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Abstract

We describe an automata-theoretic approach for the cotivpetnalysis obnline algorithms
Our approach is based areighted automatawhich assign to each input word a cost ifR
By relating the “unbounded look ahead” of optimal offline@ighms with nondeterminism, and
relating the “no look ahead” of online algorithms with denémism, we are able to solve problems
about the competitive ratio of online algorithms, and thermogy they require, by reducing them
to questions abouteterminizatiorandapproximated determinizatiosf weighted automata.

1 Introduction

In formal verification we verify that a system has a desired property by checking whethetra ma
ematical model of the system satisfies a formal specification of the profigatly work on formal
verification handled finite-state hardware designs. Current workddlie@pes with infinite-state soft-
ware systems, complex distributed systems, and so on [2, 15], and is widksuacessfully used in
the industry [9]. An important feature of formal verification is that rathantheasoning only about
input/output relations of terminating systems (for example, the output is thefdgbd two numbers

in the input), it enables reasoning abaedctive systemsvhich maintain an on-going interaction with
their environment. For example, one can check that an operating systenreaches a deadlock, or
that every request in some communication protocol is eventually acknosdedg

In this work we extend the scope of formal verification to reasoning adaalirie algorithms An
online algorithm can be viewed as a reactive system: at each roundyihenement issues a request,
and the algorithm should process it. The sequence of requests is mat kmadvance, and the goal
of the algorithm is to minimize the overall cost of processing all the requests setjuence. Online
algorithms for many problems have already been extensively studiedveraselecades, and have
aroused much interest, both from a practical and a theoretical pointwf#]e

While the interaction described above between an online algorithm and iteemént is at the
heart of formal verification, the questions that are traditionally answeyddrmal verification tech-
niques are very different from those that are asked in the contextlofeoalgorithms. In formal
verification a system is checked with respect to a given specification. ©atlier hand, the most
interesting question about an online algorithm refers taxdspetitive ratio the worst-case (with
respect to all input sequences) ratio between the cost of the algoritthth@rcost of an optimal so-
lution (one that may be given by affline algorithm which knows the input sequence in advance).



While current formal verification techniques can check qualitative ptigseof an online algorithm
(e.g., “whenever a request to a page is made, and this page is not in e ttecpage is brought into
the cache”) and even answer quantitative questions about it (e.g.t fsvtitee maximal number of
page faults within a window of rounds?”) [8], current techniques cannot refer to the optimal solu-
tion, and hence, they cannot reason about the competitive ratio. Likemhide synthesis algorithms
and tools successfully generate systems that satisfy a given specifi{d&jocurrent synthesis algo-
rithms cannot, for example, synthesize (or decide that there does mtastine algorithms that are
as good, or competitive with some given ratio, as a given offline algorithm.

Our approach to formally reasoning about online algorithms is basegighted finite automata
(WFAs, for short) [18, 20]. Essentially, we relate the “unbounded llogad” of the optimal offline
algorithm with nondeterminizm, and relate the “no look ahead” of online algorithitisdetermin-
ism. This enables us to reduce questions about the competitive ratio of dglimighams to questions
aboutdeterminizatiorand approximated determinizatioof WFAs. Below we further elaborate on
our approach and our results.

A WFA A induces a partiatostfunction from~* to R=?. Technically, each transition of
has a cost, the cost of a run is the sum of the costs of the transitions takentiaéorun, and the
cost of a wordw, denotedcost (A, w), is the minimum cost over all accepting runs on it (the cost is
undefined if no run on the word is accepting). Consider an optimizatiorlgaroB with requests in
Y. An algorithm for P can be viewed as a mapping of word<’if to a set of actions available to the
algorithm [3]. For a finite sef of configurations, we say that an algorithm uses mentbifythere
is a regular mapping of* into S such that the algorithm behaves in the same manner on identical
continuations of words that are mapped to the same configuration.

The set of online algorithms faP that use memong induces a WFAAp, with alphabet: and
state spacé, such that the transitions of p correspond to actions of the algorithms and the cost of
each transition is the cost of the corresponding action. We argue that epéinyization problems
have algorithms that use finite memory. We demonstrate this on the pagsegyer, ski-rental,
load-balancing, and\-paid exchange static list accessing problems.

Given a finite sequence of requests X*, each run ofdp onw corresponds to a way of serving
the requests i by an algorithm with memong. The set of all runs include all such ways, thus
cost(A, w) is the cost of an optimal offline algorithm anthat uses memoryg. On the other hand,
an online algorithm has to process each request as soon as it atfeese, an online algorithm
corresponds to a deterministic automawnbodiedn Ap. Indeed, for every configuration € S
and request € Y, the algorithm suggests a particular way to proee$som s, inducing a single
transition labeled from s.

Accordingly, there exists an online algorithm fBrthat performs as well as the optimal offline
algorithm iff Ap embodies an equivalent deterministic automaton, in which case we say that
is determinizable by pruningSimilarly, there exists an-competitive online algorithm fo, for
a > 1, iff Ap embodies a deterministic automatdf;, thata-approximates4 p (the automatord’,
accepts the same set of words4s, andcost (A, w) < a- cost(Ap,w) for all wordsw in this set).
Then, we say thatl p is a-determinizable by pruning

Restricting the determinization procedure to automata embodidg iguarantees that transitions
in the automaton still correspond to actions of an algorithn#oAn online algorithm, however, may
require more memory than an offline algorithm for the same problem. For example paging
problem, an offline algorithm only has to remember in each round the sege$ plaat are in the cache,
whereas known online algorithms that achieve the best competitive ratio akéngralgorithms,
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which remember, in addition, some order on the pages in the cache, or scenénfdhmation. To
address this point, we also consider a variant of determinization by prtirahgllows a refinement of

the state space ol p before pruning it to a deterministic automaton. We show that such a refinement
indeed corresponds to an extension of the memory used by the algorithm.

We study the problems of deciding whether a WFA is determinizable{gdeterminizable) by
pruning, with and without refinement. The problems are, in fact, challergiregdy for the un-
weighted case, and we first solve them in this settilge show that the problem of deciding whether
a WFA is determinizable by pruning can be solved in polynomial time. Our algornitiakes use of
the local nature of pruning — each state should have, for each inputdettet, a o-transition that
“covers all otherr-transitions”. The local nature of pruning, however, cannot be wdezh consid-
ering approximation, and we show that the problem of deciding whetherAigVk-determinizable
by pruning, fora > 1, is NP-complete. It follows that given an optimization probléhand a fi-
nite setS of configurations, the problem of deciding whether there is an onlineitiigofor P with
configurations inS, that is as good as an offline algorithm with configuration§'jican be solved in
polynomial time. On the other hand, the problem of deciding whether thereaslare algorithm
for P with configurations inS that is a-competitive, for a fixedh > 1, with respect to an offline
algorithm with configurations i¥, is NP-complete.

The complications that approximation brings with it are carried over to the séttiwich an
extension of the memory is allowed. We prove that while extending the memanptaelp an online
algorithm to perform as well as the offline algorithm (that is, if an offline atgm uses memory,
and nol-competitive online algorithm with configurations fhexists, then there is nbcompetitive
online algorithm at all), memory may help in order to decrease a competitivearatiol (that is,
there are problems for which an offline algorithm uses configuratio§s mo online algorithm with
configurations inS is a-competitive, but there is an online algorithm with richer configurations that
is a-competitive¥.

In Section 6, we discuss the practical aspects of implementing our frameWwoplarticular, we
discuss symbolic approaches that cope with the large state space th3gaithms handle, and
parametric methods, which allow to reason about a system with many identicalsses by studying
properties of one of the processes.

1.1 Related work

Our automata-theoretic approach for reasoning about online algorittopssaahd extends ideas from
work done in the formal-verification community. An automata-theoretic apprimeceasoning about
systems and their specifications has been suggested in [23], and masxbersively studied and
implemented since then. As discussed above, the known approach istablesfor reasoning about
online algorithms. Determinization of WFA is studied in [20], but the techniquktia@ applications
are different from those of determinization by pruning, which we studg.he

The online-algorithms community has studied several abstract models foetitvepanalysis.
The on-going interaction that takes place in online algorithms can be modaiexample, by means
of games in strategic formil7] and request-answer gamg8]. Other work considers models for

1The problem of determinization by pruning is of interest also in the unweldgtdse. As described in [14], automata
that are determinizable by pruning can be used in the process of sgrahdsgame solving.

2We note that while it is widely believed thatkacompetitive online algorithm for the paging problem needs more
memory than the optimal offline algorithm, this is not the case [11].
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specific problems (e.g., [1] for paging). The model that is closest totonaata-theoretic approach
is the one oimetrical task systenis, 19]. The expressive power and the applications of the various
models are different, however, from our weighted automata.

2 Preliminaries

2.1 Weighted automata

Standard automata map wordsi to either “accept” or “reject”. A weighted automaton can be
viewed as a partial function (defined only for accepted words) fidrto R=°. Formally, aweighted
finite automatorfWFA, for short) isA = (£, Q, A, ¢, Qo, F'), whereX is a finite input alphabet) is
afinite set of stateg\ C Q x ¥ x @ is a transition relation; : A — R=? is a cost functionQy C Q
is a set of initial states, anBl C @ is a set of final states. A transitiah= (q, a,p) € A (also written
asA(q,a,p)) can be taken when reading the input letieand it causesd to move from state to
statep with costc(d). The transition relation\ induces a transition functiofi : @ x ¥ — 29 in
the expected way. Thus, for a statec ) and a lettern € 3, we havedi(q,a) := {p: A(q,a,p)}.
We extend’ to sets of states, by letting(.S, a) := | .5 d(g; @), and recursively to words ik*, by
letting §(S,e) = S, andd(S,u - a) := §(5(S,u),a), for everyu € ¥* anda € . A WFA A may
be nondeterministic in the sense that it may have many initial states, and thatrfey;s= @ and
a € X, it may haveA(q, a,p1) andA(q, a, p2), with p; # pe. If |Qo| = 1 and for every state € @
and lettera € ¥ we have|d(q,a)| < 1, thenA is adeterministiowveighted finite automaton (DWFA,
for short).

For a wordw = wy...w, € ¥* arun of A onw is a sequence = rori...7, € QT,
wherery € Qo and for everyl < i < n, we have(r,_1,w;, ;) € A. The runr is accepting if
r, € F. The wordw is accepted by if there is an accepting run ol on w. The (unweighted)
languageof A is L(A) = {w : wis accepted byd}. Forq € @, we denote byA? the automaton
A with the single initial statey. The cost of an accepting run is the sum of the weights of the
transitions that constitute the inFormally, letr = ror; .. .7, be an accepting run o onw, and
letd = d; ...d, € A* be the corresponding sequence of transitions. The castofost(A,r) =
>, c(d;). The cost ofw, denotedcost(A, w), is the minimal cost over all accepting runs .df
onw. Thus,cost(A, w) = min{cost(A,r) : r is an accepting run ofl onw}. For completeness, if
w & L(A) we setcost(A, w) = oo.

For two WFAs.A; and Ay, anda > 1, we say thatd; a-approximatesA, if L(A;) = L(As)
and for all wordsw € ¥*, we havecost( A1, w) < « - cost(Az, w). When both4; 1-approximates
Ay and A, 1-approximatesd;, we say thatd; and.4; areequivalent

3In general, a WFA may be defined with respect to any semiffiagp, ®, 0, 1). The cost of a run is then the semiring
product of the weights along it, and the cost of an accepted word is thieimgisum over all accepting runs on it. For
the modeling of online algorithms, we focus on weighted automata definedesitiect to thenin-sum semiring(R=° U
{o0}, min, +, 00, 0) (sometimes called thiopical semiring), as defined above. Also, some work assigns costs also to
initial and accepting states. We do not need such costs for the modelimdjroé algorithms, and work with a definition
that omits them.



2.2 Online algorithms

A problemassociates with each possible ingut setF'(I) of feasible solutions. In aaptimization
problem(of cost minimization), each solution if(I) has a cost in R’, and the goal is to find a
feasible solution that minimizes the cost.

An online algorithmfor an optimization problenP is an algorithm that gets as input a finite
sequence of requests, and has to process each request (anpl iend feasible solution) without
knowing the requests yet to come. In contrastp#iline algorithmfor P gets the entire sequence in
advance, and its decisions as to how to process a request may depeedequests yet to come.

Formally, if we denote by the set of requests, and denote MAythe set of actions that are
available to the algorithm, then an online algorithm corresponds to a fungtioR™ — A. The
processing of an input sequenee. ..o, by g is theng(oi), g(o102), g(o10203),.... In typical
optimization problems, there is a cost functieetion_cost : A — R=" that associates a cost with
each action. The cost of processing an input sequence is the sum addiseof the actions taken
in order to process it. The performance of an online algorithm is typicallysevtinan that of an
offline algorithm for the same problem. For analyzing the performancelofeoalgorithms we use
competitive analysjsvhich compares the two performances.

For an online algorithny and an inputv € X7, let g(w) denote the cost of processingby
g, and let OPTw) denote the cost of processingby the optimal offline algorithm. We say that
an online algorithny is a-competitivef there exists a constarit such that for all input sequences
w € X1 we have thay(w) < o-OPT(w) + . Thecompetitive ratioof g is the smallest: for which
g is alpha-competitive. In the rest of the paper we restrict attention to the multiplicateterfa and
ignore the additive factgs, except for places where it is not immediately clear how to hagdle

Our analysis of online algorithms takes into account the extra memory thatlihe atgorithm
may require in order to compete with the offline algorithm. Formally, we have tlwviag.

Definition 2.1 For a setS of configurations, a competitive ratie > 1, and an integer > 0,
we say that an optimization problef has competitive ratio(«, ) with memory.S, if there is an
online algorithmg for P that uses an extension of the memsrpy r» Boolean variables, and is
a-competitive with respect to an optimal offline algorithm that uses mesiory

3 An Automata-Theoretic Approach to Reasoning about Online Algo-
rithms

In this section we describe an automata-theoretic approach to reasonirgbabne algorithms. We
first characterize optimization problems for which the approach can bedpand argue that typical
optimization problems satisfy our characterization. We then describe hawpbgling optimization

problems by weighted nondeterministic automata, we can reduce reasoouigtiad competitive
ratio and the memory required by online algorithms, to reasoning about deitzation of such

automata.

3.1 Finite-state online algorithms

Recall that an online algorithm corresponds to a funciiolot — A that maps sequences of requests
(the history of the interaction so far) to an action to be taken. In generaglgiogithm induces an
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infinite state space, as it may be in different states after processingedifi@put sequences ni*.
Indeed, modeling of online algorithms by request-answer games givet® riganes with infinitely
many positions [3]. For a finite sét of configurations, we say thgtuses memong, if there is a
regular mapping oE* into S such thaty behaves in the same manner on identical continuations of
words that are mapped to the same configuration.

We model the set of online algorithms that use mem®@nd solve an optimization problef
with requests irt and actions iM4, by a WFAAp = (3, S, A, ¢, Sy, S), such thatA andc describe
transitions between configurations and their costs, i a set of possible initial configurations.
Formally, A(s, o, ') if the setA’” C A of actions that process the requesrom configurations by
updating the configuration tg is non-empty, in which cas€ (s, o, s')) = min,c 4/ action_cost(a).
Note that all the states o p are accepting. Thusip assigns a cost to all sequence&iin

Many optimization problems have online algorithms that require finite memory, var figite
memory variants that are obtained by imposing natural bounds. We giveextanples below.

Example 3.1 [The paging problem[21]] In the pagingproblem we have a two-level memory hier-
archy: A slow memory that containsdifferent pages, and @achethat contains at mogt different
pages (typicallyk << n). Pages that are in the cache can be accessed at zero cost. Ieatriequ
made to access a page that is not in the cache, the page should be brtwutite cache, at a cost of
1, and if the cache is full, some other page should first be evicted fronathecThe paging problem
is, given a sequence of requested pages, to decide which page wwheiaver an eviction is needed.
The goal is to minimize the total cost.

A paging problemP with parameters. andk induces a WFAAp = (X, S, A, ¢, Sp, S), where
¥ ={1,...,n} is the set of possible requests (page indicés} {C C {1,...,n}: |C| < k}isa
set of finite configurations, each describing the set of pages curiantig cacheA andc describe
how (and at which cost) requests are served, 8Snd= {0}, indicating that the cache is initially
empty. Thus,A(C,i,C") iff one of the following holds: (1) € C, in which caseC’ = C and
c((C,i,C")) =0,(2)i ¢ C,|C| < k,andC" = CU{i}, in which case((C,i,C")) = 1,0r (3)i & C,
|C| = k, and thereig € C' suchthatC’ = (C'\{j})U{i}, in which case:((C,i,C")) = 1. Note that
by the definition ofS, a configuration stores only the set of pages currently in the cacheharel
are no provisions for storing any extra information such as time-stampsAtifferent automaton
for the problem could have defingdin a way that allows the storage of such extra information. We
will elaborate on this point in the sequel.

Example 3.2 [The k-server problem [19]] The paging problem can be viewed as a special case of
the k-server problem. There, we ha¥eservers in a metric space = (V, d), whereV is a set of
points and : V x V — R=" is a distance function. The input to the problem is a sequence of points,
each point should be served by moving a server to it (if no server is)tlare the goal is to minimize

the sum of distances that the servers move.

A k-server problemP with parameters: and M = (V. d), for a finite setl/, induces a WFA
Ap = (V,VF A c,{s0}, V¥), where each state corresponds to a configuration of the servers (for
simplicity, we allow several servers to cover the same poidtgndc describe how (and at which
cost) servers may move, agglis an initial configuration defined by the problem. This, v, s')
iff one of the following holds: (1) there i$ < j < k such thaty = s(j), in which cases’ = s and
c((s,i,8')) =0,0r(2)s(j) #vforall1 < j <k, thereisl < j <k such that = s'(j) and for all



1 # j, we haves'(1) = s(1), in which casex((s, i, s')) = d(s(5), s'(j))*

Example 3.3 [The ski-rental problem [22]] In the ski-rental problem someone goes on a ski va-
cation whose length is not known in advance. Each morning he has to detideen renting skis
($1 per day) and buying skisg% The goal is to minimize the expense. Here, making the problem
finite-state requires the introduction of a finite bouvidon the length of the vacation. Note that since
M may be bigger thap, the challenge of an algorithm that knows$ and does not know the length
of the vacation in advance is similar to the challenge of an algorithm that do&sow M. Indeed,
studies of the problem usually refer to its finite-leasing version, in which dk@d)\/ is part of the
input [4].

A ski-rental problemP with parameterg; and M induces a WFAAp = ({a},{0,..., M +
1},A,¢,{0},{0,..., M + 1}), whereA(s,a,s') iff (1) 0 < s < M ands’ = s + 1, in which
casec((s,a,s')) =1, (2)0 < s < M ands’ = M + 1, in which case:((s,a,s’)) = y, or (3)

s =s = M +1, in which case:((s, a, s’)) = 0. Note that the alphabet of» is a singleton letter, as
we only care whether the vacation ends (the input word ends too) otheonéxt letter is read).

Example 3.4 [The load-balancing problem[4]] In the load-balancing problem there areidentical
machines. The input to the problem is a sequeicg, ..., j, of loads from a domai/, typically

J = R>Y, each representing a load of a job that should be processed. THerpristto allocate the
jobs to the machines, and the goal is to minimize the total load on the most loaded engchkia.
makespan Here too, we assume that there is a finite boviadn the total load of a machine, and
that the set of possible loads is finite. Lef denote the set of all possible sums of numbers ftbm
that are bounded by/.

Aload-balancing problen® with parameterd andM induces aWFAAp = (J, J™, A, ¢, 0™, T™),
where each state € 7™ describes a load-assignment to themachines, and\(s, j, s') if there is
1 <i < msuchthat/(i) = s(i) + j and for alll # i, we haves'(l) = s(I). The cost of(s, j, s') is
maxi<i<m{s' () — (i)}

Example 3.5 [The A-paid exchange static list accessing probler#]] In this problem we have a
static (fixed) linked list of items. Each request is for an element of the list to be accessed. A request
to access théth element in the list necessitates the traversalioks, which costs. After servicing

a request, the list may be rearranged in the hope of better servicing fatirests. Rearranging the

list can be done by a series of exchanges of two consecutive itemseketiinge costa > 1.

While attempts to model the problem withetric task systentfail [4], it is not hard to see thaP
with parameters andA induces a WFAAp = (X, 5,5 x X x S, ¢, S0, S), whereX = {1,...,n}
and S is the set of alln! permutations of 1, ...,n}, representing all the possible arrangements of
the elements in the list. The cost of a transitign:, s’) is j + Ak, wherej is the position ofi in
the permutatiors, andk is the minimal number of exchanges needed to transform the list from the
orderings to the ordering’.

We note that while the size ol is bounded by S|? - |3|, its computation may be complex,
as demonstrated by Example 3.5. Note, however, that the source of théegiiynjs the fact that

“Note that both in the paging problem and here, we restrict attentizyalgorithms, which minimize the change of
configurations so that only the current request is served. By [@Bgviery non-lazy algorithm, there exists a lazy one that
performs at least as well.



we compressed all the internal steps of the algorithm into one transitionadhsiee can enrich the
alphabet of4p and encode each request as a sequence of letters, thus alldwitgprocess each
request by a series of internal steps, avoiding such compressions.

3.2 Relating online algorithms and determinization by pruring

In this section we reduce problems concerning online algorithms to questons weighted au-
tomata. We first need some definitions. Fortwo WEAs: (X, Q, A, ¢, Qo, F) and A’ = (£, Q, A, ¢, Qi F),
we say that4 embodiesd’ if Q) C Qo, A’ C A, andc’ agrees withc on A’. Thus, A’ can be ob-

tained from.A by decreasing its nondeterminism. For a WEA= (3, Q, A, ¢, Qo, F') and an
integerr > 0, ther-refinement of4 is the WFA A, obtained by refining the state spacedby r

Boolean variables. Formally, = (3, Q x 217} A ¢, Qo x 2117} F x 21171 where each
state(q, f) € Q x 281"} maintains, in addition to the staeof A, also a subsef of {1,...,7},
corresponding to a truth assignment for the new variables. The transiimion A, and the cost
functionc, are the expected extensionsdfande. That is, for everyf, f € 217} we have that

Ar((q, f),a,{d, ) iff A(q,a,q), inwhichcase:.({(q, f),a,{d, ")) = c({(g,a,q’)). Thus, each
state of4 has2” isomorphic copies it4,.

Definition 3.6 Consider a WFAA4, an approximation factory > 1, and an integerr > 0. We say
that A is («, r)-determinizable by pruninf(«, r)-DBP, for short) if ther-refinement ofA embodies
a DWFA thata-approximatesA.

Note that wherx = 1, the embodied DWFA is equivalent #. Also, whenr = 0, no refinement
takes place, and the embodied automaton has the same state sgad&/henA is (1,0)-DBP, we
say thatA is DBP.

Let P be an optimization problem, and letp = (X, S, A, ¢, Sp, S) be a WFA for its algorithms
that use memony. Given a finite sequence of requests >*, each run ofdp onw corresponds to
away of serving the requestsinby an algorithm with configurations ii. The set of all runs include
all such algorithms, thus the cost®fin Ap is the cost ofw in an optimal offline algorithm that uses
memoryS. Indeed, the semantics of WFA over the tropical semiring, in which the d@stword is
the minimum cost of some run on it, guarantees that the cost would be calcatatading to the best
guess. On the other hand, an online algorithm has to process eacbtr@gsjgeon as it arrives, without
knowing the requests yet to arrive. Accordingly, an online algorithmubkas memong corresponds
to a DWFA embodied indp. Indeed, for every configuration € S of the problem and request
o € X, the algorithm suggests a particular way to proee$®m s, inducing a particular transition
(s,0,8') € A. Moreover, a refinement oflp maintains the correspondence between its transitions
and the actions of the algorithms (note that this correspondence is lost ibrweéder unrestricted
determinization ofdp). Hence, a DWFA embodied in a refinement4# corresponds to an online
algorithm with an extended memory. Formally, we have the following.

Theorem 3.7 Consider an online problen? and a setS of configurations. Letdp be a WFA with
state spaces that models online algorithms fd? that use memorg. For all « > 1 andr > 0, the
problemP has competitive ratida, ) with memorys iff Ap is («, r)-DBP.



4 Determinization and Approximated Determinization by Pruning

In this section we study the problem of determinization by pruning. We shawdétéding whether a
given WFA is DBP (theDBP problem for short) can be done in polynomial time. On the other hand,
deciding whether a given WFA igy, 0)-DBP, fora > 1 (theapproximated DBP problenfor short)

is NP-complete. In both cases, when the answer is positive, returning eswibBWFA requires no
extra cost.

We assume that a given WEA has no useless states (that is, every state is reachable from at least
one initial state, and at least one word is accepted from each state; isth@rerremove the state and
its associated transitions).

4.1 Deciding determinization by pruning

The polynomial-time algorithm for the DBP problem is our most challenging teahrésult. For
clarity, we first describe a polynomial-time algorithm for deciding whethewvargNFA (that is, a
WFA with no costs) is DBP (that is, embodies an equivalent DFA).

Theorem 4.1 The DBP problem for NFAs can be solved in polynomial time.

Proof: We describe a polynomial algorithm for solving DBP for NFA. The algorittenides whether
a given NFA is DBP, and in case the answer is positive, it also returnscaigion of the set of equiv-
alent embodied DFAs.

Consider an NFAA = (X, Q, A, Qo, F'). We inductively define a sequenég, Hy,... C Q x Q
of relations as follows.

Hy=(FxF)U((Q\F)xQ), andfori >0,
H; 1= H;N{{q,q¢) :foralla € %, if 6(¢,a) # 0, then there exists' € §(¢, a)
such that for alb € 6(g, a) we haveH;(v,v")}.

Intuitively, H;(q,¢') means that there is a DFA’ embodied inA such that all the words of length
at most: accepted frony in A are also accepted frogi in A’. SinceHy, O H; D Hy D ..., the
sequence of relations eventually reaches a fixed-point, which we deydfe For two stateg and
q', we say thay’ coversq if H(q,q'). The relation/ induces an NFAAY = (%, Q, A" QI F)
embodied in4, whereqq € Q¥ iff qo € Qo andgy covers all the states iy, and for every;, v € Q
anda € ¥, we have that\"’ (¢, a, v) iff A(q, a,v) andv covers all the states (g, a). Note that the
set@l! may be empty, and that for som@nda it may be that? (¢, a) = () even thouglé(q, a) # 0.
We prove below tha®{! +# () iff A is DBP. We first prove that the relatidi is transitive.

Lemma 4.2 The relationH is transitive. That is, fog,¢’,¢” € Q, if H(q,q') and H(¢',¢") then
H(q,q").

Proof: We prove that for ali > 0, if H;(q,¢') andH;(¢',q") thenH;(q,q"). The proof proceeds
by an induction on.

First, if ¢ € F' theng’ € F, in which case)” € F, thusH, is transitive. Assume now tha{; is
transitive, and let, ¢/, ¢ € Q be such thatl;11(q,¢') andH;11(¢’, ¢"). We prove thatd; 1 (q, ¢").
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Leta € ¥ be such thad(q,a) # 0. SinceH,11(q,q’), there exists a staig, € 6(¢’,a) such that
H;(qa,q,) forall g, € 6(q,a). SinceH;1+1(¢',¢") andq), € 6(¢, a), there exists a stat¢ € 5(¢”,a)
such thatH;(q), ¢7/). By the induction hypothesid{;(qa, ¢)) for all ¢, € §(q,a). Since the above
holds for all letters: € ¥, it follows that H; 1 (g, ¢"). O

Lemma 4.3 The NFAA is DBP iff Q{' # 0.

Proof: Assume first thatd is DBP. LetA’ = (X,Q’, A, ¢, F') be an equivalent DFA embodied
in A. We first prove (1) that for all words € %, if 6(Qo,w) # 0, then there exist a statg =

&' (¢4, w). We then prove (2) that for such a woud the corresponding staté covers all the states in
§(Qo,w). In particular,s(g), €) = g}, covers all the states #f{Qo, €) = Qo, thusg), € QF.

In order to prove (1), let us recall that by the assumption at the begimfithgs section, no state
in A is empty. Letw be a word on whichd has a run, let € §(Qo, w), and letz be a word accepted
from ¢ by A; thusw - z € L(.A). SinceA’ is equivalent ta4, it must accept the word - z. Letr’ be
the accepting run ofl’ onw.z. Clearly, there is a prefix of , which is a run of4d’ on w.

In order to prove (2), we prove that for a@ll> 0, for any wordw € ¥*, if ¢ € §(Qo,w) and
q =9 (q),w), thenH;(q, ¢'). The proof proceeds by an induction on

For the induction base, recall thaky(q,q’) iff ¢ € F implies thaty € F. Consider a state
q € 6(Qo,w), and assume thate F. Then,w € L(A). SinceA and.A" are equivalent, and!’ is
deterministic, it must be that (¢, w) is in F. Thus,Hy(q, ¢’ (g}, w)).

For the induction step, we assume that for all wards * and all stateg € §(Qo, w) the state
¢ = §(q(,w) is defined and satisfied;(q, ¢'), and prove that#f; (g, ¢'). Observe that in order
to prove thatH;,1(q, ¢') it is enough to prove that for every letterc 3, the state’’ = (¢, a) is
such that for allv € d(q,a), we haveH;(v,v"). Note thatv’ = (¢}, w - a), and consider a state
v € §(q,a). Sincev € §(Qop, w - a), then by the induction hypothesis, applied to the werda, we
have thatH; (v, v’), and we are done.

For the other direction, assume th¥ is not empty. We claim that every maximal DFA that is
embodied ind* is equivalent ta4 (an embodied DFA is maximal if adding to it a transition would
make it nondeterministic). Letl' = (3,Q, ¢, ¢}, F') be such a DFA. Thusy, € Q2 and for all
states; € @ and letters: € X, we havey' (¢, a) € 6% (q,a). We prove that.(A') = L(A).

Since A’ is embodied ind*, which in turn is embodied it4, it is clear thatZ.(A’) C L(A). In
order to prove thal.(A) C L(A’), we consider a wordy = wjws...w, € L(A) and prove that
for every runr = rgry...7, of A onw, there is a rurs = sys; ...s, of A’ onw, and that for all
0 <i <n,we haveH (s;,s;) andH (r;, s;). SinceH C H), the latter implies that membershipof
in F' implies membership of,, in F. Thus, if there is an accepting rurof .4 onw, then the run of
A’ onw is also accepting. The proof proceeds by an induction on

Fori = 0, the construction ofd’ implies thats, = ¢, € Q{!. Therefore, by the definition of
Q{}’ , the statesy covers all the states i)y, and in particular it covers, and itself. For the induction
step, assume that the induction hypothesis hold$ fari < n — 1. Sincer; 1 € 6(r;, w;11) then
d(ri, wiy1) # 0. Hence, since by the induction hypothesisoversr;. SinceH is a fixed-point, then
there exists a state € (s;, w;+1) such that covers all the states i\(r;, w;+1), andr;; among
them. Similarly, sincé(s;, w;+1) # 0, and by the induction hypothesis covers itself, then there
exists a state’ € d(s;, w;+1) such that' covers all states id(s;, w;+1). Thus, by the definition of
A the set™ (s;, w;11) # 0. SinceA’ is maximal, there is a statg,; € 6/ (s;, w;+1), and we can
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extend the run ofd’ to coverwiws . .. w;, 1. Sinces; 1 € 6 (s;, w;41), it follows thats; | coverst
and itself. Recall that coversr; 1, thus by the transitivity oH (Lemma 4.2)s;.1 coversr; 1, and
we are done. Ll

By Lemma 4.3, the problem of checking whether a given NEAs DBP can be reduced to
calculatingH and checking whether there is a statec )y that covers all the states @y.

ComputingH, takesO(|Q|?) time, and this is also the upper bound on the sizE@fTo compute
H; from H;_; we need to check for all pairg, ¢') € H;_; and for all letters: € X whether there
exists ana-successor off/ that covers alli-successors of. The number of successors of bath
andq’ is bounded byA|. Thus, the number of required checks is boundedoy?; 1| - |A]?) =
O(|Q|? - |AJ%). The number of iterations executed until the fixed point is reached is ledunglthe
size of Hy. Thus, the overall number of checks in the whole computation is bound@d|B/*-|A|?).
This is clearly polynomial in the size of the input. UJ

Note that, like the algorithm for DFA minimization, our algorithm calculates a fixeidtpver
pairs of states. The fixed-point here, however, is different and momgplicated, as it involves a
universal requirement nested inside an existential requirement. Wd therresult to be quite sur-
prising. Indeed, as we now show, a slightly different decision problehigtwmaintains the local
flavor of determinization by pruning, is NP-hard. We say that an WEA- (3,Q, A, ¢, Qo, F') is
almost-deterministid for everyq € @ anda € ¥ we haveld(g, a)| < 1. Thus, unlike deterministic
automata,A may have several initial states. Takenost-DBPproblem is then to decide, given a WFA,
whether it embodies an equivalent almost deterministic automaton. Note tharihises to asking
whether the nondeterministic choices4fcan be replaced by an initial choice, among finitely many
options. In the context of online algorithms, it means there are finitely manyeoalgorithms such
that, for each input sequence, one of the algorithms performs as wedl afflthe algorithm. We now
show that the almost-DBP problem is NP-hard already in the unweighted case

Theorem 4.4 The almost-DBP problem for NFAs is NP-hard.

Proof: We describe a reduction from 3SAT to almost-DBP. &bt a 3CNF formula withn clauses
over the variables, o, ..., z,. We construct an NFA4, over the alphabe{0, 1, ..., m}, such that
Ap is almost-DBP iff is satisfiable.

The NFA Ay has the form of a DAG with three levels. On the first level thereqaiaitial
states, corresponding to thevariables ind. On the second level there &e states. Each variable
x; induces two statesitrye andifgge corresponding to the two possible truth assignments; to
For eachl < i < n, there are transitions label@dfrom the initial statei to bothitrye andigise
On the third level, there is a single accepting state. For eachisiaie the second level and letter
1 < j < m, there is a transition labelgdromi,,,; to the accepting state iff assigning! to variablei
satisfies clausg For example, if the literabx; appears in clausg then there is a transition label2d
from the staté, e to the accepting state. The languagedefis {0-5 : 1 < j < m}. In Figure 1 we
show the NFA corresponding to the formila= (x1 V1 Va2) A(—x1 Vo Vae) A(—xV oz V-xs).

We prove that) is satisfiable iff. 4y is almost-DBP. Assume first thétis satisfiable. Letf :
{1,...,n} — {true false} be a satisfying assignment to the variable®.ofe describe an almost-
deterministic automatonlg embodied in4y such that the language atg contains the language of
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Figure 1: The NFA corresponding o= (z1 V x1 V 22) A (mx1 V 22 V 22) A (mx1 V —xp V —xg).

Ay. SinceAg is embodied indy, the containment in the other direction is trivial. Note that the
only nondeterminism we have to resolve is in the transitions from eachistatgrye andify|ge
Intuitively, each such choice corresponds to a truth assignment tind we letf chose. Formally,
the transition function” of Ag agrees with the transition functidg of A, except that fol < ¢ < n,

we haves/ (i, 0) = ir)- Sincef is a satisfying assignment, then for evary< j < m there is a

variablei; whose assignment satisfies the clagis@ccordingly, there is an accepting run Ag on
the word0 - j, starting at the initial statg;.

For the other direction, assume théj embodies an equivalent almost-deterministic automaton
A =(3,Q,8,Q0, F). Letf : {1,...,n} — {true false} be such thaf (i) = trueiff &' (i, 0) = itrye
Since A’ is equivalent taA, then for everyl < j < m, the word0 - j is accepted ind’. By the
definition of Ay, there is a transition labeledrom a state,,,; to the accepting state iff assigning/
to ¢ satisfies the clausg Hence, by the definition of, the truth assignment satisfies. Ll

We now move to the DBP problem for WFA. Like the algorithm in the unweightes cthe
polynomial algorithm we present below is based on a fixed-point calcu)dtiabfor each paifq, ¢’)
of states of4, compares the behavior of embodied deterministic automata with initial gtetehe
behavior of the nondeterministic automatdf, over words of increasing length. The setting here,
however, is much more difficult. First, the characterization associated withpesr is not Boolean:
it is not enough to remember whether one can deterministically acceptdfréime same words as
from ¢ — the characterization has to further refine this information and refer toobslgy different
costs involved. Second, while in the unweighted setting it is clear that thdat@ruwould reach a
fixed-point in a polynomial number of steps, in the weighted setting it may wehdteas the length
of the words considered increases, so does the cost differertéd, iamot clear how to force the
calculation to reach a fixed-point.

Theorem 4.5 The DBP problem can be solved in polynomial time.

Proof: We first need some notations. For everye R we have—co < r < oo, and we allow
expressions of the formo+r, —co+r, co+o00, and(—oo)+(—o0), with the usual meaning. For every
i>0,let2s! = {we ¥*: |w| <i}. Let.Aand.A’ be two WFAs over the same alphabigt Given

a subsetS C ¥*, we define the cost difference betwedrand. A’ over S to becostdiff(A’, A, S) =
SUPyesnr(a)lcost(A’, w) — cost(A, w)]. Note that ifS N L(A) = () thencostdiff(A’, A, S) = —oo,
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and that if there is a wordh € S N L(A) \ L(A’) thencostdiff(4’, A, S) = co. Also note that,
unless both WFAs accept the empty languageand.A’ are equivalent ificostdiff( A", A, ¥*) = 0

andcostdiff(A, A", ¥*) = 0. Letdet(.A) be the set of all deterministic WFAs embodied4nand let
deto(A) be the set of all WFAsA' in det(A) such thatostdiff(A’, A, 3¥*) = 0. Hencedety(A) is

exactly the set of all deterministic automata embodied ithat are equivalent tal.

Consider a WFA4 = (X, Q, A, ¢, Qo, F). Letn = |Q|. Our algorithm calculates a sequence of
functionsfo, f1,..., fan2—1 : @ x @ — RU{—00, 0}, such that the following holds.

e For0 <i < n?— 1, the functionf;(q, ¢') measures how well the stajecan deterministically
simulate the statg, over words of length at most Formally, for everyA’ € dety(.A) (if
exists), and every pair of states;’ € @ such that/ is reachable ind’, we have thaf;(q,¢") =
costdiff(A'?, A%, 2<%). The value—co is assigned td;(q, ¢') when there are no words b=
that can be accepted from and the valuex is assigned when there is a word that can be
accepted frong but not fromq’.

e Forn? < i < 2n? — 1, the functionf;(q, ¢') is similar, only that it takes cycles into account,
and maps teo pairs for which the cost difference has not stabilized yet, which indi¢hést
cannot be bounded.

The sequence of functions, f1, ..., fon2_; IS defined as follows.
e Atinitialization:
—00 ifqgé F
folg,q') = 0 if g€ Fandg € F
00 if g€ Fandq ¢ F,

e For1 <i<mn?—1:

filg,q') = max{fi_1(q,q), max fi(q, q,a)}.

e Forn?2<i<2n?-—1:

fila,q) = 0 if max fi(q, q,a) > fi_1(q,q)
fie1(q,d') otherwise.

In the above, for every < i < 2n? — 1 anda € ¥, the functionf;(q, ¢, a) is defined as follows.

fl(qa q,aa) = min max fi—l(U’?u/) + c(q/,a,u/) - C(q7a7 u)a
u'Ep;i—1(q,a) u€d(g,a)

where the sebo(¢’,a) = 5(¢’, a), and forl < i < 2n? — 1, we have

pilda) = (' € pir(va) s [Fics () el 0,0 — elg',a,w)] < O}

In the expression above fdfi(q, ¢, a), in case that for all. € d(¢,a) we have thatl.(A*) N
»<i—1 = (), we setf;(q,¢',a) = —oo (note that this also covers the caXg, a) = ). In case there
isu € §(q,a) such thatL(A*) N X1 £ @ andp;_1(¢', a) = 0, we setf;(q, ¢, a) = .
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Intuitively, a stateu’ € p;(¢’,a) is a “witness” to the fact thaf;(¢’, ¢’,a) < 0, i.e., to the fact
that¢’ can deterministically simulate itself over wordsXdiF* that start witha. Clearly, only such
witnesses can be-successors af in an embodied DWFA that is equivalent.th

We argue that the sequence of functions reaches a fixed-point in soai®ité < j < 2n? —1,
and thatA is DBP iff there is a statg), € Qo such that for every, € Qy, we have thaf;(qo, ¢;,) < 0.
Also, in caseA is DBP, then every DWFA that consists of transitions that use the witnessagtie
last iteration (that is, whose transition relation assigns successorsiacetnp;) is equivalent to4.
A detailed proof can be found in Appendix A. Ll

4.2 Deciding approximated determinization by pruning

We now turn to the approximated-DBP problem, and show that it is much hahdefirst study the
problem of approximation of a WFA by a given embodied DWFA.

Lemma 4.6 Consider a WFAA, an embodied DWFAY’, and an approximation factar > 1. De-
ciding whethertd’ a-approximates4 can be done in polynomial time.

Proof: LetA = (X,Q,A,¢,Qo, F)and A’ = (X,Q,A’,, ¢, F'). Consider first the case = 1.
Then, the algorithm is similar to the one used for checking whethex DBP, only that nowA’ is
given. Accordingly, the functiong; are defined for pairs i) x ', and when calculating;(q, ¢, a),
we only have to consider the given (if amysuccessor of in A’, instead of the set;_1(¢/, a). That
iS, f’L (Cb q/7 CL) becomes;ﬂ'(% q/7 CL) = maXchS(q,a){fifl(uﬂ 5/((],’ (Z)) +C(q/a a, 5,((]/7 CL)) _C(Q7 a, u)}

Now, givena > 1, we further modify the algorithm by scaling all the edges/by . More
formally, we define a sequence of functiofis g1, ..., gon2_1 : @ X @ — R U {—00,00} that is
similar to the sequencg, except that for every < i < 2n? — 1 anda € ¥, we have

gi(q,q',a) = ugél(aqxa)[gifl(u, §'(d,a)) +c(d,a,0'(¢,a)) — a-clq,a,u)].

We argue that the sequence of functions reaches a fixed-point in soat®iteé < j < 2n? — 1,
and thatA’ a-approximates iff for every ¢y € Qo, we have thay;(qo, ¢(,) < 0. The proof of this
argument is essentially the same as the proof of Theorem 4.5 found in digp¥rwith the obvious
modification that any reference to an automaton embodiediswreplaced with the given automaton
A’, and any reference 1g(q’, a) or p(¢’, a) is replaced with' (¢, a).

It is worth noting that in order to also handle an additive fag¢tar 0, that is, in order to check
if for all words w accepted byA, we havecost(A, w) < a - cost(A,w) + (3, all we have to do is to
check whether for every, € Qo, we have thay;(qo, ¢;) < 5. O

Before we use Lemma 4.6 for solving the approximated DBP problem, we nofgpiisation in
reasoning about online algorithms. Indeed, by Theorem 3.7, we hatalltheing.

Corollary 4.7 Consider an optimization probler? and a finite setS of configurations. Given an
online algorithmg with memorysS, and a competitive ratiac > 1, the problem of deciding whether
g is a-competitive with respect to an offline algorithm with mem8rgan be solved in polynomial
time.
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In light of Lemma 4.6, one may be tempted to believe that by using the same ideesoaeend
Theorem 4.5 to handle an approximation factor- 1. Unfortunately, as the next theorem shows,
unless P=NP, this can not be the case. Essentially, the property tifatifp;_1(¢’, a) thenu' is
such that for every € @ the minimum in the expression fgf(q, ¢’, a) is achieved with./, which is
crucial to proving Theorem 4.5, is no longer true wher 1.

Theorem 4.8 The approximated-DBP problem is NP-complete.

Proof: Membership in NP follows from Lemma 4.6. We prove NP-hardness by atiedufrom
3-SAT. Givena > 1 and a3-SAT formulad = /\;7“:1 C; over the variables, ..., z,, we build a
WFA A that is(«a, 0)-DBP iff 0 is satisfiable. We assume without loss of generality that no clause in
6 contains both a variable and its negation. The alphabdtisfs = {a} U {C1,...,C),}, andAis
given in Figure 2.

A:
a,0 a,0 a,0
W W ~

. a,0 . C1,0 . a,0 .cl,o a,0 e Cr, 22 +2

. a,0 . cm,o. a,0 . Cp,0 a,0 @ Crm, =2 +2

Figure 2: A WFA for a 3-SAT formula.

For everyl < i < nand every literal; € {z;, —z;}, the edge betwednandp; (which for lack of
space is unlabeled in the figure) standsifotransitions, one for each of the letters, . . ., C,,, and
the cost of a transitiokl;, C;, p;) is « if the literal —/; appears in the clausg;, and is1 otherwise.
Recall that no clause ifA contains both a variable and its negation. Hence, for eVetyi < n and
everyl < j < m, at least one of the transitions;, C;, p;), and(—z;, C;, p;) costsl. It follows that
A with initial statep, accepts exactly all words of the form - (C; + ... + Cy,))™ with costn. In
addition, A hasm components such that for evety< j < m, the DWFA A with initial stateq{)
accepts the wor¢hC';)" with a lower cost (recall that > 1) of (n — 2)/« + 2. In the remainder of
the proof we refer to words of the fortaC; )™ assingle-clausavords.

We now show thatd is («,0)-DBP iff ¢ is satisfiable. Observe that A’ is a deterministic
automaton embodied id such that4d’ accepts all the words that accepts, thes’ must havep, as
its initial state, and for every < i < n exactly one of the transitiofp;_1, a, z;), and(p;_1, a, x;)
is present ind’. Indeed, 4’ induces an assignment to the variahigs. . ., x,,, wherez; is true if A’
has the transitiofip;_1, a, x;), and false if it has the transitiofp;_1, a, ~x;). Foreveryl < i <mn
let ! € {x;,—x;} be such that the transitiofp,_1, a,l}) is in A’. Since the cost of all reachable
transitions inA’ on the letters’1, ... C,, is at mosta, anda-transitions cosf, we have thatd’
accepts every word of the forfa - (Cy + ... + C,,))"™ with cost at mostwn. Thus, ifw is not a
single-clause word we have thatst(A', w) < « - cost(A, w).
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It remains to show that for every single-clause ward= (aC;)", we have thatost(A’, w) <
a - cost(A, w) iff the assignment induced by’ satisfies”;. To see that, observe that the (single) run
of A onwispg-l}-p1 - - - I,-pn, and that for every < i < n we have thatl; is false in the assignment
induced byA’. Recall that the transitiofi;, C;, p;) costst if -/ appears irC;, but costsl otherwise.
Let fals€j) be the number of literals if'; that were assigned the value false Y It follows that
cost(A',w) = n — false(j) + fals€j)«. Sinced is a3-SAT formula we have that falgg) < 2 iff A’
satisfie”;. Hence, for everyr > 1 we have thatost(A’, w) < n — 2+ 2a = « - cost(A, w) iff A’
satisfies”;. U

We note that an adjustment to the costs of the transitions of the WFA used irotbfeopmheo-
rem 4.8 shows that the approximated-DBP problem is NP-hard alreadw faditive approximation
factor (that is, when the embodied DWEK is such that there i8 > 0 such that for alkv € X*, we
havecost(A’', w) < B + cost(A,w)). The adjustment required is to assign a cost ef 5/n to the
transitions that currently cost, and a cost of: + 5(2/n — 1) to the transitions that currently cost
(n — 2)/a + 2. A combination of a multiplicative factar and an additive factas, can be handled
in the obvious way.

By Theorem 3.7 (and the fact that every WFA induces an online algorithen¢an conclude with
the following.

Corollary 4.9 Consider an optimization proble and a finite sef' of configurations. The problem
of deciding whetheP has competitive ratida, 0) with memoryS can be solved in polynomial time
for o = 1, and is NP-complete fax > 1.

5 Determinization and Approximated Determinization by Refinement
and Pruning

In this section we study the problem of determinization by refinement andhgruwe first show that
extension of the memory is hopeless in an effort to be as good as an optilima afgorithm.

Theorem 5.1 For all integersr > 0, a WFAA is (1,7)-DBP iff itis (1,0)-DBP.

Proof: Clearly, if Ais (1,0)-DBP, then it is alsq1, r)-DBP. We prove that if4 is (1, )-DBP for

somer > 0, then itis alsq1,0)-DBP. For a refinement, of A, we say that a DWFAD,., obtained
by pruningA,., is simpleif for each statey of .4 there is at most one subsgiC {1,...,r} such that
the state(q, f) is reachable irD,.. If A, can be pruned to a simple equival@nt, then by omitting
the2{-7} element of each state we get an equivalent deterministic prunisg afd we are done.

Assume now that no simple equivalent pruning exists; i.e., in every eqnivBM/FA D, that
is obtained by pruningd,, there exists a statgand two subsetg;, fo € 21"} such that both
(q, f1) and(q, f2) are reachable. Then, there must be a werdccepted fromq, f1) with a certain
cost and from{q, f2) with a higher cost (or not at all). Indeed, otherwise, we could havetaide
transitions that go tdq, f1) into (¢, f2) and get an equivalent DWFA in whidlg, f1) is unreachable.
This change would not mak, accept more words or accept some words with a different cost, since
both the languages accepted frdm f1) and from(q, f>) are contained in the language accepted
from ¢ in A. Doing this repeatedly would result in a simple pruning.
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Let ho be a word such that i, the stateq, f2) is reachable from the initial state thy. Clearly,
in A, the statey is reachable from the set of initial states with the wagdand the language ofl
from stateg containst; (with a cost equal to the acceptance cost;dfom (g, f1), or lower). Thus,
he - t1 € L(A) (with a cost that is lower than, or equal to, the sum of the weights of theiticarss
in a path of minimal cost from the set of initial states;tplus the cost of accepting from (q, f1)).
However, inD,., the wordhs - t; is accepted with a higher cost (or not accepted at all), and we have
reached a contradiction. Ll

On the other hand, an extension of the memory may help in achieving a betteetithrapatio:

Theorem 5.2 For all « > 1 andr > 1, there exists a WFA that is («, )-DBP but not(a, r — 1)-
DBP.

Figure 3: AWFAA and its refined 2-determinization by prunifyy.

Proof: The WFA A appearing in Figure 3 i&, 1)-DBP but not(2, 0)-DBP. Note that the language
of A consists of words of the form#y, for z,y € {a,b}. The cost of an accepted wordlisf = = y
(using the right part ofd), and is 2 otherwise (using the left part.d). In the DWFAD;, obtained
by pruning a 1-refinement od, the cost of an accepted word is Zift= iy and 4 otherwise. Note that
a DBP for.4 cannot make use of the right part.df as words in whiclx # y cannot be accepted by
it.

The automatord can be generalized for any, » > 1 to an automatot,, , that is(«, )-DBP
but not(a, r — 1)-DBP. The automator,, , is of sizeO(r - 2"), it has a maximal branching degree
of 2, and its language consists of all the words of the far#d"v, for w,v € {a,b}", such that the
cost of an accepted word isif w = v and is« - r otherwise. For example, in Figure 4 we describe
the WFA A, 3. Its right part accepts only words of the formi3w, for w € {a, b}?’, at a cost of
3. Its left part accepts all words of the form#3v, for w,v € {a, b}3, at a cost of 12. Note that
the nondeterminism afi, 3 lies in the choice of the initial state and in tietransitions on the left
part. In addition, note that after thegetransitions, for every word € {a,b}?, there is a distinct
branch that accepts it at a cost of 12, and the rest of the brancbegtacat a cost of 14, 16, or
18. Thus, in order to be 4-competitive, a DWFA obtained by pruning aeefemt of. A4 3 should
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have2? = 8 copies of the state of Ay 3. Such a DWFA assigns a cost of 12 to words in which
w = v, and a cost of at most 18 to the rest of the words in the language. lraféerdreading a prefix
w € {a,b}?, the DWFA “knows” which branch it should take in order for the suffix o512 when

v = w. In casev # w, ho matter to which branch we proceed, the cost would be at most 18. Since
the original cost of the word is 12, it is within a factor of 4. Note that if wenefl, 3 by less than

3 variables, it cannot have 8 copies of the stat@herefore, for any DWFAD obtained by pruning
such a refinement, there exist two wordsv € {a, b}3, such that whefD runs on each one of them
it reaches the same copy @f Thus, the runs oD on bothw+#3 andv#3 reach the same branch.
But here, only one word is accepted at a cost of 12. Hence, at mesifahe two wordsy#3w and
v#3v can be accepted at a cost of 12, whereas at least one of them iseicaep cost greater than
12, which is not 4-competitive.

In general, A, consists of two parts. The right part is deterministic, and accepts worite of
form w# w, for w € {a,b}", at a cost of-. The left part is nondeterministic and accepts words of
the formw#"v, for w,v € {a,b}", at a cost ofx - r. After its nondeterministic branches, the left part
has2" branches, such that for every ward: {a, b}" there is a distinct branch that acceptat a cost
of o - 7 and accepts all other words {m, b}" at a cost greater tham - » but at mosia? - 7. This is
achieved by generalizing the costs 4 and 8lin; by the costsx and3, respectively, fore < 8 < o?.

Ol

,0 a,Q b,0
0

a, 0, b, 0

a,0 a,0

,0 a,0 b,0 a,0
‘0

WO ........

)

,0
D

)

o8

#,0 >0 #,0 #,0
#,0/ \#,0  #,0/ \#,0 #,0/ \#,0 #,0, #,00  #,00 #,0 #,0[ #,0 #,0 #>

b, 1 b,

1 1
b6 b6 b4 @ b

bbbbbb ‘ ab aa ‘
6 a,l a,l a,l a,l

Figure 4: The WFAA, 3, which is(4, 3)-DBP but not(4, 2)-DBP.

18



Theorem 5.2 also follows from specific examples studied in the literatureyispdhat online
algorithms that can store additional information can achieve better compettios (for example,
[6] shows a lower bound of 23/11 on the competitiveness of any determitrstidess online algo-
rithm for the 2-server probletnwhereas [10] shows that the competitive ratio of the Work Function
Algorithm, which is also deterministic, but not trackless, for the 2-servablpm is 2). Nonetheless,
the proof of Theorem 5.2 serves to pinpoint the source of this phenameno

6 Discussion

The automata-theoretic approach we have described involves an exgpicsentation of the sét
of configurations. One of the main challenges in formal verification is thd teeeope with very big,
often infinite, state spacegSymbolic reasonin{j] is a leading approach for doing so. Thefgis
given symbolically (say, by a characteristic function), and the operasitbowed to the verification
algorithm are symbolic too. Since our algorithms are based on a fixed-mrngutation of a set of
relations or functions, which are typically amenable to symbolic implementationrevepgimistic
about adjusting them to the symbolic setting. Another challenge in our setting ise¢h&ould like
to prove general properties of an online algorithm, rather than propeftiastances corresponding
to given parameters. This challenge is addressed in formal verificatiomebys ofparametric rea-
soning[13]. There, we reason about a system with many identical procegsstadying properties
of one of the processes. Parametric reasoning is, in general, uridecidawever, in the last decade
there has been extensive research aimed at finding settings for whiphotllem is decidable, and
on developing methods that are sound but incomplete. We are now examinimgpiblecation to the
setting of online algorithms. It is important to note that the field of formal vetiboahas a history
of successful implementations of algorithms with seemingly-infeasible compl&adtyexample, the
tool MONA succesfuly decides the satisfiability of monadic second-ordge formulas — a problem
whose complexity is non-elementary [12].

Finally, while we are able to decide whether a given online algorighimas a given competitive
ratio (Corollary 4.9), we left open the problem of finding the competitive rattigp. Clearly, finding
a finite upper bound on the competitive ratio would enable us to apply Cordll@rgnd search for
it. In the WFA formalism, this is reduced to finding, given a WFA a finite boundy such that4
is (v, 0)-DBP (or deciding that no such exists). We believe that such a bound can be found by
analyzing the cost of cycles of, and we leave open the problem of doing it in polynomial time.

Acknowledgements We thank Marek Chrobak, Lawrence Larmore, and Nati Linial for helpf
discussions.
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A Proof of Theorem 4.5

We first study a sequence of functiofig f1,... : Q x Q — R U {—c0, 00} that is very similar

to the sequencéy, f1, ..., fo,2_1, €Xcept that we do not jump to infinity when a fixed-point is not
reached after the2-th iteration. As a result, the sequenge f1, . . . may not reach a fixed-point, and
an algorithm that calculates this sequence may never terminate. Nonetbeldgsg/ is essential
for our understanding of.

Intuitively, f;(¢, ¢') measures how well the stajecan deterministically simulate the stateover
words of length at most More precisely, we claim that for every automatéhe det((.A), and every
pair of stateg, ¢’ € Q, such that/ is reachable ind’, we have thaf;(q, ¢’) = costdiff(A'?, A9, ©=<0),
The value—cc is assigned tgﬂ-(q, ¢') when there are no words =’ that can be accepted frogm
and the valuex is assigned when there is a word that can be accepteddroum not fromq’. The
sequence of function), fi, . . . is defined as follows.

e Atinitialization:

B —00 ifg¢ F
folg,d)=¢ 0 if g Fand¢ € F
00 if g€ Fandq ¢ F,

e For: > 0: B B B
filg,q") = max{fi_1(q,q), max fi(a,q',a)}.

In the above, for every > 0 anda € X, the functionﬁ(q, ¢, a) is defined as follows:

fi(g,q';a) =  min max fi_l(u,u/) +c(q, a,u") — (g, a,u).
uw'€pi—1(q',a) u€d(q,a)

Where the sefiy(¢',a) = (¢, a), and fori > 0:

pi(q'ya) ={u € pi_1(q,a) | max fi_l(u, ') +c(d,a,u") — e(q',a,u) <0}
u€d(q’,a)

In the expression above fgfi(q, ¢, a), in case that for alk € d(¢,a) we have thatL(A") N
==t =), we setfi(q,¢',a) = —oc (note that this also covers the cae, a) = (). In case there
isu € 6§(q,a) such thatl,(A%) N 2==1 £ (), andp;_1(¢’,a) = 0, then we sefi(q, ¢, a) = oo.

Intuitively, a stateu’ € p;(q’, a) is a “witness” to the fact thaf; (¢, ¢, a) < 0. We thus say that
u' is a witness forf;(¢', ¢, a). Obviously, if fi(¢',¢',a) > 0 thenp;(q', a) = 0. Note that for every
i > 0, we havep;(¢',a) C 0(q', a). It follows thatifu’ € pi(¢', a), thenf; 1 (v, u') + c(q, a,u') —
¢(q,a,u’) <0, implying thatf;_; (v, v") < 0. For notational convenience, givehe @ anda € X,
we denote by(q, a), the se{,~ pi(¢', a).

Observe thaf is monotonically increasing with(i.e., for everyg, ¢ € Q, and everyi > 0, we

have thatf;(q,q') > fi_1(¢,q')), and that in the presence of loops in the automaton the sequence
fo, f1, ... may not reach a fixed-point. Let us start with a few easy observations.

Since@ andX are finite, and for every € @ and everya € %, the setp;(q,a) is finite and
monotonically decreasing with there must be a point at which all the sets of withesses have reached
their minimal value. l.e.:
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Lemma A.1 There is an index > 0 such that for every > k, everyq € @, and everys € 3, we
havep;(q,a) = p(q, a).

It is worth noting thatf; may continue to evolve even after the sets of witnesses of all states have
stabilized. Thus, Lemma A.1 does not imply that the sequéhch , . . . ever reaches a fixed-point.

The following lemma shows th@i(q, q') = —oo exactly when there are no words of length at
most: that.4 can accept frong.

Lemma A.2 For everyi > 0, andq, ¢ € Q, we have thaff;(q,¢') = —oo iff L(A9) N XSE =,

Proof: We prove the lemma by an induction @n Fori = 0, by the definition off,, we have
folq,q') = —iff ¢ ¢ F, i.e., iff no words of length 0 are accepted frgmFori > 0, assume that
the lemma holds fot — 1. By definition we havef;(¢, ¢') = —oc iff fi_1(q,¢') = —oc and for all
a € X it holds thatfi(q,q’,a) = —oc. lLe., iff fi_1(¢q,q) = —o0, and for alla € %, either there
exists au’ € p;_1(¢, a) such that for every. € §(q, a) we havef;_;(u,u’) = —oc, or that for every
u € 8(q,a) we haveL(A") N £=—1 = (). Applying the induction hypothesis to all sugh_; (u, u’)
we get thatfi(q, ¢') = —oc iff f;_1(q,q') = —oc, and for alla € X, L(A*) N £<—1 = () for every
u € 6(q,a). This means thakt (A7), as well asL(.A"), for every successar of ¢, does not contain
words of length at most— 1. Therefore,L(.A?) does not contain words of length at mast UJ

The following proposition shows that if there is a word of length at midkat can be accepted
from ¢ but not from¢/, then f;(q, ¢') = oo, as needed to reflect the fact tlatcan not simulate,
regardless of cost, over words of length at most

Proposition A.3 Fori > 0 andq,¢ € Q, if (L(A?) \ L(A?) N X=) + @ thenf;(q, ¢') = co.

Proof: We prove the proposition by an induction @anFori = 0, ¢ € L(A9) \ L(A?) iff ¢ € F
andq ¢ F, and thusfy(q,¢') = co. Fori > 0, assume that the proposition holds for 1. If
there is a word of length at most- 1 that is in L(A?) \ L(A?), then by the induction hypothesis
we havef;_1(¢,q') = oo, and thus alsqf(¢q,¢) = co. Otherwise, there is a word of lengthi

in L(A?) \ L(A?). Letw = a -z, wherea € ¥ andz € X!, and letu € 6(q,a) be a state
such thatz € L(A%). Since for allu’ € §(¢/,a) we haver ¢ L(.A?), by the induction hypothesis
we havef;_;(u,u') = oo for all w/ € §(¢/,a). Thus, by the definition of, in any case we have
fi(q. ¢, a) = oo, and hencd;(¢, ¢') = . O

Recall that by our intuitionﬂ(q, q,0) < 0Oindicates that the statecan deterministically simulate
itself, without any cost penalty, over words of length at mogthis in turn implies that the witnesses
for this fact must be able to do the same over words of length atines$t etc. The next proposition
formalizes this intuition.

Proposition A.4 For every state; € @, lettersa, b € X, and stateu € j(q, a), if 6(u,b) # () then
Alu,b) # 0.
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Proof: We have to show that if(u,b) # 0 then for everyi > 0 we havep;(u,b) # (). Fori = 0,
by definition, po(u, b) = §(u,b). Fori > 0, sinceu € p(q,a) then in particular, € p;y1(q, a).
Hence, as we observed earligr(u, v) < 0. It follows that f;(u, u, b) < 0. Assume first that for all
v € §(u, b), we have thaL. (AV)NE<~1 = (). Since by our assumptiaifu, b) # (), we can take some
v’ € 6(u,b). Hence, by Lemma A.2, we have thit | (v,v’) = —oc for all v € §(u, b), implying
thatv’ € p;(u,b). Assume now that there is a statec §(u, b) such thatl.(AY) N =i~ =£ (). Recalll
that f; 41 (u, u, b) < 0. Hence, by the definition of;, 1, it must be thap; (u, b) # 0. O

Definition A.5 Given a WFAA, we say that a WFM/ = (%, Q, A’ ¢, ¢}, F) is goodfor f;, if A’ is
a DWFA embodied i4, and for every reachable staté € @, and everyu € ¥, the following two
properties hold:

L4 5,(q,,CL) € ﬁi(ql7a’)'
e Ifd(¢,a) # 0thend' (¢, a) # 0.

If A’ is good forf; for everyi > 0, we simply say thatd’ is good forf. Note that sincg < i
implies thatp; (¢, a) C p;(¢’, a), we have:

Corollary A.6 If A’ is good forf;, then A’ is good forf;, for everyj < i.

It follows that the set of automata that are good fpis monotonically decreasing with Since
A has finitely many embodied automata, this sequence of sets must reach a mihimaHence:

Corollary A.7 There is an index > 0 such that for every > £, if A’ is good forf; then.A’ is good
for f.

It is not hard to see that Proposition A.4 implies the following corollary:

Corollary A.8 If A’ is good forf, then for every/’ € Q such that/’ is reachable ind’, and for every
a €Y, ifu' € p(q,a) then there is an automataA” that is good forf, in which’ is reachable.

In Lemma A.12 we show that every automatonditty(.A) is good forf. Our objective now is
to prove that for every wora of length at most, the value ofﬁ(q, q’) is an upper bound on the
cost difference between acceptingfrom ¢’ in any automaton that is good fg, and the cost of
acceptingw from ¢ in A. To this aim, we first show that satisfies a form of a transitivity inequality.
Informally, this inequality claims that the cost difference incurred in simulajify ¢’ is at most
that incurred in simulating by some other statg, plus that of simulating by ¢’. To get a feel for
why this is true, take some > 0, and assume that by some good fortune there is a letter:
and a-successors, s', v’ of q,p, ¢’ (respectively), such thafy(q,p) = fi(q.p,a) = fi—1(r,s') +
CN(pa a, 3/) - C(QZ a, ’I”), fi(p7 q/) = fi(p7 q/a CL) = fi—l(sla ’Ul) + C(qlv a, Ul) - C(p7 a, 8/)1 andfi(Q> q/) =
filg,d,a) = fii(r,v') + e(d,a,v") — c(g,a,r). l.e., the minimums and maximums in all three
expressions fof;(q,p, a), fi(p.¢',a) and f;(q, ¢', a) are achieved with the same successogs v'.

It follows that f; (¢, p) + fi(p,¢') = (fi1(r,8) +c(p, a, 8') (g, a,1)) + (Fioa (s, 0') +eld, a,0) -
c(p,a,s)) = fi_i(r,s') + fi—i(s',v") + e(¢',a,v') — (g, a,r). By inductively applying the same
kind of reasoning (and good fortune) fo 1 (r, s') + f;_1(s’,v"), we can deduce thafj_;(r, s') +
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Jia(s', /) = fia(r,v'), and thusfi(g,p) + filp,d') = fia(r, ) + eld',0,0') — elga,7) =
filg,d'ya) = fi(q,q). Obviously, in the general case we can not expect to be so fortumatét, ia
not always the case th#(¢, p) + fi(p,¢') = fi(q,¢'). However, using similar reasoning and careful
handling of the minimums and maximums in the expressiongi-(qr, D), ﬁ-(p, q), andﬂ(q, q), we
can show the following:

Proposition A.9 For everyi > 0, and every,p,¢’ € Q, if f;(q, p) and fi(p, ¢) are in R, then so is
fila,q'), and fi(q, p) + fi(p,q') = fi(a,q).

Proof: We prove the proposition by an induction @nFor: = 0, it must be thap, g, ¢ € F,and
fila,p) = fi(p,¢) = filq,q') = 0. Fori > 0, assume that the proposition holds for 1.

Assume first thay‘;(q, Y = fi—1(¢,¢'). We claim thatf;_ 1(¢,p), fi-1(p,¢) € R, and thus by
the monotonicity off and the mductlon hypothesis we have tbig(’q p) + fz(p, N> fiilg,p) +
ficilp,d) > ficila,d) = fi(¢,¢). We now prove that indeefi_1(¢,p), fi_1(p,q') € R. Note
that sincef is monotonlcally increasing, anﬂ(q D), fl(p, 'Y € R, it is enough to show that
f, 1(q,p) # —o0, andf;_ 1(p,¢') # —oo. Note that smceﬁ(q p) # —oo then by Lemma A.2 also
fi(g.¢") # —oc. Since by our assumptioﬁ (g, q) = filg,q), then alsofi_1(¢,q') # —o0, and
by Lemma A.2,L(A7) NX=i—1 £ (), and thus alsgﬂ 1(q,p) # —oo. To see thaf;_1(p,¢') # —o0,
observe that sincé (A7) N 2=~ £ (), andoo # f;(¢,p) > fi—1(q, p), by Proposition A.3 it must
be thatZL(A?) N ©<~1 £ (. Thus, by Lemma A.2, we have thﬁtl(p, q') # —oc.

Assume now thaffi(¢,¢') > fi—1(¢,q’). Hence, there is a letter € ¥ such thatfi(q,¢) =
filg,q',a). Note thatfi(q,q') # —oo, and thus, there is a state € §(g,a) such thatL(.A9) N
»<i—1 £ (. This, together with the fact thak(q, p) # oo, imply thatj;_; (p, a) # 0. Furthermore,
by Proposition A.3, for some € j;_1(p, a) we have thaf.(A")NX<i—1 £ 0. Sincef;(p, ¢') # oo it
follows that als@;_1(¢’, a) # (). The above observations show that all thim andmax expressions
in the remainder of the proof range over non-empty sets. By definition wes ha

fl(Q7p) > fz(q7p7 CL) = ~min max fifl(n 8) +C(p7a78) _C(Q>a7r)'
s€pi—1(p,a) red(q,a)

By fixing s’ € p;—1(p, a) to be some state for which the minimum above is achieved, we get that
for everyr € 6(q, a) the following holds:

fl(Q7p) > fi—l(T? SI) + c(p, a, S/) - C(q7 a, T) (1)

By definition:

f’L(p7 q/) Z f’L(pa q/7a) - mll’l max fl (871}) —i—c(q/,a,v) _C(p7 a? 3)'
v€Pi—1(q’,a) s€(p,a)

By fixing v € p;—1(¢’, a) to be some state for which the minimum above is achieved and limiting
our attention tos’ we get that:

filp,d) = firr(s',0) + e(d a,0) = e(p,a, 8) (@)

Note that since;(q, p), fi(p, ¢') € R, inequalities 1 and 2 above imply that | (r, s'), fi_1(s',v') #
oo. Hence, we are allowed to combine inequalities 1 and 2 (without fear of mixiragnd —oo0) and
get that for every: € 6(q, a):

fila,p) + filp,d) = fica(r, ') — c(q,a,7) + fim1(s', ) + e(d, a,v') 3)
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On the other hand, recall thatwas chosen such that :

fl(q7 q,) = fl(q7 q,’ a) = ~min max fifl(rv U) + C(q/7 a, U) - C(Qa a, T)
vEPi—1(q’,a) red(q,a)

By limiting our attention to’, and taking some for which f;_i (r,v') + ¢(¢/, a,v') — ¢(q, a, )
is maximal, we get that:

fici(r') + e(d a, ') — c(q,a,7) > fi(q,q) 4)

Observe that hfi_l(r, s, ﬁ_l(s’, v") € R we can apply the induction hypothesis and obtain that
fici(r, ")+ fi—1(s',v') > fi_1(r,v'). By substituting the above into Inequality 3 and combining the
result with Inequality 4 we obtain that(q, p) + fi(p, ¢') > fi(¢,¢'). Thus, to complete the proof we
just need to show that indegfd_; (r, '), fi_1(s',v') € R. Recall thatf;_1(r, s'), fi_1(s',v") # co.
Hence, it is enough to show that 1 (r,s'), fi_1(s,v') # —oco. Recall thatfi(¢,q') > —oo, and
thus, by Inequality 4, alsg;_;(r,v’) > —oco. By Lemma A.2 we have that(A") N £<i-1 £ (),
and thus alsg;_,(r, s') # —oco. To see thalf;_ (s, v') # —oo, recall thatf;_1(r, s') # co. Thus,
by Proposition A.3, sincé (A") N $=—1 £ () we get thatL(A%) N 2=~ £ (). By Lemma A.2 it
follows thatf;_; (s', v') # —oo, which completes the proof. O

The following lemma shows thak is an upper bound on the cost difference, over words of length
at mosti, between any automatodi that is good forf;, and A. It is not hard to see from the definition
of f; that the lemma holds ifd’ is such that for every pair of statgsq’ € @ and lettera € %, if
' is thea-successor of in A’ then the minimum in the expression ffi(q, ¢, a) is achieved with
u/. However, it may not be immediately clear why the minimum in the expressioﬁ-(@;q’, a) is
indeed achieved with'. Informally, the argument goes as follows. Assuming by induction that the
lemma holds foii — 1, and since4’ is good for f; implies thatu’ € j;(¢, ), it follows thatu’ can
simulate anyi-successor’ of ¢’ with a cost difference that can be completely offset by the difference
in the costs of the transition frogi to «’ and the transition fromy’ to v’. Hence, from the point of
view of ¢/, v’ can simulate/’ without any penalty. By proposition A.9, it follows that from the point
of view of ¢/, v’ is as good as’ in simulating anya-successor of ¢q. Since this is true for every
a-successor’ of ¢/, it must be that the minimum in the expression fgy, ¢/, a) is achieved with.'.
A more formal argument follows.

Lemma A.10 Fori > 0, if A" is good forﬂ-, then fo[ allg, ¢’ € Q, such that/’ is reachable in4’, if
fila,q") € RU {oc} then costdiffA’?’, A7, <%) < fi(q,q').

Proof: Sincef;(¢,q) # —oc, by Lemma A.2 we have that(A?%) N 2=/ # (. Letw be some
word in L(A?) N £=/, We have to prove thatost(A'?, w) — cost(A%,w) < f;(q,q'). Consider
first the case wherg;(¢,¢') = co. Sincew e L(A?) we have thatost(A%, w) € R. Hence,
cost(A'Y w) — cost(A9, w) is well defined andk oco.

Consider now the case whefg(q, ¢') € R. We prove this case by an induction énFor: = 0
we havew = ¢, and by the definition of, we havefy(q, ¢') € R iff both ¢ and¢’ are inF. Hence,
cost(A%, €) = cost(A'?  €) = fo(q,¢') = 0. For the induction step, we assume that the lemma holds
for i — 1, and prove it fori. Consider first the empty word. By Corollary A&/ is also good forf,.
Hence, by the induction hypothesis, we have that(A', w) — cost(A?, w) < fo(q,q'). Sincef
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is monotonically increasingiy (¢, ¢') < fi(¢,¢'). Assume now thajw| > 0, and letw = ax, where
a € ¥ andr € ©="1. Sincew € L(AY) we have thatost(A9, w) € R. We can thus let. € §(q, a)
be the successor gfin a run of A? onw costing exactlyost(.A%, w). By definition we have

fila;d) = fila,da) = min  max fi1(a,0) + (s a,0') — c(q, a, ).

v'€pi—1(q’,a) u€d(g,a)
Sincef;(¢,¢) € R, andu is such thatL.(A*) N <i~1 = (), by the definition off it must be that
pi—1(q’,a) # (. We can thus choosé€ € p;_1(¢’, a) for which the minimum in the above expression
is attained. By limiting our attention to we get:

fi(Qa q/) > fi(Qa q/a CL) > fifl(uv v,) + C(qlv a, U,) - C(q7 a, u) (5)

_ Recall thaty' is reachable ind’, and that) # p;—1(¢', a) C 0(¢’, a). Hence, sinced’ is good for
fi, there is a state’ € p;(¢', a), such that = §'(¢’, a). By the definition ofp;(¢’, a) we have:

0 > fifl(vlv U/) + C(q/a a, U,) - C(q,7 a, U,) (6)

Sincef;(q,¢') € R, by Inequality 5 we havé;_ (u, v') # co. By Inequality 6,f;_1 (v/, ') # oc.
Hence, we can add inequalities 5 and 6 (without fear of mixingnd—oo) and get:

fi(Q7 q/) > fi—l(u7 U,) - C(Q7 a, u) + fi—l(vlv u/) + C(qlv a, ul) (7)

In preparation to applying Proposition A.9, we now show tfiat; (u,v’) and f;_1(v/,«) are
both in R. Recall thatf;_;(u,v'), fi_1(v/,u') # co. Sincez € L(A%), Lemma A.2 implies that
fi—i(u,v") # —oo. Sincef;_i(u,v’) # oo, by Proposition A.3 we have thatis also inL(A"").
Hence, by Lemma A.2fi_1(v’,u’) # —oo. We can now apply Proposition A.9 and obtain that
fici(u, ") + fici (v, u) > fi—1(u,u). Inequality 7 thus becomes:

fi(Q7 q/) > fi*l(ua U,) - C(Q> a, u) + C(q,a a, ul) (8)

Note that by our choice ofi and «/ it follows that cost( A9, w) = cost( A", x) + ¢(q,a,u)
andcost(A'7 ,w) = cost(A™, x) + ¢(¢’,a,u'). Hence, by Inequality 8, to show th#i(¢,¢') >
cost(A'Y w) — cost(A?, w), we just have to show tha_; (u,u') > cost(A"™, x) — cost( A", x).
Recall that since € L(A*)NX<"!, by Lemma A.2 we have thgt_ (u,v’) € RU{oc}. Since by
Corollary A.6,.4’ is also good forf;_1, and since/’ is reachable ind’ implies that so is/, we can ap-
ply the induction hypothesis tf)_; (u, «/) and obtain thaf;_; (u, /) > cost(A"™ , z) — cost(AY, z).

L]

The following lemma shows thgf is a lower bound on the cost difference, over words of length
at mosti, between any automaton that is good fgrand.A.

Lemma A.11 Fori > 0, if A’ is good forf;, then for allg, ¢’ € @, such that/ is reachable in4’, if
fila.d) € RU {0} thenfi(q, ¢') < costdiff. 4’7, A7, £=).
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Proof: We prove the lemma by induction enFori = 0, we have thafo(q, q') € Riff both ¢ and
¢ are inF, implying thatcost(A'?  €) = cost(A%,€) = fo(q,¢') = 0. In casefy(q,¢') = oo, then
q € Fbutq ¢ F. Hencecost(A'Y , €) — cost(A%,€) = co — 0 = 0.

_ For the induction step, assume that the lemma holds ferl. By the definition off; we have
fila,q") = max{fi—1(q,q'), maxes fi(q,q',a)}. Assume first thatf(¢.q") = fi-1(q,q'). By
the induction hypothesis, there is a woxdof length at most — 1 (hence at most) such that
cost(A'?,w) — cost(A?, w) > fi(q,q'). Assume now thafi(¢,q') > fi_1(q,q’). Thus, there exists
a € X such that:

fi(q7 q) = fi(q7 q,a) = min max fi_l(um/) +c(q,a,v') — c(q,a,u).
v'€pi—1(q’,a) u€d(q,a)

Observe that by the definition of, sincefi(q,¢,a) = fi(¢,q') # —oc, there is a state €
§(q,a) suchthatl,(A*)NX=i=1 = (). Consider first the case whef€q’, a) = . Letw = a-z, where
x is some word inL(A%) N <=1, It follows thatcost(A%, w) € R, andcost(A'?,w) = co. Thus,
costdiff( A, A%, 25%) = 0o > fi(q,¢'). Consider now the case where there is a siate §'(¢/, a).
Since A’ is good for f;, andq’ is reachable ind’, thenu’ € j;(¢’,a). Recall that by definition
pi(qd',a) C pi—1(¢, a), and thus.’ belongs to the set over which the minimum in the expression above
for fi(q,q, a) is taken. It follows that there is a statec §(q, a) such thatf;(q,¢') < fi_1(u,u') +
c(q',a,u') — ¢(q,a,u). Since by our assumptiofy(¢,¢') € R U {co}, then by the last inequality
alsofi_l(u,u’) € R U {oc}, and we can apply the induction hypothesis and obtain that there is a
word z of length at most — 1 such thatf;_; (u,u/) < cost(A™, x) — cost(AY, z). Combining
the last two inequalities involving;_, (u, u’) we get thatfi(¢, ¢') < cost(A™  x) — cost( A%, z) +
c(q',a,u") —c(q,a,u). Observe that sincd’ is deterministic bud’ is nondeterministic we have that
cost(A™, z) + ¢(¢, a,u') = cost(A'Y ,a - x), andcost(AY, z) + c(q,a,u) > cost(A%,a - x). It
follows thatfi(q, ¢') < cost(A'? ,a-x) —cost(A%, a-x) < costdiff( A", A7, ©<%), which completes
the proof. ]

Lemma A.12 If A’ € deto(A) then A’ is good forf.

Proof: We first prove that for every reachable state .4’, and every letten € %, if 5(q,a) # 0
thend’(¢q,a) # (. To see that, note that sinc€ is a DWFA embodied ind and equivalent to4, it
must be that.(A?) = L(A'?). SinceA has no useless states we must havedtata) # () implies
thatd’(¢,a) # 0. It remains to show that for every> 0, every reachable statein .A’, and every
lettera € X, we have that'(q,a) € pi(q,a). We prove this by an induction on The case = 0
is true by definition. Foi > 0, we assume that!’ is good for f;_;, and we have to show that if
u' = d'(q,a) then:
max fi_l(u, u') + c(q,a,u’) — c(q,a,u) <0

u€d(q,a)
Assume by way of contradiction that there is a state (g, a) such thatf; _; (u, ') + c(q, a,u') —
c(q,a,u) > 0. It follows that f;_;(u,u/) € R U {o0}. Sinceu’ is reachable in4’, and by the
induction hypothesist’ is good forf;_;, we can apply Lemma A.11 and obtain that there is a word
z € L(A") N 2==1 such thatf;_; (u,u) < cost(A™ x) — cost(A*, x). Combining the last two
inequalities involvingf; 1 (u, u’) we get:cost(A™, z) — cost(A*, z) + ¢(q, a,u') — ¢(q, a,u) > 0.
Observe that sincd’ is deterministic buid’ is nondeterministic we havest (A", z)+c(q, a,u’) =
cost(A'Y, a - x), andcost( A", z) + ¢(q,a,u) > cost(A%,a - x). It follows thatcost(A'?, a - z) —
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cost(A,a - x) > 0, which is a contradiction sincd’ € dety(.A) implies that for every reachable
stateg in A’, and every wordv € ¥*, we havecost(A'?, w) < cost(A?, w). O

Recall that the sequence of functiofis f1, . . . may not reach a fixed-point. Hence, an algorithm
that calculates the sequenfg f1, . . . may never terminate. However, as the next proposition shows,
if i > n?, an increase in the value (ﬁ;‘(q, ") compared tof;_1(q, ¢') indicates that for everyl’ that
is good forf; there are cycles inl and.A’ that can be pumped to create longer and longer words with
an ever increasing cost difference betwetf and.4?. This implies that can not deterministically
simulateq with a bounded cost difference, and suggests that we can assignukexvdo this pair
already at stagée This is exactly what our algorithm which calculates the sequéfcg, . . ., fo,2_1
(instead offy, fi,...) does.

Proposition A.13 For i > n?, if A’ is good forf;, then for every;, ¢’ € @, such that/’ is reachable
in A, if f;(q,q") > fi—1(q, ¢') then costdiffA’’, A7, £*) = 0o

Proof: We first need the following notation. Given a WEA = (X,Q, A, ¢, Qo, F), and two
statesp, ¢ € Q, apathin A from p to ¢ is a finite sequence of states= g, w1, -, m,_1 SUCh
thatmy = p, 1m—1 = ¢, and for every0 < i < m — 1, we have thatr; ;1 € 5, 0(mi,a). If
70 € Uges (Tm—1,a) thenr is acycle

Assume then thaf;(q,q') > fi_1(¢,q'). It follows that fi(¢,¢') € R U {oc}. Hence, by
Lemma A.11, there is a word € =7 such thatost(A'?, w) — cost(A?,w) > fi(q,q'). By Corol-
lary A.6, A’ is also good forf;_;, and thus by Lemma A.1Q;_1(¢, ¢') > costdiff(A’¢, A9, £<i—1),
Combining the last three inequalities we get that (A'Y | w)—cost (A%, w) > costdiff( A4 | A7, £<-1),
which implies thatw| = i. If costdiff(A'?, A%, ¥<%) = co, we are done. Otherwise, it must be that
w e L(AY) N L(AY). Letr = ro,r1,--- ,r; andr’ = {7, --- ! be accepting runs of minimal
cost of A7 and A7, respectively, onv. Sincei > n?, there must be a pair of indic€s< j < k < 1,
such thatr; = 7, andr; = r;. Letw = zyz, wherer = wi---wj, y = wjt1---wg, and
z = wgy1 - - - w;. Observe that andz may be empty, and that singe< k, it must be thaty| > 0.
Also note that4? can traverser alongry - - - r;, traversey along the cycleC' = r;,--- ,r;_1, and
traversez alongry, - - - ;. Similarly, A’¢’ can traverse: along T 7“9, traversey along the cycle
C'=r},---, 1,1, and traverse alongry, - - - 7;.

By removing fromr a traversal of”, and fromr’ a traversal of”’, we derive accepting runs
ands’ of A? and A", respectively, on the wordz. Since|w| = 4, and|y| > 0, it follows that
lzz| < i. Recall that4’ is also good forf;_;. Thus, by Lemma A.10, we have thﬂLl(q, ">
cost(A'Y | xz) — cost(A?, xz). Recall thatcost(.A'q w) — cost(A%,w) > filq,qd) > fi—i(q, d).
Hence cost(A'Y , w)—cost( A%, w) > cost(A'Y , xz)—cost(A?, zz). Rearranging, we gébost(A’ql,w)—
cost(A'Y  x2)) — (cost(A?,w) — cost(A?,zz)) > 0. SinceA'? is deterministic, the rur’ is the
only run it has oncz, and thuscost(A'?,w) — cost(A'Y, xz) = c(r') — ¢(s') = ¢(C’). On the
other hand, sinced? is nondeterministics may not be a run of minimal cost overz, and thus
cost(AY,w) — cost(Ad,xz) > ¢(r) — c(s) = ¢(C). Combining the last three observations we get
thatc(C’) — ¢(C) > 0.

For everym > 0, by addingm more traversals of the cyclé to r, we get an accepting rug,
of A7 on the wordzy™*! 2. Similarly, by addingn more traversals of the cycl&’ to +/, we get an
accepting runs/, of A'? on the same word. It is not hard to see, using similar arguments to the ones
used above, thabst(A'Y, zy™'2) = ¢(s),) = c(r') + m x ¢(C"), and thaicost (A9, zy™+1z) <
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c(5m) = c(r) +m x ¢(C). Hencecost(A'Y | xy™ 1 2) — cost(A, zy™ ' z) > e(r') — c(r) + m x
(c(C") — ¢(C)). Since this is true for arbitrarily large, and we showed tha{C’) — ¢(C) > 0, then
costdiff(A’4’, A%, 3*) = oo, O

We are now ready to analyze the sequence of functjong:, . . ., fy,2_;, that our algorithm
actually calculates. Recall théi is identical tof;, except that fori > n? if max filg,q'ya) >
ac

fi—1(q,4¢"), we setf;(q,q') = co. For convenience, we recall the definition of the sequéicé,, . . .
below. Also, to aid in the proof, the definition is extended to cover also indiabsve2n? — 1.

e Atinitialization:

—00 ifqg¢ F
folg,d')=¢ 0 if g Fand¢ € F
00 if g€ Fandq ¢ F,

e For1 <i<mn?-1:

filg,q") = max{fi_1(q,q), max fila.q',a)}.

e Fori > n?2:
f(q q/) = x if IanEaX)J( fz(Q7 q/, (I) > fifl(q’q,)
o fi-1(a,q') otherwise.

In the above, for every > 0 anda € 3, the functionf;(q, ¢’, a) is defined as follows.

fl(qa q,aa) - min max fi—l(u7u/> + c(q/,a,u/) - C(Qvaa u)a
u'€Ep;i—1(q,a) u€d(g,a)

where the sepy(q’',a) = d(¢’, a), and fori > 0, we have

pi(q/a CL) = {u/ € pifl(q,7a) ¢ max fifl(uvul) + C(qlv a, u/) - C(qlv a?”) < 0}'
u€d(q ,a)

Observe that the definitions of “witnesses”, and automata “good fort, wleadefined forf ,
are easily carried over tg. We first show that it is enough to calculate (at most) the functions
fos f1,- ., fanz_1, @S the sequencg, f1, . .. reaches a fixed-point within at mat? iterations.

Proposition A.14 There is somg < 2n? such thatf; = f; for everyi > j.

Proof: Note that for everyi > n?, if the value off;(q, ¢') differs from that off;_1(q,¢’) then it
attains the maximal value eb. Hence, since there aré pairs of states, the sequent;enust reach
a fixed-point within2n? iterations. O

It is easy to see thaf, just like f, is monotonically increasing with. Below we show that
f shares withf the ability to precisely quantify the cost difference betweémnd deterministic
automata embodied id. However, unlikef; which considers words of length at mas{f; may also
consider words of unbounded length. We start by making a couple piodsgrvations.
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Proposition A.15 for everyi > 0, and everyy, ¢’ € Q, we havef;(q,q') > fi(g,¢). Furthermore,
if fi(a.q') # fi(a.d'), thenf;(q,¢') = .

Proof: Immediate from the definitions gf and f. Ll

Lemma A.16 For everyi > 0, andq, ¢’ € Q, we have thaff;(q, ¢') = —oo iff L(A) N X0 = (.

Proof: SinceA hasn states, for every > n we have that.(A?) N X=' =  iff L(A%) NI=" = 0.
Sincef; andf; coincide fori < n, the result follows from Lemma A.2. L]

Proposition A.13 shows that ifl’ is good for f; and¢’ is reachable in4’, then fori > n? an
increase in the value of;(¢, ¢) compared tof;_1 (¢, ¢') indicates thatostdiff(A’¢', A9, ©*) = oc.
This observation was the intuition behind our definitiorfoNote, however, that since the valuefof
depends orf;_; and not onf;_1, it is not clear that the above analysis carries ovef.ttn particular,
Lemma A.9 which served a crucial role in the proof of Lemma A.10, and thexe@iflso in the proof
of the pumping argument of Proposition A.13, is not true forRecall that Lemma A.9 states that
it fi(q,p), fi(p,¢') € R, then soisf;(q,¢'), and fi(q,p) + fi(p,d') > fi(q,q'). However, forf, if
i > n? it may be thatf;(q, p), fi(p,q') € R, butthatfi(q,q’) was bumped up tec. Fortunately, as
the next lemma shows, even after many iterations wifeaad f may have attained different values
for many pairs, iff sets a value ofc to a certain pair, then its decision is justifiable, sirfoeould
also (in future iterations) grow without bounds, or attain the valuerhus, in a sense, “at the limit”
f andf behave in the same way.

Lemma A.17 Giveni > 0, andq, ¢ € Q, such thatf;(¢,q') = oc. If ¢ is reachable in some!’
that is good forf, then for everyn € N there is an indexX,,, > 0 such thatf; (¢, ¢’) > m for every
k> k.

Proof: Observe that sincé is monotonically increasing it is enough to show that for everg N

there is an index,, > 0 such thatf;, (¢,¢') > m. We prove the lemma by an induction on

i. Fori < n2 fi(q,¢) = oo implies thatf;(q,¢') = oco. Assume now that > n2, and that

the lemma holds foi — 1. Note that if f;(¢,¢') = oo, we are done, and that(q,¢) = —oo

is impossible by Lemmas A.2 and A.16. We thus assume fHat¢) € R. Also note that if
fi(g,d) = fi—1(q,q¢) then the lemma holds by the induction hypothesis. Hence, from now on we
also assume thgt_1(q,¢") < fi(q,¢)-

We now prove that if there is an indéx> i such thatf,(q,¢') > fe—1(¢,¢') then the lemma
holds. Assume for now that suchtaexists (we will later show that indeed it does). By our assump-
tion, there is an automatad’ that is good forf, in which ¢ is reachable. Since in particulat
is good for f;, and sincek > n?, then by Proposition A.13 we hawstdiff(A'¢', A7, ¥*) = cc.

It follows that for everym < N there is an index,, > 0, such thatostdiﬁ(A’q',Aq,Eﬁj) > m

for everyj > k. On the other hand, by Lemma A.10, for every sycle have thatfj (q,¢") >
costdiff(A’q’,Aq, »=7), which completes our argument. It remains to show that indeed there is an
indexk > 4 such thatfy,(q,¢') > fr—1(q, ¢'). Observe that sincg is monotonically increasing it is
enough to find an indek > i such thatfy, (¢, ¢') # fi—1(q,q).

If fi(¢,q") # fi—1(¢,q") then we are done. Assume then thatg,¢) = fi—1(q,¢'). Re-
call that by our assumptior;_1(q,¢') < fi(q,q’). Thus, by definition, we have that there is an
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a € ¥ such thatf;(q,q¢',a) > fi_1(q,¢'). Assume first that there is an indéx> i for which
fe(a.d,a) > fi(q,q,a). Since, by definitionS.(q,¢') > fix(¢, ¢, a), the previous inequalities im-
ply that fi,(q,¢') > fi—1(q,¢'). Thus, by Proposition A.15, we have thaiq, ¢') > fi_1(¢,¢), and
we are done.

Assume now that for alk > i we have f;(q, q,a) < fi(q,q,a). Let us first prove that
p(d',a) C pi(q,a). Observe thap(q',a) C pi(¢’,a), and that Proposition A.15 implies that
pi(qd'ya) C pi(d’,a). Hence, it is enough to show thgi;(¢',a) \ pi(¢',a)) N p(d',a) = 0. As-
sume by way of contradiction that there isiac (p;(¢’,a) \ pi(¢’,a)) N p(¢’,a). Sinceu' is in
pi(¢',a) but not inp;(¢, a), there must be a staté € d(¢’, a) such thatf;_1 (v, u/) # fi_1(v', /).
Thus, by Proposition A.15f;_1(v,u/) = oo. Recall thatA’ is good for f, that¢' is reachable in
A’, and that’ € 5(¢’,a). Hence, by Corollary A.8, there is aff’ that is good forf, in which«/ is
reachable. We can thus apply the induction hypothesfs tqv’, v’), and obtain that there is an index
k > 0 such thatfy,(v/,u') > ¢(q',a,v') — ¢(¢',a,u'). But this is a contradiction sinc€ € 5(q, a)
implies thatu’ € ji(¢',a), and thusfy, (v, v/) + ¢(¢, a,u') — ¢(¢',a,v’) < 0. It follows that our
claim thatp(q’, a) C pi(¢, a) is true.

We are now ready to show that there is an index i such thatfy(q, ¢') > ﬁ-,l(qj q'). Given

k > I, IetMINk = {u/ € ﬁk*l(qlva‘) ’ eng(ax)fkfl(u7u/) +C(q/7a7u/) - C((Laau) = fk(qa q,7a)},
u€d(q,a

be the set of states for which the minimum in the expressiorﬁf@y, q',a) is achieved. We claim
that for everyk > i the setM 1N} is not empty. To see that, recall thAl(q,¢',a) > fi—1(g,q'),
and thusf;(q, ¢, a) # —oc. It follows, by the definition off;(q, ¢’, a), that there is. € 6(q, a) such
that L(A*) N 251 £ §. Thus, if 5r_1(¢', a) = 0, then by definitionfy,(¢, ¢’,a) = co. But since
k > 4, by our assumptiorf, (¢, ¢, a) < fi(q,q', ), which is a contradiction. Hence, for every> i
we haveM I N, # (). SinceA has only finitely many states, there is a statsuch that,’ € MIN
for infinitely manyk’s. Observe that it follows that’ € p(¢’,a). Lett > i be such that’ € MIN;.
Recall that since > 4, by our assumptiotf;(¢, ¢, a) > f;(¢,¢',a). Thus:

filg,q',a) = min max f;_1(u,v") + (¢, a,v") — c(q, a, u)
vlepifl(qua) ueé(q,a)
> ft(cb C]/7 a)
= max ftfl(u7 u/) + C(q,) a, ul) - C(Qv a, U)
u€d(q,a)

Recall that we showed that(¢’,a) C pi(¢,a), thatp;(¢',;a) C p;—1(¢’,a), and thatu’ €
p(q,a). It follows thatu' € p;—1(¢’,a). Hence, the inequality above implies that there is a state
u € 6(q,a), such thatf;_;(u,u') > fi_1(u,u'). Sincet > i, and f is monotonically increas-
ing, thenf; 1 (u,v') > fi_1(u,u’). It follows that f; 1 (u,u') > f;_1(u,u'), and thus by Propo-
sition A.15, f;_1(u,u/) = oo. Recall that4’ is good for f, that¢ is reachable ind’, and that
u' € p(q’,a). Hence, by Corollary A.8, there is af’ that is good forf in which«/ is reachable. We
can thus apply the induction hypothesisfto; (u, u") and get that for evert € N there is an index
I, > 0 such thatfl(u,u’) > h for everyl > [,. Recall that by our assumptimfs(q,q’) € R, and
fi(a.¢") = fi—1(q,¢). Thus, we can choose arsuch that, > f;_1(q, ¢ )—(c(q, a, v’ ) —c(q, a, w)).
Sinceu’ € MINj, for infinitely many#’s, we can find an indek;, > I;,, such that/ € MINy, . It
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follows that:

folad) > Fuladia) = mx foa(v) +eld o) ~ cla.00)
> fkhfl(uy ’U,/) + C(qla a, ul) - C(q7 a, U’)

> h + C(q/, a, ’U/) - C(q7 a, ’U,) Z .]Ei—l(qv ql)

Which completes the proof. Ll

The next lemma shows that once the calculatiorf eéaches a fixed-point, the set of automata
that are good forf at this fixed-point is exactly the set of automata that are good.for

Lemma A.18 If j is a fixed-point index of, then an automatom!’ embodied inA is good for f; iff
it is good for f.

Proof: Itis not hard to see that singés a fixed-point index of, then A" is good forf; iff it is good
for f. Hence, we can prove instead théltis good forf iff it is good for f. For the first direction,
assume that!’ is good forf. Looking at the definition of(q, a), one can see that Proposition A.15
implies that for every: € X and everyg € Q, we have thap(q, a) C p(q,a). Hence, A’ is also
good for f. For the other direction, assume thétis good for f, and letq’ be a state reachable in
A’. We have to show that for every € 3, if v’ = §'(¢/,a), thenu’ € p(¢’,a). Observe that by
the definition ofp(¢’, a) it is enough to show that for every € 6(¢’,a) and everyi > 0, we have
that f;(u,u') = fi(u,u'). Assume by way of contradiction that there isi.ac d(¢’, @) such that
fi(u,u) # fi(u,u'). By Proposition A.15, we have thgt(u, ') = co. Applying Lemma A.17
to f;(u,u'), we get that there is an indéx> 0 such thatfy,(u, ') + ¢(¢, a, ') — ¢(q, a,u) > 0.

It follows thatw’ ¢ j;(¢/,a). But this contradicts the fact that’ is good for f,, and our claim is
proved. UJ

The next lemma shows that at a fixed-point ingexhe functionf; quantifies exactly the cost
difference, over all words ix*, betweenA and any deterministic automaton that is goodfpr

Lemma A.19 If A’ is good forf;, wherej is a fixed-point index of, then for every;, ¢’ € @, such
that¢’ is reachable in4’, we have thaf;(q, ¢') = costdiff 44, A7, %),

Proof: Consider first the case whefe(q, ¢') = —oo. Sincej is a fixed-point index, it follows that
for everyi > j we also have;(q, ¢') = —oo. Hence, by Lemma A.16, we have thHatA?) N 3* = ().

It follows (by definition) thatcostdiff(A’q', A% ¥*) = —o0, and the lemma holds. Consider now the
case wherd(q,¢') € R. Giveni > j, sincej is a fixed-point index off, thenf;(q,¢') = fi(q,¢).

By proposition A.15, we have thd§(q, ¢') = fi(¢,q') = filg,q') € R. By Lemma A.18,4’ is good
for f;. Hence, by Lemmas A.10 and A.11, we have ttmtdlff(A’q A1, 250 = fi(q,¢). Since
this is true for every > j thencostdiff( A", A9, %*) = fi(q, ). Sincefi(q,q') = fi(q,¢') then also
in this case the lemma holds. It is left to consider the case wf}éqeq ) = oco. By Lemma A.18,
A’ is good for f. Thus, by Lemma A.17, the sequenﬁ{ﬁ(q ¢), f1(¢,¢), ... is unbounded. By
Lemma A.11, it follows thatostdiff(.A’¢, A9, %) = O
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We can now prove the following theorem which together with Proposition A.14iesheo-
rem4.5.

Theorem A.20 AWFAA = (X, Q, A, ¢, Qo, F) is DBP iff for a fixed-point indey of f, there is a
stateq(, € Qo such that for every, € Q, we have thaf;(qo, g;) < 0.

Proof: For the first direction, assume thdtis DBP, and take somd’ = (X,Q,A’, ¢, ¢, F) in
deto(A). By Lemma A.12,4’ is good forf, and thus, by Lemma A.18, it is also good o By
Lemma A.19, for every, € Qo, we have thatfi(qo, ¢)) = costdiff(A'%, A% ¥*). Since A’ is
equivalent ta4 it must be that for every, € Q, we have thatostdiff(.4'%, A%, ¥*) < 0.

For the other direction, assume that there is a sjate )y, such that for every, € Q, we
have thatf;(qo, q;) < 0. Take someA’ that is good forf (we will later show that there is such an
A’). By Lemma A.18,4’ is also good forf;. Thus, by Lemma A.19, for every, € Qy we have
that costdiff(.A'%, A% ¥*) = fi(q0,q). Since by our assumption, for evefy € Qo we have that
fi(q0, qh) < 0, thencostdiff(A'%, A%, ¥*) < 0, and.A’ must be equivalent tgl, and thusA is DBP.

It remains to show that indeed there is an automator: (3, Q, A/, ¢, ¢h, F) that is good forf.

To build A’ we start without any transitions and iteratively add transitions as followse¥ary
stateg that is reachable frong,, and every: € ¥ such thabt(q, a) # 0 butd’(g, a) = 0, we arbitrarily
chose some € (g, a) and add the transitiofy, a, u). It is not hard to see that if we never run into
a situation wherei(q,a) = () then we end up with an automaton that is good forThe fact that
throughout the construction we always have, a) # () is proved by an induction on the distance of
q from ¢. For the induction base;(= ¢}), we have to show that for eveiy> 0, if (g, a) # 0
thenp;(g(,a) # 0. The caseé = 0 is true since by definitiom,(q), a) = d(qj,a). Giveni > 0,
recall that by our assumption, for evegy € Qo we have thatf;(qo,q;) < 0. Thus, in particular,
fildh,q6) < 0, which implies (sincej is a fixed-point index, ang' is monotonically increasing)
that f;(q, ¢5) < f(40,q0) < 0. It follows, by Proposition A.15, thaf; (g5, ¢h) < 0, and thus also
filgh, db,a) < 0. Observe that ifi(q},a) # 0, then by the definitions of; (g}, ¢h, @) and p; (¢}, a),
eitherp; (g}, a) # 0, or for all states: € 5(q}, a) we have that.(A%)NX="1 = {). In the latter case,
by Lemma A.2 and the definition @ (¢, a), it must be that (¢, a) = pi(g(, a), which completes
the proof of the induction base. The induction step follows directly fronp&sition A.4. Ll

Observe that in the proof of Theorem A.20, we actually show that i DBP, thendet(.A) is
exactly the set of automata that are good for a fixed-poirt of
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