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Abstract

Nondeterministic weighted finite automata (WFAs) map input words to real numbers. Each
transition of a WFA is labeled by both a letter from some alphabet and a weight. The weight
of a run is the sum of the weights on the transitions it traverses, and the weight of a word is the
minimal weight of a run on it. In probabilistic weighted automata (PWFAs), the transitions
are further labeled by probabilities, and the weight of a word is the expected weight of a run
on it. We define and study stochastization of WFAs: given a WFA A, stochastization turns
it into a PWFA A′ by labeling its transitions by probabilities. The weight of a word in A′

can only increase with respect to its weight in A, and we seek stochastizations in which A′

α-approximates A for the minimal possible factor α ≥ 1. That is, the weight of every word in
A′ is at most α times its weight inA. We show that stochastization is useful in reasoning about
the competitive ratio of randomized online algorithms and in approximated determinization of
WFAs. We study the problem of deciding, given a WFA A and a factor α ≥ 1, whether there
is a stochastization of A that achieves an α-approximation. We show that the problem is in
general undecidable, yet can be solved in PSPACE for a useful class of WFAs.

1 Introduction

A recent development in formal methods for reasoning about reactive systems is an extension of the
Boolean setting to a multi-valued one. The multi-valued component may originate from the system,
for example when propositions are weighted or when transitions involve costs and rewards [16],
and may also originate from rich specification formalisms applied to Boolean systems, for example
when asking quantitative questions about the system [7] or when specifying its quality [1]. The
interest in multi-valued reasoning has led to growing interest in nondeterministic weighted finite
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automata (WFAs), which map an input word to a value from a semi-ring over a large domain
[12, 23].

Many applications of WFAs use the tropical semi-ring 〈IR+∪{∞},min,+,∞, 0〉. There, each
transition has a weight, the weight of a run is the sum of the weights of the transitions taken along
the run, and the weight of a word is the minimal weight of a run on it. Beyond the applications
of WFAs over the tropical semi-ring in quantitative reasoning about systems, they are used also in
text, speech, and image processing, where the costs of the WFA are used in order to account for
the variability of the data and to rank alternative hypotheses [11, 24].

A different kind of applications of WFAs uses the semi-ring 〈IR+ ∪ {∞},+,×, 0, 1〉. There,
the weight of a run is the product of the weights of the transitions taken along it, and the weight of
a word is the sum of the weights of the runs on it. In particular, when the weights on the transitions
are in [0, 1] and form a probabilistic transition function (that is, for every state q and letter σ, the
sum of the weights of the σ-transitions from q is 1), we obtain a probabilistic finite automaton
(PFA, for short). In fact, the probabilistic setting goes back to the 60’s [25].

The theoretical properties of WFAs are less clean and more challenging than these of their
Boolean counterparts. For example, not all WFAs can be determinized [23], and the problem of
deciding whether a given WFA has an equivalent deterministic WFA is open. As another example,
the containment problem is undecidable for WFAs [21]. The multi-valued setting also leads to new
questions about automata and their languages, like approximated determinization [3] or discounting
models [13].

By combining the tropical and the probability semi-rings, we obtain a probabilistic weighted
finite automaton (PWFA, for short). There, each transition has two weights, which we refer to as
the cost and the probability. The weight that the PWFA assigns to a word is then the expected cost
of the runs on it. That is, as in the tropical semi-ring, the cost of each run is the sum the costs
of the transitions along the run, and as in probabilistic automata, the contribution of each run to
the weight of a word depends on both its cost and probability. While PFAs have been extensively
studied (e.g., [6]), we are only aware of [20] in which PWFAs were considered.

We introduce and study stochastization of WFAs. Given a WFAA, stochastization turns it into
a PWFA A′ by labeling its transitions with probabilities. Recall that in a WFA, the weight of a
word is the minimal weight of a run on it. Stochastization of a WFA A results in a PWFA A′ with
the same set of runs, and the weight of a word is the expected cost of these runs. Accordingly,
the weight of a word in A′ can only increase with respect to its weight in A. Hence, we seek
stochastizations in which A′ α-approximates A for the minimal possible factor α ≥ 1. That is,
the weight of every word in A′ is at most α times its weight in A. We note that stochastization
has been studied in the Boolean setting in [14], where a PFA is constructed from an NFA. 1 Before
describing our contribution, we motivate stochastization further.

1Beyond considering the Boolean setting, the work in [14] concerns the ability to instantiate probabilities so that at
least one word is accepted with probability arbitrarily close to 1. Thus, the type of questions and motivations are very
different from these we study here in the weighted setting.
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In [2], the authors describe a framework for using WFAs over the tropical semi-ring in order
to reason about online algorithms. An online algorithm can be viewed as a reactive system: at
each round, the environment issues a request, and the algorithm should process it. The sequence of
requests is not known in advance, and the goal of the algorithm is to minimize the overall cost of
processing the sequence. Online algorithms for many problems have been extensively studied [8].
The most interesting question about an online algorithm refers to its competitive ratio: the worst-
case (with respect to all input sequences) ratio between the cost of the algorithm and the cost of an
optimal solution – one that may be given by an offline algorithm, which knows the input sequence
in advance. An online algorithm that achieves a competitive ratio α is said to be α-competitive.

Consider an optimization problem P with requests in Σ. The set of online algorithms for P that
use memory S, for some finite set S, induces a WFA AP , with alphabet Σ and state space S, such
that the transitions of AP correspond to actions of the algorithms and the cost of each transition
is the cost of the corresponding action. It is shown in [2] that many optimization problems have
algorithms that use finite memory. Each run of AP on a sequence w ∈ Σ∗ of requests corresponds
to a way of serving the requests in w by an algorithm with memory S. Thus, the weight of w in
AP is the cost of an optimal offline algorithm on w that uses memory S. On the other hand, an
online algorithm has to process each request as soon as it arrives and corresponds to a deterministic
automaton embodied inAP . Accordingly, there exists an α-competitive online algorithm for P , for
α ≥ 1, iff AP embodies a deterministic automaton A′P that α-approximates AP . The framework
in [2] enables formal reasoning about the competitive ratio of online algorithms. The framework
has been broaden to online algorithms with an extended memory or a bounded lookahead, and to
a competitive analysis that takes into an account assumptions about the environment [3]. An ad-
ditional useful broadening of the framework would be to consider randomized online algorithms,
namely ones that may toss coins in order to choose their actions. Indeed, it is well known that
many online algorithms that use randomized strategies achieve a better competitive ratio [8]. Tech-
nically, this means that rather than pruning the WFA AP to a deterministic one, we consider its
stochastization.

Recall that not all WFAs have equivalent or evenα-approximating deterministic WFAs. Stochas-
tization is thus useful in finding an approximate solution to problems that are intractable in the
nondeterministic setting and are tractable in the probabilistic one. We describe two such appli-
cations. One is reasoning about quantitative properties of probabilistic systems. In the Boolean
setting, while one cannot model check probabilistic systems, typically given by a Markov chain
or a Markov decision process, with respect to a specification given by means of a nondeterminis-
tic automaton, it is possible to take the product of a probabilistic system with a deterministic or
a probabilistic automaton, making model checking easy for them [26]. In the weighted setting,
a quantitative specification may be given by a weighted automaton. Here too the product can be
defined only with a deterministic or a probabilistic automaton. By stochastizating a WFA specifi-
cation, we obtain a PWFA (a.k.a. a rewarded Markov chain in this context [17]) and can perform
approximated model checking. A second application is approximated determinization. Existing
algorithms for α-determinization [23, 3] handle families of WFAs in which different cycles that
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can be traversed by runs on the same word cannot have weights that differ in more than an α
multiplicative factor (a.k.a. “the α-twins property”). Indeed, cycles as above induce problematic
cycles for subset-construction-type determinization constructions. As we show, stochastization can
average such cycles, leading to an approximated-determinization construction that successfully α-
determinizes WFAs that do not satisfy the α-twin property and thus could not be α-determinized
using existing constructions.Let us note that another candidate application is weighted language
equivalence, which is undecidable for WFAs but decidable for PWFA [20]. Unfortunately, how-
ever, weighted equivalence becomes pointless once approximation enters the picture.

Given a WFA A and a factor α ≥ 1, the approximated stochastization problem (AS problem,
for short) is to decide whether there is a stochastization of A that α-approximates it. We study the
AS problem and show that it is in general undecidable. Special tractable cases include two types of
restrictions. First, restrictions on α: we show that when α = 1, the problem coincides with deter-
minization by pruning of WFAs, which can be solved in polynomial time. Then, restrictions on the
structure of the WFA: we define the class of constant-ambiguous WFAs, namely WFAs whose de-
gree of nondeterminism is a constant, and show that the AS problem for them is in PSPACE. On the
other hand, the AS problem is NP-hard already for 7-ambiguous WFAs, namely WFAs that have
at most 7 runs on each word. Even more restricted are tree-like WFAs, for which the problem can
be solved in polynomial time, and so is the problem of finding a minimal approximation factor α.
We show that these restricted classes are still expressive enough to model interesting optimization
problems.

2 Preliminaries

A nondeterministic finite weighted automaton on finite words (WFA, for short) is a tuple A =
〈Σ, Q,∆, q0, τ〉, where Σ is an alphabet, Q is a finite set of states, ∆ ⊆ Q × Σ × Q is a total
transition relation (i.e., for every q ∈ Q and σ ∈ Σ, there is at least one state q′ ∈ Q with
〈q, σ, q′〉 ∈ ∆), q0 ∈ Q is an initial state, and τ : ∆ → IR+ is a weight function that maps
each transition to a non-negative real value, which is the cost of traversing this transition. If for
every q ∈ Q and σ ∈ Σ there is exactly one q′ ∈ Q such that 〈q, σ, q′〉 ∈ ∆, then A is a
deterministic WFA (DWFA, for short). We assume that all states are reachable from the initial
state. Consider a transition t = 〈q, σ, q′〉 ∈ ∆. We use source(t), label(t), and target(t), to refer
to q, σ, and q′, respectively. It is sometimes convenient to use a transition function rather than
a transition relation. Thus, we use δA : Q × Σ → 2Q, where for q ∈ Q and σ ∈ Σ, we define
δA(q, σ) = {p ∈ Q : 〈q, σ, p〉 ∈ ∆}. WhenA is clear from the context we do not state it implicitly.

A run of A on a word w = w1 . . . wn ∈ Σ∗ is a sequence of transitions r = r1, . . . , rn such
that source(r1) ∈ Q0, for 1 ≤ i < n we have target(ri) = source(ri+1), and for 1 ≤ i ≤ n we
have label(ri) = wi. For a word w ∈ Σ∗, we denote by runs(A, w) the set of all runs of A on w.
Note that since ∆ is total, there is a run of A on every word in Σ∗, thus |runs(A, w)| ≥ 1, for all

4



w ∈ Σ∗.2 The value of the run, denoted val(r), is the sum of costs of transitions it traverses. That
is, val(r) =

∑
1≤i≤n τ(ri). We denote by first(r) and last(r) the states in which r starts and ends,

respectively, thus start(r) = source(r1) and last(r) = target(rn). Since A is nondeterministic,
there can be more than one run on each word. We define the value that A assigns to the word w,
denoted val(A, w), as the value of the minimal-valued run of A on w. That is, for every w ∈ Σ∗,
we define val(A, w) = min{val(r) : r ∈ runs(A, w)}.

A probabilistic finite weighted automaton on finite words (PWFA, for short) isP = 〈Σ, Q,D, q0, τ〉,
where Σ, Q, q0, and τ are as in WFAs, and D : Q × Σ × Q → [0, 1] is a probabilistic transition
function. That is, it assigns for each two states q, p ∈ Q and letter σ ∈ Σ the probability of moving
from q to p with letter σ. Accordingly, we have

∑
p∈QD(q, σ, p) = 1, for every q ∈ Q and σ ∈ Σ.

We sometimes refer to a transition relation ∆D ⊆ Q × Σ × Q induced by D. For two states
q, p ∈ Q and letter σ ∈ Σ, we have ∆D(q, σ, p) iff D(q, σ, p) > 0. Then, τ : ∆D → IR+ assigns
positive weights to transitions with a positive probability. As in WFAs, we assume that all states
are accessible from the initial state by path with a positive probability. Note that if for every q ∈ Q
and σ ∈ Σ, there is a state p ∈ Q with D(q, σ, p) = 1, then P is a DWFA.

A run r = r1, . . . , rn of P on w = w1 . . . wn ∈ Σ∗ is a sequence of transitions defined as in
WFAs. The probability of r, denoted Pr[r], is

∏
1≤i≤nD(ri). Similarly to WFAs, for w ∈ Σ∗, we

denote by runs(P, w) the set of all runs of P on w with positive probability. We define val(P, w)
to be the expected value of a run of P on w, thus val(P, w) =

∑
r∈runs(P,w) Pr[r] · val(r).

We say that a WFA A is k-ambiguous, for k ∈ IN, if k is the minimal number such that for
every word w ∈ Σ∗, we have |runs(A, w)| ≤ k. We say that a WFA A is constant-ambiguous
(a CA-WFA, for short) if A is k-ambiguous from some k ∈ IN. The definitions for PWFAs are
similar, thus CA-PWFAs have a bound on the number of possible runs with positive probability.

A stochastization of a WFA A = 〈Σ, Q,∆, q0, τ〉 is a construction of a PWFA that is obtained
from A by assigning probabilities to its nondeterministic choices. Formally, it is a PWFA AD =
〈Σ, Q,D, q0, τ〉 obtained from A such that D is consistent with ∆. Thus, ∆D = ∆. Note that
since the transition function of A is total, there is always a stochastization of A. Note also that if
δ(q, σ) is a singleton {p}, then D(q, σ, p) = 1.

Recall that in a nondeterministic WFA, the value of a word is the minimal value of a run on
it. Stochastization of a WFA A results in a PWFA AD with the same set of runs, and the value of
a word is some average of the values of these runs. Accordingly, the value of a word in AD can
only increase with respect to its value inA. We would like to find a stochastization with whichAD
approximates A

Consider two weighted automata A and B, and a factor α ∈ IR such that α ≥ 1. We say that B
α-approximatesA if, for every word w ∈ Σ∗, we have 1

α ·val(A, w) ≤ val(B, w) ≤ α ·val(A, w).

2A different way to define WFAs would be to designate a set of accepting states. Then, the language of a WFA is
the set of words that have an accepting run, and it assigns values to words in its language. Since it is possible to model
acceptance by weights, our definition simplifies the setting and all states can be thought of as accepting.
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We denote the latter also by 1
αA ≤ B ≤ αA. When α = 1, we say that A and B are equivalent.

Note that A and B are not necessarily the same type of automata.

A decision problem and an optimization problem naturally arise from this definition:

• Approximation stochastization (AS, for short): Given a WFA A and a factor α ≥ 1, decide
whether there is a distribution function D such that AD α-approximates A, in which case
we say that AD is an α-stochastization of A.

• Optimal approximation stochastization (OAS, for short): Given a WFA A, find the minimal
α ≥ 1 such that there an α-stochastization of A.

Recall that for every distribution function D, we have that A ≤ AD. Thus, in both the AS and
OAS problems it is sufficient to require AD ≤ α · A.

Remark 2.1 [Tightening the approximation by a square-root factor] For a WFA A and β ∈
[0, 1], let Aβ be A with costs multiplied by β. It is easy to see that for all WFAs A and B, we have

1√
α
· A ≤ B1/

√
α ≤
√
α · A iff A ≤ B ≤ α · A.

In particular, taking B to be AD for some distribution function D for A, we have that AD α-
approximates A iff AD

1/
√
α

√
α-approximates A. It follows that when altering of weights is possi-

ble, we can tighten the approximation by a square-root factor.

3 Motivation

In Section 1, we discussed the application of stochastization in reasoning about quantitative prop-
erties of probabilistic systems, reasoning about randomized online algorithms, and approximated
determinization. Below we elaborate on the last two.

3.1 A WFA-Based Approach to Reasoning about Online Algorithms

In this section we describe [2]’s WFA-based approach to reasoning about online algorithms and
extend it to account for randomized ones. An online algorithm with requests in Σ and actions in
A corresponds to a function g : Σ+ → A that maps sequences of requests (the history of the
interaction so far) to an action to be taken. In general, the algorithm induces an infinite state space,
as it may be in different states after processing different input sequences in Σ∗. For a finite set S
of configurations, we say that g uses memory S, if there is a regular mapping of Σ∗ into S such
that g behaves in the same manner on identical continuations of words that are mapped to the same
configuration.
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We model the set of online algorithms that use memory S and solve an optimization problem P
with requests in Σ and actions in A, by a WFA AP = 〈Σ, S,∆, s0, τ〉, such that ∆ and τ describe
transitions between configurations and their costs, and s0 is an initial configuration. Formally,
∆(s, σ, s′) if the set A′ ⊆ A of actions that process the request σ from configuration s by updating
the configuration to s′ is non-empty, in which case τ(〈s, σ, s′〉) is the minimal cost of an action in
A′.

An offline algorithm knows the sequence of requests in advance and thus can resolve nondeter-
minism to obtain a minimal cost. Accordingly, the cost that an offline algorithm with state space
S assigns to a sequence of requests w ∈ Σ∗ is exactly val(AP , w). On the other hand, an online
algorithm is a DWFA A′P obtained from AP by pruning nondeterministic choices. The competi-
tive ratio of the online algorithm, namely the ratio between its performance and that of the offline
algorithm, on the sequence of requests that maximizes this ratio, is then the factor α such that A′P
α-approximates AP . A randomized online algorithm for P that uses state space S can be viewed
as a function from S to a probability distribution on A, which induces a probabilistic transition
function on top of AP . Consequently, we have the following:

Theorem 3.1 Consider an online problem P and a set S of configurations. LetAP be a WFA with
state space S that models online algorithms for P that use memory S. For all α ≥ 1, there is a
randomized online algorithm for P using memory S that achieves competitive ratio α iff AP has
an α-stochastization.

Example 3.2 The Ski-rental problem. Assume that renting skis costs $1 per day and buying skis
has a one-time cost of $M . The online ski-rental problem copes with the fact it is not known in
advance how many skiing days are left. Given an input request “skiing continues today”, the online
algorithm should decide whether to buy or rent skis. Typically, it is also assumed that renting skis
is only allowed for at most m ≥M consecutive days.

The WFAA induced by the ski-rental problem with parameters M and m is depicted in Fig. 1.
Formally, A = 〈{a}, {1, . . . ,m, qown},∆, 1, τ〉, where ∆ and τ are described below. A state
1 ≤ i < m has two outgoing transitions: 〈i, a, i + 1〉 with weight 1, corresponds to renting
skis at day i, and 〈i, a, qown〉 with weight M , corresponding to buying skis at day i. Finally,
there are transitions 〈m, a, qown〉 with weight M and 〈qown , a, qown〉 with weight 0. The optimal
deterministic online algorithm is due to [19]; rent skis for M − 1 consecutive days, and buy skis
on the M -th day, assuming skiing continues. It corresponds to the DWFA obtained by pruning all
transitions but 〈i, a, i + 1〉, for 1 ≤ i < M , and 〈M,a, qown〉. This DWFA achieves an optimal
approximation factor of 2− 1

M .

We describe a simple probabilistic algorithm that corresponds to a stochastization of A that
achieves a better bound of 2 − 1.5

M . Intuitively, before skiing starts, toss a coin. If it turns out
“heads”, buy skis on the (M − 1)-th day, and if it turns out “tails”, buy on the M -th day. The
corresponding distribution function D is depicted in red in Fig. 1 It is not hard to see that the worst
case of this stochastization is attained by the word aM for which we have val(A, aM ) = M and
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val(AD, aM ) = 1
2 · (M − 2 + M) + 1

2 · (M − 1 + M) = 2M − 1.5, thus val(AD, aM ) ≤
(2− 1.5

M ) ·val(A, aM ). Finding the optimal distribution function takes care [18, 9] and can achieve
an approximation of 1 + 1

(1+1/M)M−1
≈ e/(e− 1) ≈ 1.582 for M � 1.

1 2 . . . M − 1 M . . . m

qown

1 1 1 1 1
1

2 1 1 1

0

M

0

M

1

2
M

1

M M

Figure 1: The WFA that is induced by the ski-rental problem with parameters M and m.

Next, we show that it is sometimes useful to apply the stochastization after extending the state
space ofAP . We illustrate this phenomena on the Paging problem. Before presenting the problem,
we formalize the notion of memory.

Consider an online problem P and assume the corresponding WFA is A = 〈Σ, Q,∆, q0, τ〉.
A memory set is a pair M = 〈M,m0〉, where M is a finite set of memory states and m0 ∈ M
is an initial memory state. We augment A with M to construct a WFA A × M = 〈Σ, Q ×
M,∆′, 〈q0,m0〉, τ ′〉, where t′ = 〈〈q,m〉, σ, 〈q′,m′〉〉 ∈ ∆′ iff t = 〈q, σ, q′〉 ∈ ∆, in which case
τ(t) = τ ′(t′). Note that for every word w ∈ Σ∗, we have val

(
(A × M), w

)
= val(A, w).

Using memory is potentially helpful as every stochastization of A has a matching stochastization
ofA×M that achieves the same approximation factor, but not the other way around, and similarly
for DBPs.

Example 3.3 The paging problem In the paging problem we have a two-level memory hierarchy:
A slow memory that contains n different pages, and a cache that contains at most k different pages.
Typically, k � n. Pages that are in the cache can be accessed at zero cost. If a request is made to
access a page that is not in the cache, a page fault occurs and the page should be brought into the
cache, at a cost of 1. If the cache is full, some other page should first be evicted from the cache.
The paging problem is that of deciding which pages to keep in the cache in order to minimize the
number of page faults.

Let [n] = {1, . . . , n}. A paging problem with parameters n and k induces the WFA A =
〈[n], Q,∆, ∅, τ〉, where Q = {C ⊆ [n] : |C| ≤ k} is the set of all possible cache configurations
and there is a transition t = 〈C, c, C ′〉 ∈ ∆ iff (1) c ∈ C in which case page c is in the cache,
thus C ′ = C and τ(t) = 0, (2) c /∈ C and |C| < k in which case there is a page fault and the
cache is not full, thus C ′ = C ∪ {c} and τ(t) = 1, and (3) c /∈ C and |C| = k in which case
there is a page fault and we evict some page c′ ∈ C from the cache and replace it with c, thus
C ′ = (C \ {c′}) ∪ {c} and τ(t) = 1.

An offline algorithm knows the sequence of requests and advance and thus evicts pages accord-
ing to their need in the future. Is is shown in [8] that every online deterministic paging algorithm
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achieves a competitive ratio of at least k. As a result, for every memory set M, every DBP of
A×M achieves an approximation of at least k. There are quite a few deterministic algorithms that
are optimal [8], two of which are “first in first out” (FIFO) and “least recently used” (LRU). Both
algorithms use memory and we are not aware of optimal deterministic algorithms that do not.

In the probabilistic setting, the algorithm RANDOM that uses no memory achieves a compet-
itive ratio of k; when a page fault occurs, choose a page uniformly at random and evict it. The
stochastization that corresponds to RANDOM is given by the distribution function D1 that is de-
fined as follows. Consider C ∈ Q such that |C| = k and c /∈ C. There are k c-labeled outgoing
transitions from C corresponding to the k candidate pages to be evicted from C. For C ′ ∈ Q such
that 〈C, c, C ′〉 ∈ ∆, we define D1(C, c, C ′) = 1

k . By the above, AD1 k-approximates A.

The optimal competitive ratio for a probabilistic algorithm is the harmonic number Hk =
1 + 1

2 + 1
3 + . . .+ 1

k ≈ log(k). We describe the algorithm MARK, which achieves a slightly worst
competitive ratio of 2Hk. Initially, all pages are unmarked. When a page is requested, it becomes
marked. When a page fault occurs and the cache is full, select uniformly at random a page that is
not marked and evict it. If all pages in the cache are marked and a page fault occurs, unmark all the
pages, evict one of them as in the above, and insert the requested page marked.

In order to implement the algorithm, memory is needed. Assume there is an order on the pages,
e.g., the standard order on numbers. We use a memoryM with states 2[k]. Consider a state 〈C,m〉
of A×M, with C = {c1, . . . , ck} such that c1 < c2 < . . . < ck. The memory state m represents
the unmarked pages in C, thus for 1 ≤ i ≤ k, the page ci is unmarked iff i ∈ m. We describe the
stochastization that corresponds to MARK by means of the distribution function D2 that is defined
as follows. Consider a state 〈C,m〉whereC = {c1, . . . , ck}, and a request c /∈ C. Thus, if c is read
at configuration 〈C,m〉 a page fault occurs, and since |C| = k, we need to evict one of the pages
in C. Consider j ∈ m, thus cj is an unmarked page in the cache and it is a candidate for eviction
when c is requested. Let C ′ be the state in which we replace c with cj , thus C ′ = (C \ {cj})∪{c}.
Since c is inserted marked to the cache its index in C ′ does not appear the new memory state m′,
thus m′ = {i ∈ m : ci < c} ∪ {i + 1 : i ∈ m and c < ci}. There are |m| unmarked pages in
C, so the probability of evicting cj is 1

|m| , thus we define D2(〈C,m〉, c, 〈C ′,m′〉) = 1
|m| . Every

outgoing transition from 〈C,m〉 that is not of this type gets probability 0. By the above, (A×M)D2

2Hk-approximates A.

3.2 Approximated Determinization

Not all WFAs can be determinized. Since some applications require deterministic automata, one
way to cope with WFAs that cannot be determinized is to α-determinize them, namely construct a
DWFA that α-approximates them, for α ≥ 1. Our second application is an extension of the class
of WFAs that can be approximately determinized.

In [23], Mohri describes a determinization construction for a subclass of WFAs – these that
have the twins property. In [4], the authors define the α-twins property, for α ≥ 1, and describe
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Figure 2: An illustration of our algorithm for approximated determinization of WFAs.

an α-determinization construction for WFAs that satisfy it. We briefly define the properties below.
Consider a WFA A = 〈Σ, Q,∆, q0, τ〉 and two states q1, q2 ∈ Q. We say that q1 and q2 are
pairwise reachable if there is a word u ∈ Σ∗ such that there are runs of A on u that end in q1 and
q2. Also, we say that q1 and q2 have the t-twins property if they are either not pairwise reachable,
or, for every word v ∈ Σ∗, if π1 and π2 are v-labeled cycle starting from q1 and q2, respectively,
then val(π1) ≤ t · val(π2). We say that A has the α-twins property iff every two states in A have
the α-twins property. The α-twins property coincides with Mohri’s twins property when α = 1.

The α-twins property can be thought of as a lengthwise requirement; there might be many
runs on a word, but there is a bound on how different the runs are. Our algorithm applies to
CA-WFAs. Recall that such WFAs have a dual, widthwise, property: the number of runs on a
word is bounded by some constant. The algorithm proceeds as follows. Given a CA-WFA A, we
first find an α-stochastization AD of it. Since stochastization maintains constant ambiguity, we
obtain a CA-PWFA. As we show in Theorem 5.4, CA-PWFA can be determinized, thus we find an
α-determinization of A.

Example 3.4 Consider the WFA A that is depicted in Fig. 2. Note that A is 2-ambiguous. The
optimal stochastization of A is given by the distribution function D that assigns D(q0, a, q1) =
D(q0, a, q2) = 1

2 . The resulting PWFA AD is also depicted in the figure. Then, we construct the
DWFA D by applying the determinization construction of Theorem 5.4. Clearly, the DWFA D
3-approximates A.

We note that A has the 5-twins property, and this is the minimal t. That is, for every t <
5, A does not have the t-twins property. The DWFA D′ that is constructed from A using the
approximated determinization construction of [4] has the same structure as D only that the self
loops that have weight 3 in D, have weight 5 in D′. Thus, D′ 5-approximates A.

4 Stochastization of General WFAs

In this section we study the AS and OAS problems for general WFA. We start with some good news,
showing that the exact stochastization problem can be solved efficiently. Essentially, it follows from
the fact that exact stochastization amounts to determinization by pruning, which can be solved in
polynomial time [2].
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Theorem 4.1 The exact stochastization problem can be solved in polynomial time.

Proof: Recall that we say that a DWFAD is a DBP ofA ifD is obtained by removing transitions
from A until a DWFA is formed. It is shown in [2] that deciding, given a WFA A, whether there
is an equivalent DBP of A, can be solved in polynomial time. We claim that there is an equivalent
DBP of A iff there is a distribution function D such that L(AD) = L(A). Since a DBP of A
is a stochastization of A, the first direction is easy. For the second direction, given a distribution
function D such that L(AD) = L(A) we construct a DWFA D by a DPB of A by arbitrarily
choosing, for every q ∈ Q and σ ∈ Σ, a transition e = 〈q, σ, q′〉 ∈ ∆ with D(e) > 0 and removing
all other outgoing σ-labeled transitions from q. We claim that L(D) = L(A). Indeed, otherwise
there is a word w ∈ Σ∗ such that val(D, w) < val(A, w) and the run of D on w gets a positive
probability in AD. Thus, val(AD, w) < val(A, w), and we are done.

We proceed to the bad news.

Theorem 4.2 The AS problem is undecidable.

Proof: In Section 1 we mentioned PFA, which add probabilities to finite automata. Formally, a
PFA is P = 〈Σ, Q, P, q0, F 〉, where F ⊆ Q is a set of accepting states and the other components
are as in PWFAs. Given a word w ∈ Σ∗, each run of P on w has a probability. The value P assigns
to w is the probability of the accepting runs. We say that P is simple if the image of P is {0, 1, 1

2}.
For λ ∈ [0, 1], the λ-emptiness problem for PFAs gets as input a PFA P , and the goal is to decide
whether there is a word w ∈ Σ∗ such that val(P, w) > λ. It is well known that the emptiness
problem for PFAs is undecidable for λ ∈ (0, 1) [6, 22]. Furthermore, it is shown in [15] that the
emptiness problem is undecidable for simple PFAs and λ = 1

2 . In the full version we construct,

given a simple PFA P , a WFA A such that P is 1
2 -empty iff there is an 2+

√
7

3 -stochastization of A.

Consider a simple PFA P = 〈Σ, Q, P, q0, F 〉. Let α ≥ 2+
√

7
3 ≈ 1.55. We construct a WFA

A = 〈Σ′, S,∆, s0, τ〉 such that P is 1
2 -empty iff there is an α-stochastization of A. The alphabet

of A is Σ′ = Σ ∪ Q ∪ {$,#} and its states are S = SL ∪ SR ∪ {s0, ssink}, where SR = Q. We
refer to SL as the left component and to SR as the right component.

Intuitively, consider a distribution function D such that AD α-approximates A. Consider a
word w ∈ Σ∗. We define A so that every run r of P on w has a corresponding run r′ of
AD on the word $w$, where (1) Pr[r] = Pr[r′], (2) if r is accepting, then val(r′) = γ and
val(r′) = γ + 1 otherwise, for γ = 1.5α − 1

2 . Combining the two, we have val(AD, w) =
(1+γ)·Pr[accept(P, w)]+γ ·Pr[reject(P, w)]. Since Pr[reject(P, w)]+Pr[accept(P, w)] = 1,
we have val(AD, w) = γ + Pr[accept(P, w)]. Finally, we define A so that val(A, $w$) = 1.5.
We show that P is 1

2 -empty. Since AD α-approximates A, we have val(AD, $w$) = γ +
Pr[accept(P, w)] ≤ 1.5 · α = val(A, w) · α. By our choice of γ, we have Pr[accept(P, w)] ≤ 1

2 ,
and we are done.
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Figure 3: An illustration of the construction of a WFAA from a PFAP . The probabilistic transition
function P of P has P (s, σ, s1) = P (s, σ, s2) = 1

2 . Also, s2 /∈ F , thus τ(s2, $, ssink) = γ.

We describe the intuition of the reduction (see an illustration of A in Fig. 3). Consider a
distribution function D such that AD α-approximates A. Consider a word w ∈ Σ∗. We define
A so that every run r of P on w has a corresponding run r′ of AD on the word $w$, where
(1) Pr[r] = Pr[r′], (2) if r is accepting, then val(r′) = γ and val(r′) = γ + 1 otherwise, for
γ = 1.5α − 1

2 . Finally, we define A so that val(A, $w$) = 1.5. Before showing how we define
A to have these properties, we show that they imply that P is 1

2 -empty. Combining (1) and (2), we
have val(AD, w) = (1 + γ) ·Pr[accept(P, w)] + γ ·Pr[reject(P, w)]. Since Pr[reject(P, w)] +
Pr[accept(P, w)] = 1, we have val(AD, w) = γ + Pr[accept(P, w)]. Since AD α-approximates
A, we have val(AD, $w$) = γ + Pr[accept(P, w)] ≤ 1.5 · α = val(A, w) · α. By our choice of
γ, we have Pr[accept(P, w)] ≤ 1

2 , and we are done.

Next, we describe the construction ofA. The right component is a WFA with the same structure
as P in which all transitions have weight 0. That is, SR = Q and, for s, s′ ∈ SL and σ ∈ Σ, there
is a transition t = 〈s, σ, s′〉 ∈ ∆ iff P (s, σ, s′) > 0, in which case τ(t) = 0. Recall that unlike
PFAs, in WFAs all states are accepting. We simulate acceptance by P as follows. We use the
letter $ ∈ Σ′ \ Σ to mark the end of a word over Σ. For every state s ∈ SR, there is a transition
from s to ssink labeled $. The weight of the transition is γ + 1 if s is accepting in P , and is γ
otherwise, for γ = 1.5α − 1

2 . For technical reasons we use $ to mark the start of a word over Σ,
thus 〈s0, $, q0〉 ∈ ∆, where recall that s0 and q0 are the initial states of A and P , respectively. So,
there is a one-to-one correspondence between runs of P on a word w ∈ Σ∗ and runs of A on the
word $w$ that proceed to the right component.

The left component ofA has the following properties. (1) For a word w ∈ Σ∗, the cheapest run
of A on the word $w$ proceeds to the left component and has value 1.5. Consider a distribution
D such that AD α-approximates A. Then, (2) D assigns probability 0 to every run that proceeds
to the left component, and (3) D coincides with P on the transitions in the right component of A,
thus for every t = 〈s, σ, s′〉 ∈ ∆ such that s, s′ ∈ Q and σ ∈ Σ, we have D(t) = P (t).

Formally, the states of A are S = SL ∪ SR ∪ {s0, ssink}, where SR = Q and SL = {q′ :
q ∈ Q} ∪ {〈q, σ〉 : q ∈ Q and σ ∈ Σ} ∪ {sΣ}. We describe the transitions of A as well as their
weights. We start with the right component. As in the above, for every s, s′ ∈ SR and σ ∈ Σ,
we have 〈s, σ, s′〉 ∈ ∆ iff P (s, σ, s′) > 0. The weights of these transitions is 0. For s ∈ SR and
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σ ∈ Σ′ \ Σ, we have δA(s, σ) = ssink. The weights of these transitions are

τ(s, σ, ssink) =



γ if σ = $ and s ∈ F,
γ + 1 if σ = $ and s /∈ F,
2
5 if σ ∈ Q and σ = s,
3
5 if σ ∈ Q and σ 6= s,

0 if σ = #.

All outgoing transitions from s0 have weight 0. Recall that Σ′ = Q ∪ Σ ∪ {#, $}. We specify
them below.

δA(s0, σ) =


{q0, sΣ} if σ = $,

{q′, q} if σ ∈ Q,
ssink if σ ∈ Σ ∪ {#}.

Finally, we describe in the left component of A. Recall that we require WFAs to be full. We
do not specify all the transitions inA implicitly. The ones we do not specify lead to ssink and have
a high value so that the cheapest run of A on the word that uses such a transition proceeds through
the right component of A. Consider a state s ∈ SL. We define δA(s,#) = ssink with weight
1. Recall that for w ∈ Σ∗, the minimal run of A on $w$ proceeds to the left component and has
value 1.5. Thus, for σ ∈ Σ, we define δA(sΣ, σ) = sΣ with weight 0. Also, δA(sΣ, $) = ssink
with weight 1.5. For q, q1, q2 ∈ Q and σ ∈ Σ such that P (q, σ, q1) = P (q, σ, q2) = 1

2 , there are
runs of A on the words qσq1 and qσq2 that turn left and have value 1

2α . Thus, For q ∈ Q and
σ ∈ Σ, we define δA(q′, σ) = 〈q, σ〉 with weight 0 and, for q′ ∈ Q such that P (q, σ, q′) = 1

2 ,
we have δA(〈q, σ〉, q′) = ssink with weight 1

2α . Note that the transitions in the left component are
deterministic, thus there is exactly one legal distribution for these transitions. Finally, for every
σ ∈ Σ′ we have δA(ssink, σ) = ssink with value 0.

We claim that if there is a distribution function D such that AD α-approximates A, then P is
empty. The proof follows from the following two claims:

Claim 4.3 Every outgoing transition from s0 that leads to the left component has probability 0
under D.

Claim 4.4 The probability that D assigns to transitions in the right component coincides with P ,
thus for t = 〈q, σ, p〉 ∈ Q× Σ×Q, we claim that D(t) = P (t), where recall that SR = Q.

We show that P is 1
2 -empty, thus for every w ∈ Σ∗ we claim that val(P, w) ≤ 1

2 . Consider
a word w ∈ Σ∗. Note that the runs of A on the word $w$ all proceed to the right component
except for one run that proceeds to the left component through sΣ and has value 1.5. Consider a
run r = t1, r

′, t2 of A on w$ that proceeds to the right component, where t1 and t2 are transitions
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labeled $. Note that r′ is a run of P on w as δA(s0, $) = q0. If r′ is accepting then the value of r
is γ + 1 and it is γ otherwise. Recall that γ = 1.5α − 1

2 . Since α ≥ 1.5, we have γ > 1.5, thus
val(A, $w$) = 1.5 is attained by the run that proceeds to the left component, which by Claim 4.3
has probability 0 under D. Moreover, by Claim 4.4 we have that Pr[r′] in P equals Pr(r) in AD.
Thus, val(AD, $w$) = (γ + 1) · val(P, w) + γ · (1− val(P, w)) = γ + val(P, w). Combining
with val(AD, $w$) ≤ α · val(A, $w$) = α · 1.5, we have val(P, w) ≤ 1

2 , and we are done.

We continue and prove the two claims. First, consider a state s ∈ SL and σ ∈ Σ′ such
that 〈s0, σ, s〉 ∈ ∆. We claim that D(s0, σ, s) = 0. Recall that τ(s,#, qsink) = 1 as s ∈
SL. Note that there is s′ ∈ SR ∩ δA(s0, σ) with τ(s0, σ, s

′) = 0. Since s′ ∈ SR, we have
τ(s′,#, ssink) = 0. Thus, val(A, σ#) = 0. Assume towards contradiction that D(s0, σ, s) > 0.
Then, val(AD, σ#) ≥ D(s0, σ, s) > 0, thus AD does not α-approximate A, and we reach a
contradiction.

Next, consider t = 〈q, σ, q′〉 ∈ Q × Σ × Q. We claim that D(t) = P (t). Recall that P is
simple, so P (t) ∈ {0, 1

2 , 1}. We distinguish between three cases. The cases in which P (t) = 0
and P (t) = 1 are trivial as D is consistent with ∆ and must assign probability 0 and 1 to t,
respectively. In the last case, there is a state q′′ ∈ Q such that δP(q, σ) = {q′, q′′}. Consider the
words w1 = qσq′ and w2 = qσq′′. Recall that we defined A so that there are three runs on each of
these words. For i = 1, 2, there is one run on wi that proceeds to the left component, traverses the
states s0, q

′, 〈q, σ〉, ssink, and has value 1
2α . There are two runs that proceed to the right component.

The first traverses the states s0, q, q
′, ssink and the second traverses the states s0, q, q

′′, ssink. The
value of the first run for w1 is 2

5 and for w2 it is 3
5 , and the values in the second run are opposite.

Since α ≥ 1.5, the run that proceeds to the left component is the cheapest run on each of the words
and val(A, w1) = val(A, w2) = 1

2α . By Claim 4.3, D assigns probability 0 to this run. We claim
that D(q, σ, q′) = D(q, σ, q′′) = 1

2 . Otherwise, wlog, D(q, σ, q′) = 1
2 + ξ, for ξ > 0. Then, we

have val(AD, w2) = (1
2 + ξ) · 3

5 + (1
2 − ξ) ·

2
5 = 1

2 + ξ
5 > α · 1

2α = α · val(A, w1).

For the second direction, assumeP is empty. Consider the distributionD that coincides with P .
That is, D assigns probability 0 to transitions that lead left from s0 and probability 1 to transitions
that lead right. Also, for every t ∈ Q×Σ×Q, we haveD(t) = P (t). Note that all other transitions
inA are deterministic and must be assigned probability 1 byD. We claim thatAD α-approximates
A.

Consider w ∈ Σ′∗. We go over the different cases and show that val(AD, w) ≤ α · val(A, w).
First, assume w = qσq′ for q, q′ ∈ Q and σ ∈ Σ. We distinguish between two cases. In the
first case, P (q, σ, q′) = 1

2 . There are three runs of A on the word w. One run proceeds to the
left component, has value 1

2α , and probability 0 under D. There are two runs that proceed to
the right component. The first run traverses the states s0, q, q

′, ssink, and the second, assuming
δA(q, a) = {q′, q′′}, traverses the states s0, q, q

′′, ssink. The first has value 2
5 and the second has

value 3
5 . As in the above, α · val(A, w) = α · 1

2α = val(AD, w). In the second case, P (q, σ, q′)
is either 0 or 1. Then, the runs that proceed to the left component have value greater than 2

5 . So,
the cheapest run on w is a run that proceeds to the right component and has value 2

5 . Moreover,
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the runs that proceed to the right component have value at most 3
5 . Since α ≥ 1.5, we have

α · val(A, w) = α · 2
5 ≥

3
5 ≥ val(A

D, w). The proof is similar for words in Q · Σ∗ ·Q.

Assume w ∈ $ · Σ∗ · $. Similar to the above, we have val(A, w) = 1.5 and val(AD, w) =
γ + val(A, w) = 1.5α − 1

2 + val(P, w). Since P is empty, we have val(P, w) ≤ 1
2 , thus

α · val(A, w) ≥ val(AD, w).

Assume w ∈ Q ·Σ∗ · $. Then, the cheapest run ofA on w proceeds to the right component and
has value at least γ. The maximal value of a run of A on w that proceeds to the right component is
γ + 1. Thus, α · val(A, w) ≥ α · γ and val(AD, w) ≤ γ + 1. Recall that γ = 1.5α − 1

2 . Since

α ≥ 2+
√

7
3 , we have 1.5α2 − 2α− 1

2 ≥ 0, thus α · val(A, w) ≥ val(AD, w).

Assume w ∈ Q · Σ∗ · (# + ε) or w = $. Then, all runs of A on w that proceed to the right
component have value 0. These are the only runs that get a probability that is higher than 0 under
D, so val(A, w) = val(AD, w) = 0. Finally, since the value of the self loop of ssink is 0, every
other word w′ ∈ Σ′∗ has a prefix w that is considered above, and has val(A, w) = val(A, w′) and
val(AD, w) = val(AD, w′), and we are done.

5 Stochastization of Constant Ambiguous WFAs

Recall that a CA-WFA has a bound on the number of runs on each word. We show that the AS
problem becomes decidable for CA-WFAs. For the upper bound, we show that when the ambiguity
is fixed, the problem is in PSPACE. Also, when we further restrict the input to be a tree-like WFAs,
the OAS problem can be solved in polynomial time. We note that while constant ambiguity is a
serious restriction, many optimization problems, including the ski-rental we describe here, induce
WFAs that are constant ambiguous. Also, many theoretical challenges for WFAs like the fact that
they cannot be determinized, apply already to CA-WFA. We start with a lower bound, which we
prove in the full version by a reduction from 3SAT.

Theorem 5.1 The AS problem is NP-hard for 7-ambiguous WFAs.

Proof: Consider a 3CNF formula θ = C1 ∧ . . .∧Cm over the variables X = {x1, . . . , xn}. Let
C = {C1, . . . , Cm}. Consider α > 1. We construct a 7-ambiguous WFA A = 〈Σ, Q,∆, q0, τ〉
such that A has an α-approximation iff θ is satisfiable.

We describe the components of A. The alphabet is Σ = C ∪ {#, $}. As in Theorem 4.2,
the states of A consist of left and right components Q = QL ∪ QR ∪ {q0, qsink}, where QR =
X ∪ {xpos, xneg : x ∈ X} and QL = {C ′i, C ′′i : Ci ∈ C}. We describe the transitions and their
weights. First, the outgoing transitions from q0. For every clause Ci ∈ C, there are three outgoing
transitions that lead right: 〈q0, Ci, x〉 ∈ ∆ iff Ci has a literal in {x,¬x}, and one transition that
leads left 〈q0, Ci, C

′
i〉 ∈ ∆. The weights of all these transitions is 0. In the right component,

for x ∈ X , there are two $-labeled transitions 〈x, $, xpos〉, 〈x, $, xneg〉 ∈ ∆. For Ci ∈ C, there
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is a transition 〈xpos, Ci, qsink〉 ∈ ∆. The weight of the transition is 1 if x is a literal of Ci and
α otherwise. Similarly, the weight of the transition 〈xneg, Ci, qsink〉 is 1 if ¬x is a literal of Ci
and α otherwise. Finally, for x ∈ X , the weight of the transition 〈x,#, qsink〉 ∈ ∆ is 0. In the
left component, there is are transitions 〈C ′i, $, C ′′i 〉 ∈ ∆ with weight 0 and 〈C ′′i , Ci, qsink〉 with
weight 1

α . The weight of the transition 〈C ′i,#, qsink〉 is 1. We do not specify the other transitions
implicitly. They all lead to qsink, where the ones in the right component have a low weight whereas
the ones in the left component have a high weight. It is not hard to see that A is 7-ambiguous and
its size is polynomial in n and m.

Assume there is a satisfying assignment f : X → {0, 1}. We show that there is a distribution
function D such that AD α-approximates A. In fact D is a determinization by pruning of A. For
every Ci ∈ C, there is a literal ` ∈ {x,¬x} that is satisfied by f . We define D(q0, Ci, x) = 1. For
x ∈ X , if f(x) = 1, we define D(x, $, xpos) = 1, and if f(x) = 0, we define D(x, $, xneg) = 1.
This completes the definition of D as the other transitions are deterministic. We claim that AD
α-approximates A. Clearly, all runs that proceed to the left component from q0 have probability 0
under D. We show that for w ∈ C · $ ·C, we have val(AD, w) ≤ α · val(AD, w). We distinguish
between two cases. In the first case w = Ci$Ci, for some Ci ∈ C. Then, val(A, w) = 1

α and
it is attained in a run that proceeds to the left component and thus gets probability 0. Recall that
D is a DBP of A. Thus, there is a single run of AD on w with positive probability. The value
of the run is 1, thus val(AD, w) = 1 ≤ α · 1

α = α · val(A, w), and we are done. In the second
case, w = Ci$Cj , for Ci 6= Cj ∈ C. The minimal valued run of A on w proceeds to the right
component and has value 1. On the other hand, the run of AD on w has a value of at most α,
thus we have val(AD, w) ≤ α ≤ α · 1 = val(A, w), and we are done. It is not hard to see that
every word w ∈ Σ∗ has a word in C$C as its prefix, in which case the values assigned by the
two automata coincide with the above, or w does not have a word in C$C as its prefix in which
val(AD, w) = val(A, w).

For the other direction, assume D is a distribution function such that AD α-approximates
A. We define an assignment f : X → {0, 1} as follows. For x ∈ X , if D(x, $, xpos) = 1,
then f(x) = 1, and f(x) = 0 otherwise. We claim that f is satisfying. Consider a clause Ci.
Consider the word w = Ci$Ci. Note that there are 7 runs of A on w; one that proceeds to the
left component and six that proceed to the right component. Further note that the run that proceeds
to the left component must have probability 0 as otherwise there is a run of AD on the word Ci#
with probability greater than 0. Since the value of such a run is 1 and val(A, Ci#) = 0, this
would contradict the fact that AD is an α-approximation of A. Consider a run r that traverses
the states q0, x, `, qsink of A on w with positive probability, where ` ∈ {xpos, xneg}. Since AD
α-approximates A, and val(A, w) = 1

α , the value of r must be 1. Thus, the literal ` appears in Ci.
Moreover, the run that traverses the states q0, x, (¬`), qsink that has value α > 1 has probability 0
in AD. Thus, D(x, $, `) = 1, thus f(`) = 1 and Ci is satisfied, and we are done.

Consider a k-ambiguous WFA A, a factor α, and a distribution function D. When k is fixed,
it is possible to decide in polynomial time whether AD α-approximates A. Thus, a tempting
approach to show that the AS problem is in NP is to bound the size of the optimal distribution
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function. We show below that this approach is doomed to fail, as the optimal distribution function
may involve irrational numbers even when the WFA has only rational weights.

Theorem 5.2 There is a 4-ambiguous WFA with rational weights for which every distribution that
attains the optimal approximation factor includes irrational numbers.

Proof: We start by describing the intuition of the construction. A first attempt to construct
the WFA A would be to set pairs of nondeterministic choices x1, x

′
1, x2, x

′
2, x3, and x′3 at states

q1, q2, and q3, respectively. Then, define A so there is a word w1,2 that has three runs in A. The
three runs on w1,2 perform the nondeterministic choices x′1, x1 and x′2, and x1 and x2. Then,
consider the words w1,2a and w1,2b. The first two runs have value 1 on w1,2a and value 2 on
w1,2b, and the last run has value 1 on w1,2a and value 2 on w1,2b. A distribution function D that
minimizes the maximum of val(AD, w1,2a) and val(AD, w1,2b) assigns 1.5 in both cases. Since
val(A, w1,2a) = val(A, w1,2b) = 1, the optimal approximation factor is at least 1.5. Moreover, a
distribution that attains this approximation factor must assign probability 1/2 to the first two runs
and assign probability 1/2 to the last run. Thus, we have a constraint x1 · x2 = 1/2. We do the
same trick twice more. Namely, we defineA so that there are two more words w1,3 and w2,3 whose
runs generate the constraints x1 · x3 = 1/2 and x2 · x3 = 1/2, respectively. A distribution D that
satisfies all constraints must assign D(x1) = D(x2) = D(x3) = 1√

2
.

However, there are two complications. First, consider the word w1 whose prefix coincides with
a prefix of w1,2 and its suffix coincides with a suffix of w2,3. There is a run on w1 that traverses
q1, q2, and q3 therefore making the nondeterministic choices x1, x2, and x3. Second, consider the
word w2 whose prefix coincides with w2,3 and its suffix coincides with w1,2. There are two runs
of A on w2 and each performs one nondeterministic choice; x2 and x′2. There is an extension of
w1 or w2 with a or b such that the resulting word has a value of 1 in A and a value of more than
1.5 in AD, for any distribution D. The solution to the first problem is easier. One of the runs on
w1 performs only the nondeterministic choice x′1. We assign a low value to this run, so that the
average value of every word that has w1 as a prefix is low. In order to solve the second problem,
we add a fourth nondeterministic choice between x4 and x′4 such that the path from the initial state
to q2 traverses x4. Then, there is a third run on w2 that chooses x′4, and we set its value to be low.
Finally, we require an optimal distribution function to assign a positive value to x4.

The full construction of the WFA A is depicted in Fig. 4. Its alphabet is {a, b}. Weights that
are not stated are 0, and missing transitions lead with value 0 to the sink. Finally, the small states
mark the sink and are there for ease of drawing.

First, we claim that the optimal approximation factor α∗ is at least 1.5. Indeed, consider the
words w1 = a5a and w2 = a5b. For i = 1, 2, let ri1, ri2 and ri3, be the three runs of A on wi,
where ri1 performs the nondeterministic choice x′1, ri2 performs the nondeterministic choices x1

and x′2, and ri3 performs the nondeterministic choices x1 and x2. Note that val(r1
1) = val(r1

2) =
val(r2

3) = 1 and val(r1
3) = val(r2

1) = val(r2
2) = 2. Consider a distribution function D. We have

val(AD, wi) = D(x′1) · val(ri1) +D(x1) ·D(x′2) · val(ri2) +D(x1) ·D(x2) · val(ri3). Clearly, a
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Figure 4: A 4-ambiguous WFA whose optimal stochastization is achieved with a distribution that
includes real numbers.

distribution D that minimize the maximum of both expressions assigns D(x′1) +D(x1) ·D(x′2) =
D(x1) ·D(x2) = 1/2. Thus, val(AD, wi) = 1.5 and since val(A, wi) = 1, we have α∗ ≥ 1.5.

Next, we claim that there is a distribution function D∗ that attains α∗ = 1.5. Let D∗(x1) =
D∗(x2) = D∗(x3) = 1√

2
and D∗(x4) = 1

2 . We claim that AD is an 1.5-approximation of A. We
list below the interesting words in Σ∗, thus words that get a positive value inA, and for every word
w ∈ Σ∗ that gets a positive value, there is a word w′ that is a prefix of w and both words get the
same values in A and AD. It is not hard to see that the values A assigns to all the words in the list
is 1, thus we verify that AD assigns a value of at most 1.5 to these words.

• val(AD, a5a) = D(x′1) · 1 +D(x′1) ·D(x′2) · 1 +D(x1) ·D(x2) · 2 = 1.5.

• val(AD, a5b) = D(x′1) · 2 +D(x′1) ·D(x′2) · 2 +D(x1) ·D(x2) · 1 = 1.5.

• val(AD, aabaa) = D(x′1) · 1 +D(x′1) ·D(x′3) · 1 +D(x1) ·D(x3) · 2 = 1.5.

• val(AD, aabab) = D(x′1) · 2 +D(x′1) ·D(x′3) · 2 +D(x1) ·D(x3) · 1 = 1.5.

• val(AD, baabaa) = D(x′4) · 1.5 +D(x4) ·D(x′2) · 1 +D(x4) ·D(x2) ·D(x′3) · 1 +D(x4) ·
D(x2) ·D(x3) · 2 = 1.5.
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• val(AD, baabab) = D(x′4) · 1.5 +D(x4) ·D(x′2) · 2 +D(x4) ·D(x2) ·D(x′3) · 2 +D(x4) ·
D(x2) ·D(x3) · 1 = 1.5.

• val(AD, bb) = D(x4) · 1 +D(x′4) · 2 = 1.5.

• val(AD, baaaa) = D(x′4) · 1 +D(x4) ·D(x′2) · 1 +D(x4) ·D(x2) · 2 ≈ 1.354.

• val(AD, baaab) = D(x′4) · 1 +D(x4) ·D(x′2) · 2 +D(x4) ·D(x2) · 1 ≈ 1.146.

• val(AD, a4baa) = D(x′1) · 1 + D(x1) ·D(x′2) · 1 + D(x1) ·D(x2) ·D(x′3) · 1 + D(x1) ·
D(x2) ·D(x3) · 2 ≈ 1.354.

• val(AD, a4bab) = D(x′1) · 1 + D(x1) ·D(x′2) · 2 + D(x1) ·D(x2) ·D(x′3) · 2 + D(x1) ·
D(x2) ·D(x3) · 1 ≈ 1.354.

To conclude the proof, consider a distribution functionD such thatAD is an 1.5-approximation
of A. We claim that D(x1) = D(x2) = D(x3) = 1√

2
, thus D consists of real numbers. As

in the above, val(AD, a5a) = val(AD, a5b) = 1.5, thus D(x1) · D(x2) = 1/2. Similarly,
val(AD, aabaa) = val(AD, aabab) = 1.5, thus D(x1) · D(x3) = 1/2. Combining the two,
we have D(x2) = D(x3). Next, note that D(x4) ≥ 1/2, as otherwise val(AD, bb) > 1.5. Com-
bining with val(AD, baabaa) ≤ 1.5 and val(AD, baabab) ≤ 1.5, we get D(x2) = D(x3) = 1√

2
.

Thus, D(x1) = 1√
2
, and we are done.

We now turn to show that the AS problem is decidable for CA-WFAs. Our proof is based on the
following steps: (1) We describe a determinization construction for CA-PWFAs. The probabilities
of transitions in the CA-PWFA affects the weights of the transitions in the obtained DWFA. (2)
Consider a CA-WFA A. We attribute each transition of A by a variable indicating the probability
of taking the transition. We define constraints on the variables so that there is a correspondence
between assignments and distribution functions. LetA′ be the obtained CA-PWFA. Note that rather
than being a standard probabilistic automaton, it is parameterized, thus it has the probabilities as
variables. Since A′ has the same structure as A, it is indeed constant ambiguous. (3) We apply
the determinization construction to A′. The variables now appear in the weights of the obtained
parameterized DWFA. (4) Given α ≥ 1, we add constraints on the variables that guarantee that the
assignment results in an α-stochastization of A. For that, we define a parameterized WFA A′′ that
corresponds to αA − A′ and the constraints ensure that it assigns a positive cost to all words. (5)
We end up with a system of polynomial constraints, where the system is of size polynomial in A.
Deciding whether such a system has a solution is known to be in PSPACE.3

We now describe the steps in more detail.

Determinization of CA-WFAs Before we describe the determinization construction for CA-WFAs,
we show that PWFAs are not in general determinizable. This is hardly surprising as neither WFAs

3The latter problem, a.k.a. the existential theory of the reals [10] is known to be NP-hard and in PSPACE. Improving
its upper bound to NP would improve also our bound here.
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nor PFAs are determinizable. We note, however, that the classic examples that show that WFAs
are not determinizable use a 2-ambiguous WFA, and as we show below, 2-ambiguous PWFAs are
determinizable. Formally, we have the following.

Theorem 5.3 There is a PWFA with no equivalent DWFA.

Proof: Consider the PWFA depicted in Fig. 5. Assume towards contradiction that there is a
DWFA D that is equivalent to A. Let γ be the smallest absolute value on one of B’s transitions.
Then, B cannot assign values of higher precision than γ. In particular, for n ∈ IN such that
2−n < γ, it cannot assign the value 2−n to the word anb.

q0 q1〈1
2
, a, 0〉 〈a,0〉

〈b,0〉

〈1
2
, a, 0〉

〈b, 1〉

Figure 5: A PWFA with no equivalent DWFA.

Consider a PWFA P = 〈Σ, Q,D, q0, τ〉. For a state q ∈ Q and σ ∈ Σ, we say that P has a
σ-probabilistic choice at q if there is a transition 〈q, σ, q′〉 ∈ ∆D such that 0 < D(〈q, σ, q′〉) < 1.
This is indeed a choice as ∆D must include a different σ-labeled outgoing transition from q with
positive probability. We sometimes refer to such a choice simply as a probabilistic choice. We
extend the definition to runs as follows. Consider a run r = r1, . . . , rn of P on some word.
We say that r makes a probabilistic-choice at index 1 ≤ i ≤ n if there is a label(ri)-choice at
state source(ri). We then say that r chooses the transition ri. Note that when Pr[r] > 0 and the
probabilistic choices of r are i1, . . . , i`, then Pr[r] =

∏
1≤j≤`D(tij ).

Given P , we construct a DWFA D = 〈Σ, S,∆, q′0, τ ′〉 equivalent to P as follows. The states
of D are S ⊆ 2Q×[0,1]. Thus, a state in S is a set of pairs, each consisting of a state q in P and
the probability of reaching q. Thus, the construction is similar to the subset construction used for
determinizing NFWs, except that each state in P is paired with the probability of visiting it in D.
More formally, consider such a state s = {〈q1, p1〉, . . . , 〈q`, p`〉} and a run r on a word w ∈ Σ∗

that ends in s. Then, for 1 ≤ i ≤ `, we have pi = Pr[{r ∈ runs(P, w) : r end in qi}]. We define
the transitions and their weights accordingly: There is a transition t = 〈s, σ, s′〉 ∈ ∆ iff for every
pair 〈q′i, p′i〉 ∈ s′ we have p′i =

∑
〈qj ,pj〉∈qD(qj , σ, q

′
i) · pj and p′i > 0. For s ∈ S, the states of s

are st(s) = {q ∈ Q : 〈q, p〉 ∈ s}. The weight of t is τ ′(t) =
∑

t′=〈qi,σ,q′j〉∈st(q)×{σ}×st(q′)
τ(t′) ·

pj ·D(t′).

While it is not hard to see that D is equivalent to P , there is no a-priori bound on the size of D.
In the full version we show that whenP is constant ambiguous, thenD has a finite number of states.
Intuitively, we relate the probabilities that appear in the states of D with probabilistic choices that
the runs of P perform. Then, we argue that a run of P on some word w ∈ Σ∗ performs at most
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k− 1 probabilistic choices as every choice “spawns” another run of P on w and |runs(P, w)| ≤ k.
Thus, we can bound the number of states in D, implying the following.

Theorem 5.4 Consider a k-ambiguous PWFA P with m transitions. There is a DWFA D that is
equivalent to P with mO(k2) states.

Proof: Consider a CA-PWFA P = 〈Σ, Q,D, q0, τ〉. Recall that the probability of a run r =
r1, . . . , rn on some word is

∏
1≤i≤nD(ri). Since the probability of every transition that is not a

probabilistic choice is 1, we have the following.

Observation 5.5 The probability of a run r that performs the probabilistic choices t1, . . . , t` is
Pr(r) =

∏
1≤i≤`D(ti).

Next, we bound the number of probabilistic choices a run of P makes.

Observation 5.6 Consider a run r of P with positive probability on some word w ∈ Σ∗. If r per-
forms ` probabilistic choices, then there are at least `+ 1 runs of P on w with positive probability.

Proof: Let r be a run of P on w = w1 . . . wn ∈ Σ∗. Assume that r performs the probabilistic
choices ri = 〈qi−1, wi, qi〉, for 1 ≤ i ≤ n. Since there is a wi-choice at qi−1, there is a state q′i ∈ Q
such that D(qi−1, wi, q

′
i) > 0. It is not hard to see that there is a run r′ with positive probability

on the suffix w[i + 1, . . . , n] of w that starts in q′i. Then, r1, r2, . . . ri−1, r
′ is a run with positive

probability of P on w. For every probabilistic choice we can find such a run. Including r, we have
`+ 1 different runs on w.

Consider the DWFA D = 〈Σ, S,∆, q′0, τ ′〉 that is constructed from P as described in the body
of the paper. We claim that |S| = mO(k2). Consider a state q = 〈〈q1, p1〉, . . . , 〈q`, p`〉〉 ∈ S.
Recall that for 1 ≤ i ≤ `, the pair 〈qi, pi〉 consists of a state qi ∈ Q and a probability pi ∈ (0, 1].
Furthermore, for a run r of D on w ∈ Σ∗ with last(r) = q, we have pi = Pr[r′ ∈ runs(P, w) :
last(r′) = qi]. A corollary of Observation 5.6 is that P has no cycle with a probabilisic choice.
Consider a run r′ ∈ runs(P, w) and let P (r′) ⊆ Q×Σ×Q be the probabilistic choices r′ makes.
Again, by Observation 5.6, we have |P (r′)| ≤ k. By Observation 5.5, we have Pr[r′] = D(P (r′)).

Similarly to the above, each state in S consists of at most k pairs. In order to bound the number
of states in S, we bound the number of possible probabilities that appear in the states in S. First, we
bound the number of possible probabilities of the runs of P . Let P = {Pr[r′] : ∃w ∈ Σ∗ with r′ ∈
runs(P, w)}. Recall that |∆D| = m. Since every run makes at most k probabilistic choices, we
have |P | ≤

(
m
k

)
. Since every probability that appears in a state in S is a sum of at most k numbers

in P , there are at most
(
m
k

)k such probabilities. Thus, there are at most
(|Q|
k

)
·
(
m
k

)k states in S,
which is mO(k2), and we are done.

Emptiness of WFAs Consider a WFA A = 〈Σ, Q,∆, q0, τ〉. We say that A is empty if for every
w ∈ Σ∗, we have val(A, w) ≥ 0. Assume |Q| = n. We show how to decide whether A is empty.
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We define functions f0, f1, . . . , fn : QA → IR as follows. We define f0(q) = 0, for every q ∈ QA,
and, for 0 ≤ i ≤ n − 1, we define fi+1(q) = min

{
{fi(q)} ∪ {τ(t) + fi(p) : t = 〈q, σ, p〉 ∈

∆A and σ ∈ Σ}
}

. It is not hard to prove by induction that for every q ∈ Q and 0 ≤ i ≤ n, the
value fi(q) is the minimum between 0 and the value of the minimal run of length at most i that
starts in q. These equations are known as Bellman equations. The following lemma is standard.

Lemma 5.7 The WFA A is empty iff fn−1(q0) = 0 and fn−1(q) = fn(q), for every q ∈ Q.

An upper bound for the AS problem We are now ready to present the solution to the stochasti-
zation problem for CA-WFAs with weights in CQ+. Given an input WFA A and a factor α ≥ 1,
we construct a polynomial feasibility problem. The input to such a problem is a set of n variables
X and polynomial constraints Pi(x) ≤ 0, for 1 ≤ i ≤ m. The goal is to decide whether there is
a point p ∈ IRn that satisfies all the constraints, thus Pi(p) ≤ 0, for 1 ≤ i ≤ m. The problem is
known to be in PSPACE [10].

Theorem 5.8 The AS problem for CA-WFAs is in PSPACE.

Proof: We describe the intuition and the details can be found in the full version. Consider a
k-ambiguous WFA A = 〈Σ, Q,∆, q0, τ〉. We associate with A the following constraints. First, let
XD = {xt : t ∈ ∆} be a set of variables, and let AD be a parameterized stochastization of A in
which the probability of a transition t is xt. Next, let DD be the parameterized DWFA obtained by
applying to AD the determinization construction of Theorem 5.4. Since the variables of AD are
the probabilities of the transitions and in the determinization construction the probabilities move to
the transition weights, the variables in DD appear only in the weights.

The first type of constraints are ones that ensure that the assignment to the variables in XD

forms a probabilistic transition function. The second type depends on α and ensures that DD ≤
α · A. This is done by applying constraints that ensures the emptiness of the parameterized WFA
A′′ = (αA − DD). This is done by applying the constraints in Lemma 5.7 to the parameterized
WFA A′′ = (αA−DD). When A′′ has n states, we need a variable fi(q), for every i = 0, . . . , n
and state q in A′′. The number of additional constraints is then polynomial in n and in the number
of transitions of A′′. Thus, all in all we have polynomially many constraints and the numbers that
appear in them are of size polynomial in the size of the weights ofA. Thus, the size of the program
is polynomial in the size of A, and we are done.

We describe the construction formally. Recall that XD = {xt : t ∈ ∆}. For t ∈ ∆, we have
a constraint 0 ≤ xt ≤ 1, and, for q ∈ Q and σ ∈ Σ, we have a constraint

∑
t=〈q,σ,q′〉∈∆ xt =

1. Accordingly, an assignment ν : XD → IR corresponds to a distribution function Dν , where
Dν(t) = ν(xt), for t ∈ ∆.

Recall that AD is the parameterized PWFA in which the probability of the transition t is xt.
Further recall that the parameterized DWFA DD = 〈Σ, S,∆′, s0, τ

′〉 is obtained by applying the
determinization construction of Theorem 5.4 to AD.
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Consider a state s ∈ S. Recall that s consists of pairs 〈qi, pi〉 where qi ∈ Q is a state ofAD and
pi is the probability of reaching qi. That is, for a run r ofDD on a word w ∈ Σ∗ such that last(r) =
s, we have pi = Pr[r′ ∈ runs(AD, w) : last(r′) = qi]. We claim that pi is a polynomial of degree
at most k. Consider a run r′ ∈ runs(AD, w) such that last(r′) = qi. By Observation 5.5, assuming
r′ makes the probabilistic choices P ⊆ ∆, then Pr[r′] = Pr[P ] =

∏
t∈∆ xt. By Observation 5.6,

the run r′ performs at most k probabilistic choices, thus |P | ≤ k and Pr[r′] is a polynomial of
degree at most k. It follows that qi is a polynomial of degree at most k as it is a summation of
polynomials of degree at most k.

We claim that the weights that are assigned by τ ′ are polynomials of degree at most k with
coefficients that are weights in A. Consider a transition t = 〈s, σ, s′〉 ∈ ∆′, and assume s =
{〈q1, p1〉, . . . , 〈q`, p`〉}. Recall that τ ′(t) =

∑
t′=〈qi,σ,q′i〉∈st(s)×{σ}×st(s′)

pi · D(t′) · τ(t′). We
claim that each element in the summation is a polynomial of degree at most k. For 1 ≤ i ≤ `,
let ti be a σ-labeled outgoing transition from qi. Thus, target(ti) is a state in s′. If ti is not a
nondeterministic choice in A, then D(ti) = 1. By the above, pi is a polynomial of degree at
most k, and since τ(ti) ∈ CQ, we have pi · τ(ti) is a polynomial of degree at most k. Next, if
ti is a nondeterministic choice, then pi is a polynomial of degree strictly less than k as otherwise
there is a run that performs more than k probabilistic choices, contradicting Observation 5.6. Thus,
pi ·D(ti) · τ(ti) = pi · xti · τ(ti) is a polynomial of degree at most k. To conclude the proof, note
that the coefficients in both cases are weights in A.

Next, we construct the parameterized WFA A′′ = 〈Σ, Q × S,∆′′, 〈q0, s0〉, τ ′′〉, where t =
〈〈q, s〉, σ, 〈q′, s′〉〉 ∈ ∆′′ iff t1 = 〈q, σ, q′〉 ∈ ∆ and t2 = 〈s, σ, s′〉 ∈ ∆′ in which case τ ′′(t) =
α · τ(t1) − τ ′(t2). By the above, τ ′(t2) is a polynomial of degree at most k with coefficients that
are weights in A, thus τ ′′(t) is a polynomial of degree at most k with coefficients that are either
weights in A of products of weights in A and α.

We return to the construction of the polynomial program. Let n = |Q × S|. Recall that the
set of variables of the program is X . We have already defined XD ⊆ X . We now define the
rest of the variables following Lemma 5.7. We have {fi(q) : q ∈ Q × S and 0 ≤ i ≤ n} ⊆
X . We define constraints as follows. For q ∈ Q × S, we have a constraint f0(q) = 0. For
0 ≤ i < n, we have a constraint fi+1(q) ≤ fi(q), and for t ∈ ∆′′ having source(t) = q and
target(t) = q′, we have a constraint fi+1(q) ≤ fi(q

′) + τ ′′(t). Finally, we have constraints
fn(q) = fn−1(q) and fn−1(〈q0, s0〉) = 0. By the above, the constraints are polynomials of degree
at most k with coefficients that are polynomials of the weights in A and α. Thus, the size of the
system is polynomial in A and α.

We claim that the system is feasible iff there is a distribution function D such that AD α-
approximates A. For the first direction, assume the system is feasible, and let ν : X → IR be
an assignment that satisfies all the constraints. Recall that Dν is the corresponding distribution
function. Let A′′ν be the (concrete) WFA that is obtained from A′′ by assigning to the variables
the concrete values given by ν. Consider a word w ∈ Σ∗. It is not hard to see that val(A′′ν , w) =
α · val(A, w)− val(ADν , w). By Lemma 5.7, A′′ν is empty, thus val(A′′ν , w) ≥ 0. Combining the
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two, we have α · val(A, w) ≥ val(ADν , w), and we are done.

For the second direction, assume that there is a distribution function D such that AD α-
approximates A. We define an assignment ν : X → IR and show that it satisfies the constraints.
First, we define ν : XD → IR to coincide with D, thus ν(xt) = D(t), for t ∈ ∆. Let A′′ν be the
WFA as constructed in the above. Similarly to the above, since AD α-approximates A, we have
thatA′′ν is empty. We complete the definition of ν. For q ∈ Q×S, we define ν(f0(q)) = 0. For 1 ≤
i ≤ n, we define ν(fi(q)) = min

{
ν(fi−1(q)),min{ν(fi−1(p))+τ ′(t)(ν) : t = 〈q, σ, p〉 ∈ ∆′′}

}
.

Clearly, ν(fi(q)) ≤ ν(fi−1(q)) and ν(fi(q)) ≤ ν(fi−1(p))+τ ′(t)(ν), for every t = 〈q, σ, p〉 ∈ ∆′.
Note that the other constraints are also satisfied; namely, ν(fn−1(q0)) = 0 and, for q ∈ Q′, we have
ν(fn−1(q)) = ν(fn(q)). Indeed, the definition of ν matches the algorithm to decide emptiness of
WFAs, which precedes Lemma 5.7, and A′′ν is indeed empty, and we are done.

Remark 5.9 A different way to specify emptiness by constraints is to consider all simple paths
and cycles in the automaton, as was done in [5]. A polynomial treatment of the exponentially many
linear constraints then involves a separation oracle, and the ellipsoid method. The method we use
here has polynomially many linear constraints to start with, and its implementation is considerably
more practical.

6 Solving the OAS problem for tree-like WFAs

We say that a WFAA is tree-like if the graph induced by its nondeterministic choices is a tree (note
that A is constant ambiguous if the graph is acyclic). Thus, intuitively, for every nondeterministic
choice t, there is one way to resolve other nondeterministic choices in order to reach t. Note that
the WFA that corresponds to the ski-rental problem as well as the WFA from Example 3.4 are
tree-like.

Formally, the graph GA of nondeterministic choices of a WFA A is 〈V,E〉, where the set V of
vertices consists of transitions ofA that participate in a nondeterministic choice as well as a source
node, thus V = {t ∈ ∆ : |δ(source(t), label(t))| > 1} ∪ {s}. Consider nondeterministic choices
t1, t2 ∈ ∆. There is a directed edge 〈t1, t2〉 ∈ E iff there is a deterministic path from target(t1)
to source(t2). Also, there is an edge 〈s, t1〉 ∈ E iff there is a (possibly empty) deterministic path
from q0 to source(t1). Note that E can include self-loops. A crucial observation is that when A
is constant ambiguous, then GA is a directed acyclic graph. We say that A is tree-like when GA is
a tree. When GA is a tree, for every v ∈ V \ {s}, we say that u ∈ V is the parent of v if u is the
unique vertex such that 〈v, u〉 ∈ E.

Recall that the OAS problem gets as input a WFA A and the goal is to find the minimal factor
α ≥ 1 such that there is a distribution function D such that AD is an α-approximation of A.
Clearly, the OAS problem is harder than the AS problem, which gets as input both a WFA and the
approximation factor α. We show the following.
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Theorem 6.1 For every fixed k ∈ IN, the OAS problem can be solved in polynomial time for tree-
like k-ambiguous WFAs.

Proof: Consider a tree-like k-ambiguous WFA A = 〈Σ, Q,∆, q0, τ〉 and let GA = 〈V,E〉.
We proceed similarly to Theorem 5.8. We construct a linear program whose optimal solution
corresponds to the minimal approximation factor forA. The variables are X , and we define XD =
{xt : t ∈ V } ⊆ X . Also, xα ∈ X . We introduce constraints so that an assignment ν : XD → IR
corresponds to a distribution function Dν . Note that the constraints are slightly different than the
ones we use in Theorem 5.8 and they rely on the fact that GA is a tree. First, xα ≥ 1 and xs = 1.
Consider q ∈ Q and σ ∈ Σ such that the σ-choices of q are t1, . . . , t`, where ` > 1. Note the
σ-choices of q share a common parent t ∈ V . We introduce a constraint

∑
1≤i≤` xti = xt.

Consider an assignment ν : XD → IR that satisfies the constraints above. We define the
corresponding distribution function Dν as follows. For v ∈ V \ {s} let u ∈ V be the parent of v.
We define Dν(v) = ν(v)

ν(u) . It is not hard to see that Dν is a distribution function. This definition of
Dν has the following important property. Consider a run r ofA that performs the nondeterministic
choices t1, . . . , t`, where for 1 ≤ i < `, the transition ti is the parent of ti+1 in GA. Then, Pr[r] in
ADν is

∏
1≤i≤`Dν(ti) = 1

ν(t1)
ν(t1)
ν(t2) . . .

ν(t`−1)
ν(t`−2)

ν(t`)
ν(t`−1) = ν(t`).

As in Theorem 5.8, we construct the parameterized PWFA AD = 〈Σ, Q,D, q0, τ〉 with the
following change. For t ∈ ∆, if t is not a nondeterministic choices in A, the definition does not
change and we define D(t) = 1. Otherwise, let t′ ∈ V be the parent of t. We define D(t′) =

xt′
xt

.

Next, we construct the parameterized DWFA A′ = 〈Σ, S,∆′, s0, τ
′〉 by applying the deter-

minization construction of Theorem 5.4. We claim that the weights assigned by τ ′ are polynomials
of degree at most one, i.e., they are linear functions. Consider a transition t = 〈s, σ, s′〉 ∈ ∆′,
where s = {〈q1, p1〉, . . . , 〈q`, p`〉}. Consider a run r on a word w ∈ Σ∗ that ends in s. Re-
call that for 1 ≤ i ≤ `, we have pi = Pr[{r′ ∈ runs(P, w) : last(r′) = qi}]. Note that
since A is tree-like, there is exactly one run r′ ∈ runs(P, w) with last(r′) = qi. As in the
above, let t′ be the last probabilistic choice r′ performs, then Pr[r′] = xt′ . Next, recall that
τ ′(t) =

∑
t′=〈qi,σ,q′i〉∈st(s)×{σ}×st(s′)

pi · D(t′) · τ(t′). If t′ is not a nondeterministic choice, then
D(t′) = 1 and pi · τ(t′) is linear. Otherwise, D(t′) =

xt′
pi

and pi ·D(t′) · τ(t′) = xt′ · τ(t′) is linear.

Finally, we construct the parameterized WFA A′′ = 〈Σ, Q × S,∆′′, 〈q0, s0〉, τ ′′〉, where t =
〈〈q, s〉, σ, 〈q′, s′〉〉 ∈ ∆′′ iff t1 = 〈q, σ, q′〉 ∈ ∆ and t2 = 〈s, σ, s′〉 ∈ ∆′ in which case τ ′′(t) =
xα · τ(t1)− τ ′(t2). Since τ ′(t2) is linear and τ(t1) ∈ CQ, we have that τ ′′(t) is linear.

We define the other variables in X as well as the other constraints as in Theorem 5.8. We note
that the constraints are linear, their size is polynomial in the size of A, and there are polynomial
many constraints. Thus, we can find an assignment ν that minimizes xα in polynomial time.
Let α = ν(xα) and Dν as defined above. It is not hard to show that ADν α-approximates A.
Moreover, if there is a factor α ≥ 1 and a distribution function D such that AD α-approximates
A, then similarly to Theorem 5.8 we can find an assignment ν that satisfies the constraints and has
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ν(xα) = α. Thus, the optimal solution of the system coincides with the minimal approximation
factor, and we are done.

Corollary 6.2 The OAS problem for 2-ambiguous WFAs can be solved in polynomial time.
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