
Reasoning about Online Algorithms with Weighted Automata

Benjamin Aminof, Orna Kupferman, Robby Lampert
Hebrew University, School of Engineering and Computer Science, Jerusalem 91904, Israel

Email: {benj,orna,robil}@cs.huji.ac.il

December 2, 2008

Abstract

We describe an automata-theoretic approach for the competitive analysis ofonline algorithms.
Our approach is based onweighted automata, which assign to each input word a cost in IR≥0.
By relating the “unbounded look ahead” of optimal offline algorithms with nondeterminism, and
relating the “no look ahead” of online algorithms with determinism, we are able to solve problems
about the competitive ratio of online algorithms, and the memory they require, by reducing them
to questions aboutdeterminizationandapproximated determinizationof weighted automata.

1 Introduction

In formal verification, we verify that a system has a desired property by checking whether a math-
ematical model of the system satisfies a formal specification of the property.Early work on formal
verification handled finite-state hardware designs. Current work already copes with infinite-state soft-
ware systems, complex distributed systems, and so on [2, 15], and is widely and successfully used in
the industry [9]. An important feature of formal verification is that rather than reasoning only about
input/output relations of terminating systems (for example, the output is the gcd of the two numbers
in the input), it enables reasoning aboutreactive systems, which maintain an on-going interaction with
their environment. For example, one can check that an operating system never reaches a deadlock, or
that every request in some communication protocol is eventually acknowledged.

In this work we extend the scope of formal verification to reasoning aboutonline algorithms. An
online algorithm can be viewed as a reactive system: at each round, the environment issues a request,
and the algorithm should process it. The sequence of requests is not known in advance, and the goal
of the algorithm is to minimize the overall cost of processing all the requests in the sequence. Online
algorithms for many problems have already been extensively studied for several decades, and have
aroused much interest, both from a practical and a theoretical point of view [4].

While the interaction described above between an online algorithm and its environment is at the
heart of formal verification, the questions that are traditionally answeredby formal verification tech-
niques are very different from those that are asked in the context of online algorithms. In formal
verification a system is checked with respect to a given specification. On the other hand, the most
interesting question about an online algorithm refers to itscompetitive ratio: the worst-case (with
respect to all input sequences) ratio between the cost of the algorithm and the cost of an optimal so-
lution (one that may be given by anoffline algorithm, which knows the input sequence in advance).

1



While current formal verification techniques can check qualitative properties of an online algorithm
(e.g., “whenever a request to a page is made, and this page is not in the cache, the page is brought into
the cache”) and even answer quantitative questions about it (e.g., “what is the maximal number of
page faults within a window ofk rounds?”) [8], current techniques cannot refer to the optimal solu-
tion, and hence, they cannot reason about the competitive ratio. Likewise, while synthesis algorithms
and tools successfully generate systems that satisfy a given specification[16], current synthesis algo-
rithms cannot, for example, synthesize (or decide that there does not exist) online algorithms that are
as good, or competitive with some given ratio, as a given offline algorithm.

Our approach to formally reasoning about online algorithms is based onweighted finite automata
(WFAs, for short) [18, 20]. Essentially, we relate the “unbounded lookahead” of the optimal offline
algorithm with nondeterminizm, and relate the “no look ahead” of online algorithmswith determin-
ism. This enables us to reduce questions about the competitive ratio of online algorithms to questions
aboutdeterminizationandapproximated determinizationof WFAs. Below we further elaborate on
our approach and our results.

A WFA A induces a partialcost function fromΣ∗ to IR≥0. Technically, each transition ofA
has a cost, the cost of a run is the sum of the costs of the transitions taken along the run, and the
cost of a wordw, denotedcost(A, w), is the minimum cost over all accepting runs on it (the cost is
undefined if no run on the word is accepting). Consider an optimization problem P with requests in
Σ. An algorithm forP can be viewed as a mapping of words inΣ+ to a set of actions available to the
algorithm [3]. For a finite setS of configurations, we say that an algorithm uses memoryS if there
is a regular mapping ofΣ∗ into S such that the algorithm behaves in the same manner on identical
continuations of words that are mapped to the same configuration.

The set of online algorithms forP that use memoryS induces a WFAAP , with alphabetΣ and
state spaceS, such that the transitions ofAP correspond to actions of the algorithms and the cost of
each transition is the cost of the corresponding action. We argue that manyoptimization problems
have algorithms that use finite memory. We demonstrate this on the paging,k-server, ski-rental,
load-balancing, and∆-paid exchange static list accessing problems.

Given a finite sequence of requestsw ∈ Σ∗, each run ofAP onw corresponds to a way of serving
the requests inw by an algorithm with memoryS. The set of all runs include all such ways, thus
cost(A, w) is the cost of an optimal offline algorithm onw that uses memoryS. On the other hand,
an online algorithm has to process each request as soon as it arrives.Hence, an online algorithm
corresponds to a deterministic automatonembodiedin AP . Indeed, for every configurations ∈ S
and requestσ ∈ Σ, the algorithm suggests a particular way to processσ from s, inducing a single
transition labeledσ from s.

Accordingly, there exists an online algorithm forP that performs as well as the optimal offline
algorithm iff AP embodies an equivalent deterministic automaton, in which case we say thatAP

is determinizable by pruning. Similarly, there exists anα-competitive online algorithm forP , for
α > 1, iff AP embodies a deterministic automatonA′

P thatα-approximatesAP (the automatonA′
P

accepts the same set of words asAP , andcost(A′
P , w) ≤ α ·cost(AP , w) for all wordsw in this set).

Then, we say thatAP is α-determinizable by pruning.

Restricting the determinization procedure to automata embodied inAP guarantees that transitions
in the automaton still correspond to actions of an algorithm forP . An online algorithm, however, may
require more memory than an offline algorithm for the same problem. For example, in the paging
problem, an offline algorithm only has to remember in each round the set of pages that are in the cache,
whereas known online algorithms that achieve the best competitive ratio are marking algorithms,

2



which remember, in addition, some order on the pages in the cache, or some other information. To
address this point, we also consider a variant of determinization by pruningthat allows a refinement of
the state space ofAP before pruning it to a deterministic automaton. We show that such a refinement
indeed corresponds to an extension of the memory used by the algorithm.

We study the problems of deciding whether a WFA is determinizable (orα-determinizable) by
pruning, with and without refinement. The problems are, in fact, challengingalready for the un-
weighted case, and we first solve them in this setting1. We show that the problem of deciding whether
a WFA is determinizable by pruning can be solved in polynomial time. Our algorithmmakes use of
the local nature of pruning – each state should have, for each input letterσ ∈ Σ, a σ-transition that
“covers all otherσ-transitions”. The local nature of pruning, however, cannot be usedwhen consid-
ering approximation, and we show that the problem of deciding whether a WFA is α-determinizable
by pruning, forα > 1, is NP-complete. It follows that given an optimization problemP and a fi-
nite setS of configurations, the problem of deciding whether there is an online algorithm for P with
configurations inS, that is as good as an offline algorithm with configurations inS, can be solved in
polynomial time. On the other hand, the problem of deciding whether there is anonline algorithm
for P with configurations inS that isα-competitive, for a fixedα > 1, with respect to an offline
algorithm with configurations inS, is NP-complete.

The complications that approximation brings with it are carried over to the settingin which an
extension of the memory is allowed. We prove that while extending the memory cannot help an online
algorithm to perform as well as the offline algorithm (that is, if an offline algorithm uses memoryS,
and no1-competitive online algorithm with configurations inS exists, then there is no1-competitive
online algorithm at all), memory may help in order to decrease a competitive ratioα > 1 (that is,
there are problems for which an offline algorithm uses configurations inS, no online algorithm with
configurations inS is α-competitive, but there is an online algorithm with richer configurations that
is α-competitive)2.

In Section 6, we discuss the practical aspects of implementing our framework. In particular, we
discuss symbolic approaches that cope with the large state space that our algorithms handle, and
parametric methods, which allow to reason about a system with many identical processes by studying
properties of one of the processes.

1.1 Related work

Our automata-theoretic approach for reasoning about online algorithms adopts and extends ideas from
work done in the formal-verification community. An automata-theoretic approach for reasoning about
systems and their specifications has been suggested in [23], and has been extensively studied and
implemented since then. As discussed above, the known approach is not suitable for reasoning about
online algorithms. Determinization of WFA is studied in [20], but the technique and the applications
are different from those of determinization by pruning, which we study here.

The online-algorithms community has studied several abstract models for competitive analysis.
The on-going interaction that takes place in online algorithms can be modeled, for example, by means
of games in strategic form[17] and request-answer games[3]. Other work considers models for

1The problem of determinization by pruning is of interest also in the unweighted case. As described in [14], automata
that are determinizable by pruning can be used in the process of synthesis and game solving.

2We note that while it is widely believed that ak-competitive online algorithm for the paging problem needs more
memory than the optimal offline algorithm, this is not the case [11].

3



specific problems (e.g., [1] for paging). The model that is closest to our automata-theoretic approach
is the one ofmetrical task systems[5, 19]. The expressive power and the applications of the various
models are different, however, from our weighted automata.

2 Preliminaries

2.1 Weighted automata

Standard automata map words inΣ∗ to either “accept” or “reject”. A weighted automaton can be
viewed as a partial function (defined only for accepted words) fromΣ∗ to IR≥0. Formally, aweighted
finite automaton(WFA, for short) isA = 〈Σ, Q,∆, c, Q0, F 〉, whereΣ is a finite input alphabet,Q is
a finite set of states,∆ ⊆ Q×Σ×Q is a transition relation,c : ∆ → IR≥0 is a cost function,Q0 ⊆ Q
is a set of initial states, andF ⊆ Q is a set of final states. A transitiond = 〈q, a, p〉 ∈ ∆ (also written
as∆(q, a, p)) can be taken when reading the input lettera, and it causesA to move from stateq to
statep with costc(d). The transition relation∆ induces a transition functionδ : Q × Σ → 2Q in
the expected way. Thus, for a stateq ∈ Q and a lettera ∈ Σ, we haveδ(q, a) := {p : ∆(q, a, p)}.
We extendδ to sets of states, by lettingδ(S, a) :=

⋃

q∈S δ(q, a), and recursively to words inΣ∗, by
letting δ(S, ε) = S, andδ(S, u · a) := δ(δ(S, u), a), for everyu ∈ Σ∗ anda ∈ Σ. A WFA A may
be nondeterministic in the sense that it may have many initial states, and that for someq ∈ Q and
a ∈ Σ, it may have∆(q, a, p1) and∆(q, a, p2), with p1 6= p2. If |Q0| = 1 and for every stateq ∈ Q
and lettera ∈ Σ we have|δ(q, a)| ≤ 1, thenA is adeterministicweighted finite automaton (DWFA,
for short).

For a wordw = w1 . . . wn ∈ Σ∗, a run ofA on w is a sequencer = r0r1 . . . rn ∈ Q+,
wherer0 ∈ Q0 and for every1 ≤ i ≤ n, we have〈ri−1, wi, ri〉 ∈ ∆. The runr is accepting if
rn ∈ F . The wordw is accepted byA if there is an accepting run ofA on w. The (unweighted)
languageof A is L(A) = {w : w is accepted byA}. For q ∈ Q, we denote byAq the automaton
A with the single initial stateq. The cost of an accepting run is the sum of the weights of the
transitions that constitute the run3. Formally, letr = r0r1 . . . rn be an accepting run ofA on w, and
let d = d1 . . . dn ∈ ∆∗ be the corresponding sequence of transitions. The cost ofr is cost(A, r) =
∑n

i=1 c(di). The cost ofw, denotedcost(A, w), is the minimal cost over all accepting runs ofA
on w. Thus,cost(A, w) = min{cost(A, r) : r is an accepting run ofA onw}. For completeness, if
w 6∈ L(A) we setcost(A, w) = ∞.

For two WFAsA1 andA2, andα ≥ 1, we say thatA1 α-approximatesA2 if L(A1) = L(A2)
and for all wordsw ∈ Σ∗, we havecost(A1, w) ≤ α · cost(A2, w). When bothA1 1-approximates
A2 andA2 1-approximatesA1, we say thatA1 andA2 areequivalent.

3In general, a WFA may be defined with respect to any semiring〈K,⊕,⊗, 0, 1〉. The cost of a run is then the semiring
product of the weights along it, and the cost of an accepted word is the semiring sum over all accepting runs on it. For
the modeling of online algorithms, we focus on weighted automata defined withrespect to themin-sum semiring, 〈IR≥0 ∪
{∞} , min, +,∞, 0〉 (sometimes called thetropical semiring), as defined above. Also, some work assigns costs also to
initial and accepting states. We do not need such costs for the modeling of online algorithms, and work with a definition
that omits them.

4



2.2 Online algorithms

A problemassociates with each possible inputI a setF (I) of feasible solutions. In anoptimization
problem(of cost minimization), each solution inF (I) has a cost in IR≥0, and the goal is to find a
feasible solution that minimizes the cost.

An online algorithmfor an optimization problemP is an algorithm that gets as input a finite
sequence of requests, and has to process each request (and end up in a feasible solution) without
knowing the requests yet to come. In contrast, anoffline algorithmfor P gets the entire sequence in
advance, and its decisions as to how to process a request may depend onthe requests yet to come.

Formally, if we denote byΣ the set of requests, and denote byA the set of actions that are
available to the algorithm, then an online algorithm corresponds to a functiong : Σ+ → A. The
processing of an input sequenceσ1 . . . σn by g is theng(σ1), g(σ1σ2), g(σ1σ2σ3), . . .. In typical
optimization problems, there is a cost functionaction cost : A → IR≥0 that associates a cost with
each action. The cost of processing an input sequence is the sum of thecosts of the actions taken
in order to process it. The performance of an online algorithm is typically worse than that of an
offline algorithm for the same problem. For analyzing the performance of online algorithms we use
competitive analysis, which compares the two performances.

For an online algorithmg and an inputw ∈ Σ+, let g(w) denote the cost of processingw by
g, and let OPT(w) denote the cost of processingw by the optimal offline algorithm. We say that
an online algorithmg is α-competitiveif there exists a constantβ such that for all input sequences
w ∈ Σ+ we have thatg(w) ≤ α·OPT(w) + β. Thecompetitive ratioof g is the smallestα for which
g is alpha-competitive. In the rest of the paper we restrict attention to the multiplicative factorα and
ignore the additive factorβ, except for places where it is not immediately clear how to handleβ.

Our analysis of online algorithms takes into account the extra memory that the online algorithm
may require in order to compete with the offline algorithm. Formally, we have the following.

Definition 2.1 For a setS of configurations, a competitive ratioα ≥ 1, and an integerr ≥ 0,
we say that an optimization problemP hascompetitive ratio(α, r) with memoryS, if there is an
online algorithmg for P that uses an extension of the memoryS by r Boolean variables, andg is
α-competitive with respect to an optimal offline algorithm that uses memoryS.

3 An Automata-Theoretic Approach to Reasoning about Online Algo-
rithms

In this section we describe an automata-theoretic approach to reasoning about online algorithms. We
first characterize optimization problems for which the approach can be applied, and argue that typical
optimization problems satisfy our characterization. We then describe how, bymodeling optimization
problems by weighted nondeterministic automata, we can reduce reasoning about the competitive
ratio and the memory required by online algorithms, to reasoning about determinization of such
automata.

3.1 Finite-state online algorithms

Recall that an online algorithm corresponds to a functiong : Σ+ → A that maps sequences of requests
(the history of the interaction so far) to an action to be taken. In general, thealgorithm induces an

5



infinite state space, as it may be in different states after processing different input sequences inΣ∗.
Indeed, modeling of online algorithms by request-answer games gives riseto games with infinitely
many positions [3]. For a finite setS of configurations, we say thatg uses memoryS, if there is a
regular mapping ofΣ∗ into S such thatg behaves in the same manner on identical continuations of
words that are mapped to the same configuration.

We model the set of online algorithms that use memoryS and solve an optimization problemP
with requests inΣ and actions inA, by a WFAAP = 〈Σ, S, ∆, c, S0, S〉, such that∆ andc describe
transitions between configurations and their costs, andS0 is a set of possible initial configurations.
Formally,∆(s, σ, s′) if the setA′ ⊆ A of actions that process the requestσ from configurations by
updating the configuration tos′ is non-empty, in which casec(〈s, σ, s′〉) = mina∈A′ action cost(a).
Note that all the states ofAP are accepting. Thus,AP assigns a cost to all sequences inΣ∗.

Many optimization problems have online algorithms that require finite memory, or have finite
memory variants that are obtained by imposing natural bounds. We give a few examples below.

Example 3.1 [The paging problem [21]] In the pagingproblem we have a two-level memory hier-
archy: A slow memory that containsn different pages, and acachethat contains at mostk different
pages (typically,k << n). Pages that are in the cache can be accessed at zero cost. If a request is
made to access a page that is not in the cache, the page should be broughtinto the cache, at a cost of
1, and if the cache is full, some other page should first be evicted from the cache. The paging problem
is, given a sequence of requested pages, to decide which page to evictwhenever an eviction is needed.
The goal is to minimize the total cost.

A paging problemP with parametersn andk induces a WFAAP = 〈Σ, S, ∆, c, S0, S〉, where
Σ = {1, . . . , n} is the set of possible requests (page indices),S = {C ⊆ {1, . . . , n} : |C| ≤ k} is a
set of finite configurations, each describing the set of pages currentlyin the cache,∆ andc describe
how (and at which cost) requests are served, andS0 = {∅}, indicating that the cache is initially
empty. Thus,∆(C, i, C ′) iff one of the following holds: (1)i ∈ C, in which caseC ′ = C and
c(〈C, i, C ′〉) = 0, (2) i 6∈ C, |C| < k, andC ′ = C∪{i}, in which casec(〈C, i, C ′〉) = 1, or (3)i 6∈ C,
|C| = k, and there isj ∈ C such thatC ′ = (C \{j})∪{i}, in which casec(〈C, i, C ′〉) = 1. Note that
by the definition ofS, a configuration stores only the set of pages currently in the cache, andthere
are no provisions for storing any extra information such as time-stamps, etc.A different automaton
for the problem could have definedS in a way that allows the storage of such extra information. We
will elaborate on this point in the sequel.

Example 3.2 [The k-server problem [19]] The paging problem can be viewed as a special case of
thek-server problem. There, we havek servers in a metric spaceM = 〈V, d〉, whereV is a set of
points andd : V ×V → IR≥0 is a distance function. The input to the problem is a sequence of points,
each point should be served by moving a server to it (if no server is there), and the goal is to minimize
the sum of distances that the servers move.

A k-server problemP with parametersk andM = 〈V, d〉, for a finite setV , induces a WFA
AP = 〈V, V k, ∆, c, {s0}, V

k〉, where each state corresponds to a configuration of the servers (for
simplicity, we allow several servers to cover the same point),∆ andc describe how (and at which
cost) servers may move, ands0 is an initial configuration defined by the problem. Thus,∆(s, v, s′)
iff one of the following holds: (1) there is1 ≤ j ≤ k such thatv = s(j), in which cases′ = s and
c(〈s, i, s′〉) = 0, or (2)s(j) 6= v for all 1 ≤ j ≤ k, there is1 ≤ j ≤ k such thatv = s′(j) and for all

6



l 6= j, we haves′(l) = s(l), in which casec(〈s, i, s′〉) = d(s(j), s′(j))4

Example 3.3 [The ski-rental problem [22]] In the ski-rental problem someone goes on a ski va-
cation whose length is not known in advance. Each morning he has to decidebetween renting skis
($1 per day) and buying skis ($y). The goal is to minimize the expense. Here, making the problem
finite-state requires the introduction of a finite boundM on the length of the vacation. Note that since
M may be bigger thany, the challenge of an algorithm that knowsM and does not know the length
of the vacation in advance is similar to the challenge of an algorithm that does not knowM . Indeed,
studies of the problem usually refer to its finite-leasing version, in which the boundM is part of the
input [4].

A ski-rental problemP with parametersy andM induces a WFAAP = 〈{a}, {0, . . . , M +
1}, ∆, c, {0}, {0, . . . , M + 1}〉, where∆(s, a, s′) iff (1) 0 ≤ s < M ands′ = s + 1, in which
casec(〈s, a, s′〉) = 1, (2) 0 ≤ s < M ands′ = M + 1, in which casec(〈s, a, s′〉) = y, or (3)
s = s′ = M + 1, in which casec(〈s, a, s′〉) = 0. Note that the alphabet ofAP is a singleton letter, as
we only care whether the vacation ends (the input word ends too) or not (the next letter is read).

Example 3.4 [The load-balancing problem[4]] In the load-balancing problem there arem identical
machines. The input to the problem is a sequencej1, j2, ..., jn of loads from a domainJ , typically
J = IR>0, each representing a load of a job that should be processed. The problem is to allocate the
jobs to the machines, and the goal is to minimize the total load on the most loaded machine (a.k.a.
makespan). Here too, we assume that there is a finite boundM on the total load of a machine, and
that the setJ of possible loads is finite. LetJ denote the set of all possible sums of numbers fromJ
that are bounded byM .

A load-balancing problemP with parametersJ andM induces a WFAAP = 〈J,Jm, ∆, c, 0m,Jm〉,
where each states ∈ Jm describes a load-assignment to them machines, and∆(s, j, s′) if there is
1 ≤ i ≤ m such thats′(i) = s(i) + j and for alll 6= i, we haves′(l) = s(l). The cost of〈s, j, s′〉 is
max1≤i≤m{s′(i) − s(i)}.

Example 3.5 [The ∆-paid exchange static list accessing problem[4]] In this problem we have a
static (fixed) linked list ofn items. Each request is for an element of the list to be accessed. A request
to access thei-th element in the list necessitates the traversal ofi links, which costsi. After servicing
a request, the list may be rearranged in the hope of better servicing futurerequests. Rearranging the
list can be done by a series of exchanges of two consecutive items. Eachexchange costs∆ > 1.

While attempts to model the problem withmetric task systemsfail [4], it is not hard to see thatP
with parametersn and∆ induces a WFAAP = 〈Σ, S, S × Σ × S, c, S0, S〉, whereΣ = {1, . . . , n}
andS is the set of alln! permutations of{1, . . . , n}, representing all the possible arrangements of
the elements in the list. The cost of a transition〈s, i, s′〉 is j + ∆k, wherej is the position ofi in
the permutations, andk is the minimal number of exchanges needed to transform the list from the
orderings to the orderings′.

We note that while the size ofAP is bounded by|S|2 · |Σ|, its computation may be complex,
as demonstrated by Example 3.5. Note, however, that the source of the complexity is the fact that

4Note that both in the paging problem and here, we restrict attention tolazyalgorithms, which minimize the change of
configurations so that only the current request is served. By [19], for every non-lazy algorithm, there exists a lazy one that
performs at least as well.

7



we compressed all the internal steps of the algorithm into one transition. Instead, one can enrich the
alphabet ofAP and encode each request as a sequence of letters, thus allowingAP to process each
request by a series of internal steps, avoiding such compressions.

3.2 Relating online algorithms and determinization by pruning

In this section we reduce problems concerning online algorithms to questions about weighted au-
tomata. We first need some definitions. For two WFAsA = 〈Σ, Q,∆, c, Q0, F 〉 andA′ = 〈Σ, Q,∆′, c′, Q′

0, F 〉,
we say thatA embodiesA′ if Q′

0 ⊆ Q0, ∆′ ⊆ ∆, andc′ agrees withc on ∆′. Thus,A′ can be ob-
tained fromA by decreasing its nondeterminism. For a WFAA = 〈Σ, Q,∆, c, Q0, F 〉 and an
integerr ≥ 0, ther-refinement ofA is the WFAAr obtained by refining the state space ofA by r
Boolean variables. Formally,Ar = 〈Σ, Q×2{1,...,r}, ∆r, cr, Q0×2{1,...,r}, F ×2{1,...,r}〉, where each
state〈q, f〉 ∈ Q × 2{1,...,r} maintains, in addition to the stateq of A, also a subsetf of {1, . . . , r},
corresponding to a truth assignment for the new variables. The transition relation∆r and the cost
functioncr are the expected extensions of∆ andc. That is, for everyf, f ′ ∈ 2{1,...,r}, we have that
∆r(〈q, f〉, a, 〈q′, f ′〉) iff ∆(q, a, q′), in which casecr(〈〈q, f〉, a, 〈q′, f ′〉〉) = c(〈q, a, q′〉). Thus, each
state ofA has2r isomorphic copies inAr.

Definition 3.6 Consider a WFAA, an approximation factorα ≥ 1, and an integerr ≥ 0. We say
thatA is (α, r)-determinizable by pruning((α, r)-DBP, for short) if ther-refinement ofA embodies
a DWFA thatα-approximatesA.

Note that whenα = 1, the embodied DWFA is equivalent toA. Also, whenr = 0, no refinement
takes place, and the embodied automaton has the same state space asA. WhenA is (1, 0)-DBP, we
say thatA is DBP.

Let P be an optimization problem, and letAP = 〈Σ, S, ∆, c, S0, S〉 be a WFA for its algorithms
that use memoryS. Given a finite sequence of requestsw ∈ Σ∗, each run ofAP onw corresponds to
a way of serving the requests inw by an algorithm with configurations inS. The set of all runs include
all such algorithms, thus the cost ofw in AP is the cost ofw in an optimal offline algorithm that uses
memoryS. Indeed, the semantics of WFA over the tropical semiring, in which the cost of a word is
the minimum cost of some run on it, guarantees that the cost would be calculatedaccording to the best
guess. On the other hand, an online algorithm has to process each request as soon as it arrives, without
knowing the requests yet to arrive. Accordingly, an online algorithm thatuses memoryS corresponds
to a DWFA embodied inAP . Indeed, for every configurations ∈ S of the problem and request
σ ∈ Σ, the algorithm suggests a particular way to processσ from s, inducing a particular transition
〈s, σ, s′〉 ∈ ∆. Moreover, a refinement ofAP maintains the correspondence between its transitions
and the actions of the algorithms (note that this correspondence is lost if we consider unrestricted
determinization ofAP ). Hence, a DWFA embodied in a refinement ofAP corresponds to an online
algorithm with an extended memory. Formally, we have the following.

Theorem 3.7 Consider an online problemP and a setS of configurations. LetAP be a WFA with
state spaceS that models online algorithms forP that use memoryS. For all α ≥ 1 andr ≥ 0, the
problemP has competitive ratio(α, r) with memoryS iff AP is (α, r)-DBP.

8



4 Determinization and Approximated Determinization by Pruning

In this section we study the problem of determinization by pruning. We show that deciding whether a
given WFA is DBP (theDBP problem, for short) can be done in polynomial time. On the other hand,
deciding whether a given WFA is(α, 0)-DBP, forα > 1 (theapproximated DBP problem, for short)
is NP-complete. In both cases, when the answer is positive, returning a witness DWFA requires no
extra cost.

We assume that a given WFAA has no useless states (that is, every state is reachable from at least
one initial state, and at least one word is accepted from each state; otherwise we remove the state and
its associated transitions).

4.1 Deciding determinization by pruning

The polynomial-time algorithm for the DBP problem is our most challenging technical result. For
clarity, we first describe a polynomial-time algorithm for deciding whether a given NFA (that is, a
WFA with no costs) is DBP (that is, embodies an equivalent DFA).

Theorem 4.1 The DBP problem for NFAs can be solved in polynomial time.

Proof: We describe a polynomial algorithm for solving DBP for NFA. The algorithm decides whether
a given NFA is DBP, and in case the answer is positive, it also returns a description of the set of equiv-
alent embodied DFAs.

Consider an NFAA = 〈Σ, Q,∆, Q0, F 〉. We inductively define a sequenceH0, H1, . . . ⊆ Q×Q
of relations as follows.

H0 = (F × F ) ∪ ( (Q \ F ) × Q), and fori ≥ 0,

Hi+1= Hi ∩ {〈q, q′〉 : for all a ∈ Σ, if δ(q, a) 6= ∅, then there existsv′ ∈ δ(q′, a)

such that for allv ∈ δ(q, a) we haveHi(v, v′)}.

Intuitively, Hi(q, q
′) means that there is a DFAA′ embodied inA such that all the words of length

at mosti accepted fromq in A are also accepted fromq′ in A′. SinceH0 ⊇ H1 ⊇ H2 ⊇ . . ., the
sequence of relations eventually reaches a fixed-point, which we denoteby H. For two statesq and
q′, we say thatq′ coversq if H(q, q′). The relationH induces an NFAAH = 〈Σ, Q,∆H , QH

0 , F 〉
embodied inA, whereq0 ∈ QH

0 iff q0 ∈ Q0 andq0 covers all the states inQ0, and for everyq, v ∈ Q
anda ∈ Σ, we have that∆H(q, a, v) iff ∆(q, a, v) andv covers all the states inδ(q, a). Note that the
setQH

0 may be empty, and that for someq anda it may be thatδH(q, a) = ∅ even thoughδ(q, a) 6= ∅.
We prove below thatQH

0 6= ∅ iff A is DBP. We first prove that the relationH is transitive.

Lemma 4.2 The relationH is transitive. That is, forq, q′, q′′ ∈ Q, if H(q, q′) andH(q′, q′′) then
H(q, q′′).

Proof: We prove that for alli ≥ 0, if Hi(q, q
′) andHi(q

′, q′′) thenHi(q, q
′′). The proof proceeds

by an induction oni.

First, if q ∈ F thenq′ ∈ F , in which caseq′′ ∈ F , thusH0 is transitive. Assume now thatHi is
transitive, and letq, q′, q′′ ∈ Q be such thatHi+1(q, q

′) andHi+1(q
′, q′′). We prove thatHi+1(q, q

′′).

9



Let a ∈ Σ be such thatδ(q, a) 6= ∅. SinceHi+1(q, q
′), there exists a stateq′a ∈ δ(q′, a) such that

Hi(qa, q
′
a) for all qa ∈ δ(q, a). SinceHi+1(q

′, q′′) andq′a ∈ δ(q′, a), there exists a stateq′′a ∈ δ(q′′, a)
such thatHi(q

′
a, q

′′
a). By the induction hypothesis,Hi(qa, q

′′
a) for all qa ∈ δ(q, a). Since the above

holds for all lettersa ∈ Σ, it follows thatHi+1(q, q
′′).

Lemma 4.3 The NFAA is DBP iffQH
0 6= ∅.

Proof: Assume first thatA is DBP. LetA′ = 〈Σ, Q′, ∆′, q′0, F
′〉 be an equivalent DFA embodied

in A. We first prove (1) that for all wordsw ∈ Σ∗, if δ(Q0, w) 6= ∅, then there exist a stateq′ =
δ′(q′0, w). We then prove (2) that for such a wordw, the corresponding stateq′ covers all the states in
δ(Q0, w). In particular,δ(q′0, ǫ) = q′0 covers all the states inδ(Q0, ǫ) = Q0, thusq′0 ∈ QH

0 .

In order to prove (1), let us recall that by the assumption at the beginningof this section, no state
in A is empty. Letw be a word on whichA has a run, letq ∈ δ(Q0, w), and letz be a word accepted
from q byA; thusw · z ∈ L(A). SinceA′ is equivalent toA, it must accept the wordw · z. Let r′ be
the accepting run ofA′ onw.z. Clearly, there is a prefix ofr′, which is a run ofA′ onw.

In order to prove (2), we prove that for alli ≥ 0, for any wordw ∈ Σ∗, if q ∈ δ(Q0, w) and
q′ = δ′(q′0, w), thenHi(q, q

′). The proof proceeds by an induction oni.

For the induction base, recall thatH0(q, q
′) iff q ∈ F implies thatq′ ∈ F . Consider a state

q ∈ δ(Q0, w), and assume thatq ∈ F . Then,w ∈ L(A). SinceA andA′ are equivalent, andA′ is
deterministic, it must be thatδ′(q′0, w) is in F . Thus,H0(q, δ

′(q′0, w)).

For the induction step, we assume that for all wordsw ∈ Σ∗ and all statesq ∈ δ(Q0, w) the state
q′ = δ′(q′0, w) is defined and satisfiesHi(q, q

′), and prove thatHi+1(q, q
′). Observe that in order

to prove thatHi+1(q, q
′) it is enough to prove that for every lettera ∈ Σ, the statev′ = δ′(q′, a) is

such that for allv ∈ δ(q, a), we haveHi(v, v′). Note thatv′ = δ′(q′0, w · a), and consider a state
v ∈ δ(q, a). Sincev ∈ δ(Q0, w · a), then by the induction hypothesis, applied to the wordw · a, we
have thatHi(v, v′), and we are done.

For the other direction, assume thatQH
0 is not empty. We claim that every maximal DFA that is

embodied inAH is equivalent toA (an embodied DFA is maximal if adding to it a transition would
make it nondeterministic). LetA′ = 〈Σ, Q, δ′, q′0, F 〉 be such a DFA. Thus,q′0 ∈ QH

0 and for all
statesq ∈ Q and lettersa ∈ Σ, we haveδ′(q, a) ∈ δH(q, a). We prove thatL(A′) = L(A).

SinceA′ is embodied inAH , which in turn is embodied inA, it is clear thatL(A′) ⊆ L(A). In
order to prove thatL(A) ⊆ L(A′), we consider a wordw = w1w2 . . . wn ∈ L(A) and prove that
for every runr = r0r1 . . . rn of A on w, there is a runs = s0s1 . . . sn of A′ on w, and that for all
0 ≤ i ≤ n, we haveH(si, si) andH(ri, si). SinceH ⊆ H0, the latter implies that membership ofrn

in F implies membership ofsn in F . Thus, if there is an accepting runr of A on w, then the run of
A′ onw is also accepting. The proof proceeds by an induction oni.

For i = 0, the construction ofA′ implies thats0 = q′0 ∈ QH
0 . Therefore, by the definition of

QH
0 , the states0 covers all the states inQ0, and in particular it coversr0 and itself. For the induction

step, assume that the induction hypothesis holds for0 ≤ i ≤ n − 1. Sinceri+1 ∈ δ(ri, wi+1) then
δ(ri, wi+1) 6= ∅. Hence, since by the induction hypothesissi coversri. SinceH is a fixed-point, then
there exists a statet ∈ δ(si, wi+1) such thatt covers all the states inδ(ri, wi+1), andri+1 among
them. Similarly, sinceδ(si, wi+1) 6= ∅, and by the induction hypothesissi covers itself, then there
exists a statev′ ∈ δ(si, wi+1) such thatv′ covers all states inδ(si, wi+1). Thus, by the definition of
∆H , the setδH(si, wi+1) 6= ∅. SinceA′ is maximal, there is a statesi+1 ∈ δH(si, wi+1), and we can

10



extend the run ofA′ to coverw1w2 . . . wi+1. Sincesi+1 ∈ δH(si, wi+1), it follows thatsi+1 coverst
and itself. Recall thatt coversri+1, thus by the transitivity ofH (Lemma 4.2),si+1 coversri+1, and
we are done.

By Lemma 4.3, the problem of checking whether a given NFAA is DBP can be reduced to
calculatingH and checking whether there is a stateq0 ∈ Q0 that covers all the states inQ0.

ComputingH0 takesO(|Q|2) time, and this is also the upper bound on the size ofH0. To compute
Hi from Hi−1 we need to check for all pairs〈q, q′〉 ∈ Hi−1 and for all lettersa ∈ Σ whether there
exists ana-successor ofq′ that covers alla-successors ofq. The number of successors of bothq
andq′ is bounded by|∆|. Thus, the number of required checks is bounded byO(|Hi−1| · |∆|2) =
O(|Q|2 · |∆|2). The number of iterations executed until the fixed point is reached is bounded by the
size ofH0. Thus, the overall number of checks in the whole computation is bounded byO(|Q|4·|∆|2).
This is clearly polynomial in the size of the input.

Note that, like the algorithm for DFA minimization, our algorithm calculates a fixed-point over
pairs of states. The fixed-point here, however, is different and morecomplicated, as it involves a
universal requirement nested inside an existential requirement. We found the result to be quite sur-
prising. Indeed, as we now show, a slightly different decision problem, which maintains the local
flavor of determinization by pruning, is NP-hard. We say that an WFAA = 〈Σ, Q,∆, c, Q0, F 〉 is
almost-deterministicif for every q ∈ Q anda ∈ Σ we have|δ(q, a)| ≤ 1. Thus, unlike deterministic
automata,A may have several initial states. Thealmost-DBPproblem is then to decide, given a WFA,
whether it embodies an equivalent almost deterministic automaton. Note that this amounts to asking
whether the nondeterministic choices ofA can be replaced by an initial choice, among finitely many
options. In the context of online algorithms, it means there are finitely many online algorithms such
that, for each input sequence, one of the algorithms performs as well as the offline algorithm. We now
show that the almost-DBP problem is NP-hard already in the unweighted case.

Theorem 4.4 The almost-DBP problem for NFAs is NP-hard.

Proof: We describe a reduction from 3SAT to almost-DBP. Letθ be a 3CNF formula withm clauses
over the variablesx1, x2, ..., xn. We construct an NFAAθ over the alphabet{0, 1, ..., m}, such that
Aθ is almost-DBP iffθ is satisfiable.

The NFA Aθ has the form of a DAG with three levels. On the first level there aren initial
states, corresponding to then variables inθ. On the second level there are2n states. Each variable
xi induces two states:itrue and ifalse, corresponding to the two possible truth assignments toxi.
For each1 ≤ i ≤ n, there are transitions labeled0 from the initial statei to bothitrue andifalse.
On the third level, there is a single accepting state. For each stateival in the second level and letter
1 ≤ j ≤ m, there is a transition labeledj from ival to the accepting state iff assigningval to variablei
satisfies clausej. For example, if the literal¬x5 appears in clause2, then there is a transition labeled2
from the state5falseto the accepting state. The language ofAθ is {0 ·j : 1 ≤ j ≤ m}. In Figure 1 we
show the NFA corresponding to the formulaθ = (x1∨x1∨x2)∧(¬x1∨x2∨x2)∧(¬x1∨¬x1∨¬x2).

We prove thatθ is satisfiable iffAθ is almost-DBP. Assume first thatθ is satisfiable. Letf :
{1, ..., n} → {true, false} be a satisfying assignment to the variables ofθ. We describe an almost-
deterministic automatonAf

θ embodied inAθ such that the language ofAf
θ contains the language of

11



0 0

x2x1

1true 1false 2true 2false

0 0

2,3 1,2
1 3

Figure 1: The NFA corresponding toθ = (x1 ∨ x1 ∨ x2) ∧ (¬x1 ∨ x2 ∨ x2) ∧ (¬x1 ∨ ¬x1 ∨ ¬x2).

Aθ. SinceAf
θ is embodied inAθ, the containment in the other direction is trivial. Note that the

only nondeterminism we have to resolve is in the transitions from each statei to itrue and ifalse.
Intuitively, each such choice corresponds to a truth assignment toxi, and we letf chose. Formally,
the transition functionδf of Af

θ agrees with the transition functionδθ of A, except that for1 ≤ i ≤ n,
we haveδf (i, 0) = if(i). Sincef is a satisfying assignment, then for every1 ≤ j ≤ m there is a

variableij whose assignment satisfies the clausej. Accordingly, there is an accepting run ofAf
θ on

the word0 · j, starting at the initial stateij .

For the other direction, assume thatAθ embodies an equivalent almost-deterministic automaton
A′ = 〈Σ, Q, δ′, Q0, F 〉. Letf : {1, ..., n} → {true, false} be such thatf(i) = true iff δ′(i, 0) = itrue.
SinceA′ is equivalent toA, then for every1 ≤ j ≤ m, the word0 · j is accepted inA′. By the
definition ofAθ, there is a transition labeledj from a stateival to the accepting state iff assigningval
to i satisfies the clausej. Hence, by the definition off , the truth assignmentf satisfiesθ.

We now move to the DBP problem for WFA. Like the algorithm in the unweighted case, the
polynomial algorithm we present below is based on a fixed-point calculation, that for each pair〈q, q′〉
of states ofA, compares the behavior of embodied deterministic automata with initial stateq′ to the
behavior of the nondeterministic automatonAq, over words of increasing length. The setting here,
however, is much more difficult. First, the characterization associated with each pair is not Boolean:
it is not enough to remember whether one can deterministically accept fromq′ the same words as
from q — the characterization has to further refine this information and refer to the possibly different
costs involved. Second, while in the unweighted setting it is clear that the calculation would reach a
fixed-point in a polynomial number of steps, in the weighted setting it may well bethat as the length
of the words considered increases, so does the cost difference, and it is not clear how to force the
calculation to reach a fixed-point.

Theorem 4.5 The DBP problem can be solved in polynomial time.

Proof: We first need some notations. For everyr ∈ IR we have−∞ < r < ∞, and we allow
expressions of the form∞±r,−∞±r,∞+∞, and(−∞)+(−∞), with the usual meaning. For every
i ≥ 0, let Σ≤i = {w ∈ Σ∗ : |w| ≤ i}. LetA andA′ be two WFAs over the same alphabetΣ. Given
a subsetS ⊆ Σ∗, we define the cost difference betweenA andA′ overS to becostdiff(A′,A, S) =
supw∈S∩L(A)[cost(A

′, w)− cost(A, w)]. Note that ifS ∩L(A) = ∅ thencostdiff(A′,A, S) = −∞,

12



and that if there is a wordw ∈ S ∩ L(A) \ L(A′) thencostdiff(A′,A, S) = ∞. Also note that,
unless both WFAs accept the empty language,A andA′ are equivalent iffcostdiff(A′,A, Σ∗) = 0
andcostdiff(A,A′, Σ∗) = 0. Letdet(A) be the set of all deterministic WFAs embodied inA, and let
det0(A) be the set of all WFAsA′ in det(A) such thatcostdiff(A′,A, Σ∗) = 0. Hence,det0(A) is
exactly the set of all deterministic automata embodied inA that are equivalent toA.

Consider a WFAA = 〈Σ, Q,∆, c, Q0, F 〉. Let n = |Q|. Our algorithm calculates a sequence of
functionsf0, f1, . . . , f2n2−1 : Q × Q → IR ∪ {−∞,∞}, such that the following holds.

• For0 ≤ i ≤ n2 − 1, the functionfi(q, q
′) measures how well the stateq′ can deterministically

simulate the stateq, over words of length at mosti. Formally, for everyA′ ∈ det0(A) (if
exists), and every pair of statesq, q′ ∈ Q such thatq′ is reachable inA′, we have thatfi(q, q

′) =
costdiff(A′q′ ,Aq, Σ≤i). The value−∞ is assigned tofi(q, q

′) when there are no words inΣ≤i

that can be accepted fromq, and the value∞ is assigned when there is a word that can be
accepted fromq but not fromq′.

• For n2 ≤ i ≤ 2n2 − 1, the functionfi(q, q
′) is similar, only that it takes cycles into account,

and maps to∞ pairs for which the cost difference has not stabilized yet, which indicatesthat it
cannot be bounded.

The sequence of functionsf0, f1, . . . , f2n2−1 is defined as follows.

• At initialization:

f0(q, q
′) =







−∞ if q /∈ F
0 if q ∈ F andq′ ∈ F
∞ if q ∈ F andq′ /∈ F ,

• For1 ≤ i ≤ n2 − 1:

fi(q, q
′) = max{fi−1(q, q

′), max
a∈Σ

fi(q, q
′, a)}.

• Forn2 ≤ i ≤ 2n2 − 1:

fi(q, q
′) =

{

∞ if max
a∈Σ

fi(q, q
′, a) > fi−1(q, q

′)

fi−1(q, q
′) otherwise.

In the above, for every1 ≤ i ≤ 2n2 − 1 anda ∈ Σ, the functionfi(q, q
′, a) is defined as follows.

fi(q, q
′, a) = min

u′∈ρi−1(q′,a)
max

u∈δ(q,a)
fi−1(u, u′) + c(q′, a, u′) − c(q, a, u),

where the setρ0(q
′, a) = δ(q′, a), and for1 ≤ i ≤ 2n2 − 1, we have

ρi(q
′, a) = {u′ ∈ ρi−1(q

′, a) : max
u∈δ(q′,a)

[fi−1(u, u′) + c(q′, a, u′) − c(q′, a, u)] ≤ 0}.

In the expression above forfi(q, q
′, a), in case that for allu ∈ δ(q, a) we have thatL(Au) ∩

Σ≤i−1 = ∅, we setfi(q, q
′, a) = −∞ (note that this also covers the caseδ(q, a) = ∅). In case there

is u ∈ δ(q, a) such thatL(Au) ∩ Σ≤i−1 6= ∅ andρi−1(q
′, a) = ∅, we setfi(q, q

′, a) = ∞.

13



Intuitively, a stateu′ ∈ ρi(q
′, a) is a “witness” to the fact thatfi(q

′, q′, a) ≤ 0, i.e., to the fact
that q′ can deterministically simulate itself over words inΣ≤i that start witha. Clearly, only such
witnesses can bea-successors ofq′ in an embodied DWFA that is equivalent toA.

We argue that the sequence of functions reaches a fixed-point in some iteration1 ≤ j ≤ 2n2 − 1,
and thatA is DBP iff there is a stateq′0 ∈ Q0 such that for everyq0 ∈ Q0, we have thatfj(q0, q

′
0) ≤ 0.

Also, in caseA is DBP, then every DWFA that consists of transitions that use the witnesses from the
last iteration (that is, whose transition relation assigns successors according toρj) is equivalent toA.
A detailed proof can be found in Appendix A.

4.2 Deciding approximated determinization by pruning

We now turn to the approximated-DBP problem, and show that it is much harder. We first study the
problem of approximation of a WFA by a given embodied DWFA.

Lemma 4.6 Consider a WFAA, an embodied DWFAA′, and an approximation factorα ≥ 1. De-
ciding whetherA′ α-approximatesA can be done in polynomial time.

Proof: Let A = 〈Σ, Q,∆, c, Q0, F 〉 andA′ = 〈Σ, Q′, ∆′, c′, q′0, F
′〉. Consider first the caseα = 1.

Then, the algorithm is similar to the one used for checking whetherA is DBP, only that nowA′ is
given. Accordingly, the functionsfi are defined for pairs inQ×Q′, and when calculatingfi(q, q

′, a),
we only have to consider the given (if any)a-successor ofq′ in A′, instead of the setρi−1(q

′, a). That
is,fi(q, q

′, a) becomes:fi(q, q
′, a) = maxu∈δ(q,a){fi−1(u, δ′(q′, a))+c(q′, a, δ′(q′, a))−c(q, a, u)}.

Now, givenα > 1, we further modify the algorithm by scaling all the edges ofA by α. More
formally, we define a sequence of functionsg0, g1, . . . , g2n2−1 : Q × Q′ → IR ∪ {−∞,∞} that is
similar to the sequencefi, except that for every1 ≤ i ≤ 2n2 − 1 anda ∈ Σ, we have

gi(q, q
′, a) = max

u∈δ(q,a)
[gi−1(u, δ′(q′, a)) + c(q′, a, δ′(q′, a)) − α · c(q, a, u)].

We argue that the sequence of functions reaches a fixed-point in some iteration1 ≤ j ≤ 2n2 − 1,
and thatA′ α-approximatesA iff for every q0 ∈ Q0, we have thatgj(q0, q

′
0) ≤ 0. The proof of this

argument is essentially the same as the proof of Theorem 4.5 found in Appendix A, with the obvious
modification that any reference to an automaton embodied inA is replaced with the given automaton
A′, and any reference toρi(q

′, a) or ρ(q′, a) is replaced withδ′(q′, a).

It is worth noting that in order to also handle an additive factorβ > 0, that is, in order to check
if for all words w accepted byA, we havecost(A, w) ≤ α · cost(A, w) + β, all we have to do is to
check whether for everyq0 ∈ Q0, we have thatgj(q0, q

′
0) ≤ β.

Before we use Lemma 4.6 for solving the approximated DBP problem, we note its application in
reasoning about online algorithms. Indeed, by Theorem 3.7, we have thefollowing.

Corollary 4.7 Consider an optimization problemP and a finite setS of configurations. Given an
online algorithmg with memoryS, and a competitive ratioα ≥ 1, the problem of deciding whether
g is α-competitive with respect to an offline algorithm with memoryS can be solved in polynomial
time.

14



In light of Lemma 4.6, one may be tempted to believe that by using the same ideas onecan extend
Theorem 4.5 to handle an approximation factorα > 1. Unfortunately, as the next theorem shows,
unless P=NP, this can not be the case. Essentially, the property that ifu′ ∈ ρi−1(q

′, a) thenu′ is
such that for everyq ∈ Q the minimum in the expression forfi(q, q

′, a) is achieved withu′, which is
crucial to proving Theorem 4.5, is no longer true whenα > 1.

Theorem 4.8 The approximated-DBP problem is NP-complete.

Proof: Membership in NP follows from Lemma 4.6. We prove NP-hardness by a reduction from
3-SAT. Givenα > 1 and a3-SAT formulaθ =

∧m
j=1 Cj over the variablesx1, . . . , xn, we build a

WFA A that is(α, 0)-DBP iff θ is satisfiable. We assume without loss of generality that no clause in
θ contains both a variable and its negation. The alphabet ofA is Σ = {a} ∪ {C1, . . . , Cm}, andA is
given in Figure 2.

Cm, n−2
α

+ 2

p1 · · ·
¬x2

x2 xn

¬xna, 0

q1
1 s1

2

a, 0
· · ·

C1, 0 C1, 0
s1
n

a, 0

pn

q1
n

p0

x1

¬x1

q1
0

a, 0
s1
1

a, 0 a, 0

a, 0 a, 0 a, 0

...
...

...

qm
1 sm

2

a, 0Cm, 0
sm
n

a, 0
qm
nqm

0 sm
1

a, 0 Cm, 0
· · ·

A:

C1, n−2
α

+ 2

Figure 2: A WFA for a 3-SAT formula.

For every1 ≤ i ≤ n and every literalli ∈ {xi,¬xi}, the edge betweenli andpi (which for lack of
space is unlabeled in the figure) stands form transitions, one for each of the lettersC1, . . . , Cm, and
the cost of a transition〈li, Cj , pi〉 is α if the literal¬li appears in the clauseCj , and is1 otherwise.
Recall that no clause inθ contains both a variable and its negation. Hence, for every1 ≤ i ≤ n and
every1 ≤ j ≤ m, at least one of the transitions〈xi, Cj , pi〉, and〈¬xi, Cj , pi〉 costs1. It follows that
A with initial statep0 accepts exactly all words of the form(a · (C1 + . . . + Cm))n with costn. In
addition,A hasm components such that for every1 ≤ j ≤ m, the DWFAA with initial stateqj

0

accepts the word(aCj)
n with a lower cost (recall thatα > 1) of (n − 2)/α + 2. In the remainder of

the proof we refer to words of the form(aCj)
n assingle-clausewords.

We now show thatA is (α, 0)-DBP iff θ is satisfiable. Observe that ifA′ is a deterministic
automaton embodied inA such thatA′ accepts all the words thatA accepts, thenA′ must havep0 as
its initial state, and for every1 ≤ i ≤ n exactly one of the transition(pi−1, a, xi), and(pi−1, a,¬xi)
is present inA′. Indeed,A′ induces an assignment to the variablesx1, . . . , xn, wherexi is true ifA′

has the transition〈pi−1, a, xi〉, and false if it has the transition〈pi−1, a,¬xi〉. For every1 ≤ i ≤ n
let l′i ∈ {xi,¬xi} be such that the transition〈pi−1, a, l′i〉 is in A′. Since the cost of all reachable
transitions inA′ on the lettersC1, . . . Cm is at mostα, anda-transitions cost0, we have thatA′

accepts every word of the form(a · (C1 + . . . + Cm))n with cost at mostαn. Thus, if w is not a
single-clause word we have thatcost(A′, w) ≤ α · cost(A, w).

15



It remains to show that for every single-clause wordw = (aCj)
n, we have thatcost(A′, w) ≤

α · cost(A, w) iff the assignment induced byA′ satisfiesCj . To see that, observe that the (single) run
ofA′ onw isp0·l

′
1·p1 · · · l

′
n·pn, and that for every1 ≤ i ≤ n we have that¬l′i is false in the assignment

induced byA′. Recall that the transition(l′i, Cj , pi) costst if ¬l′i appears inCj , but costs1 otherwise.
Let false(j) be the number of literals inCj that were assigned the value false byA′. It follows that
cost(A′, w) = n− false(j) + false(j)α. Sinceθ is a3-SAT formula we have that false(j) ≤ 2 iff A′

satisfiesCj . Hence, for everyα > 1 we have thatcost(A′, w) ≤ n− 2 + 2α = α · cost(A, w) iff A′

satisfiesCj .

We note that an adjustment to the costs of the transitions of the WFA used in the proof of Theo-
rem 4.8 shows that the approximated-DBP problem is NP-hard already foran additive approximation
factor (that is, when the embodied DWFAA′ is such that there isβ ≥ 0 such that for allw ∈ Σ∗, we
havecost(A′, w) ≤ β + cost(A, w)). The adjustment required is to assign a cost of1 + β/n to the
transitions that currently costα, and a cost ofn + β(2/n − 1) to the transitions that currently cost
(n − 2)/α + 2. A combination of a multiplicative factorα and an additive factorβ, can be handled
in the obvious way.

By Theorem 3.7 (and the fact that every WFA induces an online algorithm),we can conclude with
the following.

Corollary 4.9 Consider an optimization problemP and a finite setS of configurations. The problem
of deciding whetherP has competitive ratio(α, 0) with memoryS can be solved in polynomial time
for α = 1, and is NP-complete forα > 1.

5 Determinization and Approximated Determinization by Refinement
and Pruning

In this section we study the problem of determinization by refinement and pruning. We first show that
extension of the memory is hopeless in an effort to be as good as an optimal offline algorithm.

Theorem 5.1 For all integersr ≥ 0, a WFAA is (1, r)-DBP iff it is (1, 0)-DBP.

Proof: Clearly, if A is (1, 0)-DBP, then it is also(1, r)-DBP. We prove that ifA is (1, r)-DBP for
somer ≥ 0, then it is also(1, 0)-DBP. For a refinementAr of A, we say that a DWFADr, obtained
by pruningAr, is simpleif for each stateq of A there is at most one subsetf ⊆ {1, . . . , r} such that
the state〈q, f〉 is reachable inDr. If Ar can be pruned to a simple equivalentDr, then by omitting
the2{1,...,r} element of each state we get an equivalent deterministic pruning ofA, and we are done.

Assume now that no simple equivalent pruning exists; i.e., in every equivalent DWFA Dr that
is obtained by pruningAr, there exists a stateq and two subsetsf1, f2 ∈ 2{1,...,r}, such that both
〈q, f1〉 and〈q, f2〉 are reachable. Then, there must be a wordt1, accepted from〈q, f1〉 with a certain
cost and from〈q, f2〉 with a higher cost (or not at all). Indeed, otherwise, we could have directed
transitions that go to〈q, f1〉 into 〈q, f2〉 and get an equivalent DWFA in which〈q, f1〉 is unreachable.
This change would not makeDr accept more words or accept some words with a different cost, since
both the languages accepted from〈q, f1〉 and from〈q, f2〉 are contained in the language accepted
from q in A. Doing this repeatedly would result in a simple pruning.

16



Let h2 be a word such that inDr the state〈q, f2〉 is reachable from the initial state byh2. Clearly,
in A, the stateq is reachable from the set of initial states with the wordh2 and the language ofA
from stateq containst1 (with a cost equal to the acceptance cost oft1 from 〈q, f1〉, or lower). Thus,
h2 · t1 ∈ L(A) (with a cost that is lower than, or equal to, the sum of the weights of the transitions
in a path of minimal cost from the set of initial states toq plus the cost of acceptingt1 from 〈q, f1〉).
However, inDr, the wordh2 · t1 is accepted with a higher cost (or not accepted at all), and we have
reached a contradiction.

On the other hand, an extension of the memory may help in achieving a better competitive ratio:

Theorem 5.2 For all α > 1 andr ≥ 1, there exists a WFAA that is(α, r)-DBP but not(α, r − 1)-
DBP.

A : D1 :

b, 2
a, 4

b, 1a, 1

q

a, 2
b, 4

a, 0
b, 0

a, 0 b, 0

#, 0 #, 0 #, 0 #, 0

b, 0a, 0

b, 2

#, 0

a, 4

#, 0

a, 2
b, 4

〈q, 0〉 〈q, 1〉

Figure 3: A WFAA and its refined 2-determinization by pruningD1.

Proof: The WFAA appearing in Figure 3 is(2, 1)-DBP but not(2, 0)-DBP. Note that the language
of A consists of words of the formx#y, for x, y ∈ {a, b}. The cost of an accepted word is1 if x = y
(using the right part ofA), and is 2 otherwise (using the left part ofA). In the DWFAD1, obtained
by pruning a 1-refinement ofA, the cost of an accepted word is 2 ifx = y and 4 otherwise. Note that
a DBP forA cannot make use of the right part ofA, as words in whichx 6= y cannot be accepted by
it.

The automatonA can be generalized for anyα, r > 1 to an automatonAα,r that is(α, r)-DBP
but not(α, r − 1)-DBP. The automatonAα,r is of sizeO(r · 2r), it has a maximal branching degree
of 2, and its language consists of all the words of the formw#rv, for w, v ∈ {a, b}r, such that the
cost of an accepted word isr if w = v and isα · r otherwise. For example, in Figure 4 we describe
the WFAA4,3. Its right part accepts only words of the formw#3w, for w ∈ {a, b}3, at a cost of
3. Its left part accepts all words of the formw#3v, for w, v ∈ {a, b}3, at a cost of 12. Note that
the nondeterminism ofA4,3 lies in the choice of the initial state and in the#-transitions on the left
part. In addition, note that after these#-transitions, for every wordw ∈ {a, b}3, there is a distinct
branch that accepts it at a cost of 12, and the rest of the branches accept it at a cost of 14, 16, or
18. Thus, in order to be 4-competitive, a DWFA obtained by pruning a refinement ofA4,3 should

17



have23 = 8 copies of the stateq of A4,3. Such a DWFA assigns a cost of 12 to words in which
w = v, and a cost of at most 18 to the rest of the words in the language. Indeed, after reading a prefix
w ∈ {a, b}3, the DWFA “knows” which branch it should take in order for the suffix to cost 12 when
v = w. In casev 6= w, no matter to which branch we proceed, the cost would be at most 18. Since
the original cost of the word is 12, it is within a factor of 4. Note that if we refineA4,3 by less than
3 variables, it cannot have 8 copies of the stateq. Therefore, for any DWFAD obtained by pruning
such a refinement, there exist two wordsw, v ∈ {a, b}3, such that whenD runs on each one of them
it reaches the same copy ofq. Thus, the runs ofD on bothw#3 andv#3 reach the same branch.
But here, only one word is accepted at a cost of 12. Hence, at most one of the two wordsw#3w and
v#3v can be accepted at a cost of 12, whereas at least one of them is accepted at a cost greater than
12, which is not 4-competitive.

In general,Aα,r consists of two parts. The right part is deterministic, and accepts words ofthe
form w#rw, for w ∈ {a, b}r, at a cost ofr. The left part is nondeterministic and accepts words of
the formw#rv, for w, v ∈ {a, b}r, at a cost ofα · r. After its nondeterministic branches, the left part
has2r branches, such that for every wordv ∈ {a, b}r there is a distinct branch that acceptsv at a cost
of α · r and accepts all other words in{a, b}r at a cost greater thanα · r but at mostα2 · r. This is
achieved by generalizing the costs 4 and 6 inA4,3 by the costsα andβ, respectively, forα < β ≤ α2.

a, 4
b, 6 b, 4

a, 6a, 4
b, 6 b, 4

a, 6 a, 4
b, 6 b, 4

a, 6 a, 4
b, 6 b, 4

a, 6

a, 1 a, 1 a, 1 a, 1 b, 1 b, 1 b, 1 b, 1

b, 1b, 1a, 1a, 1b, 1b, 1a, 1a, 1

a, 1 b, 1 a, 1 b, 1 a, 1 b, 1 a, 1 b, 1

a, 4
b, 6

a, 4
b, 6

a, 4
b, 6

a, 4
b, 6 b, 4

a, 6
b, 4
a, 6

b, 4
a, 6

b, 4
a, 6

b, 4
a, 6

b, 4
a, 6a, 4

b, 6
a, 4
b, 6b, 4

a, 6
b, 4
a, 6a, 4

b, 6
a, 4
b, 6

#, 0

#, 0

a, 0
b, 0

a, 0
b, 0

a, 0
b, 0

a, 0 b, 0 a, 0 a, 0 a, 0b, 0 b, 0 b, 0

a, 0 b, 0 a, 0 b, 0

a, 0 b, 0

#, 0 #, 0 #, 0 #, 0 #, 0 #, 0 #, 0 #, 0

#, 0 #, 0 #, 0 #, 0 #, 0 #, 0 #, 0 #, 0

#, 0 #, 0 #, 0 #, 0 #, 0 #, 0 #, 0 #, 0
#, 0 #, 0

#, 0

#, 0

#, 0 #, 0

#, 0 #, 0 #, 0#, 0 #, 0 #, 0

q

Figure 4: The WFAA4,3, which is(4, 3)-DBP but not(4, 2)-DBP.

18



Theorem 5.2 also follows from specific examples studied in the literature, showing that online
algorithms that can store additional information can achieve better competitive ratios (for example,
[6] shows a lower bound of 23/11 on the competitiveness of any deterministictrackless online algo-
rithm for the 2-server problem5; whereas [10] shows that the competitive ratio of the Work Function
Algorithm, which is also deterministic, but not trackless, for the 2-server problem is 2). Nonetheless,
the proof of Theorem 5.2 serves to pinpoint the source of this phenomenon.

6 Discussion

The automata-theoretic approach we have described involves an explicit representation of the setS
of configurations. One of the main challenges in formal verification is the need to cope with very big,
often infinite, state spaces.Symbolic reasoning[7] is a leading approach for doing so. There,S is
given symbolically (say, by a characteristic function), and the operationsallowed to the verification
algorithm are symbolic too. Since our algorithms are based on a fixed-point computation of a set of
relations or functions, which are typically amenable to symbolic implementation, we are optimistic
about adjusting them to the symbolic setting. Another challenge in our setting is that we would like
to prove general properties of an online algorithm, rather than propertiesof instances corresponding
to given parameters. This challenge is addressed in formal verification bymeans ofparametric rea-
soning[13]. There, we reason about a system with many identical processes by studying properties
of one of the processes. Parametric reasoning is, in general, undecidable. However, in the last decade
there has been extensive research aimed at finding settings for which theproblem is decidable, and
on developing methods that are sound but incomplete. We are now examining their application to the
setting of online algorithms. It is important to note that the field of formal verification has a history
of successful implementations of algorithms with seemingly-infeasible complexity.For example, the
tool MONA succesfuly decides the satisfiability of monadic second-order logic formulas – a problem
whose complexity is non-elementary [12].

Finally, while we are able to decide whether a given online algorithmg has a given competitive
ratio (Corollary 4.9), we left open the problem of finding the competitive ratioof g. Clearly, finding
a finite upper bound on the competitive ratio would enable us to apply Corollary4.9 and search for
it. In the WFA formalism, this is reduced to finding, given a WFAA, a finite boundγ such thatA
is (γ, 0)-DBP (or deciding that no suchγ exists). We believe that such a bound can be found by
analyzing the cost of cycles ofA, and we leave open the problem of doing it in polynomial time.

Acknowledgements We thank Marek Chrobak, Lawrence Larmore, and Nati Linial for helpful
discussions.

References

[1] A.V. Aho, P.J. Denning, and J.D. Ullman. Principles of optimal page replacement.Journal of the ACM,
18(1):80–93, 1971.

[2] T. Ball, B. Cook, V. Levin, and S.K. Rajamani. Slam and static driver verifier: Technology transfer of
formal methods inside microsoft. InIntegrated Formal Methods, pages 1–20, 2004.

5Being memoryless is a stronger restriction than being trackless. Thus, thislower bound is valid also for memoryless
algorithms.

19



[3] S. Ben-David, A. Borodin, R.M. Karp, G. Tardos, and A. Wigderson. On the power of randomization in
on-line algorithms.algorithmica, 11(2):2–14, 1994.

[4] A. Borodin and R. El-Yaniv.Online Computation and Competitive Analysis. Cambridge University Press,
1998.

[5] A. Borodin, N. Linial, and M.E. Saks. An optimal online algorithm for metrical task systems. InProc.
19th ACM Symp. on Theory of Computing, pages 373–382, 1987.

[6] W.W. Bein and L.L. Larmore. Trackless Online Algorithmsfor the Server Problem.Information Process-
ing Letters, 74:73–79, 2000.

[7] J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and L.J. Hwang. Symbolic model checking:1020

states and beyond.Information and Computation, 98(2):142–170, 1992.

[8] A. Chakrabarti, K. Chatterjee, T.A. Henzinger, O. Kupferman, and R. Majumdar. Verifying quantitative
properties using bound functions. InProc. 13th CHARME, LNCS 3725, pages 50–64. Springer, 2005.

[9] E.M. Clarke, O. Grumberg, and D. Peled.Model Checking. MIT Press, 1999.

[10] M. Chrobak and L.L. Larmore. The server problem and on-line games.DIMACS Series in Discrete Math-
ematics and Theoretical Computer Science, 7:11–64, 1991.

[11] M. Chrobak and L.L. Larmore. Private communication. 2008.

[12] J. Elgaard, N. Klarlund, and A. M̈oller. Mona 1.x: new techniques for WS1S and WS2S. InProc. 10th
CAV, LNCS 1427, pages 516–520, 1998.

[13] E.A. Emerson and V. Kahlon. Reducing model checking of the many to the few. InProc. of the 17th Int.
Conf. on Automated Deduction, pages 236–255, 2000.

[14] T.A. Henzinger and N. Piterman. Solving games without determinization. InProc. 15th CSL, LNCS
4207, pages 394–410. Springer, 2006.

[15] G.J. Holzmann.The Spin Model Checker:primer and reference manual. Addison-Wesley, 2004.

[16] B. Jobstmann, S. Galler, M. Weiglhofer, and R. Bloem. Anzu: A tool for property synthesis. InProc 19th
CAV, LNCS 4590, pages 258–262, 2007.

[17] H.W. Kuhn. Solvability and consistency for linear equations and inequalities.The American Mathemati-
cal Monthly, 63(4):217–232, 1956.

[18] W. Kuich and A.Salomaa.Semirings, Automata, Languages. EATCS Monographs on Theoretical Com-
puter Science. Springer, 1986.

[19] M.S. Manasse, L.A. McGeoch, and D.D. Sleator. Competitive algorithms for server problems.J. Algo-
rithms, 11(2):208–230, 1990.

[20] M. Mohri. Finite-state transducers in language and speech processing.Computational Linguistics,
23(2):269–311, 1997.

[21] D.D. Sleator and R.E. Tarjan. Amortized efficiency of list update and paging rules.Communications of
the ACM, 28(2):202–208, 1985.

[22] L. Rudolph. As described in a Hebrew Univeristy lecture, 1986.

[23] M.Y. Vardi and P. Wolper. Reasoning about infinite computations. Information and Computation,
115(1):1–37, 1994.

20



A Proof of Theorem 4.5

We first study a sequence of functions̃f0, f̃1, . . . : Q × Q → IR ∪ {−∞,∞} that is very similar
to the sequencef0, f1, . . . , f2n2−1, except that we do not jump to infinity when a fixed-point is not
reached after then2-th iteration. As a result, the sequencef̃0, f̃1, . . . may not reach a fixed-point, and
an algorithm that calculates this sequence may never terminate. Nonetheless,studyingf̃ is essential
for our understanding off .

Intuitively, f̃i(q, q
′) measures how well the stateq′ can deterministically simulate the stateq, over

words of length at mosti. More precisely, we claim that for every automatonA′ ∈ det0(A), and every
pair of statesq, q′ ∈ Q, such thatq′ is reachable inA′, we have that̃fi(q, q

′) = costdiff(A′q′ ,Aq, Σ≤i).
The value−∞ is assigned tõfi(q, q

′) when there are no words inΣ≤i that can be accepted fromq,
and the value∞ is assigned when there is a word that can be accepted fromq but not fromq′. The
sequence of functions̃f0, f̃1, . . . is defined as follows.

• At initialization:

f̃0(q, q
′) =







−∞ if q /∈ F
0 if q ∈ F andq′ ∈ F
∞ if q ∈ F andq′ /∈ F ,

• For i > 0:
f̃i(q, q

′) = max{f̃i−1(q, q
′), max

a∈Σ
f̃i(q, q

′, a)}.

In the above, for everyi > 0 anda ∈ Σ, the functionf̃i(q, q
′, a) is defined as follows:

f̃i(q, q
′, a) = min

u′∈ρ̃i−1(q′,a)
max

u∈δ(q,a)
f̃i−1(u, u′) + c(q′, a, u′) − c(q, a, u).

Where the set̃ρ0(q
′, a) = δ(q′, a), and fori > 0:

ρ̃i(q
′, a) = {u′ ∈ ρ̃i−1(q

′, a) | max
u∈δ(q′,a)

f̃i−1(u, u′) + c(q′, a, u′) − c(q′, a, u) ≤ 0}

In the expression above for̃fi(q, q
′, a), in case that for allu ∈ δ(q, a) we have thatL(Au) ∩

Σ≤i−1 = ∅, we setf̃i(q, q
′, a) = −∞ (note that this also covers the caseδ(q, a) = ∅). In case there

is u ∈ δ(q, a) such thatL(Au) ∩ Σ≤i−1 6= ∅, andρ̃i−1(q
′, a) = ∅, then we set̃fi(q, q

′, a) = ∞.

Intuitively, a stateu′ ∈ ρ̃i(q
′, a) is a “witness” to the fact that̃fi(q

′, q′, a) ≤ 0. We thus say that
u′ is a witness forf̃i(q

′, q′, a). Obviously, if f̃i(q
′, q′, a) > 0 thenρ̃i(q

′, a) = ∅. Note that for every
i ≥ 0, we haveρ̃i(q

′, a) ⊆ δ(q′, a). It follows that if u′ ∈ ρ̃i(q
′, a), thenf̃i−1(u

′, u′) + c(q, a, u′) −
c(q, a, u′) ≤ 0, implying thatf̃i−1(u

′, u′) ≤ 0. For notational convenience, givenq′ ∈ Q anda ∈ Σ,
we denote bỹρ(q, a), the set

⋂

i≥0 ρ̃i(q
′, a).

Observe that̃f is monotonically increasing withi (i.e., for everyq, q′ ∈ Q, and everyi > 0, we
have thatf̃i(q, q

′) ≥ f̃i−1(q, q
′)), and that in the presence of loops in the automaton the sequence

f̃0, f̃1, . . . may not reach a fixed-point. Let us start with a few easy observations.

SinceQ andΣ are finite, and for everyq ∈ Q and everya ∈ Σ, the setρ̃i(q, a) is finite and
monotonically decreasing withi, there must be a point at which all the sets of witnesses have reached
their minimal value. I.e.:

21



Lemma A.1 There is an indexk ≥ 0 such that for everyi ≥ k, everyq ∈ Q, and everya ∈ Σ, we
haveρ̃i(q, a) = ρ̃(q, a).

It is worth noting thatf̃i may continue to evolve even after the sets of witnesses of all states have
stabilized. Thus, Lemma A.1 does not imply that the sequencef̃0, f̃1, . . . ever reaches a fixed-point.

The following lemma shows that̃fi(q, q
′) = −∞ exactly when there are no words of length at

mosti thatA can accept fromq.

Lemma A.2 For everyi ≥ 0, andq, q′ ∈ Q, we have that̃fi(q, q
′) = −∞ iff L(Aq) ∩ Σ≤i = ∅.

Proof: We prove the lemma by an induction oni. For i = 0, by the definition off̃0, we have
f̃0(q, q

′) = −∞ iff q /∈ F , i.e., iff no words of length 0 are accepted fromq. For i > 0, assume that
the lemma holds fori − 1. By definition we havẽfi(q, q

′) = −∞ iff f̃i−1(q, q
′) = −∞ and for all

a ∈ Σ it holds thatf̃i(q, q
′, a) = −∞. I.e., iff f̃i−1(q, q

′) = −∞, and for alla ∈ Σ, either there
exists au′ ∈ ρ̃i−1(q

′, a) such that for everyu ∈ δ(q, a) we havef̃i−1(u, u′) = −∞, or that for every
u ∈ δ(q, a) we haveL(Au) ∩ Σ≤i−1 = ∅. Applying the induction hypothesis to all such̃fi−1(u, u′)
we get thatf̃i(q, q

′) = −∞ iff f̃i−1(q, q
′) = −∞, and for alla ∈ Σ, L(Au) ∩ Σ≤i−1 = ∅ for every

u ∈ δ(q, a). This means thatL(Aq), as well asL(Au), for every successoru of q, does not contain
words of length at mosti − 1. Therefore,L(Aq) does not contain words of length at mosti.

The following proposition shows that if there is a word of length at mosti that can be accepted
from q but not fromq′, thenf̃i(q, q

′) = ∞, as needed to reflect the fact thatq′ can not simulateq,
regardless of cost, over words of length at mosti.

Proposition A.3 For i ≥ 0 andq, q′ ∈ Q, if (L(Aq) \ L(Aq′) ∩ Σ≤i) 6= ∅ thenf̃i(q, q
′) = ∞.

Proof: We prove the proposition by an induction oni. For i = 0, ε ∈ L(Aq) \ L(Aq′) iff q ∈ F
andq′ /∈ F , and thusf̃0(q, q

′) = ∞. For i > 0, assume that the proposition holds fori − 1. If
there is a word of length at mosti − 1 that is inL(Aq) \ L(Aq′), then by the induction hypothesis
we havef̃i−1(q, q

′) = ∞, and thus alsõfi(q, q
′) = ∞. Otherwise, there is a wordw of length i

in L(Aq) \ L(Aq′). Let w = a · x, wherea ∈ Σ andx ∈ Σi−1, and letu ∈ δ(q, a) be a state
such thatx ∈ L(Au). Since for allu′ ∈ δ(q′, a) we havex /∈ L(Aq′), by the induction hypothesis
we havef̃i−1(u, u′) = ∞ for all u′ ∈ δ(q′, a). Thus, by the definition of̃f , in any case we have
f̃i(q, q

′, a) = ∞, and hencẽfi(q, q
′) = ∞.

Recall that by our intuition,̃fi(q, q, 0) ≤ 0 indicates that the stateq can deterministically simulate
itself, without any cost penalty, over words of length at mosti. This in turn implies that the witnesses
for this fact must be able to do the same over words of length at mosti− 1, etc. The next proposition
formalizes this intuition.

Proposition A.4 For every stateq ∈ Q, lettersa, b ∈ Σ, and stateu ∈ ρ̃(q, a), if δ(u, b) 6= ∅ then
ρ̃(u, b) 6= ∅.

22



Proof: We have to show that ifδ(u, b) 6= ∅ then for everyi ≥ 0 we haveρ̃i(u, b) 6= ∅. For i = 0,
by definition, ρ̃0(u, b) = δ(u, b). For i > 0, sinceu ∈ ρ̃(q, a) then in particularu ∈ ρ̃i+1(q, a).
Hence, as we observed earlier,f̃i(u, u) ≤ 0. It follows that f̃i(u, u, b) ≤ 0. Assume first that for all
v ∈ δ(u, b), we have thatL(Av)∩Σ≤i−1 = ∅. Since by our assumptionδ(u, b) 6= ∅, we can take some
v′ ∈ δ(u, b). Hence, by Lemma A.2, we have thatf̃i−1(v, v′) = −∞ for all v ∈ δ(u, b), implying
thatv′ ∈ ρ̃i(u, b). Assume now that there is a statev′ ∈ δ(u, b) such thatL(Av)∩Σ≤i−1 6= ∅. Recall
that f̃i+1(u, u, b) ≤ 0. Hence, by the definition of̃fi+1, it must be that̃ρi(u, b) 6= ∅.

Definition A.5 Given a WFAA, we say that a WFAA′ = 〈Σ, Q,∆′, c, q′0, F 〉 is goodfor f̃i, if A′ is
a DWFA embodied inA, and for every reachable stateq′ ∈ Q, and everya ∈ Σ, the following two
properties hold:

• δ′(q′, a) ∈ ρ̃i(q
′, a).

• If δ(q′, a) 6= ∅ thenδ′(q′, a) 6= ∅.

If A′ is good forf̃i for everyi ≥ 0, we simply say thatA′ is good forf̃ . Note that sincej ≤ i
implies thatρ̃i(q

′, a) ⊆ ρ̃j(q
′, a), we have:

Corollary A.6 If A′ is good forf̃i, thenA′ is good forf̃j , for everyj ≤ i.

It follows that the set of automata that are good forf̃i is monotonically decreasing withi. Since
A has finitely many embodied automata, this sequence of sets must reach a minimal value. Hence:

Corollary A.7 There is an indexk ≥ 0 such that for everyi ≥ k, if A′ is good forf̃i thenA′ is good
for f̃ .

It is not hard to see that Proposition A.4 implies the following corollary:

Corollary A.8 If A′ is good forf̃ , then for everyq′ ∈ Q such thatq′ is reachable inA′, and for every
a ∈ Σ, if u′ ∈ ρ̃(q′, a) then there is an automatonA′′ that is good forf̃ , in whichu′ is reachable.

In Lemma A.12 we show that every automaton indet0(A) is good forf̃ . Our objective now is
to prove that for every wordw of length at mosti, the value off̃i(q, q

′) is an upper bound on the
cost difference between acceptingw from q′ in any automaton that is good for̃fi, and the cost of
acceptingw from q in A. To this aim, we first show that̃fi satisfies a form of a transitivity inequality.
Informally, this inequality claims that the cost difference incurred in simulatingq by q′ is at most
that incurred in simulatingq by some other statep, plus that of simulatingp by q′. To get a feel for
why this is true, take somei > 0, and assume that by some good fortune there is a lettera ∈ Σ
anda-successorsr, s′, v′ of q, p, q′ (respectively), such that̃fi(q, p) = f̃i(q, p, a) = f̃i−1(r, s

′) +
c(p, a, s′)− c(q, a, r), f̃i(p, q′) = f̃i(p, q′, a) = f̃i−1(s

′, v′)+ c(q′, a, v′)− c(p, a, s′), andf̃i(q, q
′) =

f̃i(q, q
′, a) = f̃i−1(r, v

′) + c(q′, a, v′) − c(q, a, r). I.e., the minimums and maximums in all three
expressions for̃fi(q, p, a), f̃i(p, q′, a) andf̃i(q, q

′, a) are achieved with the same successorsr, s′, v′.
It follows thatf̃i(q, p)+ f̃i(p, q′) = (f̃i−1(r, s

′)+c(p, a, s′)−c(q, a, r))+(f̃i−1(s
′, v′)+c(q′, a, v′)−

c(p, a, s′)) = f̃i−1(r, s
′) + f̃i−1(s

′, v′) + c(q′, a, v′) − c(q, a, r). By inductively applying the same
kind of reasoning (and good fortune) tõfi−1(r, s

′) + f̃i−1(s
′, v′), we can deduce that̃fi−1(r, s

′) +

23



f̃i−1(s
′, v′) = f̃i−1(r, v

′), and thusf̃i(q, p) + f̃i(p, q′) = f̃i−1(r, v
′) + c(q′, a, v′) − c(q, a, r) =

f̃i(q, q
′, a) = f̃i(q, q

′). Obviously, in the general case we can not expect to be so fortunate, and it is
not always the case that̃fi(q, p) + f̃i(p, q′) = f̃i(q, q

′). However, using similar reasoning and careful
handling of the minimums and maximums in the expressions forf̃i(q, p), f̃i(p, q′), andf̃i(q, q

′), we
can show the following:

Proposition A.9 For everyi ≥ 0, and everyq, p, q′ ∈ Q, if f̃i(q, p) and f̃i(p, q′) are in IR, then so is
f̃i(q, q

′), andf̃i(q, p) + f̃i(p, q′) ≥ f̃i(q, q
′).

Proof: We prove the proposition by an induction oni. For i = 0, it must be thatp, q, q′ ∈ F , and
f̃i(q, p) = f̃i(p, q′) = f̃i(q, q

′) = 0. For i > 0, assume that the proposition holds fori − 1.

Assume first that̃fi(q, q
′) = f̃i−1(q, q

′). We claim thatf̃i−1(q, p), f̃i−1(p, q′) ∈ IR, and thus by
the monotonicity off̃ and the induction hypothesis we have thatf̃i(q, p) + f̃i(p, q′) ≥ f̃i−1(q, p) +
f̃i−1(p, q′) ≥ f̃i−1(q, q

′) = f̃i(q, q
′). We now prove that indeed̃fi−1(q, p), f̃i−1(p, q′) ∈ IR. Note

that sincef̃ is monotonically increasing, and̃fi(q, p), f̃i(p, q′) ∈ IR, it is enough to show that
f̃i−1(q, p) 6= −∞, andf̃i−1(p, q′) 6= −∞. Note that sincẽfi(q, p) 6= −∞ then by Lemma A.2 also
f̃i(q, q

′) 6= −∞. Since by our assumptioñfi−1(q, q
′) = f̃i(q, q

′), then alsof̃i−1(q, q
′) 6= −∞, and

by Lemma A.2,L(Aq)∩Σ≤i−1 6= ∅, and thus alsõfi−1(q, p) 6= −∞. To see that̃fi−1(p, q′) 6= −∞,
observe that sinceL(Aq) ∩ Σ≤i−1 6= ∅, and∞ 6= f̃i(q, p) ≥ f̃i−1(q, p), by Proposition A.3 it must
be thatL(Ap) ∩ Σ≤i−1 6= ∅. Thus, by Lemma A.2, we have thatf̃i−1(p, q′) 6= −∞.

Assume now that̃fi(q, q
′) > f̃i−1(q, q

′). Hence, there is a lettera ∈ Σ such thatf̃i(q, q
′) =

f̃i(q, q
′, a). Note thatf̃i(q, q

′) 6= −∞, and thus, there is a stateu ∈ δ(q, a) such thatL(Aq) ∩
Σ≤i−1 6= ∅. This, together with the fact that̃fi(q, p) 6= ∞, imply thatρ̃i−1(p, a) 6= ∅. Furthermore,
by Proposition A.3, for somer ∈ ρ̃i−1(p, a) we have thatL(Ar)∩Σ≤i−1 6= ∅. Sincef̃i(p, q′) 6= ∞ it
follows that alsõρi−1(q

′, a) 6= ∅. The above observations show that all themin andmax expressions
in the remainder of the proof range over non-empty sets. By definition we have:

f̃i(q, p) ≥ f̃i(q, p, a) = min
s∈ρ̃i−1(p,a)

max
r∈δ(q,a)

f̃i−1(r, s) + c(p, a, s) − c(q, a, r).

By fixing s′ ∈ ρ̃i−1(p, a) to be some state for which the minimum above is achieved, we get that
for everyr ∈ δ(q, a) the following holds:

f̃i(q, p) ≥ f̃i−1(r, s
′) + c(p, a, s′) − c(q, a, r) (1)

By definition:

f̃i(p, q′) ≥ f̃i(p, q′, a) = min
v∈ρ̃i−1(q′,a)

max
s∈δ(p,a)

f̃i−1(s, v) + c(q′, a, v) − c(p, a, s).

By fixing v′ ∈ ρ̃i−1(q
′, a) to be some state for which the minimum above is achieved and limiting

our attention tos′ we get that:

f̃i(p, q′) ≥ f̃i−1(s
′, v′) + c(q′, a, v′) − c(p, a, s′) (2)

Note that sincẽfi(q, p), f̃i(p, q′) ∈ IR, inequalities 1 and 2 above imply thatf̃i−1(r, s
′), f̃i−1(s

′, v′) 6=
∞. Hence, we are allowed to combine inequalities 1 and 2 (without fear of mixing∞ and−∞) and
get that for everyr ∈ δ(q, a):

f̃i(q, p) + f̃i(p, q′) ≥ f̃i−1(r, s
′) − c(q, a, r) + f̃i−1(s

′, v′) + c(q′, a, v′) (3)

24



On the other hand, recall thata was chosen such that :

f̃i(q, q
′) = f̃i(q, q

′, a) = min
v∈ρ̃i−1(q′,a)

max
r∈δ(q,a)

f̃i−1(r, v) + c(q′, a, v) − c(q, a, r)

By limiting our attention tov′, and taking somer for which f̃i−1(r, v
′) + c(q′, a, v′) − c(q, a, r)

is maximal, we get that:

f̃i−1(r, v
′) + c(q′, a, v′) − c(q, a, r) ≥ f̃i(q, q

′) (4)

Observe that if̃fi−1(r, s
′), f̃i−1(s

′, v′) ∈ IR we can apply the induction hypothesis and obtain that
f̃i−1(r, s

′)+ f̃i−1(s
′, v′) ≥ f̃i−1(r, v

′). By substituting the above into Inequality 3 and combining the
result with Inequality 4 we obtain that̃fi(q, p)+ f̃i(p, q′) ≥ f̃i(q, q

′). Thus, to complete the proof we
just need to show that indeed̃fi−1(r, s

′), f̃i−1(s
′, v′) ∈ IR. Recall thatf̃i−1(r, s

′), f̃i−1(s
′, v′) 6= ∞.

Hence, it is enough to show that̃fi−1(r, s
′), f̃i−1(s

′, v′) 6= −∞. Recall thatf̃i(q, q
′) > −∞, and

thus, by Inequality 4, alsõfi−1(r, v
′) > −∞. By Lemma A.2 we have thatL(Ar) ∩ Σ≤i−1 6= ∅,

and thus alsõfi−1(r, s
′) 6= −∞. To see that̃fi−1(s

′, v′) 6= −∞, recall thatf̃i−1(r, s
′) 6= ∞. Thus,

by Proposition A.3, sinceL(Ar) ∩ Σ≤i−1 6= ∅ we get thatL(As′) ∩ Σ≤i−1 6= ∅. By Lemma A.2 it
follows thatf̃i−1(s

′, v′) 6= −∞, which completes the proof.

The following lemma shows that̃fi is an upper bound on the cost difference, over words of length
at mosti, between any automatonA′ that is good forf̃i, andA. It is not hard to see from the definition
of f̃i that the lemma holds ifA′ is such that for every pair of statesq, q′ ∈ Q and lettera ∈ Σ, if
u′ is thea-successor ofq′ in A′ then the minimum in the expression forf̃i(q, q

′, a) is achieved with
u′. However, it may not be immediately clear why the minimum in the expression forf̃i(q, q

′, a) is
indeed achieved withu′. Informally, the argument goes as follows. Assuming by induction that the
lemma holds fori − 1, and sinceA′ is good forf̃i implies thatu′ ∈ ρ̃i(q

′, a), it follows thatu′ can
simulate anya-successorv′ of q′ with a cost difference that can be completely offset by the difference
in the costs of the transition fromq′ to u′ and the transition fromq′ to v′. Hence, from the point of
view of q′, u′ can simulatev′ without any penalty. By proposition A.9, it follows that from the point
of view of q′, u′ is as good asv′ in simulating anya-successoru of q. Since this is true for every
a-successorv′ of q′, it must be that the minimum in the expression forf̃i(q, q

′, a) is achieved withu′.
A more formal argument follows.

Lemma A.10 For i ≥ 0, if A′ is good forf̃i, then for allq, q′ ∈ Q, such thatq′ is reachable inA′, if
f̃i(q, q

′) ∈ IR∪ {∞} then costdiff(A′q′ ,Aq, Σ≤i) ≤ f̃i(q, q
′).

Proof: Sincef̃i(q, q
′) 6= −∞, by Lemma A.2 we have thatL(Aq) ∩ Σ≤i 6= ∅. Let w be some

word in L(Aq) ∩ Σ≤i. We have to prove thatcost(A′q′ , w) − cost(Aq, w) ≤ f̃i(q, q
′). Consider

first the case wherẽfi(q, q
′) = ∞. Sincew ∈ L(Aq) we have thatcost(Aq, w) ∈ IR. Hence,

cost(A′q′ , w) − cost(Aq, w) is well defined and≤ ∞.

Consider now the case wherẽfi(q, q
′) ∈ IR. We prove this case by an induction oni. For i = 0

we havew = ǫ, and by the definition of̃f0 we havef̃0(q, q
′) ∈ IR iff both q andq′ are inF . Hence,

cost(Aq, ǫ) = cost(A′q′ , ǫ) = f̃0(q, q
′) = 0. For the induction step, we assume that the lemma holds

for i − 1, and prove it fori. Consider first the empty word. By Corollary A.6,A′ is also good forf̃0.
Hence, by the induction hypothesis, we have thatcost(A′q′ , w) − cost(Aq, w) ≤ f̃0(q, q

′). Sincef̃

25



is monotonically increasing,̃f0(q, q
′) ≤ f̃i(q, q

′). Assume now that|w| > 0, and letw = ax, where
a ∈ Σ andx ∈ Σ≤i−1. Sincew ∈ L(Aq) we have thatcost(Aq, w) ∈ IR. We can thus letu ∈ δ(q, a)
be the successor ofq in a run ofAq onw costing exactlycost(Aq, w). By definition we have

f̃i(q, q
′) ≥ f̃i(q, q

′, a) = min
v′∈ρ̃i−1(q′,a)

max
ū∈δ(q,a)

f̃i−1(ū, v′) + c(q′, a, v′) − c(q, a, ū).

Sincef̃i(q, q
′) ∈ IR, andu is such thatL(Au) ∩ Σ≤i−1 6= ∅, by the definition off̃ it must be that

ρ̃i−1(q
′, a) 6= ∅. We can thus choosev′ ∈ ρ̃i−1(q

′, a) for which the minimum in the above expression
is attained. By limiting our attention tou we get:

f̃i(q, q
′) ≥ f̃i(q, q

′, a) ≥ f̃i−1(u, v′) + c(q′, a, v′) − c(q, a, u) (5)

Recall thatq′ is reachable inA′, and that∅ 6= ρ̃i−1(q
′, a) ⊆ δ(q′, a). Hence, sinceA′ is good for

f̃i, there is a stateu′ ∈ ρ̃i(q
′, a), such thatu′ = δ′(q′, a). By the definition ofρ̃i(q

′, a) we have:

0 ≥ f̃i−1(v
′, u′) + c(q′, a, u′) − c(q′, a, v′) (6)

Sincef̃i(q, q
′) ∈ IR, by Inequality 5 we havẽfi−1(u, v′) 6= ∞. By Inequality 6,f̃i−1(v

′, u′) 6= ∞.

Hence, we can add inequalities 5 and 6 (without fear of mixing∞ and−∞) and get:

f̃i(q, q
′) ≥ f̃i−1(u, v′) − c(q, a, u) + f̃i−1(v

′, u′) + c(q′, a, u′) (7)

In preparation to applying Proposition A.9, we now show thatf̃i−1(u, v′) and f̃i−1(v
′, u′) are

both in IR. Recall that̃fi−1(u, v′), f̃i−1(v
′, u′) 6= ∞. Sincex ∈ L(Au), Lemma A.2 implies that

f̃i−1(u, v′) 6= −∞. Sincef̃i−1(u, v′) 6= ∞, by Proposition A.3 we have thatx is also inL(Av′
).

Hence, by Lemma A.2,̃fi−1(v
′, u′) 6= −∞. We can now apply Proposition A.9 and obtain that

f̃i−1(u, v′) + f̃i−1(v
′, u′) ≥ f̃i−1(u, u′). Inequality 7 thus becomes:

f̃i(q, q
′) ≥ f̃i−1(u, u′) − c(q, a, u) + c(q′, a, u′) (8)

Note that by our choice ofu and u′ it follows that cost(Aq, w) = cost(Au, x) + c(q, a, u)
andcost(A′q′ , w) = cost(A′u′

, x) + c(q′, a, u′). Hence, by Inequality 8, to show that̃fi(q, q
′) ≥

cost(A′q′ , w) − cost(Aq, w), we just have to show that̃fi−1(u, u′) ≥ cost(A′u′
, x) − cost(Au, x).

Recall that sincex ∈ L(Au)∩Σ≤i−1, by Lemma A.2 we have that̃fi−1(u, u′) ∈ IR∪{∞}. Since by
Corollary A.6,A′ is also good for̃fi−1, and sinceq′ is reachable inA′ implies that so isu′, we can ap-
ply the induction hypothesis tõfi−1(u, u′) and obtain that̃fi−1(u, u′) ≥ cost(A′u′

, x)−cost(Au, x).

The following lemma shows that̃fi is a lower bound on the cost difference, over words of length
at mosti, between any automaton that is good forf̃i, andA.

Lemma A.11 For i ≥ 0, if A′ is good forf̃i, then for allq, q′ ∈ Q, such thatq′ is reachable inA′, if
f̃i(q, q

′) ∈ IR∪ {∞} thenf̃i(q, q
′) ≤ costdiff(A′q′ ,Aq, Σ≤i).

26



Proof: We prove the lemma by induction oni. For i = 0, we have that̃f0(q, q
′) ∈ IR iff both q and

q′ are inF , implying thatcost(A′q′ , ǫ) = cost(Aq, ǫ) = f̃0(q, q
′) = 0. In casef̃0(q, q

′) = ∞, then
q ∈ F but q′ 6∈ F . Hence,cost(A′q′ , ǫ) − cost(Aq, ǫ) = ∞− 0 = ∞.

For the induction step, assume that the lemma holds fori − 1. By the definition off̃i we have
f̃i(q, q

′) = max{f̃i−1(q, q
′), maxa∈Σ f̃i(q, q

′, a)}. Assume first thatf̃i(q, q
′) = f̃i−1(q, q

′). By
the induction hypothesis, there is a wordw of length at mosti − 1 (hence at mosti) such that
cost(A′q′ , w) − cost(Aq, w) ≥ f̃i(q, q

′). Assume now that̃fi(q, q
′) > f̃i−1(q, q

′). Thus, there exists
a ∈ Σ such that:

f̃i(q, q
′) = f̃i(q, q

′, a) = min
v′∈ρ̃i−1(q′,a)

max
u∈δ(q,a)

f̃i−1(u, v′) + c(q′, a, v′) − c(q, a, u).

Observe that by the definition of̃fi, sincef̃i(q, q
′, a) = f̃i(q, q

′) 6= −∞, there is a stateu ∈
δ(q, a) such thatL(Au)∩Σ≤i−1 6= ∅. Consider first the case whereδ′(q′, a) = ∅. Letw = a·x, where
x is some word inL(Au) ∩ Σ≤i−1. It follows thatcost(Aq, w) ∈ IR, andcost(A′q′ , w) = ∞. Thus,
costdiff(A′q′ ,Aq, Σ≤i) = ∞ ≥ f̃i(q, q

′). Consider now the case where there is a stateu′ = δ′(q′, a).
SinceA′ is good for f̃i, andq′ is reachable inA′, thenu′ ∈ ρ̃i(q

′, a). Recall that by definition
ρ̃i(q

′, a) ⊆ ρ̃i−1(q
′, a), and thusu′ belongs to the set over which the minimum in the expression above

for f̃i(q, q
′, a) is taken. It follows that there is a stateu ∈ δ(q, a) such thatf̃i(q, q

′) ≤ f̃i−1(u, u′) +
c(q′, a, u′) − c(q, a, u). Since by our assumptioñfi(q, q

′) ∈ IR ∪ {∞}, then by the last inequality
also f̃i−1(u, u′) ∈ IR ∪ {∞}, and we can apply the induction hypothesis and obtain that there is a
word x of length at mosti − 1 such thatf̃i−1(u, u′) ≤ cost(A′u′

, x) − cost(Au, x). Combining
the last two inequalities involving̃fi−1(u, u′) we get thatf̃i(q, q

′) ≤ cost(A′u′
, x) − cost(Au, x) +

c(q′, a, u′)− c(q, a, u). Observe that sinceA′ is deterministic butA′ is nondeterministic we have that
cost(A′u′

, x) + c(q′, a, u′) = cost(A′q′ , a · x), andcost(Au, x) + c(q, a, u) ≥ cost(Aq, a · x). It
follows thatf̃i(q, q

′) ≤ cost(A′q′ , a ·x)−cost(Aq, a ·x) ≤ costdiff(A′q′ ,Aq, Σ≤i), which completes
the proof.

Lemma A.12 If A′ ∈ det0(A) thenA′ is good forf̃ .

Proof: We first prove that for every reachable stateq in A′, and every lettera ∈ Σ, if δ(q, a) 6= ∅
thenδ′(q, a) 6= ∅. To see that, note that sinceA′ is a DWFA embodied inA and equivalent toA, it
must be thatL(Aq) = L(A′q). SinceA has no useless states we must have thatδ(q, a) 6= ∅ implies
that δ′(q, a) 6= ∅. It remains to show that for everyi ≥ 0, every reachable stateq in A′, and every
lettera ∈ Σ, we have thatδ′(q, a) ∈ ρ̃i(q, a). We prove this by an induction oni. The casei = 0
is true by definition. Fori > 0, we assume thatA′ is good forf̃i−1, and we have to show that if
u′ = δ′(q, a) then:

max
u∈δ(q,a)

f̃i−1(u, u′) + c(q, a, u′) − c(q, a, u) ≤ 0

Assume by way of contradiction that there is a stateu ∈ δ(q, a) such thatf̃i−1(u, u′) + c(q, a, u′) −
c(q, a, u) > 0. It follows that f̃i−1(u, u′) ∈ IR ∪ {∞}. Sinceu′ is reachable inA′, and by the
induction hypothesisA′ is good forf̃i−1, we can apply Lemma A.11 and obtain that there is a word
x ∈ L(Au) ∩ Σ≤i−1 such thatf̃i−1(u, u′) ≤ cost(A′u′

, x) − cost(Au, x). Combining the last two
inequalities involvingf̃i−1(u, u′) we get:cost(A′u′

, x) − cost(Au, x) + c(q, a, u′) − c(q, a, u) > 0.
Observe that sinceA′ is deterministic butA′ is nondeterministic we havecost(A′u′

, x)+c(q, a, u′) =
cost(A′q, a · x), andcost(Au, x) + c(q, a, u) ≥ cost(Aq, a · x). It follows thatcost(A′q, a · x) −

27



cost(Aq, a · x) > 0, which is a contradiction sinceA′ ∈ det0(A) implies that for every reachable
stateq in A′, and every wordw ∈ Σ∗, we havecost(A′q, w) ≤ cost(Aq, w).

Recall that the sequence of functionsf̃0, f̃1, . . . may not reach a fixed-point. Hence, an algorithm
that calculates the sequencef̃0, f̃1, . . . may never terminate. However, as the next proposition shows,
if i ≥ n2, an increase in the value of̃fi(q, q

′) compared tõfi−1(q, q
′) indicates that for everyA′ that

is good forf̃i there are cycles inA andA′ that can be pumped to create longer and longer words with
an ever increasing cost difference betweenA′q′ andAq. This implies thatq′ can not deterministically
simulateq with a bounded cost difference, and suggests that we can assign the value∞ to this pair
already at stagei. This is exactly what our algorithm which calculates the sequencef0, f1, . . . , f2n2−1

(instead off̃0, f̃1, . . .) does.

Proposition A.13 For i ≥ n2, if A′ is good forf̃i, then for everyq, q′ ∈ Q, such thatq′ is reachable
in A′, if f̃i(q, q

′) > f̃i−1(q, q
′) then costdiff(A′q′ ,Aq, Σ∗) = ∞.

Proof: We first need the following notation. Given a WFAA = 〈Σ, Q,∆, c, Q0, F 〉, and two
statesp, q ∈ Q, a path in A from p to q is a finite sequence of statesπ = π0, π1, · · · , πm−1 such
that π0 = p, πm−1 = q, and for every0 ≤ i < m − 1, we have thatπi+1 ∈

⋃

a∈Σ δ(πi, a). If
π0 ∈

⋃

a∈Σ δ(πm−1, a) thenπ is acycle.

Assume then that̃fi(q, q
′) > f̃i−1(q, q

′). It follows that f̃i(q, q
′) ∈ IR ∪ {∞}. Hence, by

Lemma A.11, there is a wordw ∈ Σ≤i such thatcost(A′q′ , w) − cost(Aq, w) ≥ f̃i(q, q
′). By Corol-

lary A.6,A′ is also good for̃fi−1, and thus by Lemma A.10,̃fi−1(q, q
′) ≥ costdiff(A′q′ ,Aq, Σ≤i−1).

Combining the last three inequalities we get thatcost(A′q′ , w)−cost(Aq, w) > costdiff(A′q′ ,Aq, Σ≤i−1),
which implies that|w| = i. If costdiff(A′q′ ,Aq, Σ≤i) = ∞, we are done. Otherwise, it must be that
w ∈ L(Aq) ∩ L(A′q′). Let r = r0, r1, · · · , ri andr′ = r′0, r

′
1, · · · , r′i be accepting runs of minimal

cost ofAq andA′q′ , respectively, onw. Sincei ≥ n2, there must be a pair of indices0 ≤ j < k ≤ i,
such thatrj = rk and r′j = r′k. Let w = xyz, wherex = w1 · · ·wj , y = wj+1 · · ·wk, and
z = wk+1 · · ·wi. Observe thatx andz may be empty, and that sincej < k, it must be that|y| > 0.
Also note thatAq can traversex alongr0 · · · rj , traversey along the cycleC = rj , · · · , rk−1, and
traversez alongrk · · · ri. Similarly, A′q′ can traversex alongr′0 · · · r

′
j , traversey along the cycle

C ′ = r′j , · · · , r′k−1, and traversez alongr′k · · · r
′
i.

By removing fromr a traversal ofC, and fromr′ a traversal ofC ′, we derive accepting runss
ands′ of Aq andA′q′ , respectively, on the wordxz. Since|w| = i, and |y| > 0, it follows that
|xz| < i. Recall thatA′ is also good forf̃i−1. Thus, by Lemma A.10, we have thatf̃i−1(q, q

′) ≥
cost(A′q′ , xz) − cost(Aq, xz). Recall thatcost(A′q′ , w) − cost(Aq, w) ≥ f̃i(q, q

′) > f̃i−1(q, q
′).

Hence,cost(A′q′ , w)−cost(Aq, w) > cost(A′q′ , xz)−cost(Aq, xz). Rearranging, we get(cost(A′q′ , w)−
cost(A′q′ , xz)) − (cost(Aq, w) − cost(Aq, xz)) > 0. SinceA′q′ is deterministic, the runs′ is the
only run it has onxz, and thuscost(A′q′ , w) − cost(A′q′ , xz) = c(r′) − c(s′) = c(C ′). On the
other hand, sinceAq is nondeterministic,s may not be a run of minimal cost overxz, and thus
cost(Aq, w) − cost(Aq, xz) ≥ c(r) − c(s) = c(C). Combining the last three observations we get
thatc(C ′) − c(C) > 0.

For everym > 0, by addingm more traversals of the cycleC to r, we get an accepting runsm

of Aq on the wordxym+1z. Similarly, by addingm more traversals of the cycleC ′ to r′, we get an
accepting runs′m of A′q′ on the same word. It is not hard to see, using similar arguments to the ones
used above, thatcost(A′q′ , xym+1z) = c(s′m) = c(r′) + m × c(C ′), and thatcost(Aq, xym+1z) ≤

28



c(sm) = c(r) + m × c(C). Hence,cost(A′q′ , xym+1z) − cost(Aq, xym+1z) ≥ c(r′) − c(r) + m ×
(c(C ′)− c(C)). Since this is true for arbitrarily largem, and we showed thatc(C ′)− c(C) > 0, then
costdiff(A′q′ ,Aq, Σ∗) = ∞.

We are now ready to analyze the sequence of functionsf0, f1, . . . , f2n2−1, that our algorithm
actually calculates. Recall thatfi is identical tof̃i, except that fori ≥ n2 if max

a∈Σ
fi(q, q

′, a) >

fi−1(q, q
′), we setfi(q, q

′) = ∞. For convenience, we recall the definition of the sequencef0, f1, . . .
below. Also, to aid in the proof, the definition is extended to cover also indicesi above2n2 − 1.

• At initialization:

f0(q, q
′) =







−∞ if q /∈ F
0 if q ∈ F andq′ ∈ F
∞ if q ∈ F andq′ /∈ F ,

• For1 ≤ i ≤ n2 − 1:

fi(q, q
′) = max{fi−1(q, q

′), max
a∈Σ

fi(q, q
′, a)}.

• For i ≥ n2:

fi(q, q
′) =

{

∞ if max
a∈Σ

fi(q, q
′, a) > fi−1(q, q

′)

fi−1(q, q
′) otherwise.

In the above, for everyi ≥ 0 anda ∈ Σ, the functionfi(q, q
′, a) is defined as follows.

fi(q, q
′, a) = min

u′∈ρi−1(q′,a)
max

u∈δ(q,a)
fi−1(u, u′) + c(q′, a, u′) − c(q, a, u),

where the setρ0(q
′, a) = δ(q′, a), and fori > 0, we have

ρi(q
′, a) = {u′ ∈ ρi−1(q

′, a) : max
u∈δ(q′,a)

fi−1(u, u′) + c(q′, a, u′) − c(q′, a, u) ≤ 0}.

Observe that the definitions of “witnesses”, and automata “good for”, that we defined forf̃ ,
are easily carried over tof . We first show that it is enough to calculate (at most) the functions
f0, f1, . . . , f2n2−1, as the sequencef0, f1, . . . reaches a fixed-point within at most2n2 iterations.

Proposition A.14 There is somej < 2n2 such thatfi = fj for everyi ≥ j.

Proof: Note that for everyi ≥ n2, if the value offi(q, q
′) differs from that offi−1(q, q

′) then it
attains the maximal value of∞. Hence, since there aren2 pairs of states, the sequencefi must reach
a fixed-point within2n2 iterations.

It is easy to see thatf , just like f̃ , is monotonically increasing withi. Below we show that
f shares withf̃ the ability to precisely quantify the cost difference betweenA and deterministic
automata embodied inA. However, unlikef̃i which considers words of length at mosti, fi may also
consider words of unbounded length. We start by making a couple of easy observations.

29



Proposition A.15 for everyi ≥ 0, and everyq, q′ ∈ Q, we havefi(q, q
′) ≥ f̃i(q, q

′). Furthermore,
if fi(q, q

′) 6= f̃i(q, q
′), thenfi(q, q

′) = ∞.

Proof: Immediate from the definitions of̃f andf .

Lemma A.16 For everyi ≥ 0, andq, q′ ∈ Q, we have thatfi(q, q
′) = −∞ iff L(Aq) ∩ Σ≤i = ∅.

Proof: SinceA hasn states, for everyi > n we have thatL(Aq) ∩ Σ≤i = ∅ iff L(Aq) ∩ Σ≤n = ∅.
Sincef̃i andfi coincide fori ≤ n, the result follows from Lemma A.2.

Proposition A.13 shows that ifA′ is good forf̃i andq′ is reachable inA′, then fori ≥ n2 an
increase in the value of̃fi(q, q

′) compared tof̃i−1(q, q
′) indicates thatcostdiff(A′q′ ,Aq, Σ∗) = ∞.

This observation was the intuition behind our definition off . Note, however, that since the value offi

depends onfi−1 and not onf̃i−1, it is not clear that the above analysis carries over tof . In particular,
Lemma A.9 which served a crucial role in the proof of Lemma A.10, and therefore also in the proof
of the pumping argument of Proposition A.13, is not true forf . Recall that Lemma A.9 states that
if f̃i(q, p), f̃i(p, q′) ∈ IR, then so isf̃i(q, q

′), andf̃i(q, p) + f̃i(p, q′) ≥ f̃i(q, q
′). However, forf , if

i ≥ n2 it may be thatfi(q, p), f̃i(p, q′) ∈ IR, but thatfi(q, q
′) was bumped up to∞. Fortunately, as

the next lemma shows, even after many iterations wheref andf̃ may have attained different values
for many pairs, iff sets a value of∞ to a certain pair, then its decision is justifiable, sincef̃ would
also (in future iterations) grow without bounds, or attain the value∞. Thus, in a sense, “at the limit”
f̃ andf behave in the same way.

Lemma A.17 Giveni ≥ 0, andq, q′ ∈ Q, such thatfi(q, q
′) = ∞. If q′ is reachable in someA′

that is good forf̃ , then for everym ∈ IN there is an indexkm ≥ 0 such thatf̃k(q, q
′) > m for every

k ≥ km.

Proof: Observe that sincẽf is monotonically increasing it is enough to show that for everym ∈ IN
there is an indexkm ≥ 0 such thatf̃km

(q, q′) > m. We prove the lemma by an induction on
i. For i < n2, fi(q, q

′) = ∞ implies thatf̃i(q, q
′) = ∞. Assume now thati ≥ n2, and that

the lemma holds fori − 1. Note that if f̃i(q, q
′) = ∞, we are done, and that̃fi(q, q

′) = −∞
is impossible by Lemmas A.2 and A.16. We thus assume thatf̃i(q, q

′) ∈ IR. Also note that if
fi(q, q

′) = fi−1(q, q
′) then the lemma holds by the induction hypothesis. Hence, from now on we

also assume thatfi−1(q, q
′) < fi(q, q

′).

We now prove that if there is an indexk ≥ i such thatf̃k(q, q
′) > f̃k−1(q, q

′) then the lemma
holds. Assume for now that such ak exists (we will later show that indeed it does). By our assump-
tion, there is an automatonA′ that is good forf̃ , in which q′ is reachable. Since in particularA′

is good forf̃k, and sincek ≥ n2, then by Proposition A.13 we havecostdiff(A′q′ ,Aq, Σ∗) = ∞.
It follows that for everym ∈ IN there is an indexkm ≥ 0, such thatcostdiff(A′q′ ,Aq, Σ≤j) > m
for everyj ≥ km. On the other hand, by Lemma A.10, for every suchj we have thatf̃j(q, q

′) ≥
costdiff(A′q′ ,Aq, Σ≤j), which completes our argument. It remains to show that indeed there is an
indexk ≥ i such thatf̃k(q, q

′) > f̃k−1(q, q
′). Observe that sincẽf is monotonically increasing it is

enough to find an indexk ≥ i such thatf̃k(q, q
′) 6= f̃i−1(q, q

′).

If f̃i(q, q
′) 6= f̃i−1(q, q

′) then we are done. Assume then thatf̃i(q, q
′) = f̃i−1(q, q

′). Re-
call that by our assumptionfi−1(q, q

′) < fi(q, q
′). Thus, by definition, we have that there is an

30



a ∈ Σ such thatfi(q, q
′, a) > fi−1(q, q

′). Assume first that there is an indexk ≥ i for which
f̃k(q, q

′, a) ≥ fi(q, q
′, a). Since, by definition,̃fk(q, q

′) ≥ f̃k(q, q
′, a), the previous inequalities im-

ply that f̃k(q, q
′) > fi−1(q, q

′). Thus, by Proposition A.15, we have thatf̃k(q, q
′) > f̃i−1(q, q

′), and
we are done.

Assume now that for allk ≥ i we havef̃k(q, q
′, a) < fi(q, q

′, a). Let us first prove that
ρ̃(q′, a) ⊆ ρi(q

′, a). Observe that̃ρ(q′, a) ⊆ ρ̃i(q
′, a), and that Proposition A.15 implies that

ρi(q
′, a) ⊆ ρ̃i(q

′, a). Hence, it is enough to show that(ρ̃i(q
′, a) \ ρi(q

′, a)) ∩ ρ̃(q′, a) = ∅. As-
sume by way of contradiction that there is au′ ∈ (ρ̃i(q

′, a) \ ρi(q
′, a)) ∩ ρ̃(q′, a). Sinceu′ is in

ρ̃i(q
′, a) but not inρi(q

′, a), there must be a statev′ ∈ δ(q′, a) such thatfi−1(v
′, u′) 6= f̃i−1(v

′, u′).
Thus, by Proposition A.15,fi−1(v

′, u′) = ∞. Recall thatA′ is good forf̃ , thatq′ is reachable in
A′, and thatu′ ∈ ρ̃(q′, a). Hence, by Corollary A.8, there is anA′′ that is good forf̃ , in whichu′ is
reachable. We can thus apply the induction hypothesis tofi−1(v

′, u′), and obtain that there is an index
k ≥ 0 such thatf̃k(v

′, u′) > c(q′, a, v′) − c(q′, a, u′). But this is a contradiction sinceu′ ∈ ρ̃(q′, a)
implies thatu′ ∈ ρ̃k(q

′, a), and thusf̃k(v
′, u′) + c(q′, a, u′) − c(q′, a, v′) ≤ 0. It follows that our

claim thatρ̃(q′, a) ⊆ ρi(q
′, a) is true.

We are now ready to show that there is an indexk ≥ i such thatf̃k(q, q
′) > f̃i−1(q, q

′). Given
k ≥ i, letMINk = {u′ ∈ ρ̃k−1(q

′, a) | max
u∈δ(q,a)

f̃k−1(u, u′) + c(q′, a, u′)− c(q, a, u) = f̃k(q, q
′, a)},

be the set of states for which the minimum in the expression forf̃k(q, q
′, a) is achieved. We claim

that for everyk ≥ i the setMINk is not empty. To see that, recall thatfi(q, q
′, a) > fi−1(q, q

′),
and thusfi(q, q

′, a) 6= −∞. It follows, by the definition offi(q, q
′, a), that there isu ∈ δ(q, a) such

thatL(Au) ∩ Σ≤i−1 6= ∅. Thus, if ρ̃k−1(q
′, a) = ∅, then by definitionf̃k(q, q

′, a) = ∞. But since
k ≥ i, by our assumptioñfk(q, q

′, a) < fi(q, q
′, a), which is a contradiction. Hence, for everyk ≥ i

we haveMINk 6= ∅. SinceA has only finitely many states, there is a stateu′ such thatu′ ∈ MINk

for infinitely manyk’s. Observe that it follows thatu′ ∈ ρ̃(q′, a). Let t ≥ i be such thatu′ ∈ MINt.
Recall that sincet ≥ i, by our assumptionfi(q, q

′, a) > f̃t(q, q
′, a). Thus:

fi(q, q
′, a) = min

v′∈ρi−1(q′,a)
max

u∈δ(q,a)
fi−1(u, v′) + c(q′, a, v′) − c(q, a, u)

> f̃t(q, q
′, a)

= max
u∈δ(q,a)

f̃t−1(u, u′) + c(q′, a, u′) − c(q, a, u)

Recall that we showed that̃ρ(q′, a) ⊆ ρi(q
′, a), that ρi(q

′, a) ⊆ ρi−1(q
′, a), and thatu′ ∈

ρ̃(q′, a). It follows thatu′ ∈ ρi−1(q
′, a). Hence, the inequality above implies that there is a state

u ∈ δ(q, a), such thatfi−1(u, u′) > f̃t−1(u, u′). Sincet ≥ i, and f̃ is monotonically increas-
ing, thenf̃t−1(u, u′) ≥ f̃i−1(u, u′). It follows thatfi−1(u, u′) > f̃i−1(u, u′), and thus by Propo-
sition A.15, fi−1(u, u′) = ∞. Recall thatA′ is good for f̃ , that q′ is reachable inA′, and that
u′ ∈ ρ̃(q′, a). Hence, by Corollary A.8, there is anA′′ that is good forf̃ in whichu′ is reachable. We
can thus apply the induction hypothesis tofi−1(u, u′) and get that for everyh ∈ IN there is an index
lh ≥ 0 such thatf̃l(u, u′) > h for everyl ≥ lh. Recall that by our assumptions̃fi(q, q

′) ∈ R, and
f̃i(q, q

′) = f̃i−1(q, q
′). Thus, we can choose anh such thath ≥ f̃i−1(q, q

′)−(c(q′, a, u′)−c(q, a, u)).
Sinceu′ ∈ MINk for infinitely manyk’s, we can find an indexkh > lh, such thatu′ ∈ MINkh

. It

31



follows that:

f̃kh
(q, q′) ≥ f̃kh

(q, q′, a) = max
v∈δ(q,a)

f̃kh−1(v, u′) + c(q′, a, u′) − c(q, a, v)

≥ f̃kh−1(u, u′) + c(q′, a, u′) − c(q, a, u)

> h + c(q′, a, u′) − c(q, a, u) ≥ f̃i−1(q, q
′)

Which completes the proof.

The next lemma shows that once the calculation off reaches a fixed-point, the set of automata
that are good forf at this fixed-point is exactly the set of automata that are good forf̃ .

Lemma A.18 If j is a fixed-point index off , then an automatonA′ embodied inA is good forfj iff
it is good forf̃ .

Proof: It is not hard to see that sincej is a fixed-point index off , thenA′ is good forfj iff it is good
for f . Hence, we can prove instead thatA′ is good forf iff it is good for f̃ . For the first direction,
assume thatA′ is good forf . Looking at the definition of̃ρ(q, a), one can see that Proposition A.15
implies that for everya ∈ Σ and everyq ∈ Q, we have thatρ(q, a) ⊆ ρ̃(q, a). Hence,A′ is also
good for f̃ . For the other direction, assume thatA′ is good forf̃ , and letq′ be a state reachable in
A′. We have to show that for everya ∈ Σ, if u′ = δ′(q′, a), thenu′ ∈ ρ(q′, a). Observe that by
the definition ofρ(q′, a) it is enough to show that for everyu ∈ δ(q′, a) and everyi ≥ 0, we have
that f̃i(u, u′) = fi(u, u′). Assume by way of contradiction that there is au ∈ δ(q′, a) such that
f̃i(u, u′) 6= fi(u, u′). By Proposition A.15, we have thatfi(u, u′) = ∞. Applying Lemma A.17
to fi(u, u′), we get that there is an indexk ≥ 0 such thatf̃k(u, u′) + c(q′, a, u′) − c(q, a, u) > 0.
It follows thatu′ /∈ ρ̃k(q

′, a). But this contradicts the fact thatA′ is good forf̃k, and our claim is
proved.

The next lemma shows that at a fixed-point indexj, the functionfj quantifies exactly the cost
difference, over all words inΣ∗, betweenA and any deterministic automaton that is good forfj .

Lemma A.19 If A′ is good forfj , wherej is a fixed-point index off , then for everyq, q′ ∈ Q, such
that q′ is reachable inA′, we have thatfj(q, q

′) = costdiff(A′q′ ,Aq, Σ∗).

Proof: Consider first the case wherefj(q, q
′) = −∞. Sincej is a fixed-point index, it follows that

for everyi ≥ j we also havefi(q, q
′) = −∞. Hence, by Lemma A.16, we have thatL(Aq)∩Σ∗ = ∅.

It follows (by definition) thatcostdiff(A′q′ ,Aq, Σ∗) = −∞, and the lemma holds. Consider now the
case wherefj(q, q

′) ∈ IR. Giveni ≥ j, sincej is a fixed-point index off , thenfj(q, q
′) = fi(q, q

′).
By proposition A.15, we have thatfj(q, q

′) = fi(q, q
′) = f̃i(q, q

′) ∈ IR. By Lemma A.18,A′ is good
for f̃i. Hence, by Lemmas A.10 and A.11, we have thatcostdiff(A′q′ ,Aq, Σ≤i) = f̃i(q, q

′). Since
this is true for everyi ≥ j thencostdiff(A′q′ ,Aq, Σ∗) = f̃i(q, q

′). Sincef̃i(q, q
′) = fi(q, q

′) then also
in this case the lemma holds. It is left to consider the case wherefj(q, q

′) = ∞. By Lemma A.18,
A′ is good for f̃ . Thus, by Lemma A.17, the sequencef̃0(q, q

′), f̃1(q, q
′), . . . is unbounded. By

Lemma A.11, it follows thatcostdiff(A′q′ ,Aq, Σ∗) = ∞.

32



We can now prove the following theorem which together with Proposition A.14 implies Theo-
rem 4.5.

Theorem A.20 A WFAA = 〈Σ, Q,∆, c, Q0, F 〉 is DBP iff for a fixed-point indexj of f , there is a
stateq′0 ∈ Q0 such that for everyq0 ∈ Q0 we have thatfj(q0, q

′
0) ≤ 0.

Proof: For the first direction, assume thatA is DBP, and take someA′ = 〈Σ, Q,∆′, c, q′0, F 〉 in
det0(A). By Lemma A.12,A′ is good forf̃ , and thus, by Lemma A.18, it is also good forfj . By
Lemma A.19, for everyq0 ∈ Q0, we have thatfi(q0, q

′
0) = costdiff(A′q′0 ,Aq0 , Σ∗). SinceA′ is

equivalent toA it must be that for everyq0 ∈ Q0 we have thatcostdiff(A′q′0 ,Aq0 , Σ∗) ≤ 0.

For the other direction, assume that there is a stateq′0 ∈ Q0, such that for everyq0 ∈ Q0 we
have thatfj(q0, q

′
0) ≤ 0. Take someA′ that is good forf̃ (we will later show that there is such an

A′). By Lemma A.18,A′ is also good forfj . Thus, by Lemma A.19, for everyq0 ∈ Q0 we have
thatcostdiff(A′q′0 ,Aq0 , Σ∗) = fj(q0, q

′
0). Since by our assumption, for everyq0 ∈ Q0 we have that

fj(q0, q
′
0) ≤ 0, thencostdiff(A′q′0 ,Aq0 , Σ∗) ≤ 0, andA′ must be equivalent toA, and thusA is DBP.

It remains to show that indeed there is an automatonA′ = 〈Σ, Q,∆′, c, q′0, F 〉 that is good forf̃ .

To buildA′ we start without any transitions and iteratively add transitions as follows: For every
stateq that is reachable fromq′0, and everya ∈ Σ such thatδ(q, a) 6= ∅ butδ′(q, a) = ∅, we arbitrarily
chose someu ∈ ρ̃(q, a) and add the transition〈q, a, u〉. It is not hard to see that if we never run into
a situation wherẽρ(q, a) = ∅ then we end up with an automaton that is good forf̃ . The fact that
throughout the construction we always haveρ̃(q, a) 6= ∅ is proved by an induction on the distance of
q from q′0. For the induction base (q = q′0), we have to show that for everyi ≥ 0, if δ(q′0, a) 6= ∅
then ρ̃i(q

′
0, a) 6= ∅. The casei = 0 is true since by definitioñρ0(q

′
0, a) = δ(q′0, a). Given i > 0,

recall that by our assumption, for everyq0 ∈ Q0 we have thatfj(q0, q
′
0) ≤ 0. Thus, in particular,

fj(q
′
0, q

′
0) ≤ 0, which implies (sincej is a fixed-point index, andf is monotonically increasing)

thatfi(q
′
0, q

′
0) ≤ fj(q

′
0, q

′
0) ≤ 0. It follows, by Proposition A.15, that̃fi(q

′
0, q

′
0) ≤ 0, and thus also

f̃i(q
′
0, q

′
0, a) ≤ 0. Observe that ifδ(q′0, a) 6= ∅, then by the definitions of̃fi(q

′
0, q

′
0, a) andρ̃i(q

′
0, a),

eitherρ̃i(q
′
0, a) 6= ∅, or for all statesu ∈ δ(q′0, a) we have thatL(Aq′0)∩Σ≤i−1 = ∅. In the latter case,

by Lemma A.2 and the definition of̃ρi(q
′
0, a), it must be thatδ(q′0, a) = ρ̃i(q

′
0, a), which completes

the proof of the induction base. The induction step follows directly from Proposition A.4.

Observe that in the proof of Theorem A.20, we actually show that ifA is DBP, thendet0(A) is
exactly the set of automata that are good for a fixed-point off .

33


