog to all
ForSpec’s constructs [1]. In contrast, the proof of Theoferuttressed by Lemma 1,
shows that to have a general compilatiofAbbrt-LTL to automata one cannot proceed
in a similar syntax-directed fashion. Thus, the sketchydpson of a syntax-directed
compilation scheme provided in the documentation of Sudgaiszhot only incomplete
but also seriously underestimates the effort required f@ément a compiler for full
Sugar 2.0.
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