
An Improved Algorithm for the Membership Problem
for Extended Regular Expressions

Orna Kupferman? and Sharon Zuhovitzky

Hebrew University, School of Engineering and Computer Science, Jerusalem 91904, Israel
Email: {orna,sharonzu}@cs.huji.ac.il

Abstract. Extended regular expressions (ERE) define regular languages using
union, concatenation, repetition, intersection, and complementation operators.
The fact ERE allow intersection and complementation makes them exponentially
more succinct than regular expressions. The membership problem for extended
regular expressions is to decide, given an expression r and a word w, whether
w belongs to the language defined by r. Since regular expressions are useful
for describing patterns in strings, the membership problem has numerous appli-
cations. In many such applications, the words w are very long and patterns are
conveniently described using ERE, making efficient solutions to the membership
problem of great practical interest.
In this paper we introduce alternating automata with synchronized universality
and negation, and use them in order to obtain a simple and efficient algorithm for
solving the membership problem for ERE. Our algorithm runs in timeO(m ·n2)

and spaceO(m·n+k ·n2), wherem is the length of r, n is the length ofw, and k
is the number of intersection and complementation operators in r. This improves
the best known algorithms for the problem.

1 Introduction
Regular languages of finite words are naturally defined by repeated applications of clo-
sure operators. Regular expressions (RE, for short) contain union (∨), concatenation
(·), and repetition (∗) operators and can define all the regular languages. It turned out
that enriching RE with intersection (∧) and complementation (¬) makes the description
of regular languages more convenient. Indeed, there are evidences for the succinctness
of semi-extended regular expressions (SERE, for short, which extend RE with inter-
section) with respect to RE, and for the succinctness of extended regular expressions
(ERE, for short, which extend RE with both intersection and complementation) with
respect to SERE. For example, specifying the regular language of all words that contain
a non-overlapping repetition of a subword of length n requires an RE of length Ω(2n)

and can be done with an SERE of length O(n2) [Pet02]. Also, specifying the single-
ton language {1n} requires an SERE of length Θ(n) and can be done with an ERE of
length polylog(n) [KTV01]. In general, ERE are nonelementary more succinct than RE
[MS73].
? Supported in part by BSF grant 9800096.

The membership problem for RE and their extensions is to decide, given an RE r

and a word w, whether w belongs to the language defined by r. Since RE are useful
for describing patterns in strings, the membership problem has many applications (see
[KM95] for recent applications in molecular biology). In many of these applications, the
words w are very long and patterns are described using SERE or ERE, making efficient
solutions for the membership problem for them of great practical interest [Aho90].

Studies of the membership problem for RE have shown that an automata-theoretic
approach is useful: a straightforward algorithm for membership in RE translates the RE
to a nondeterministic automaton. For an RE of size m, the automaton is of size O(m),
thus for a word of length n, the algorithm runs in timeO(mn) and spaceO(m) [HU79].
For SERE, a translation to nondeterministic automata involves an exponential blow-up,
and until recently, the best known algorithms for membership in SERE were based on
dynamic programing and ran in timeO(mn3) and spaceO(mn2) [HU79,Hir89]. Myers
describes a technique for speeding up the membership algorithms by logn [Mye92], but
still one cannot expect an O(mn) algorithm for membership in SERE, as the problem
is LOGCFL-complete [Pet02], whereas the one for RE is NL-complete [JR91].

The translation of SERE to automata is not easy even when alternating automata are
considered. The difficulty lies in expressions like (r1 ∧ r2) · r3, where the two copies
of the alternating automaton that check membership of a guessed prefix in r1 and r2
should be synchronized in order to agree on the suffix that is checked for membership
in r3. Indeed, (r1 ∧r2) ·r3 is not equal to (r1 ·r3)∧ (r2 ·r3). In contrast, (r1 ∨r2) ·r3 is
equal to (r1 · r3)∨ (r2 · r3), which is why RE can be efficiently translated to alternating
automata, while SERE cannot [KTV01].

Several models of automata with synchronization are studied in the literature (c.f.,
[Hro86,Slo88,DHK+89,Yam00b]). Essentially, in synchronous alternating automata,
some of the states are designated as synchronization states, and the spawned copies
of the automaton have to agree on positions in the input word in which they visit syn-
chronization states. In [Yam00a], Yamamoto introduces partially input-synchronized
alternating automata, and shows an algorithm for membership in SERE that is based
on a translation of SERE into the new model. While the new algorithm improves the
known algorithms – it runs in timeO(m ·n2) and spaceO(m ·n+k ·n2), where k is the
number of ∧ operators, the model of partially input-synchronized alternating automata
is needlessly complicated, and we found the algorithm that follows very cryptic and
hard to implement. On the other hand, Yamamoto’s idea of using alternating automata
with some type of synchronization as an automata-theoretic framework for solving the
membership problem for SERE seems like a very good direction.

In this paper, we introduce alternating automata with synchronized universality and
negation (ASUN, for short). ASUN are simpler than the model of Yamamoto, but have
a richer structure. In addition to the existential and universal states of usual alternat-
ing automata, ASUN have complementation states, which enable a dualization of the
automaton’s behavior. This enables us to translate an ERE of length m into an ASUN
of size O(m), where synchronized universality is used to handle conjunctions and syn-
chronized negation is used to handle complementation. We show that the membership

problem for ASUN can be solved in time O(m · n2) and space O(m · n + k · n2),
where k is the number of ∧ and ¬ operators. Thus, our bound coincides with that of
Yamamoto’s, but we handle a richer class of regular expressions, and the algorithm that
follows is much simpler and easy to implement (in fact, we describe a detailed pseudo-
code in one page).

2 Definitions
2.1 Extended Regular Expressions

Let Σ be a finite alphabet. A finite word over Σ is a (possibly empty) finite sequence
w = σ1 · σ2 · · ·σn of concatenated letters in Σ. The length of a word w is denoted
by |w|. The symbol ε denotes the empty word. We use w[i, j] to denote the subword
σi · · ·σj of w. If i > j, then w[i, j] = ε. Extended Regular Expressions (ERE) define
languages by inductively applying union, intersection, complementation, concatena-
tion, and repetition operators. Thus, ERE extend regular expressions with intersection
and complementation operators. Formally, for an alphabet Σ, an ERE over Σ is one of
the following.

– ∅, ε, or σ, for σ ∈ Σ.
– r1 ∨ r2, r1 ∧ r2, ¬r1, r1 · r2, or r∗1 , for ERE r1 and r2.

We use L(r) to denote the language that r defines. For the base cases, we have
L(∅) = ∅, L(ε) = {ε}, and L(σ) = {σ}. The operators ∨, ∧, ¬, ·, and ∗ stand for
union, intersection, complementation, concatenation, and repetition (also referred to as
Kleene star), respectively. Formally,

– L(r1 ∨ r2) = L(r1) ∪ L(r2).
– L(r1 ∧ r2) = L(r1) ∩ L(r2).
– L(¬r1) = Σ∗ \ L(r1).
– L(r1 · r2) = {w1 · w2 : w1 ∈ L(r1) and w2 ∈ L(r2)}.
– Let r01 = {ε} and let ri

1 = ri−1

1 · r1, for i ≥ 1. Thus, L(ri
1) contains words that are

the concatenation of i words in L(r1). Then, L(r∗1) =
⋃

i≥0
ri
1.

2.2 Alternating Automata with Synchronized Universality

An alternating automaton with synchronized universality (ASU, in short) is a seven-
tuple A = 〈Σ,Q, µ, q0, δ, ψ, F 〉, where,

– Σ is a finite input alphabet.
– Q is a finite set of states.
– µ : Q → {∨,∧} maps each state to a branching mode. The function µ induces

a partition of Q to the sets Qe = µ−1(∨) and Qu = µ−1(∧) of existential and
universal states, respectively.

– q0 ∈ Q is an initial state.
– δ : Q× (Σ ∪ {ε}) → 2Q is the transition function.

– ψ : Qu → Q is a synchronization function.
– F ⊆ Qe is a set of final states.

ASU run on finite words over Σ. Consider a word w = σ1, . . . , σn. For technical
convenience, we also refer to σn+1 = ε. During the run of A on w, it splits into several
copies. A position of a copy of A is a pair 〈q, i〉 ∈ Q× {0, . . . , n}, indicating that the
copy is in state q, reading the letter σi+1. If q ∈ Qe, we say that 〈q, i〉 is an existential
position. Otherwise, it is a universal position. The run of A starts with a single copy
in the initial position 〈q0, 0〉. For 0 ≤ i ≤ n, a position 〈q′, i′〉 is a σi+1-successor of
a position 〈q, i〉 if q′ ∈ δ(q, σi+1) and i′ = i + 1. A position 〈q′, i′〉 is an ε-successor
of 〈q, i〉 if q′ ∈ δ(q, ε) and i′ = i. Finally, 〈q′, i′〉 is a successor of 〈q, i〉 if 〈q′, i′〉 is
a σi+1-successor or an ε-successor of 〈q, i〉. Note that nondeterministic automata with
ε-moves are a special case of ASU where all states are existential, in which case the
function ψ is empty.

Consider a copy of A in position 〈q, i〉. If q is an existential state, the copy can move
to one of the states in δ(q, σi+1) ∪ δ(q, ε), thus the new position of the copy is some
σi+1 successor or ε-successor of 〈q, i〉. If q is a universal state, the copy should move
to all the states in δ(q, σi+1) ∪ δ(q, ε). Thus, the copy splits into copies that together
cover all σi+1-successors and ε-successors of 〈q, i〉. The computation graph of A on w
embodies all the possible runs of A on w and is defined as follows.

Definition 1. The computation graph of A on an input word w = σ1 . . . σn is the
directed graph G = 〈V,E〉, where V = Q × {0, . . . , n}, and E(〈q, i〉, 〈q′, i′〉) iff
〈q′, i′〉 is a successor of 〈q, i〉.

Note that |V | = m · (n + 1), for m = |Q|. A leaf of G is a position 〈q, i〉 ∈ V

such that for no 〈q′, i′〉 ∈ V we have E(〈q, i〉, 〈q′, i′〉). A path from 〈q, i〉 to 〈q′, i′〉
in G is a sequence of positions p1, p2, . . . , pk , such that p1 = 〈q, i〉, pk = 〈q′, i′〉
and E(pi, pi+1) for 1 ≤ i < k. A run of A on w is obtained from the computation
graph by resolving the nondeterministic choices in existential positions. Thus, a run
is obtained from G by removing all but one of the edges that leave each existential
position. Formally, we have the following.

Definition 2. Let G = 〈V,E〉 be the computation graph of A on w. A run of A on w is
a graph Gr = 〈Vr, Er〉 such that Vr ⊆ V , Er ⊆ E and the following hold.

– 〈q0, 0〉 ∈ Vr.
– Let 〈q, i〉 ∈ Vr be a universal position. Then for every position 〈q′, i′〉 ∈ V such

that E(〈q, i〉, 〈q′, i′〉), we have 〈q′, i′〉 ∈ Vr and Er(〈q, i〉, 〈q′, i′〉).
– Let 〈q, i〉 ∈ Vr be an existential position. Then either i = n or there is a single

position 〈q′, i′〉 ∈ Vr such that Er(〈q, i〉, 〈q′, i′〉).

Note that when a copy of A is in an existential position 〈q, n〉 and δ(q, ε) 6= ∅, the
copy can choose between moving to an ε-successor of q or having q as its final state.
In contrast, if 〈q, n〉 is universal, the copy must continue to all ε-successors of q. Note

also that the computation graphG and a runGr may have cycles. However, these cycles
may contain only ε-transitions.

Recall that the synchronization function ψ maps each universal state q to a state in
Q. Intuitively, whenever a copy of A in state q is split into several copies, the synchro-
nization function forces all these copies to visit the state ψ(q) and to do so simultane-
ously. We now formalize this intuition. Let Gr be a run of an ASU A on an input word
w. Let q ∈ Q be a universal state and s = ψ(q). Consider a position 〈q, i〉. We say that
a position 〈s, j〉, for j ≥ i, covers 〈q, i〉, if there is a path from 〈q, i〉 to 〈s, j〉 and for
every position 〈s′, j′〉 on this path, we have s′ 6= s. In other words, 〈s, j〉 is the first
instance of s on a path leaving 〈q, i〉. We say that 〈q, i〉 is good in Gr if there is exactly
one position 〈s, j〉 that covers 〈q, i〉 and all the paths in Gr that leave 〈q, i〉 eventually
reach 〈s, j〉.

A run Gr = 〈V,Er〉 of an ASU A on an input word w = σ1 . . . σn is accepting if
for all leaves 〈q, i〉 ∈ V , we have q ∈ F and i = n, and all the universal positions are
good in Gr . A word w is accepted by A if there is an accepting run of A on w. The
language of A, denoted L(A), is the set of all words accepted by the ASU A.

Example 1. Let Σ = {0, 1}. Consider the language L ⊆ Σ∗, where a word w ∈ Σ∗ is
inL iff the (i+1)-th letter inw is 0, for some i = 7 (mod 12). Thus, if we take τ = 0+

1, then L = ((τ12)∗ · τ7) ·0 · τ∗. A nondeterministic automaton that recognizesL has at
least 13 states. For an integer n, we have n = 7 (mod 12) if n = 1 (mod 3) and n =

3 (mod 4). Thus, L can be expressed by the ERE r = (((τττ)∗ · τ)∧ ((ττττ)∗τττ)) ·
0 · τ∗. For example, the word w1 = 1701 is in L while the word w2 = 10101111 is not.
Note that w2 satisfies both conjuncts of r, but not in the same prefix. We show now an
ASU A with 10 states that recognizes L. A = 〈{0, 1}, {q0, . . . , q9}, µ, q0, δ, ψ, {q9}〉,
where q0 is the only universal state, with ψ(q0) = q8, and the function δ is described in
Figure 1.

A run of A on a word w splits in q0 into two copies. One copy makes a nondeter-
ministic move to q8 after reading a prefix of length 1 (mod 3) and the other copy does
the same after reading a prefix of length 3 (mod4). If the two copies reach q8 at the
same place in the input word, then 〈q0, 0〉 is good and if the next letter in the input is 0,
the automaton moves to an accepting sink. If the two copies reach q8 eventually but not
at the same time, it means that both conjuncts were satisfied but not necessarily in the
same prefix, and the run is not accepting.

2.3 Alternating Automata with Synchronized Universality and Negation

Alternating automata with synchronized universality and negation (ASUN, in short)
extend ASU by having, in addition to existential and universal states, also negation
states. It is easy to understand the task of negation states and how an ASUN runs on
an input word by taking the game-theoretic approach to alternating automata. Let us
first explain this approach for ASU. Consider an ASU A = 〈Σ,Q, µ, q0, δ, ψ, F 〉 and
an input word w = σ1 · · ·σn. We can view the behavior of A on w as a game between
two players: player 1, who wants to prove that A accepts w, and player 2, who wants

q9q8

q2
0, 1

0, 1

0, 1

ε

ε

q4 q5
0, 1 0, 1

q6 q7
0, 1

q3
0, 1

q1

q0

0, 1

0, 1

0 1

0

Fig. 1. An ASU for (((0 + 1)12)∗ · (0 + 1)7) · 0 · (0 + 1)∗

to prove that A rejects w. For two positions 〈q, i〉 and 〈s, j〉, with j ≥ i, we say that
player 1 wins the game from 〈q, i〉 to 〈s, j〉, denoted 〈q, i〉 → 〈s, j〉, if A with initial
state q and final state s accepts the word w[i+ 1, j]. Otherwise, player 1 loses the game
from 〈q, i〉 to 〈s, j〉, denoted 〈q, i〉 6→ 〈s, j〉. We also use 〈q, i〉 7→ 〈s, j〉 to indicate that
A with initial state q and final state s accepts the word w[i + 1, j] with only a single
visit to s. Note that A accepts w if there is s ∈ F such that 〈q0, 0〉 → 〈s, n〉.

The relation → can be defined inductively as follows.

– For q ∈ Qe, we have that 〈q, i〉 → 〈s, j〉 iff j = i and s = q, or j = i and s ∈
δ(q, ε), or j = i+1 and s ∈ δ(q, σi+1), or there is 〈q′, i′〉 such that 〈q, i〉 → 〈q′, i′〉
and 〈q′, i′〉 → 〈s, j〉.

– For q ∈ Qu, we have that 〈q, i〉 → 〈s, j〉 iff there is i ≤ j ′ ≤ j such that
〈ψ(q), j′〉 → 〈s, j〉 and for all q′ and i′, if i′ = i and q′ ∈ δ(q, ε), or i′ = i+ 1 and
q′ ∈ δ(q, σi+1), then 〈q′, i′〉 7→ 〈ψ(q), j′〉.

Intuitively, when q ∈ Qe, we only have to find a successor of 〈q, i〉 from which an
accepting run continues. On the other hand, when q ∈ Qu, we have to find a position
〈ψ(q), j′〉 that covers 〈q, i〉, witnesses that 〈q, i〉 is good, and from which an accepting
run continues.

The negation states of an ASUN dualize the winner in the game between the two
players. Like universal states, negation states are mapped into synchronization states.
Here, the task of a synchronization state is to mark the end of the scope of the nega-
tion, which may be before the end of the input word1. Formally, an ASUN is A =

〈Σ,Q, µ, q0, δ, ψ, F 〉, where Σ, Q, q0, and F are as in ASU, and

– µ : Q→ {∨,∧,¬} may now map states to ¬, and we use Qn = µ−1(¬) to denote
the set of negation states.

1 Readers familiar with alternating automata know that it is easy to complement an alternating
automaton by dualizing the function µ and the acceptance condition. A similar complementa-
tion can be defined for ASU, circumventing the need for negation states. We found it simpler to
add negation states with synchronization, as they enable us to keep the structure of the ASUN
we are going to associate with ERE very restricted (e.g., a single accepting state), which leads
to a simple membership algorithm.

– The transition function δ : Q × (Σ ∪ {ε}) → 2Q is such that for all q ∈ Qn,
we have δ(q, ε) = {q′}, for some q′ 6= q, and δ(q, σ) = ∅ for all σ ∈ Σ. Thus,
each negation state has a single ε-successor, and no other successors. For states in
Qe ∪Qu, the transition function is as in ASU.

– The synchronization function ψ : Qu ∪Qn → Q now applies to both universal and
negation states.

The computation graph G of an ASUN A on an input word w is defined exactly
as the computation graph for ASU. We define acceptance by an ASUN in terms of the
game between players 1 and 2. The relation → is defined as above for states in Qe and
Qu. In addition, for every q ∈ Qn with δ(q, ε) = {q′}, we have that 〈q, i〉 → 〈s, j〉 iff
there is i ≤ j′ ≤ j such that 〈q′, i〉 6→ 〈ψ(q), j′〉 and 〈ψ(q), j′〉 → 〈s, j〉. Thus, A with
initial state q and final state s accepts w[i+ 1, j] if there is i ≤ j ′ ≤ j such that A with
initial state q′ and final state ψ(q) rejects w[i + 1, j ′] and A with initial state ψ(q) and
final state s accepts w[j ′ + 1, j]. We then say that the position 〈ψ(q), j ′〉 covers 〈q, i〉.

3 ASUN for ERE
Let Σ be a finite alphabet. Given an ERE r of length m over Σ, we build an ASUN
Ar over Σ with O(m) states such that L(r) = L(Ar). The construction is similar
to the one used for translating regular expression into nondeterministic automata with
ε-transitions [HMU00]. The treatment of conjunctions is similar to the one described
by Yamamoto in [Yam00a], adjusted to our simpler type of automata. The treatment of
negations is by negation states.

Theorem 1. Given an ERE r of lengthm, we can construct an ASUN Ar of size O(m)

such that L(r) = L(Ar). Furthermore, Ar has the following properties:

1. Ar has exactly one accepting state, and there are no transitions out of the accepting
state.

2. There are no transitions into the initial state.
3. The function ψ is one-to-one.
4. Every universal state has exactly two ε-successors, and no other successors.
5. For every existential state q, exactly one of the following holds: q has no successors,
q has one or two ε-successors, or q has one σ-successor for exactly one σ ∈ Σ.

6. For every state q, exactly one of the following holds: q is the initial state, q is a σ-
successor of a single other state, or q is an ε-successor of one or two other states.

Proof: The construction of Ar is inductive, and we describe it in Figure 2. For the
basic three cases of r = ∅, ε, or σ, the only states of Ar are qin and qfin . For the cases
r = r1 ∨ r2, r1 ∧ r2, r1 · r2, r∗1 , or ¬r1, we refer to the ASUN A1 and A2 of the SERE
r1 and r2. In particular, the state space of A1 is Q1, it has an initial state qin1 and final
state qfin

1 , and similarly for A2.
The initial state of the ASUN associated with r1∧r2 is universal, and the two copies

has to synchronize in its final state; thus ψ(qin) = qfin . This guarantees that the two

qfin

r = r1 · r2

q
in
2

A2 q
fin
2

ε
A1 q

fin
1

q
in
1

qin qfin

r = ε

ε

qin qfin

ε ε

ε

r = r∗1

q
in
1

A1 q
fin
1

ε

qin qfin

r = σ

σ

qin qfin

ε ε
q
in
1

A1 q
fin
1

r = ¬r1

r = ∅

qin qfin

r = r1 ∨ r2
r = r1 ∧ r2

q
in
1

q
fin
1

A1

q
in
2

q
fin
2

A2

ε

εε

ε

qin

Fig. 2. The ASU Ar for the ERE r.

copies proceed on words of the same length. Similarly, the initial state of the ASUN
associated with ¬r1 is a negation state, and the scope of the negation is bounded to the
ASUN A1; thus ψ(qin) = qfin . All the other states are existential. ut

Each state of Ar is associated with a subexpression of r. In particular, the universal
and negation states of Ar are associated with conjunctions and negations, respectively.
We refer to ∧ and ¬ as special operators, refer to states q ∈ Qu ∪Qn as special states,
and refer to positions 〈q, i〉 ∈ (Qu ∪ Qn) × {0, . . . , n} as special positions. In order
to analyze the structure of Ar, we introduce the function ϕ : Q → Qu ∪ Qn ∪ {⊥}.
Intuitively,ϕ(q), for a state q ∈ Q, is the special state associated with innermost special
operator in r in which the subexpression associated with q is strictly nested. If no such
special operator exists, then ϕ(q) = ⊥. Note that we talk about strict nesting, thus
ϕ(q) 6= q. The formal definition of ϕ is inductive, and we use the notations in Figure 2.
Thus, if r = ∅, ε, or σ, we refer to qin and qfin , and if r that has r1 or r2 as immediate
subexpressions, we also refer to Q1 andQ2 and the functions ϕ1 and ϕ2 defined for the
ASUN A1 and A2. Now, for r = ε, ∅, σ, r1 ∨ r2, r1 · r2, or r∗1 , and a state q ∈ Ar, we
have

ϕ(q) =

[

⊥ If q = qin or q = qfin .
ϕi(q) If q ∈ Qi, for i ∈ {1, 2}.

Then, for r = r1 ∧ r2 or r = ¬r1, and a state q ∈ Ar, we have

ϕ(q) =

⊥ If q = qin or q = qfin .
ϕi(q) If q ∈ Qi, for i ∈ {1, 2}, and ϕi(q) 6= ⊥.
qin If q ∈ Qi, for i ∈ {1, 2}, and ϕi(q) = ⊥.

Let ϕ1(q) = ϕ(q), and let ϕi+1(q) = ϕ(ϕi(q)), for i ≥ 1. Then, ϕ∗(q) = {ϕi(q) :

i ≥ 1}.

Lemma 1. Consider the computation graph G of an ASUN Ar constructed in Theo-
rem 1 on an input word w. Let q be a special state and let 〈q, i〉 be a position in G. The
following hold.

1. If there is a path from 〈q, i〉 to 〈qfin , j〉 in G then there is a position 〈s, k〉 along
this path that covers 〈q, i〉.

2. If 〈s, k〉 covers 〈q, i〉 in G, then if there is another special position 〈q ′, i′〉 along the
path between 〈q, i〉 and 〈s, k〉 then there is also a position 〈s′, k′〉 along the path
such that 〈s′, k′〉 covers 〈q′, i′〉.

3. Let p be a path in G. A position 〈s, k〉 on p may cover at most one special position
on p.

4. If 〈s, k〉 covers 〈q, i〉 in G, then for every position 〈q′, i′〉 along the path between
〈q, i〉 and 〈s, k〉, we have q ∈ ϕ∗(q′).

4 The Membership Problem
Consider an ERE r. The membership problem is to decide, given w ∈ Σ∗, whether
w ∈ L(r).

Theorem 2. The membership problem for an ERE r of size m and a word w of length
n is decidable in time O(m · n2) and space O(m · n+ k · n2), where k is the number
of special operators in r.

Proof: We describe an algorithm that runs in timeO(m·n2) and spaceO(m·n+k·n2),
and determines the membership of w in L(r). A pseudo-code for the algorithm appears
in Figure 3. Given an ERE r, we build the ASUN A = 〈Σ,Q, µ, qin , δ, ψ, {qfin}〉 ac-
cording to Theorem 1. The ASUN A has O(m) states. Next, we build the computation
graph G of A on w. As mentioned before, G has O(m · n) nodes. According to Theo-
rem 1, every state q ∈ Q has at most two ε-successors or exactly one σ-successor, for
exactly one σ ∈ Σ. Therefore,G has O(m · n) edges.

The algorithm operates on G. It begins by determining a full order ≤ on the special
positions of G. The full order is an extension of the partial order ≤′, where 〈q′, i′〉 ≤′

〈q, i〉 iff ϕ(q′) = q. Note that according to Lemma 1(4), in every path in G from
a special position 〈q, i〉 to a covering position 〈s, j〉 of it, if there is another special
position 〈q′, i′〉 on this path, then 〈q′, i′〉 ≤ 〈q, i〉. In addition, according to Lemma 1(2),
the path also includes some position 〈s′, j′〉 that covers 〈q′, i′〉.

The algorithm proceeds by calling the function Find Sync for each of the special
positions, by the order of ≤ (starting with the least element according to ≤; that is,
innermost states are processed first). The function Find Sync(〈q, i〉) constructs the set
S〈q,i〉, which consists of indices of covering positions of 〈q, i〉. Recall that universal
positions have two ε-successors, denoted left-child and right-child, while negation posi-
tions have exactly one ε-successor, denoted left-child. The construction of S〈q,i〉 begins

function Membership Check(G)

let 〈q1, i1〉 ≤ 〈q2, i2〉 ≤ · · · ≤ 〈ql, il〉 be a full order on the special positions of G,
such that ≤ extends the partial order ≤′ given by 〈q, i〉 ≤′ 〈q′, i′〉 iff ϕ(q) = q′.

for all q ∈ Q, 0 ≤ i ≤ n do
〈q, i〉.index = −1;
〈q, i〉.visited = false;

for j = 1 to l do S〈qj ,ij〉 = Find Sync(〈qj , ij〉);
return(Find Path(〈qin , 0 〉));

function Find Sync(〈qj , ij〉)

if qj is a universal state then
S〈qj ,ij ,left〉 := ∅; S〈qj ,ij ,right〉 := ∅;
Update(left child(〈qj , ij〉), 〈qj , ij〉, left);
Update(right child(〈qj , ij〉), 〈qj , ij〉, right);
return(S〈qj ,ij ,left〉 ∩ S〈qj ,ij ,right〉);

else // qj is a negation state
S〈qj ,ij ,left〉 := ∅; Update(child(〈qj , ij〉), 〈qj , ij〉, left);
return({ij , . . . , n} \ S〈qj ,ij ,left〉);

procedure Update(〈s, j〉, 〈q, i〉, d)
if 〈s, j〉.index = i or 〈s, j〉 is a leaf then return;
〈s, j〉.index := i;
if 〈s, j〉 is existential then

if |δ(s, ε)| = 2 then
Update(left child(〈s, j 〉), 〈q , i〉, d);
Update(right child(〈s, j 〉), 〈q , i〉, d);

else if child(〈s, j〉) = 〈ψ(q), j〉 then S〈q,i,d〉 := S〈q,i,d〉 ∪ {j}

else Update(left child(〈s, j〉), 〈q, i〉, d);
else // 〈s, j〉 is special

for every j′ in S〈s,j〉 do Update(〈ψ(q), j′〉, 〈q, i〉, d);
return;

function Find Path(〈q, i〉)

if 〈q, i〉 is accepting then return(true);
if 〈q, i〉.visited or 〈q, i〉 is a leaf then return(false);
〈q, i〉.visited := true;
if 〈q, i〉 is existential then

if |δ(q, ε)| = 2 then
return(Find Path(right child(〈q , i〉)) or Find Path(left child(〈q , i〉)));

return(Find Path(child(〈q , i〉)));
else: // 〈q, i〉 is special

for every j in S〈q,i〉 do
if Find Path(〈ψ(q), j 〉) then return(true);

return(false);

Fig. 3. The membership-checking algorithm.

by initializing two empty sets, S〈q,i,left〉 and S〈q,i,right〉 (in the case where q is a nega-
tion state, the second set is redundant). Next, the procedure Update(〈s, j〉, 〈q, i〉, d) is
called, with d being either left or right. This procedure searches G in DFS manner for
covering positions of 〈q, i〉 starting from the position 〈s, j〉. The indices of the covering
positions are accumulated in the set S〈q,i,d〉. Thus, if q is a universal state, Update is
called for the left and right children of 〈q, i〉, and the results of the two calls are inter-
sected, forming the set S〈q,i〉, which consists of covering positions reachable on both
sides. If q is a negation state, then only one call for Update is necessary. In this case, the
negation is achieved by complementing the set retrieved by Update with respect to the
set {i, . . . , n} of all potential indices of covering positions for 〈q, i〉. Note that during
the search held by Update, if a special position 〈q′, i′〉 is found then we already have
S〈q′,i′〉. Therefore the search may continue from positions in S〈q′,i′〉, if there are any.
This point is crucial for the efficiency of the algorithm.

After the calls for Find Sync for all special positions are completed, the function
Find Path is called. This function starts at the initial position 〈qin , 0〉 searching the
graph for the accepting position 〈qfin , n〉 in a DFS manner. Like the Update procedure,
whenever a special position 〈q, i〉 is found, the search continues from positions in S〈q,i〉,
if there are any. The algorithm returns the result of the function Find Path, which is true
iff the accepting position was found.

For every position 〈q, i〉 of G, we keep a boolean flag 〈q, i〉.visited . Find Path sets
the flag for every position it visits, thus avoiding any type of repetitions. In addition,
for every position 〈q, i〉 of G, we keep an integer variable 〈q, i〉.index . This variable is
used in the Update procedure and it maintains the index of the special position that we
are currently trying to cover. This allows the algorithm to avoid cycling and repetition
of bad paths while trying to cover a certain special position. However, multiple checks
of a position are allowed when done in different contexts, that is, while trying to cover
two different special positions. The reason for allowing this kind of repetition is the
possibility of having a position 〈s, j〉 that might be visited in paths from two special po-
sitions 〈q, i〉 and 〈q, i′〉. In this case we do not have previous knowledge about covering
positions, and we need to go further with the check again. This makes our algorithm
quadratic in n rather than linear in n.

The correctness of the algorithm follows from the following claim.

Claim. Let S〈q,i〉 be the set constructed for 〈q, i〉 in Find Sync(〈q, i〉). For every j ∈
{0, . . . , n}, we have that 〈q, i〉 7→ 〈ψ(q), j〉 iff j ∈ S〈q,i〉.

It is left to show that the algorithm runs in timeO(m·n2) and spaceO(m·n+k·n2).
For keeping the computation graph, the algorithm requires O(m · n) space. If there
are k special operators in r, then there are k special states is A. Since every state in
A corresponds to at most n + 1 positions in G, we have O(k · n) special positions
in G. For each special position we keep at most two sets of at most n + 1 indices.
Therefor, the total space required for storing these sets is O(k · n2), resulting in overall
of O(m · n+ k · n2) space.

Let q be a special state in A. In each call to Update(〈s, j〉, 〈q, i〉, d), we haveϕ(s) =

q. Therefore, there are O(n2) calls for Update involving q and s. Note that the first call

to Update(〈s, j〉, 〈q, i〉, d) changes 〈s, j〉.index to i. Hence, the next calls would return
immediately as 〈s, j〉.index = i . We have O(m) states s, thus the Update procedure
is called O(m · n2) times. The function Find Path is called at most twice for each
position, as the second call returns immediately. Therefore, there are only O(m · n)

calls to Find Path . As mentioned before, the construction of A and G can be done in
time O(m · n). Hence, the overall running time of the algorithm is O(m · n2). ut

References
[Aho90] A.V. Aho. Algorithms for finding patterns in strings. Handbook of Theoretical Com-

puter Science, pages 255–300, 1990.
[DHK+89] J. Dassow, J. Hromkovic, J. Karhumaki, B. Rovan, and A. Slobodova. On the power

of synchronization in parallel computing. In Proc. 14th International Symp. on Math-
ematical Foundations of Computer Science, volume 379 of Lecture Notes in Com-
puter Science, pages 196–206. Springer-Verlag, 1989.

[Hir89] S. Hirst. A new algorithm solving membership of extended regular expressions.
Technical report, Basser Department of Computer Science, The University of Syd-
ney, 1989.

[HMU00] J.E. Hopcroft, R. Motwani, and J.D. Ullman. Introduction to Automata Theory, Lan-
guages, and Computation (2nd Edition). Addison-Wesley, 2000.

[Hro86] J. Hrokovic. Tradeoffs for language recognition on parallel computing models. In
Proc. 13th Colloq. on Automata, Programming, and Languages, volume 226 of Lec-
ture Notes in Computer Science, pages 156–166. Springer-Verlag, 1986.

[HU79] J.E. Hopcroft and J.D. Ullman. Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley, 1979.

[JR91] T. Jiang and B. Ravikumar. A note on the space complexity of some decision prob-
lems for finite automata. Information Processing Letters, 40:25–31, 1991.

[KM95] James R. Knight and Eugene W. Myers. Super-pattern matching. Algorithmica,
13(1/2):211–243, 1995.

[KTV01] O. Kupferman, A. Ta-Shma, and M.Y. Vardi. Counting with automata. Submitted,
2001.

[MS73] A.R. Meyer and L.J. Stockmeyer. Word problems requiring exponential time: Pre-
liminary report. In Proc. 5th ACM Symp. on Theory of Computing, pages 1–9, 1973.

[Mye92] G. Myers. A four russians algorithm for regular expression pattern matching. Journal
of the Association for Computing Machinery, 39(4):430–448, 1992.

[Pet02] H. Petersen. The membership problem for regular expressions with intersection is
complete in LOGCFL. In Proc. 18th Symp. on Theoretical Aspects of Computer
Science, Lecture Notes in Computer Science. Springer-Verlag, 2002.

[Slo88] A. Slobodova. On the power of communication in alternating machines. In Proc. 13th
International Symp. on Mathematical Foundations of Computer Science, volume 324
of Lecture Notes in Computer Science, pages 518–528, 1988.

[Yam00a] H. Yamamoto. An automata-based recognition algorithm for semi-extended regular
expressions. In Proc. 25th International Symp. on Mathematical Foundations of Com-
puter Science, volume 1893 of Lecture Notes in Computer Science, pages 699–708.
Springer-Verlag, 2000.

[Yam00b] H. Yamamoto. On the power of input-synchronized alternating finite automata. In
Proc. 6th International Computing and Combinatorics Conference, volume 1858 of
Lecture Notes in Computer Science, pages 457–466, 2000.

