
Resets vs. Aborts in Linear Temporal Logic⋆

Roy Armoni1, Doron Bustan2, Orna Kupferman3, and Moshe Y. Vardi2

1 Intel Israel Development Center
2 Rice University

3 Hebrew University

Abstract. There has been a major emphasis recently in the semiconductor indus-
try on designing industrial-strength property specification languages. Two major
languages are ForSpec and Sugar 2.0, which are both extensions of Pnueli’s LTL.
Both ForSpec and Sugar 2.0 directly support reset/abort signals, in which a check
for a propertyψ may be terminated and declared successful by a reset/abort sig-
nal, provided the check has not yet failed. ForSpec and Sugar 2.0, however, differ
in their definition of failure. The definition of failure in ForSpec is syntactic, while
the definition in Sugar 2.0 is semantic. In this work we examine the implications
of this distinction between the two approaches, which we refer to as theresetap-
proach (for ForSpec) and theabort approach (for Sugar 2.0). In order to focus on
the reset/abort issue, we do not consider the full languages, which arequite rich,
but rather the extensions of LTL with the reset/abort constructs.
We show that the distinction between syntactic and semantic failure has a dra-
matic impact on the complexity of using the language in a model-checking tool.
We prove thatReset-LTL enjoys the “fast-compilation property”: there is a linear
translation ofReset-LTL formulas into alternating B̈uchi automata, which im-
plies a linear translation ofReset-LTL formulas into a symbolic representation
of nondeterministic B̈uchi automata. In contrast, the translation ofAbort-LTL for-
mulas into alternating B̈uchi automata is nonelementary (i.e., cannot be bounded
by a stack of exponentials of a bounded height); eachabort yields an exponential
blow-up in the translation. This complexity bounds also apply to model checking;
model checkingReset-LTL formulas is exponential in the size of the property,
while model checkingAbort-LTL formulas is nonelementary in the size of the
property (the same bounds apply to satisfiability checking).

1 Introduction

A key issue in the design of a model-checking tool is the choice of the formal spec-
ification language used to specify properties, as this language is one of theprimary
interfaces to the tool [7]. (The other primary interface is the modelling language, which
is typically the hardware description language used by the designers). In view of this,
there has been a major emphasis recently in the semiconductor industry on design-
ing industrial-strength property specification languages(PSLs), e.g., Cadence’s For-

⋆ A full version of this paper is available athttp://www.cs.rice.edu/∼vardi/.

malCheck Specification Language [8], Intel’s ForSpec [1]1, IBM’s Sugar 2.0 [2]2, and
Verisity’s Temporale [11]. These languages are alllinear temporal languages (Sugar
2.0 has also a branching-time extension), in which time is treated as if each moment in
time has a unique possible future. Thus, linear temporal formulas are interpreted over
linear sequences, and we regard them as describing the behavior of a single computa-
tion of a system. In particular, both ForSpec and Sugar 2.0 can be viewed as extensions
of Pnueli’sLTL [13], with regular connectives and hardware-oriented features.

The regular connectives are aimed at giving the language thefull expressive power
of Büchi automata (cf. [1]). In contrast, the hardware-oriented features,clocksandre-
sets/aborts, are aimed at offering direct support to two specification modes often used
by verification engineers in the semiconductor industry. Both clocks and reset/abort are
features that are needed to address the fact that modern semiconductor designs consist
of interacting parallel modules. Today’s semiconductor design technology is still dom-
inated by synchronous design methodology. In synchronous circuits, clock signals syn-
chronize the sequential logic, providing the designer witha simple operational model.
While the asynchronous approach holds the promise of greaterspeed ([5]), designing
asynchronous circuits is significantly harder than designing synchronous circuits. Cur-
rent design methodology attempt to strike a compromise between the two approaches by
using multiple clocks. This methodology results in architectures that are globally asyn-
chronous but locally synchronous. ForSpec, for example, supports local asynchrony via
the concept oflocal clocks, which enables each subformula to sample the trace accord-
ing to a different clock; Sugar 2.0 supports local clocks in asimilar way.

Another aspect of the fact that modern designs consist of parallel modules interact-
ing asynchronously is the fact that a process running on one module can be reset by a
signal coming from another module. As noted in [15], reset control has long been a crit-
ical aspect of embedded control design. Both ForSpec and Sugar 2.0 directly support
reset/abort signals. The ForSpec formula “accept a in ψ” asserts that the propertyψ
should be checked only until the arrival of the reset signala, at which point the check
is considered to havesucceeded. Similarly, the Sugar 2.0 formula “ψ abort on a” as-
serts that propertyψ should be checked only until the arrival of the abort signala, at
which point the check is considered to have succeeded. In both ForSpec and Sugar 2.0
the signala has to arrive before the propertyψ has “failed”; arrival after failure cannot
“rescue”ψ. ForSpec and Sugar 2.0, however, differ in their definition of failure.

The definition of failure in Sugar 2.0 is semantic; a formula fails at a point in a
trace if the prefix up to (and including) that point cannot be extended in a manner
that satisfies the formula. For example, the formula “next false” fails semantically at
time 0, because it is impossible to extend the point at time 0 to a trace that satisfies the
formula. In contrast, the definition of failure in ForSpec issyntactic. Thus, “next false”
fails syntactically at time 1, because it is only then that the failure is actually discovered.
As another example, consider the formula “(globally ¬p) ∧ (eventually p)”. It fails

1 ForSpec 2.0 has been designed in a collaboration between Intel, Co-Design Automation, Syn-
opsys, and Verisity, and has been incorporated into the hardware verification language Open
Vera, seehttp://www.open-vera.com.

2 See http://www.haifa.il.ibm.com/projects/verification/sugar/ for
description of Sugar 2.0. We refer here to Version 0.8 (Draft 1), Sept. 12, 2002.

semantically at time 0, but it never fails syntactically, since it is always possible to wait
longer for the satisfaction of the eventuality (Formally, the notion of syntactic failure
correspond to the notion ofinformative prefixin [6].) Mathematically, the definition
of semantic failure is significantly simpler than that of syntactic failure (see formal
definitions in the sequel), since the latter requires an inductive definition with respect to
all syntactical constructs in the language.

In this work we examine the implications of this distinctionbetween the two ap-
proaches, which we refer as theresetapproach (for ForSpec) and theabort approach
(for Sugar 2.0). In order to focus on the reset/abort issue, we do not consider the full
languages, which are quite rich, but rather the extensions of LTL with the reset/abort
constructs. We show that while both extensions result in logics that are as expressive
asLTL, the distinction between syntactic and semantic failure has a dramatic impact on
the complexity of using the language in a model-checking tool. In linear-time model
checking we are given a designM (expressed in an HDL) and a propertyψ (expressed
in a PSL). To check thatM satisfiesψ we construct a state-transition systemTM that
corresponds toM and a nondeterministic B̈uchi automatonA¬ψ that corresponds to
the negation ofψ. We then check if the compositionTM ||A¬ψ contains a reachable fair
cycle, which represents a trace ofM falsifying ψ [19]. In a symbolic model checker the
construction ofTM is linear in the size ofM [3]. For LTL, the construction ofA¬ψ is
also linear in the size ofψ [3, 18]. Thus, the front end of a model checker is quite fast; it
is the back end, which has to search for a reachable fair cyclein TM ||A¬ψ, that suffers
from the “state-explosion problem”.

We show here thatReset-LTL enjoys that “fast-compilation property”: there is a
linear translation ofReset-LTL formulas into alternating B̈uchi automata, which are
exponentially more succinct than nondeterministic Büchi automata [18]. This implies
a linear translation ofReset-LTL formulas into a symbolic representation of nondeter-
ministic Büchi automata. In contrast, the translation ofAbort-LTL formulas into alter-
nating B̈uchi automata is nonelementary (i.e., cannot be bounded by astack of exponen-
tials of a bounded height); eachabort yields an exponential blow-up in the translation.
These complexity bounds are also shown to apply to model checking; model checking
Reset-LTL formulas is exponential in the size of the property, while model checking
Abort-LTL formulas is nonelementary in the size of the property (the same bounds
apply to satisfiability checking).

Our results provide a rationale for the syntactic flavor of defining failure in ForSpec;
it is this syntactic flavor that enables alternating automata to check for failure. This
approach has a more operational flavor, which could be arguedto match closer the
intuition of verification engineers. In contrast, alternating automata cannot check for
semantic failures, since these requires coordination between independent branches of
alternating runs. It is this coordination that yields an exponential blow-up perabort. Our
lower bounds for model checking and satisfiability show thatthis blow-up is intrinsic
and not a side-effect of the automata-theoretic approach.

2 Preliminaries

A nondeterministic B̈uchi word automaton(NBW) is A = 〈Σ,S, S0, δ, F 〉, whereΣ

is a finite set of alphabet letters,S is a set of states,δ : S × Σ → 2S is a transition
function,S0 ⊆ S is a set of initial states, andF ⊆ S is a set of accepting states. Let
w = w0, w1, . . . be an infinite word overΣ. For i ∈ IN, let wi = wi, wi+1, . . . denote
the suffix ofw from its ith letter. A sequenceρ = s0, s1, . . . in Sω is a run of A over
an infinite wordw ∈ Σω, if s0 ∈ S0 and for everyi > 0, we havesi+1 ∈ δ(si, wi). We
useinf(ρ) to denote the set of states that appear infinitely often inρ. A run ρ of A is
acceptingif inf(ρ) ∩ F 6= ∅. An NBW A accepts a wordw if A has an accepting run
overw. We useL(A) to denote the set of words that are accepted byA. Fors ∈ S, we
denote byAs the automatonA with a single initial states.

Before we define an alternating Büchi word automaton, we need the following def-
inition. For a given setX, let B+(X) be the set of positive Boolean formulas overX

(i.e., Boolean formulas built from elements inX using∧ and∨), where we also allow
the formulastrue andfalse. Let Y ⊆ X. We say thatY satisfiesa formulaθ ∈ B+(X)
if the truth assignment that assignstrue to the members ofY and assignsfalse to the
members ofX \Y satisfiesθ. A tree is a setX ⊆ IN∗, such that forx ∈ IN∗ andn ∈ IN,
if xn ∈ X thenx ∈ X. We denote the length ofx by |x|.

An alternating B̈uchi word automaton(ABW) is A = 〈Σ,S, s0, δ, F 〉, whereΣ,
S, andF are as in NBW,s0 ∈ S is a single initial state, andδ : S × Σ → B+(S)
is a transition function. A run ofA on an infinite wordw = w0, w1, . . . is a (possibly
infinite) S-labelled treeτ such thatτ(ε) = s0 and the following holds: if|x| = i,
τ(x) = s, andδ(s, wi) = θ, thenx hask childrenx1, . . . , xk, for somek ≤ |S|,
and{τ(x1), . . . , τ(xk)} satisfiesθ. The runτ is acceptingif every infinite branch inτ
includes infinitely many labels inF . Note that the run can also have finite branches; if
|x| = i, τ(x) = s, andδ(s, ai) = true, thenx need not have children.

An alternating weak word automaton(AWW) is an ABW such that for every strongly
connected componentC of the automaton, eitherC ⊆ F or C ∩ F = ∅. Given two
AWW A1 andA2, we can construct AWW forΣω \ L(A1), L(A1) ∩ L(A2), and
L(A1) ∪ L(A2), which are linear in their size, relative toA1 andA2 [12].

Next, we define the temporal logicLTL over a set of atomic propositionsAP . The
syntax ofLTL is as follows. An atomp ∈ AP is a formula. Ifψ1 andψ2 are LTL
formulas, then so are¬ψ1, ψ1 ∧ ψ2, ψ1 ∨ ψ2, X ψ1, andψ1 U ψ2. For the semantics of
LTL see [13]. EachLTL formulaψ induces a languageL(ψ) ⊆ (2AP)ω of exactly all
the infinite words that satisfyψ.

Theorem 1. [18] For everyLTL formulaψ, there exists an AWWAψ with O(|ψ|) states
such thatL(ψ) = L(Aψ).

Proof. For every subformulaϕ of ψ, we construct an AWWAϕ for ϕ. The construction
proceeds inductively as follows.

– For ϕ = p ∈ AP , we defineAp = 〈2AP , {s0
p}, s

0
p, δp, ∅〉, whereδp(s

0
p, σ) = true

if p is true inσ andδp(s
0
p, σ) = falseotherwise.

– Let ψ1 andψ2 be subformulas ofψ and letAψ1
andAψ2

the automata for these
formulas. The automata for¬ψ1, ψ1 ∧ ψ2, andψ1 ∨ ψ2 are the automata forΣω \
L(A1), L(A1) ∩ L(A2), andL(A1) ∪ L(A2), respectively.

– For ϕ = X ψ1, we defineAϕ = 〈2AP , {s0
ϕ} ∪ Sψ1

, s0
ϕ, δ0 ∪ δψ1

, Fψ1
〉 where

δ0(s
0
ϕ, σ) = s0

ψ1
.

– Forϕ = ψ1Uψ2, we defineAϕ = 〈2AP , {s0
ϕ}∪Sψ1

∪Sψ2
, s0

ϕ, δ0∪δψ1
∪δψ2

, Fψ1
∪

Fψ2
〉 whereδ0(s

0
ϕ, σ) = δψ2

(s0
ψ2

, σ) ∨ (δψ1
(s0

ψ1
, σ) ∧ s0

ϕ).

An automata-theoretic approach forLTL satisfiability and model-checking is pre-
sented in [20, 21]. The approach is based on a construction ofNBW for LTL formulas.
Given anLTL formula ψ, satisfiability ofψ can be checked by first constructing an
NBW Aψ for ψ and then checking ifL(Aψ) is empty. As for model checking, assume
that we want to check whether a system that is modelled by an NBW AM satisfiesψ.
First construct an NBWA¬ψ for ¬ψ, then check whetherL(AM)∩L(A¬ψ) = ∅. (The
automatonA¬ψ can also be used as a run-time monitor to check thatψ does not fail
during a simulation run [6].)

Following [18], given anLTL formulaψ, the construction of the NBW forψ is done
in two steps: (1) Construct an ABWA′

ψ that is linear in the size ofψ. (2) Translate
A′

ψ to Aψ. The size ofAψ is exponential in the size ofA′
ψ [10], and hence also in

the size ofψ. Since checking for emptiness for NBW can be done in linear time or in
nondeterministic logarithmic space [21], both satisfiability and model checking can be
solved in exponential time or in polynomial space. Since both problems are PSPACE-
complete [14], the bound is tight.

3 Reset-LTL

In this section we define and analyze the logicReset-LTL. We show that for every
Reset-LTL formula ψ, we can efficiently construct an ABWAψ that acceptsL(ψ).
This construction allows us to apply the automata-theoretic approach presented in Sec-
tion 2 toReset-LTL. The logicReset-LTL is an extension ofLTL, with the operators
accept in and reject in . Let ψ be aReset-LTL formula over2AP and letb be a
Boolean formula overAP . Then,accept b in ψ andreject b in ψ areReset-LTL for-
mulas. The semantic ofReset-LTL is defined with respect to tuples〈w, a, r〉, wherew

is an infinite word over2AP , anda andr are Boolean formulas overAP . We refer to
a andr as thecontextof the formula. Intuitively,a describes anacceptsignal, whiler

describes arejectsignal. Note that every letterσ in w is in 2AP , thusa andr are either
true or false inσ. The semantic is defined as follows:

– Forp ∈ AP , we have that〈w, a, r〉 |= p if w0 |= a ∨ (p ∧ ¬r).
– 〈w, a, r〉 |= ¬ψ if 〈w, r, a〉 6|= ψ.
– 〈w, a, r〉 |= ψ1 ∧ ψ2 if 〈w, a, r〉 |= ψ1 and〈w, a, r〉 |= ψ2.
– 〈w, a, r〉 |= ψ1 ∨ ψ2 if 〈w, a, r〉 |= ψ1 or 〈w, a, r〉 |= ψ2.
– 〈w, a, r〉 |= X ψ if w0 |= a or (〈w1, a, r〉 |= ψ andw0 6|= r).
– 〈w, a, r〉 |= ψ1 U ψ2 if there existsk ≥ 0 such that〈wk, a, r〉 |= ψ2 and for every

0 ≤ j < k, we have〈wj , a, r〉 |= ψ1.
– 〈w, a, r〉 |= accept b in ψ if 〈w, a ∨ (b ∧ ¬r), r〉 |= ψ.
– 〈w, a, r〉 |= reject b in ψ if 〈w, a, r ∨ (b ∧ ¬a)〉 |= ψ.

An infinite wordw satisfies a formulaψ if 〈w, false, false〉 |= ψ. The definition ensures
thata andr are always disjoint, i.e., there is noσ ∈ 2AP that satisfies botha andr.
It can be shown that this semantics satisfies a natural duality property:¬accept a in ψ

is logically equivalent toreject b in ¬ψ. For a discussion of this semantics, see [1]. Its
key feature is that a formula holds if the accept signal is asserted before the formula
“failed”. The notion of failure is syntax driven. For example,X false cannot fail before
time 1, since checkingX falseat time 0 requires checkingfalseat time 1.

Before we analyze the complexity ofReset-LTL, we characterize its expressive-
ness.

Theorem 2. Reset-LTL is as expressive asLTL.

The proof of Theorem 2 relies on the fact that although the accept and reject condi-
tionsa andr of the subformulas are defined by the semantic ofReset-LTL, they can
be determined syntactically. We can use this fact to rewriteReset-LTL formulas into
equivalentLTL formulas.

We now present a translation ofReset-LTL formulas into ABW. Note, that the
context that is computed during the evaluation ofReset-LTL formulas depends on the
part of the formula that “wraps” each subformula. Given a formula ψ, we define for
each subformulaϕ of ψ two Boolean formulasaccψ[ϕ] andrejψ[ϕ] that represent the
context ofϕ with respect toψ.

Definition 1. For a Reset-LTL formula ψ and a subformulaϕ of ψ, we define the
acceptance context ofϕ, denotedaccψ[ϕ], and therejection context ofϕ, denoted
rejψ[ϕ]. The definition is by induction over the structure of the formula in a top-down
direction.

– If ϕ = ψ, thenaccψ[ϕ] = falseandrejψ[ϕ] = false.
– Otherwise, letξ be the innermost subformula ofψ that hasϕ as a strict subformula.

• If ξ = accept b in ϕ, thenaccψ[ϕ] = accψ[ξ]∨ (b∧¬rejψ[ξ]) andrejψ[ϕ] =
rejψ[ξ].

• If ξ = reject b in ϕ, thenaccψ[ϕ] = accψ[ξ] and rejψ[ϕ] = rejψ[ξ] ∨ (b ∧
¬accψ[ξ]).

• If ξ = ¬ϕ, thenaccψ[ϕ] = rejψ[ξ] andrejψ[ϕ] = accψ[ξ].
• In all other cases,accψ[ϕ] = accψ[ξ] andrejψ[ϕ] = rejψ[ξ].

A naive tree representation of the Boolean formulasaccψ[ϕ] andrejψ[ϕ] can lead to an
exponential blowup. This can be avoided by using DAG representation of the formulas.
Note that two subformulas that are syntactically identicalmight have different contexts.
E.g., for the formulaψ = accept p0 in p1∨accept p2 in p1, there are two subformulas
of the formp1 in ψ. For the left subformula we haveaccψ[p1] = p0 and for the right
subformula we haveaccψ[p1] = p2.

Theorem 3. For everyReset-LTL formula ψ, there exists an AWWAψ with O(|ψ|)
states such thatL(ψ) = L(Aψ).

Proof. For every subformulaϕ of ψ, we construct an automatonAψ,ϕ. The automaton
Aψ,ϕ accepts an infinite wordw iff 〈w, accψ[ϕ], rejψ[ϕ]〉 |= ϕ. The automatonAψ is
thenAψ,ψ. The construction ofAψ,ϕ proceeds by induction on the structure ofϕ as
follows.

– For ϕ = p ∈ AP , we defineAψ,p = 〈2AP , {s0
p}, s

0
p, δp, ∅〉, whereδp(s

0
p, σ) =

true if accψ[ϕ] ∨ (p ∧ ¬rejψ[ϕ]) is true inσ andδp(s
0
p, σ) = falseotherwise.

– For Boolean connectives we apply the Boolean closure of AWW.
– Forϕ = X ψ1, we defineAψ,ϕ = 〈2AP , {s0

ϕ} ∪ Sψ1
, s0

ϕ, δ0 ∪ δψ1
, Fψ1

〉 where

δ0(s
0
ϕ, σ) =





true if σ |= accψ[ϕ],
false if σ |= rejψ[ϕ],
s0

ψ1
otherwise.

– For ϕ = ψ1 U ψ2, we defineAψ,ϕ = 〈2AP , {s0
ϕ} ∪ Sψ1

∪ Sψ2
, s0

ϕ, δ0 ∪ δψ1
∪

δψ2
, Fψ1

∪ Fψ2
〉, whereδ0(s

0
ϕ, σ) = δψ2

(s0
ψ2

, σ) ∨ (δψ1
(s0

ψ1
, σ) ∧ s0

ϕ).
– Forϕ = accept b in ψ1 we defineAψ,ϕ = Aψ,ψ1

– Forϕ = reject b in ψ1 we defineAψ,ϕ = Aψ,ψ1

Note thatAψ,ϕ depends not only onϕ but also onaccψ[ϕ] andrejψ[ϕ], which depend
on the part ofψ that “wraps”ϕ. Thus, for example, the automatonAψ,ψ1

we get forϕ =
accept b in ψ1 is different from the automatonAψ,ψ1

we get forϕ = reject b in ψ1,
and both automata depend onb.

The construction of ABW forReset-LTL formulas allows us to use the automata-
theoretic approach presented in Section 2. Accordingly, wehave the following (the
lower bounds follow from the known bounds for LTL).

Theorem 4. The satisfiability and model-checking problems ofReset-LTL are PSPACE-
complete.

Theorems 3 and 4 imply that the standard automata-theoreticapproach to satisfi-
ability and model checking extends toReset-LTL in a fairly straightforward fashion.
In particular, translation to alternating automata underlies the standard approaches to
compilation of LTL to automata. Current compilers of LTL to automata, either explicit
[4] or symbolic [3], are syntax driven, recursively applying fairly simple rules to each
formula in terms of it subformulas. For example, to compile the formulaXϕ sym-
bolically, the compiler generates symbolic variableszϕ and zXϕ, adds the symbolic
invariancezXp ↔ z′ϕ (by convention primed variables refer to the next point in time),
and proceeds with the processing ofϕ. As the proof of Theorem 3 shows, the same
approach applies also toReset-LTL.

Remark 1.Theorem 4 holds only for formulas that are represented as trees, where ev-
ery subformula ofψ has a unique occurrence. It does not hold in DAG representation,
where subformulas that are syntactically identical are unified. In this case one occur-
rence of a subformula could be related to many automata that differ in their context.
Thus, the size of the automaton could be exponential in the length of the formula, and
the automata-based algorithm runs in exponential space. AnEXPSPACE lower bound
for the satisfiability ofReset-LTL formulas that are represented as DAGs can be shown,
so, the bounds are tight.

4 Abort-LTL

In this section we define and analyze the logicAbort-LTL. We first present a construc-
tion of AWW for Abort-LTL formulas with size nonelementary in the size of the for-
mula. This implies nonelementary solutions for the satisfiability and model-checking
problems, to which we later prove matching lower bounds.

TheAbort-LTL logic extendsLTL with an abort on operator. Formally, ifψ is an
Abort-LTL formula over2AP andb is a Boolean formula overAP , thenψ abort on b

is anAbort-LTL formula. The semantic of the abort operator is defined as follows:

– w |= ψ abort on b iff w |= ψ or there is a prefixw′ of w and an infinite wordw′′

such thatb is true in the last letter ofw′ andw′ · w′′ |= ψ.

For example, the formula “(G p) abort on b” is equivalent to the formula(pU(p∧b))∨
G p. Thus, in addition to words that satisfyG p, the formula is satisfied by words with
a prefix that ends in a letter that satisfiesb and in whichp holds in every state. Such a
prefix can be extended to an infinite word whereG p holds, and thus the word satisfies
the formula.

Before we analyze the complexity ofAbort-LTL, we characterized its expressive-
ness.

Theorem 5. Abort-LTL is as expressive asLTL.

The proof of Theorem 5 relies on the fact that for everyLTL formula ψ there exists
a counter-free deterministic Rabin word automaton (DRW)Aψ such thatL(ψ) =
L(Aψ), and vice versa [16]. Given anLTL formula ψ we use the counter-free DRW
Aψ to construct a counter-free DRWA′ such thatL(A′) = L(ψ abort on b). Thus,
there exists anLTL formulaψ′ that is equivalent toψ abort on b.

We now describe a construction of AWW forAbort-LTL formulas. The construc-
tion involves a nonelementary blow-up. This implies nonelementary solutions for the
satisfiability and model-checking problems, to which we later prove matching lower
bounds. For two integersn andk, let exp(1, n) = 2n andexp(k, n) = 2exp(k−1,n).
Thus,exp(k, n) is a tower ofk exponents, withn at the top.

Theorem 6. For everyAbort-LTL formulaψ of lengthn and abort on nesting depth
k, there exists anAWW Aψ with exp(k, n) states such thatL(ψ) = L(Aψ).

Proof. The construction of AWW forLTL presented in Theorem 1 is inductive. Thus, in
order to extend it forAbort-LTL formulas, we need to construct, givenb and an AWW
Aψ for ψ, an AWWAϕ for ϕ = ψ abort on b. Once we constructAϕ, the inductive
construction is as described in Theorem 1. Givenb andAψ, we constructAϕ as follows.

– Let An = 〈2AP , Sn, sn0, δn, Fn〉 be an NBW such thatL(An) = L(Aψ). Ac-
cording to [10],An indeed has a single initial state and its size is exponentialin
Aψ.

– Let A′
n = 〈2AP , S′

n, s′
n0

, δ′n, F ′
n〉 be the NBW obtained fromAn by removing

all the states from which there are no accepting runs, i.e, all statess such that
L(As

n) = ∅.

– LetAfin = 〈2AP , S′
n, s′

n0
, δ, ∅〉, be an AWW whereδ is defined, for alls ∈ S and

σ ∈ Σ as follows.

δ(s, σ) =

[

true if σ |= b andδn(s, σ) 6= ∅,
∨

t∈δn(s,σ) t otherwise.

Thus, wheneverA′
n reads a letter that satisfiesb, the AWW accepts. Intuitively,

Afin accepts words that contain prefixes whereb holds in the last letter andψ has
not yet “failed”.

– We defineAϕ to be the automaton forL(Aψ)∪L(Afin). Note that since bothAψ

andAfin are AWW, so isAϕ. The automatonAϕ accepts a wordw if eitherAψ

has an accepting run overw, or if A′
n has a finite run over a prefixw′ of w, which

ends in a letterσ that satisfiesb.

ForLTL, every operator increases the number of states of the automaton by one, making
the overall construction linear. In contrast, here everyabort on operator involves an
exponential blow up in the size of the automaton. In the worstcase, the size ofAψ is
exp(k, n) wherek is the nesting depth of theabort on operator andn is the length of
the formula.

The construction of ABW forAbort-LTL formulas allows us to use the automata-
theoretic approach presented in Section 2, implying nonelementary solutions to the sat-
isfiability and model-checking problems forAbort-LTL.

Theorem 7. The satisfiability and model-checking problems ofAbort-LTL are in
SPACE(exp(k, n)), wheren is the length of the specification andk is the nesting depth
of abort on .

Note that the proof of Theorem 6, buttressed by lower bounds below, shows that to
have a general compilation ofAbort-LTL to automata one cannot proceed in a syntax-
directed fashion; rather, to compileϕ abort on b one has to construct in sequenceAϕ,
An, A′

n, Afin, and finallyA
ϕ abort on b

(of course, these steps can be combined).
We now prove matching lower bounds. We first prove that the nonelementary blow-

up in the translation described in Theorem 6 cannot be avoided. This proves that the
automata-theoretic approach toAbort-LTL has nonelementary cost. We construct in-
finitely manyAbort-LTL formulasψk

n such that every AWW that acceptL(ψk
n) is of

size exp(k, n). The formulasψk
n, are constructed such thatL(ψk

n) is closely related
to {wwΣω : |w| = exp(k, n)}. Intuitively, we use theabort on operator to require
that every letter in the first word is identical to the letter at the same position in the
next word. It is known that every AWW that accept this languagehas at leastexp(k, n)
states. The proof that every AWW that acceptsL(ψk

n) has at leastexp(k, n) states is
similar to the known proof for{wwΣω : |w| = exp(k, n)} and is discussed later.

We then show that the nonelementary cost is intrinsic and is not a side-effect of the
automata-theoretic approach by proving a nonelementary lower bounds for satisfiability
and model checking ofAbort-LTL.

We start by considering words of length2n; that is, whenk = 1. Let Σ = {0, 1}.
For simplicity, we assume that0 and1 are disjoint atomic propositions. Each letter ofw1

andw2 is represented by block ofn “cells”. The letter itself is stored in the first cell of

the block. In addition to the letter, the block stores its position in the word. The position
is a number between0 and2n − 1, referred to as thevalueof the block, and we use an
atomic propositionc1 to encode it as ann-bit vector. For simplicity, we denote¬c1 by
c0. The vector is stored in the cells of the block, with the leastsignificant bit stored at
the first cell. The position is increased by one from one blockto the next. The formulas
in Γ requires that the first cell of each block is marked with the atomic proposition#,
that the first cell in the first block ofw2 is marked with the atomic proposition@, and
that the first cell afterw2 is marked by$. An example of a legal prefix (structure wise)
is shown in Figure 1. Formally,Γ contains the following formulas.

$

@

#

0 ? 0 ? 1 ? 1 ? 1 ? 0 ? 1 ? 1 ? ?

c0 c0 c0 c1 c1 c0 c1 c1 c0 c0 c0 c1 c1 c0 c1 c1 ?

Fig. 1. An example forn = 2 that represents the case wherew1 = 0011 andw2 = 1011. Each
row represents a unique atomic proposition, which should hold at exactly the cell in which it is
marked. An exception are the propositions0 and1 whose values are checked only in the first cell
in each block (other cells are marked?)

– γ1 = # ∧ (c0 ∧ (Xc0∧
n
· · · ∧Xc0)

After every# before the first@ there aren − 1 cells without# or @, and then
another#.

– γ2 = (# →
∧

1≤i<n Xi(¬# ∧ ¬@) ∧ Xn #) U @
The first cell is marked by# and the first block counter value is000 . . . 0.

The following four formulas make sure that the position (that is encoded byc0, c1) is
increased by one every#. We use an additional propositionz that represents the carry.
Thus, we add1 to the least significant bit and then propagate the carry to the other bits.
Note that the requirement holds until the last# before@.

– γ3 = (((# ∨ z) ∧ c0) → (X(¬z) ∧ Xn c1)) U (# ∧ X((¬#) U @))
– γ4 = ((¬(# ∨ z) ∧ c0) → (X(¬z) ∧ Xn c0)) U (# ∧ X((¬#) U @))
– γ5 = (((# ∨ z) ∧ c1) → (X z ∧ Xn c0)) U (# ∧ X((¬#) U @))
– γ6 = ((¬(# ∨ z) ∧ c1) → (X(¬z) ∧ Xn c1)) U (# ∧ X((¬#) U @))

The following formulas require that the first@ is true immediately afterw1.

– γ7 = ((# ∧
∨

0≤i<n Xic0) → ((¬@) U X(# ∧ ¬@))) U @
as long as the counter is not111 . . . 1 there not going to be@.

– γ8 = ((# ∧
∧

0≤i<n Xic1) → Xn @) U @
When the counter is111 . . . 1 the next value going to be@.

The formulas forw2 are similar, except that they begin with a¬@ U (@ ∧ . . .), and$
replaces@. We add the formula(¬$) U @ to make sure that the first$ is immediately
afterw2.

Next, we describe the formulaθ, which requires that for all positions0 ≤ j ≤ 2n−1,
thej-th letter inw1 is equal to thej-th position inw2. While such a universal quantifi-
cation onj is impossible inLTL, it can be achieved using theabort on operator.

We start with some auxiliary formulas:

θ= = # ∧
n−1
∧

i=0

((Xi c0 ∧ ((¬$) U ($ ∧ Xi+1 c0))) ∨ (Xi c1 ∧ ((¬$) U ($ ∧ Xi+1 c1))))

The formula requires the current position value to agree with the position value right
after$. Then, the formula

θnext0 = (θ= ∧ ((¬@) U (@ ∧ (((# ∧ θ=) → 0) U $)))) abort on $.

requires that we are in a beginning of a block inw1, and every block between@ and$
whose position is equal to the position of the current block (note that there is exactly
one such block) is marked with0. Intuitively, let

θ′next0 = θ= ∧ ((¬@) U (@ ∧ (((# ∧ θ=) → 0) U $)))

Then,θ′next0 requires that we are in a beginning of a block inw1, the block position
is equal to the position of the block that starts after$, and every block between@ and
$ whose position is also equal to the position of the block thatstarts after$ is marked
with 0. Thus,θ′next0 is equivalent toθnext0 except that it fails when the current block
does not match the block after$. This is where the abort operator enters the picture. For
every position, if the corresponding block is marked0, the prefix of the word that ends
at $ can be extend such that the current block position match the position of the block
that starts after$. This extension would satisfyθ′next0, thus the word satisfiesθnext0.
The formulaθnext1 is defined similarly.

Now, the formulaθ requires thatw1 = w2.

θ = (((# ∧ 0) → θnext0) ∧ ((# ∧ 1) → θnext1)) U @

Words of length exp(k, n) So far we have shown how to constructψ1
n, which defines

equality between words of lengthexp(1, n). We would like to scale up the technique
to construct formulasψk

n that define equality between words of lengthexp(k, n). (As
before, we use@ to mark the end of the first word and we use$ to mark the end of the
second word.) To do that, we encode such words by sequences consisting ofexp(k, n)
(k−1)-blocks, of lengthexp(k−1, n) each. Each such(k−1)-block, whose beginning
is marked by#k−1, represents one letter, encoding both the letter itself as well as
its position in the word, which requiresexp(k − 1, n) bits. We need to require that
(1) (k − 1)-blocks behave as anexp(k − 1, n)-counter, i.e., the first(k − 1)-block is
identically 0, and subsequent(k − 1)-blocks count moduloexp(k, n), and (2) if there
are two(k − 1)-blocks,b1 in the first word andb2 in the second word that encode the
same position, then they must encode the same letter. To express (1) and (2), we have to
refer to bits inside the(k− 1)-blocks, which we encode using(k− 2)-blocks, of length
exp(k − 2, n).

Thus, we need an inductive construction. We start with0-blocks, of lengthn, and
use formulasΓ 0 to require that the0-blocks behave as ann-bit counter (using the
formulasγ1, . . . , γ8 from earlier). Inductively, suppose we have already required the
(k − 2)-blocks to behave as anexp(k − 2, n) counter. We now want every sequence of
exp(k − 1, n) (k − 2)-blocks, initially marked with#k−1, to encode a(k − 1) block.
We use the values of a propositionck−1 at the start of each(k − 2)-block to encode the
bits of the(k − 1)-block.

We now need to write formulas analogous toγ1, . . . , γ8 to require that(k − 1)-
block to behave as anexp(k − 1, n)-bit counter. The difficulty is in referring to bits in
the same position of successive(k − 1)-blocks using formulas of size polynomial inn
(for k = 1 we can useXn to refer to corresponding bits in successive0-blocks). To
refer to corresponding bits in successive(k − 1)-blocks, we use the fact that each such
bit is encoded using(k− 2)-blocks. Thus, referring to such bits require the comparison
of (k − 2)-blocks. Also, to say that the two words, each of lengthexp(k, n) are equal
we need to express the analog ofθ, which requires the analogue ofθ=. But the latter
use a conjunction of sizen to range over all then-bits of a0-block. Here we need to
range over all(k − 2) blocks and compare pair of such blocks.

Thus, the key is to be able to comparei-blocks, fori = 0, . . . , k − 1. Once we are
able to comparei-blocks we can go ahead and construct and compare(i + 1)-blocks.
To comparei-blocks for i ≥ 1 we use the marker$i. Instead of directly comparing
two i-blocks, we compare them both to thei-block that come immediately after$i, just
as inθ= we compared two0-blocks to the 0-block that comes immediately after the
$ marker. By “aborting on”$i we make sure that we are comparing the twoi-blocks
to somei-block that could come after$i; this way we are not bound to some specific
i-block that actually comes after$i.

ψk
n is a conjunction of a sequence of sets of formulas. The construction of the sets

of formulas is inductive, for every leveli (0 ≤ i ≤ k), we defineΓ i andΘi that require
level i to be “legal” and make some “tools” for leveli + 1. The setΓ i requires the
followings:

– γi
1 requires that the counter value of the firsti-block is000 . . . 0.

– γi
2 requires that after every#i before the next#i there areexp(i, n) many(i− 1)-

blocks without#i. This formula is only needed in level0, after that it is taken care
of by γi−1

7 andγi−1
8 .

– The following four formulas (γi
3, γi

4, γi
5, andγi

6) make sure that the counter (that
is encoded byci

0, c
i
1) value is increased by one every#i. We use an additional

propositionzi that represents the carry.
– In the following two formulas (γi

7 andγi
8), the firstk − 1 levels are a bit different

from thekth level. The firstk − 1 levels require that at the#i+1 proposition will
be true only at the beginning of every(i + 1)-block. The formulas of thekth level
require that the@ will be true exactly at the beginning ofw2.

A similar set of formulas is used forw2. In addition fori > 0, we require that the first
$i marker appears afterw1 andw2, and that the first$i is proceeded by a legali-block,
and thati-block is proceeded by the first$i−1. These requirements can be formulated
easily using formulas similar of formulas ofΓ i.

TheΘi set requires two basic conditions:

1. A formulaθi
#next0 that requires that thei-block between the next#(i+1) and the

one after, which has the same position value as the currenti-block, represents the
letterci+1

0 . (A similar formula is needed forci+1
1).

2. A formulaθi
$next0 that requires that thei-block in the(i + 1)-block that starts after

the first$(i+1), and has the same position value as the currenti-block, represents
the letterci+1

0 . (A similar formula is needed forci+1
1).

both formulas uses the auxiliary formulaθi
= that requires the currenti-block to be

equivalent to thei-block that starts right after the first$i.
We present some examples that demonstrate the inductive construction. The base of

the induction is the construction ofΓ 0 andΘ0. The formulas ofΓ0 are similar to the
formulas that are presented in the former section, the main difference is that the0-block
with 11 . . . 1 value does not imply the end of the first word, but that the next0-block
should be marked with#1. Thusγ0

8 = ((#0 ∧
∧

0≤i<n Xic0
1) → Xn #1) U @

As for the formulas ofΘ0, they are similar to the formulas that presented in the former
section, only here we also need formulas that determine the value of the matching ad-
dress in the next1-block. For example,θ0

#next0 requires the matching0-block in the
next1-block to representsc1

0. Thus,
θ0
#next0 = (θ0

= ∧ X((¬#1) U (#1 ∧ (((#0 ∧ θ0
=) → c1

0) U X #1)))) abort on $0

Assume that for some1 < i ≤ k, we already constructedΓ j andΘj for everyj < i.
The structure ofΓ i−1 is the base forΓ i. For example,γi

1 = (#i−1 → ci
0) U X #i.

In the formulas that require the positions of thei-blocks to increased by one form
one block to the next, we use theθi−1

#next0 and θi−1
#next1 formulas instead of theXn

operator. For example,γi
3 =

((#i−1∧(#i∨zi)∧ci

0) → (X((¬#i−1)U(#i−1∧(¬zi)))∧θi−1
#next1

))U(#i∧X(¬#i)U@)

Next, we describeΘi, the main change is inθi
=, which requires that the current

i-block position value is equal to thei-block that starts after$i. Thus,
θi
= = (((#i−1 ∧ ci

0) → θi−1
$next0) ∧ ((#i−1 ∧ ci

1) → (θi−1
$next1))) U X #i

In the rest of the formulas we use similar techniques. For example,
θi
#next0 = (θi

= ∧ ((¬#i+1) U (#i+1 ∧ (((#i ∧ θi
=) → ci

0) U X #i+1)))) abort on $i,

which requires that the matchingi-block in the next(i + 1)-block representsci+1
0 .

The last formula that we define requiresw1 andw2 to be equivalent. First we define
θi
@next0 = (θk−1

= ∧ (¬@) U @ ∧ X(((#k−1 ∧ θk
=) → 0) U X @)) abort on $k−1,

which requires that the matching(k − 1)-block in w2 represents0. Next, we define
θi
@next1 in a similar way. Then, we define

θ=w = (((#k−1 ∧ 0) → θk−1
@next0) ∧ ((#k−1 ∧ 1) → (θk−1

@next1))) U X @,
which requires thatw1 = w2

We now discuss the length of the formulas in the above construction. For every
0 ≤ i ≤ k, we have a constant number of formulas inΓ i andΘi, thus the number of
formulas isO(k). The problem is in formulas that recursively use other formulas. Since
formulas likeθi

= contains four sub-formulasθi−1
= , the length ofθk

= is O(4k). Thus the
total length of the formulas isO(4k + n).

Lemma 1. Every ABW that acceptsψk
n has at leastexp(k, n) states.

Lemma 1 shows that the the automata-theoretic approach toAbort-LTL has a nonele-
mentary cost. We now show that this cost is intrinsic toAbort-LTL and is not an artifact
of the automata-theoretic approach.

Satisfiability and model-checking for Abort-LTL We now prove that satisfiability
checking forAbort-LTL is SPACE(exp(k, n))-hard. We show a reduction from a hyper-
exponent version of thetiling problem [22, 9, 17]. The problem is defined as follows
relative to a parameterk > 0. We are given a finite setT , two relationsV ⊆ T × T

andH ⊆ T × T , an initial tile t0, a final tileta,and a boundn > 0. We have to decide
whether there is somem > 0 and an a tiling of anexp(k, n)×m-grid: such that: (1)t0
is in the bottom left corner andta is in the top left corner, (2) Every pair of horizontal
neighbors is inH, and (3) Every pair of vertical neighbors is inV . Formally: Is there a
functionf : (exp(k, n)×m) → T such that (1)f(0, 0) = t0 andt(0,m− 1) = ta, (2)
for every0 ≤ i < exp(k, n), and0 ≤ j < m, we have that(f(i, j), f(i + 1, j)) ∈ H,
and (3) for every0 ≤ i < exp(k, n), and0 ≤ j < m−1, we have that(f(j, i), f(j, i+
1)) ∈ V . This problem is known to be SPACE(exp(k, n))-complete [9, 17].

We reduce this problem to the satisfiability problem forAbort − LTL. Given a tiling
problemτ = 〈T,H, V.t0, tf , n〉, we construct a formulaψτ such thatτ admits tiling
iff ψτ is satisfiable. The idea is to encode a tiling as a word overT , consisting of a
sequence of blocks of lengthl = exp(k, n), each encoding one row of the tiling. Such
a word represents a proper tiling if it starts witht0, ends with a block that starts withta,
every pair of adjacent tiles in a row are inH, and every pair of tiles that areexp(k, n)
tiles apart are inV . The difficulty is in relating tiles that are far apart. To do that we
represent every tile by a(k − 1)-block, of lengthexp(k − 1, n), which represent the
tiles position in the row. As we had earlier, to require that the(k−1)-blocks behave as a
exp(k−1, n)-bit counter and to compare(k−1)-blocks, we need to construct them from
(k− 2)-blocks, which needs to be constructed from(k− 3)-blocks, and so on. Thus, as
we had earlier, we need an inductive construction ofi-blocks, fori = 1, . . . , k − 1, and
we need to adapt the machinery of the previous nonelementarylower-bound proof.

It can be shown that there exists an exponential reduction from the nonelemen-
tary domino problem to the satisfiability ofAbort-LTL formulas. Thus the satisfiability
problem of theAbort-LTL is non-elementary hard.

Theorem 8. The satisfiability and model-checking problems forAbort-LTL formulas
nesting depthk of abort on are SPACE(exp(k, n))-complete.

5 Concluding Remarks

We showed in this paper that the distinction between reset semantics and abort seman-
tics has a dramatic impact on the complexity of using the language in a model-checking
tool. WhileReset-LTL enjoys the “fast-compilation property”–there is a linear transla-
tion of Reset-LTL formulas into alternating B̈uchi automata, the translation ofAbort-
LTL formulas into alternating B̈uchi automata is nonelementary, as is the complexity of
satisfiability and model checking forAbort-LTL. This raises a concern on the feasibility
of implementing a model checker for logics based onAbort-LTL(such as Sugar 2.0).

While the nonelementary blow-up is a worst-case prediction,one can conclude from
our results that whileReset-LTL can be efficiently compiled using a rather modest
extension to existingLTL compilers (e.g., [4, 3]), a much more sophisticated automata-
theoretic machinery is needed to implement an compiler forAbort-LTL.

It is important to understand that the issue here is not simply the complexity blow-up
for some convoluted formulas ofAbort-LTL. As noted earlier, the proof of Theorem 3
shows that the standard syntax-driven approach to compiling LTL to automata applies
also toReset-LTL; in fact, the ForSpec compiler applies syntax-driven processing to all
ForSpec’s constructs [1]. In contrast, the proof of Theorem6, buttressed by Lemma 1,
shows that to have a general compilation ofAbort-LTL to automata one cannot proceed
in a similar syntax-directed fashion. Thus, the sketchy description of a syntax-directed
compilation scheme provided in the documentation of Sugar 2.0 is not only incomplete
but also seriously underestimates the effort required to implement a compiler for full
Sugar 2.0.

Acknowledgements:Work of Bustan and Vardi supported in part by NSF grants CCR-
9988322, CCR-0124077, IIS-9908435, IIS-9978135, and EIA-0086264, by BSF grant
9800096, and by a grant from the Intel Corporation. Kupferman is visiting UC Berkeley
and is supported by NSF grant CCR-9988172.

References

1. R. Armoni, L. Fix, R. Gerth, B. Ginsburg, T. Kanza, A. Landver, S. Mador-Haim,
A. Tiemeyer, E. Singerman, M.Y. Vardi, and Y. Zbar. The ForSpec temporal language: A
new temporal property-specification language. InProc. 8th Int’l Conf. on Tools and Algo-
rithms for the Construction and Analysis of Systems (TACAS’02), Lecture Notes in Computer
Science 2280, pages 296–311. Springer-Verlag, 2002.

2. I. Beer, S. Ben-David, C. Eisner, D. Fisman, A. Gringauze, and Y. Rodeh. The temporal
logic sugar. InProc. Conf. on Computer-Aided Verification (CAV’00), LNCS 2102, pages
363–367, 2001.

3. J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and L.J. Hwang.Symbolic model check-
ing: 1020 states and beyond.Information and Computation, 98(2):142–170, June 1992.

4. R. Gerth, D. Peled, M.Y. Vardi, and P. Wolper. Simple on-the-fly automatic verification of
linear temporal logic. In P. Dembiski and M. Sredniawa, editors,Protocol Specification,
Testing, and Verification, pages 3–18. Chapman & Hall, August 1995.

5. S.M. Nowick K. van Berkel, M.B. Josephs. Applications of asynchronous circuits.Proceed-
ings of the IEEE, 1999. special issue on asynchronous circuits & systems.

6. O. Kupferman and M.Y. Vardi. Model checking of safety properties. Formal methods in
System Design, 19(3):291–314, November 2001.

7. R.P. Kurshan. Formal verification in a commercial setting. InProc. Conf. on Design Au-
tomation (DAC‘97), volume 34, pages 258–262, 1997.

8. R.P. Kurshan.FormalCheck User’s Manual. Cadence Design, Inc., 1998.
9. H.R. Lewis. Complexity of solvable cases of the decision problem for the predicate calculus.

In Foundations of Computer Science, volume 19, pages 35–47, 1978.
10. S. Miyano and T. Hayashi. Alternating finite automata onω-words. Theoretical Computer

Science, 32:321–330, 1984.

11. M.J. Morley. Semantics of temporale. In T. F. Melham and F.G. Moller, editors, Banff’99
Higher Order Workshop (Formal Methods in Computation). University of Glasgow, Depart-
ment of Computing Science Technic al Report, 1999.

12. D.E. Muller, A. Saoudi, and P.E. Schupp. Alternating automata, the weak monadic the-
ory of the tree and its complexity. InProc. 13th International Colloquium on Automata,
Languages and Programming, volume 226 ofLecture Notes in Computer Science. Springer-
Verlag, 1986.

13. A. Pnueli. The temporal logic of programs. InProc. 18th IEEE Symp. on Foundation of
Computer Science, pages 46–57, 1977.

14. A.P. Sistla and E.M. Clarke. The complexity of propositional linear temporal logic.Journal
ACM, 32:733–749, 1985.

15. A comparison of reset control methods: Application note 11.
http://www.summitmicro.com/tech support/notes/note11.htm, Sum-
mit Microelectronics, Inc., 1999.

16. W. Thomas. A combinatorial approach to the theory ofω-automata.Information and Com-
putation, 48:261–283, 1981.

17. P. van Emde Boas. The convenience of tilings. InComplexity, Logic and Recursion Theory,
volume 187 ofLecture Notes in Pure and Applied Mathetaics, pages 331–363, 1997.

18. M.Y. Vardi. An automata-theoretic approach to linear temporal logic.In F. Moller and
G. Birtwistle, editors,Logics for Concurrency: Structure versus Automata, volume 1043 of
Lecture Notes in Computer Science, pages 238–266. Springer-Verlag, Berlin, 1996.

19. M.Y. Vardi and P. Wolper. An automata-theoretic approach to automatic program verifica-
tion. In Proc. 1st Symp. on Logic in Computer Science, pages 332–344, Cambridge, June
1986.

20. M.Y. Vardi and P. Wolper. Automata-theoretic techniques for modal logics of programs.
Journal of Computer and System Science, 32(2):182–221, April 1986.

21. M.Y. Vardi and P. Wolper. Reasoning about infinite computations.Information and Compu-
tation, 115(1):1–37, November 1994.

22. H. Wang. Dominoes and the aea case of the decision problem. InSymposium on the Mathe-
matical Theory of Automata, pages 23–55, 1962.

