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Abstract. The u-calculus model-checking problem has been of great interest in
the context of concurrent programs. Beyond the need to use symbolic methods in
order to cope with the state-explosion problem, which is acute in concurrent set-
tings, several concurrency related problems are naturally solved by evaluation of
p-calculus formulas. The complexity of a naive algorithm for model checking a
p~calculus formula 4 is exponential in the alternation depth d of ). Recent stud-
ies of the p-calculus and the related area of parity games have led to algorithms
exponential only in g. No symbolic version, however, is known for the improved
algorithms, sacrificing the main practical attraction of the p-calculus.

The p-calculus can be viewed as a fragment of first-order fixpoint logic. One of
the most fundamental theorems in the theory of fixpoint logic is the Collapse
Theorem, which asserts that, unlike the case for the p-calculus, the fixpoint alter-
nation hierarchy over finite structures collapses at its first level. In this paper we
show that the Collapse Theorem of fixpoint logic holds for a measured variant of
the p-calculus, which we call #-calculus. While p-calculus formulas represent
characteristic functions, i.e., functions from the state space to {0, 1}, formulas
of the p#-calculus represent measure functions, which are functions from the
state space to some measure domain. We prove a Measured-Collapse Theorem:
every formula in the p-calculus is equivalent to a least-fixpoint formula in the z#-
calculus. We show that the Measured-Collapse Theorem provides a logical recast-
ing of the improved algorithm for u-calculus model-checking, and describe how
it can be implemented symbolically using Algebraic Decision Diagrams. Thus,
we describe, for the first time, a symbolic p-calculus model-checking algorithm
whose complexity matches the one of the best known enumerative algorithm.

1 Introduction

The modal u-calculus, often referred to as the “u-calculus”, is a propositional modal
logic augmented with least and greatest fixpoint operators. It was introduced in [22],
following earlier studies of fixpoint calculi in the theory of program correctness [11,
31,32]. Over the past 20 years, the u-calculus has been established as essentially the
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“ultimate” program logic, as it expressively subsumes all propositional program log-
ics, including dynamic logics such as PDL, process logics such as YAPL, and temporal
logics such as CTL* [13]. The u-calculus has gained further prominence with the dis-
covery that its formulas can be evaluated symbolically in a natural way [6], leading to
industrial acceptance of computer-aided verification.

A central issue for any logic is the model-checking problem: is a given structure
a model of a given formula. For modal logics we ask whether a given formula holds
in a given state of a given Kripke structure. The p-calculus model-checking problem
has been of great interest in the context of concurrent programs. A significant feature
of expressing model checking in terms of the p-calculus is that it naturally leads to
symbolic algorithms, which operates on sets of states, and can scale up to handle ex-
ceedingly large state spaces [28]. Beyond the need to use symbolic methods in order
to cope with the state-explosion problem [6], which is acute in concurrent settings,
several concurrency-related problems are naturally solved by evaluation of p-calculus
formulas. This includes checks for fair simulation between two components of a con-
current systems [14, 16] and reasoning about the interaction between a component and
its environment, which is naturally expressed by means of parity games [8] (solving
parity games is known to be equivalent to u-calculus model checking [12]). Indeed, the
model-checking problem for the u-calculus has been the subject of extensive research
(see [10] for an overview and [18-20, 23, 25, 27, 33] for more recent work). The pre-
cise complexity of this problem has been open for a long time; it was known to be in
UPnNco-UP [19] and PTIME-hard [25].

From a practical perspective, the interesting algorithms are those that have time
bounds of the form n?(@ where n is the product of the size of the structure and the
length of the formula, and d is the alternation depth of the formula, which measures the
depth of alternation between least fixpoint and greatest fixpoint operators. A naive algo-
rithm would have d as the exponent, since alternating fixpoints of depth d yield nested
loops of depth d, each of which involves n iterations. This naive algorithm uses space
O(dn) [13]. The alternation depth is interesting as a measure of syntactic complexity,
since, on one hand, many logics can be expressed in low-alternation-depth fragments
of the p-calculus [13,12], and, on the other hand, the p-calculus alternation hierarchy
is strict [4]. As noted, the naive algorithm can be naturally implemented in a symbolic
fashion, operating on sets of states.

The first improvement to the naive approach was presented in [27] (and slightly
improved in [33]), who got the exponent down to d/2 at the cost of exponential worst-
case space complexity. It was then shown By Jurdzinski [20] how to obtained the im-
proved exponent together with the O(dn) space bound. Common to these algorithms
is the elimination of alternating fixpoints; they use monotone fixpoint computation that
simulates the effects of alternating fixpoints by means of so-called progress measures.
Progress measures are functions that measure the progress of a computation; see [21,
30, 24] for other applications. While the improved algorithms have better time com-
plexity, they sacrifice the main practical attraction of u-calculus — these algorithms are
enumerative and no symbolic version of them is known.

It is well known that modal logic can be viewed as a fragment of first-order logic
[2]. Thus, the p-calculus can be viewed as a fragment of first-order fixpoint logic, often



referred to as “fixpoint logic”, which is the extension of first-order logic with least and
greatest fixpoint operators. Fixpoint logic has been the subject of extensive research in
the context of database theory [1] and finite-model theory [9]. One of the most funda-
mental theorems in the theory of fixpoint logic is the Collapse Theorem, which asserts
that, unlike the case for the u-calculus, the fixpoint alternation hierarchy over finite
structures collapses at its first level; that is, every formula in fixpoint logic can be ex-
pressed as a least-fixpoint formula [15, 17, 26]. The key to this collapse is the simulation
of the effect of alternating fixpoints by means of so-called stage functions, which mea-
sure the progress of fixpoint computations.

Our main result in this paper is the unification of these two disparate lines of re-
search. We show that the Collapse Theorem of fixpoint logic can be adapted to the
p-calculus. Both progress measure and stage functions measure the progress of fixpoint
computations. The key difference between fixpoint logic and the u-calculus is that while
in fixpoint logic progress measures can be constructed within the logic (by means of the
Stage-Comparison Theorem [29]), this cannot be done in the p-calculus [4], since it
allows fixpoint operators only on unary predicates. In order to simulate the construction
of progress measures within the p-calculus, we define the 1# -calculus. While in the -
calculus variables represent characteristic functions, i.e., functions from the state space
to {0, 1}, in the u#-calculus variables represent measure functions, which are functions
from the state space to some measure domain. We then prove a Measured-Collapse
Theorem: every formula in the p-calculus is equivalent to a least-fixpoint formula in the
u#-calculus.

We then show that the Measured-Collapse Theorem provides a logical recasting
of the improved algorithm in [20]. By starting with a u-calculus formula of alterna-
tion depth d, collapsing it to a least-fixpoint . -calculus formula with measure domain
{0,...,n%?}, and then computing the least fixpoint, we get the improved exponent of
d/2 together with the O(dn) space bound. Furthermore, this logical recasting of the
algorithm suggests how it can be implemented symbolically. A symbolic evaluation
of u-calculus formulas uses Binary Decision Diagrams [5] to represent characteris-
tic functions [6]. For the p#-calculus, we suggest representing measure functions by
Algebraic Decision Diagrams, which extend Binary Decision Diagrams by allowing
arbitrary numerical domains [7]. Thus, we describe, for the first time, a symbolic p-
calculus model-check algorithm whose complexity matches the one of the best known
enumerative algorithm. In fact as detailed in Section 4, working with p#-calculus en-
ables us to decrease the bound of the number of iterations needed for the simultaneous
calculations, leading to a slightly better complexity.

2 Prdiminaries

The p-calculus is a propositional modal logic augmented with least and greatest fixpoint
operators [22]. We consider a u-calculus where formulas are constructed from Boolean
propositions with Boolean connectives, the temporal operators {» (“exists next”) and
O (“for all next™), as well as least (x) and greatest () fixpoint operators. We assume
that p-calculus formulas are written in positive normal form (negation only applied to
atomic propositions).



Formally, let AP be a set of atomic propositions and let X be a set of variables.
The set of p-calculus formulas over AP and X is defined by induction as follows. (1)
If p € AP, then p and —p are u-calculus formulas. (2) If z € X, then x is a u-calculus
formula (in which z is free). (3) If o, 4, are u-calculus formulas, then o V4, p A1), O,
and O ¢ are p-calculus formulas, (4) If z € X, then pz.p and vz.¢ are p-calculus
formulas (in which z is bound). The semantic of pu-calculus is defined with respect to a
Kripke structure M = (S, R, L), and an assignment f : X — 2 to the variables. Let
F denote the set of all assignments. For an assignment f € F, avariable z € X, and a
set S’ C S, we use f|,—s to denote the assignment in which z is assigned S’ and all
other variables assigned as in f. A formula«) is interpreted as a function ™ : F — 25,
Thus, given an assignment f € F, the formula v defines a subset of states that satisfy ¢
with respect to this assignment. For a definition of the function ¢/ see the full version
or [22]. When M is clear from the context, we omit it). A formula with no free variables
is called a sentence. Note that the assignment f is required only for the valuation of the
free variables in 4. In particular, no assignment is required for sentences. For a sentence
1, we say that M, s |= ¢ if s € M (f), for (the arbitrarily chosen) f with f(z) = 0
forallz € X.

Let X denote u or v. We assume that every variable x € X is bound at most
once. We refer to the fixpoint subformula in which z is bound as A(z). If A = g,
we say that z is a u-variable, and if A = v, we say that it is a v-variable. Consider
a p-calculus formula of the form Az.p. Given an assignment f € F, we define a
sequence of functions 7 (f) : 25 — 2% inductively as follows. ©°(f)(S") = S’
and @7 (£)(S") = ©(fla=qi(f)(s))- For a p-calculus formula ¢ and a subformula
¢ = Az.\(z) of ¢, we define the alternation level of ¢ in ¢, denoted al, (), as follows
[3]. If ¢ is a sentence, then aly () = 1. Otherwise, let § = X'y.£' be the innermost
or v subformula of v that has ¢ as a subformula, and y is free in ¢. Thenif X' # X, we
have aly () = aly(§) + 1. Otherwise, aly (@) = aly(§).

Intuitively, the alternation level of ¢ in 4 is the number of alternating fixpoint op-
erators we have to “wrap ¢ with” in order to reach a sub-sentence of «. For a variable
z, the alternation level of z, denoted al(z) is the alternation level of A(z). Note that it
may be that A(z) is a subformula of A\(z') and al(z) = al(z'). The definition of al(x)
partitions X into equivalence classes according to the variable’s alternation level. Note
that an equivalent class may contain variables that are independent. In order to refine
the class further, we define the order < to be the minimal relation that satisfies the fol-
lowing. (1) If 2’ is freein A(z) thenz < z'. (2) If z < yand y < z' thenz < x'. We
define the = equivalence relation to be the minimal equivalence relation that contains
all pairs (z, z') suchthat z < 2’ and al(z) = al(z"). The relation ~ refines the partition
induce by al(x) so that each class contains variables at the same alternation level that
do depend on each other and are all are either x variables or v variables. We define the
width width(7) of an alternation level i as the maximal size of an equivalence class that
is contained in the i’th alternation level. Another property of the ~ relation is that for
every equivalence class X ¢ there exists a unique variable z,, = maz(X¢) in X*¢ such
that for every other variable € X ¢ we have z < z,,,. We can simultaneously calculate
the fixpoint values of all the variables that are in the same equivalence class.



The reason that we use simultaneous fixpoint is that the evaluation of the variables of
a p-calculus formula as defined above is hierarchical, in the sense that in order to update
the value of a variable x, we first evaluate all the variables that appear in subformulas of
A(z). Since the value of z might be updated up to |S| times, this makes the complexity
of the evaluation exponential in the nesting depth of the fixpoint operators. It turns out
that this hierarchal computation is needed only when there is alternation of y and v
variables. Thus, if A(z) is a subformula of A(y) but z ~ y, we can compute their value
simultaneously. This could reduce the complexity substantially.

Next, we define a simultaneous fixpoint operation over equivalence classes orga-
nized in tuples. Let X¢ be an equivalence class of variables with respect to =~. Let
X' be the set of variables {z'|3z € X®.x < '}, and let X" be the set {z"|3z €
Xex" < z}. Let z,, = max(X°), then the subformula A(z,,) = Azp,.om binds all
variables of X¢. Given an assignment f : X’ — 25 we consider ¢,,,(f) as a function
om(f) : (X = 2%) — (X — 2%). This function is used to define the simultaneous
fixpoint value of X®. Note, that all the variables in ¢,, are either in X’ orin X' U X¢.
Given an assignment f : X’ — 29, assume that an extension of f to f|._z recur-
sively determines the values of the variables in X" or more precisely the values of the
subformulas A(z""). Thus subformulas that are not determined in ¢,,, are of the the form
A(z") where ' € X' U X*°. We determine these values using f|._z, then for every
variable z € X*¢ we can calculate the value of ¢, and determine it’s new value. We
define the simultaneous fixpoint value of X as, N{S’ : v, (f)(S") C S’} for pu-class
and J{S" : §" C pm (f)(S")} for v-class.

Theorem 1. For every variable z, the u-calculus and the simultaneous fixpoint assign
the same value to z,

Theorem 2. (Extended Knaster-Tarski)

- N{Sem(H)(S) € 5} = (SIS = ¢m ()N} = Ui 9m' (H(0.0,...,0)) =
om0 ((0,0,...,0). _ ,

- U1 € on(N(S)} = ULS'1S" = om(£)(S)} = ;50 0m" (H(S, S, ... ) =
om!SIXA) (S, S, ... S)).

3 TheLogic u#-calculus

While a formula of the p-calculus defines a subset of .S, namely a mapping from S to
{0,1}, a formula of the p#-calculus defines a mapping from S to a domain D where D
is parameterized by a natural number k and a sequence of natural numbers ng, n1, ... ng
suchthat D = UF_({1,2,...,m0}x{1,2,...,n1} x...x{1,2,...,m})U{co, —oo}.
We start with the syntax of the p#-calculus. As in the p-calculus, formulas are defined
with respect to a set A P of atomic and a set X of variables. In the p#-calculus, however,
each variable is associated with an arity. We write z(¢) to indicate that variable z has
arity c. Given AP and X, the set of the u-calculus formulas (in positive normal form)
over AP and X is defined by induction as follows.

— If p € AP, then p and —p are p#-calculus formulas.
— If 2(9 € X, then () is a u#-calculus formula (in which z is free).



— If p and ¢ are u-calculus formulas then
e V1 and ¢ A ¢ are p#-calculus formulas,
e Oy and O p are pu#-calculus formulas,
e Forz(9) € X, we have that setz(®). and incz(®).¢ are p#-calculus formula
(in which z is bound).

We define an alternation level, a preorder <, and an equivalence relation ~ over X in
the same way we define it for the p-calculus. We say that a z#-calculus formula is well
formed if

— The arity ¢ of a set-variable (¢) is equal to the minimal arity of inc-variables
with alternation level smaller than al(z).

— The arity ¢ of a inc-variable z{¢) is equal to the minimal arity of set-variables
with alternation level smaller than al(z), minus one.

We use sub(¢)) to denote all the subformulas of «. Before defining the semantics of
the p#-calculus, we define a parameterized order over the tuples in D. Intuitively, the
order is lexicographic, and the parameter enables us to restrict attention to prefixes of
the tuples. Formally, we have the following.

Definition 1. For d,d’ € D and ! > 0, we say that d <; d' if either d = oo and
d# oo,0rd # —ocoandd = —ooord = (do,...,d;) and d' = (dy,...,d;), and
either:

— For some k£ < min(i, j,!) we have di, < dj, and for every 0 < m < k, d,, = d,,,.
— 4 < min(l, j) and for every k£ < i we have di, = dj,.

Definition 2. For d,d’ € D and ! > 0, we say that d =; d' if either d = d' or
d = (do,...,d;) andd’ = (dy, . ..,d;), and I < min(i, j) and for every k < [ we have
dy = dj,.

Note that <; is a total order over the tuples with arity < I. We sometimes use the
order without the parameter, with the usual lexicographic interpretation. Thus, d < d' if
d <; d forl = max{|d|, |d'|}, and the minimum and maximum tuple of a set of tuples
are defined similarly.

Ford = (dy,...,d;) and I > 0, let set;(d) be greatest I-tuple d’ such that d' <; d.
Ifd = oo ord = —oo, then set;(d) = d. Also, let inc;(d) to be the smallest [-
tuple d' in D such that d <; d'. Since < is total, such a unique tuple exists. If d =
(ng,n1,--.,my), then inc;(d) = oo, if d is co then inc;(d) = d, and if d is —oo then
incy(d) is the I-tuple (1,1,...,1).

Consider a Kripke structure M = (S, R, L). A measure function for M is a function
g: S — D.Forc > 1, we say that g is a measure function of arity ¢ if for all
s € S, we have g(s) is either a c-tuple in D or an element of {co, —oo}. The semantics
of u#-calculus is defined with respect to a Kripke structure M = (S, R, L) and an
assignment f : X — DS to the variables. An assignment f is legal if for all z(¢) € X,
the measure function f(z) is of arity c. Let F# denote the set of all legal assignments. A
formula ) is interpreted as a function ™ : F# — D, Thus, given a legal assignment
f € F#, the formula ¢ defines a measure function for M with respect to f. The
function )M is defined, for all s € S, inductively as follows (when M is clear from the
context, we omit it).



— p(f)(s) = ocifp € L(s) and p(f)(s) = —oo if p & L(s).
— —p(f)(s) = 0 ifp & L(s) and p(f)(s) = —ooif p € L(s).
— For a free variable z(<), we have () (f)(s) = f(z(9)(s).
= (pVY)()(s) = maX{w( )(8),0(f)(s)}
= (e A)(f)(s) = min{p(f)(s),¥(f)(s)}
= (0p)()(s) = max{p(f)(s') |R(s,s') }.
- O 9)(f) = min{p(f)(s) |R(s,s")}.
— setz( .o(f)(s) = set(o(f)(s))-
— incz( .o(f)(s) = inc.(o(f)(s)).

Let X denote set or inc. As in the u-calculus, we assume that every variable z(¢) €
X is bound at most once in a p#-calculus formula, and refer to the subformula that
bounds z(©) as A(z). We can view a formula as a function ¢ : F# — F#. Indeed,
given f € F#, all the subformulas of +, and in particular \(z), for all z(¢) € X, are
mapped into measure functions. Formulas of x#-calculus are monotone, in the sense
that o(f) > f. Hence, we can talk about the least fixpoint of a y#-calculus formula.

Let gy : X — D5 be the result of applying 1 on the assignment go until a fixpoint
is reached, where go assigns to every variable (%), the assignment S — —oo. Every
variable () can be updated at most |S|-ng - n; -. .. - ny times thus the time complexity
is O(|X| - |S]| - no - n1 -...-ng) and the space complexity is O(|X | - |S| - (log(ne) +
log(n1) + ...+ log(ng))).

Given a p-calculus formula 1), we associate with +» a p#-calculus formula # that
characterizes the same set of states. We define 4# to be ) where the arity of a variable
isw(z) = [“’é”} , every p operator is replaced by a set operator, and every v operator
is replaced by an inc operator. In order to check whether a Kripke structure M satisfies
1#, we define the domain D where k = r’%(“l(w))] and forevery 0 <4 < k we
have n; = width(2-i+1) - |S|.

Theorem 3. (Measured Collapse) Let ¢ be a p-calculus formula, and let M be a
Kripke structure. Then, M, s |= ¢ iff g« (47)(s) = oo.

The proof of Theorem 3 is described in the full version. Theorem 3 implies a sim-
ple model-checking algorithm for the p-calculus. Given a p-calculus formula + and
a Kripke structure M, translate ¢ into «»# and check whether M = +#. The time
complexity of this algorithm is O(|X| - width(1l) - width(3) - ... - width(2 - k +
1) - |S|*¥*+1) where k is the maximum alternation level of ¢. The space complexity is
O(|X1-1S]- (log(width(1)) + log(width(2)) + . ..+ log(width(k)))). Note that in the
model-checking algorithm that uses a reduction to parity games, the time complexity is
O(|X| - |al(1)| - |al(3)] - ... |al(2- k + 1)| - |S|F*1).

Recall that for all 4, we have that width(i) < al(¢). Thus, our complexity is better.
The improved complexity follows from the fact that the reduction of u-calculus model
checking to parity games does not take into account the fact that some variables with
the same alternation level may be independent of each other. On the other hand, the
translation to p#-calculus refines the partition induced by the alternating level to the
relation =.



4 Symbolic pu#-calculus Model Checking and Parity Games

As discussed in Section 1, the improved algorithms for u-calculus model checking
are not symbolic. In this section we describe a symbolic algorithm for p#-calculus
model checking. The Measured Collapse Theorem then implies a symbolic algorithm
for p-calculus model checking, and our complexity matches the improved complexity
of [20]. In addition, we show how the algorithm in [20], for the equivalent problem
of solving parity games, can be viewed as a computation of a least fixed-point over a
measured domain, and describe a symbolic implementation for it that follows from this
view. A symbolic evaluation of u-calculus formulas uses Binary Decision Diagrams
(BDDs) [5] to represent characteristic functions [6]. For the p#-calculus, we use Alge-
braic Decision Diagrams (ADDs), which extend BDDs by allowing arbitrary numerical
domains [7].

Symbolic evaluation of p#-calculus formulas Consider a p#-calculus formula + and
a Kripke structure M = (S, R, L). We define the product of ¢) and M as the graph
Gy,m = (V, E), where

-V =sub(y) x S.
(p, 9), (¢, 8")) iff one of the following holds.
s = s' and there is ¢" such that p is ¢’ V ", @" V', @' A", oro" A¢'.
R(s,s") and @ is Qo' or ¢,
s = s and @ is setz(®).¢ or incz(©).y'.
s=¢,p= 2(9), and o' = Az(©) '

e e o o

We refer to vertices of the form (¢’ V ¢", s) or ($¢', s) as max vertices, and to vertices
of the form (¢’ A ¢, s) or ( ¢', s) as min vertices.

Let gy : sub(yp) — D* be the least fixpoint of 1. We describe the calculation of g,
by means of a function fy, ar : V' — D such that fy ar (g, s) = g4 () (s). Note that for
all ¢ € sub(t), we have that s |= ¢ iff fy a(s,¢) = co. In order to calculate fy, ar,
we describe a sequence of functions fo, fi,. .. such that fy a = f; where ¢ is the least
such that f; = f;+1. The functions f; : V. — D are defined inductively as follows. We
start with fy.

— Ifv = (p,s) then fy(v) = 0 if s Epand fo(v) = —0 if s £ p.
— Ifv = (—p,s) then fo(v) = < if s £ gand fo(v) = —0 if s |E q.
— For all other vertices fo(v) = —oc.

Given f;, we define £, as follows.

— If v is of the form (p, ) or (—p, s) then fi+1 (v) = fi(v).

If v is a max vertex, then f; 1 (v) = max{f;(v') | (v,v") € E}.

If v is a min vertex, then f;+1(v) = min{ f;(v') | (v,v') € E}.

If v is of the form (2(°), s) then v has a single successor v’ and f;y1(v) = fi(v').
If v is of the form (set 2(%).¢, 5), then v has a single successor v' and f;,1(v) =
sete(fi(v")).

If v is of the form (inc 2(%).¢, s), then v has a single successor v’ and f; 11 (v) =

inc(fi(v")).



Proposition 1. Consider a Kripke structure M and p#-calculus formula . For all
@ € sub(y)) and s € S, we have gy () (s) = fy.m (@, 5).

We now describe how to compute £y s symbolically. We use BDDs to represent sets
and relations, and use ADDs to represent measure functions. Consider a Kripke struc-
ture M = (S, R, L) and a formula ¢. Let Gy ar = (V, E) be their product as defined
above. We assume that M is given symbolically by one BDD h g for R, and |[AP| BDDs
—one BDD h,, for each p € AP, representing the set of states that satisfy p (when the
state space is given by truth assignments to AP, there is no need for these BDDs) .
Given these BDDs, constructing BDDs that represent V' and E is straightforward. In
particular, we assume that E is represented by the BDD hg, and we also have the fol-
lowing BDDs for subsets of V: a BDD h 4p for vertices of the form (p, s) or (—p, s),
BDDS hyax and Ay, for the max and min vertices, respectively, a BDD h x for vertices
of the form (z(%), ) for some ¢, BDDS hges,; for vertices of the form (setz(9).¢, s),
and BDDs hiy,; for vertices of the form (incw(j).cp, s). Finally, the procedure also
gets an integer ¢;,q42, Which is the maximal arity of a variable in X.

The algorithm for computing £, as is described in Figure 1. Apart from the Boolean
BDD operators OR, AND, and NOT, we use the operator — (h, d), which gets a BDD
h C V and some d € D, and creates an ADD that maps all the elements of A to d, and
the following procedures.

— MAX, which given an ADD f : V — D and the BDD hg, returns an ADD that

assigns to every verteX v € g, the value max{f(v')|E(v,v")}.

M N, which given an ADD f : V — D and the BDD hg, returns an ADD that

assigns to every verteX v € hp, the value min{ f (v')| E(v,v")}.

ASSI GN, which givenan ADD f : V — D and the BDD hg, returns an ADD that

assigns to every vertex v € hx the value f(v') for the single v’ with E(v,v").

SET(f,j),whichgivenan ADD f : V — D, the BDD hg,and 1 < j < ¢maz:

returns an ADD that assigns to every vertex v € hge ; the value set;(f(v')) for

the single o' with E(v,v").

— INC(f,j),whichgivenan ADD f : V — D, the BDD hg,and 1 < j < ¢mae:
returns an ADD that assigns to every vertex v € hip. ; the value inc;(f(v")) for
the single v' with E(v,v").

— OR between ADDs, which gets ADDs that map disjoint subsets of V' to D and
returns their union (all the ADDs are defined for all the vertices in V/, but some
vertices are mapped to some special value, which enables us to represent by ADDs
also partial functions).

Since all procedures assign values to the vertices according their successors, it is
useful to generate, given an ADD f and the BDD hg, the ADD fou. : V XV — D
suchthat fsuc(v,v') = dif E(v,v') and f(v') = d. If =E(v,v"), then fgy.(v,v") = co.
The ADD [, is simply the result of an AND operation on A and a ADD of f with
renamed variables. Using fs.., the implementation of ASSI GN is straightforward as
' .(fsue AND h;). The implementation of | NC and SET is similar except that we
replace every leaf d in the ADD of (fsuec AND hinc ;) OF (fsuc AND hget ;) With
inc;(d) or set;(d) respectively. The procedures MAX and M N are more complicated
and are described in the full version.



MODEL _CHECK
hhp = (ORpear({p} AND h;))OR (OR pear({-p} AND NOT (hy));
fi == (hg,0) ;
f=fI OR — ((hv AND NOT hl), —00);
r epeat
fold = fy fmam = Np\x(fold) ;
fmin =M N(fold) ) fm = ASSI G\l(fold) )
fset = false;  finc = false;
for j=1 to cmer doO
fﬁet = fset OR SET(fold:j); finc = finc ORI NC(fold;j)
f = fq OR fmam OR fmzn OR fset OR finc;
until f= foua

Fig. 1. The symbolic algorithm for p#-calculus model checking.

Let us now analyze the complexity of the procedure. The number of iterations
required for the procedure to reach a fixed point is bounded by |D| - |V'| which is

|S|f%1 - |S| - |#|. Each iteration involves an applications of the MIN/MAX pro-
cedures (that are the most costly). In the full version, we show that these procedures
apply at most |V'|2 - Llog(|V]) = (|S| - [¢|)? - Log((|S] - |v|) ADD operations. Thus, the

al(y)

overall complexity is O(|S|I== 113 . |4)|) - log((|S| - [+/|) ADD operations.

Parity games A parity game is played on a graph (V, E), where V' is partitioned into
two sets: V4, of even vertices and V; of odd vertices. Every vertex v has a priority
p(v) € {0,1,...k — 1}. A parity game over (V,, V1, E, p) is played by two players,
referred to as the odd and the even player. A play over the game starts by putting a
pebble at some initial vertex v and proceeds infinitely many rounds. In each round,
one of the players moves the pebble on an edge from the current vertex to one of its
successors. If the source vertex is in Vj, the even player moves the pebble; otherwise
the odd player moves the pebble. The play generates an infinite sequence of vertices p.
Let inf(p) be the set of vertices that appear infinitely often in p. The odd player wins
the game if the vertex with minimal priority in inf(p) has an odd priority. Otherwise,
the even player wins. The problem is to determine, given a game graph (Vo, V4, E, p),
the set of vertices from which the odd player has a winning strategy.

In [20], an algorithm for solving parity games is suggested. Below, we describe the
algorithm in terms of measure function. Let D = Uj%:l{o, L...,|VI} U {oo,—o0},
let F' be the set of all measure functions f : V. — D and let f, be the initial function
that assigns —oc to all vertices. A game graph G induces a function from F' to F', where
for a measure function f € F', the measure function G(f) is defined, forall v € V, as
follows:

) ifv € V; and p(v) is even.
p(;)](f(v’)) if v € V4 and p(v) is odd.
(v)
(v)

!
maX(v’v/)eE f(’l)
MaX(y,y)eE inc

_ f
GN®) =9 ming ves ) if v € Vi and p(v) is even,
min(v,v/)eE :'I_nC[LU)1 (f(’l)l))) ifv € V, and p(v) is odd.



If we denote by fg to the least fixpoint of G, then the set of winning vertices for the
odd player is {v|fg(v) = oo}, and the set of winning vertices for the even player
is {v|fa(v) < oo}. The measure function f& can be used for generating a winning
strategy = : Vo — V for the even player where for every v € V, we have 7(v) = o'
such that fg(v') = min{fg(v")|(v,v") € E}. Thus, the even player moves to a
successor of v with minimal measure. A symbolic procedure that generate a strategy is
given in the full version.

A symbolic implementation of the algorithm similar to the symbolic evaluation of
u#-calculus formulas is described in Figure 2. The procedure calls the following pro-
cedures

— MAXe, which givenan ADD f : V — D, the BDD hg,andaneven1 < j < %
returns an ADD that assigns to every vertex v € V; with p(v) = j, the value
max{f(v")|E(v,v")}.

— MAXo, which given an ADD f : V — D, the BDD hg,andanodd 1 < j < %
returns an ADD that assigns to every vertex v € V; with p(v) = j, the value
max{inc[%](f(v')) : E(v,v")}.

— M Ne and M No, defined similarly for vertices in 1§.

The symbolic implementation of these procedures is similar to the implementation of
the MAX and M N procedures of the former section, and is described in the full version.

PARI TY(G)
f==(V,—0c0);
r epeat
faa=f, [ ="false;
for j=1to £ do
if jis even then f=f ORMAXe(foid,j) ORM Ne(foid,3);
if jis odd then f=f ORMAXO(foid,j) OR M No(foid,7);
end for

until  f = foa;

Fig. 2. A symbolic algorithm for solving parity games.

Complexit)é: Similarly to the previous section, we can bougd the number of iter-
ations by |V|[21 - |V|. Thus, the overall complexity is O(|V|[21%3 - log(|V'|)) ADD
operations.
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