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Abstract

In automated synthesis, we transform a specification intgstem that is guaranteed to satisfy
the specification. In spite of the rich theory developed éonporal synthesis, little of this theory has
been reduced to practice. This is in contrast with modetkimg theory, which has led to industrial
development and use of formal verification tools. We addteissproblem here by considering a
certain class of PSL properties; this class covers mostepthperties used in practice by system
designers. We refer to this class as the class of triggereptiep.

We show that the synthesis problem for trigger propertieaase amenable to implementation
than that of general PSL properties. While the problem i$ 2EXPTIME-complete, it can be
solved using techniques that are significantly simpler the&ntechniques used in general temporal
synthesis. Not only can we avoid the use of Safra’s detemaiitin, but we can also avoid the use of
progress ranks. Rather, the techniques used are basedssitalaubset constructions. This makes
our approach amenable also to symbolic implementation efisas an incremental implementation,
in which the specification evolves over time.

1 Introduction

One of the most significant developments in the area of program verificatemthe last two decades
has been the development of algorithmic methods for verifying temporaifispéions offinite-state
programs; see [CGP99]. A frequent criticism against this approastever, is that verification is done
after significant resources have already been invested in the developnieetmbgram. Since programs
invariably contain errors, verification simply becomes part of the debgguiocess. The critics argue
that the desired goal is to use the specification in the program developroeasp in order to guarantee
the design of correct programs. This is calfgdgram synthesis

The classical approach to program synthesis is to extract a progrvemafproof that the specification
is satisfiable [BDF04, EC82, MW80, MW84]. In the late 1980s, several researchatizee that the
classical approach to program synthesis is well suitetbgedsystems, but not topen(also calledeac-
tive) systems [ALW89, Dil89, PR89a]. In reactive systems, the progranaictemith the environment,
and a correct program should satisfy the specification with respectéavatbnments. Accordingly, the
right way to approach synthesis of reactive systems is to consider théaitaa a (possibly infinite)
game between the environment and the program. A correct programedder viewed as a winning
strategy in this game. It turns out that satisfiability of the specification is rifitisat to guarantee the
existence of such a strategy. Abadi et al. called specifications for vehweimning strategy existeal-
izable Thus, a strategy for a program with inputsliand outputs irD maps finite sequences of inputs
(words in(2')* — the actions of the environment so far) to an outputdn-2a suggested action for the
program. Thus, a strategy can be viewed as a labeling of a tree with ditidnby labels in 2.

The traditional algorithm for finding a winning strategy transforms the spadtidin into a par-
ity automaton over such trees such that a program is realizable precisety thils tree automaton is
nonempty, i.e., it accepts some infinite tree [PR89a]. A finite generator offiaitériree accepted by
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this automaton can be viewed as a finite-state program realizing the speaificitis is closely re-
lated to the approach taken in [BL69, Rab72] in order to solve Chustivability problen{Chu63]. In
[KV00, PR89b, WTD91, Var95] it was shown how this approach to progsynthesis can be carried out
in a variety of settings.

In spite of the rich theory developed for program synthesis, and ret@nonstrations of its ap-
plicability [BGJ"07], little of this theory has been reduced to practice. Some people arguditht
because the realizability problem for linear-temporal logic (LTL) spedifioa is 2EXPTIME-complete
[PR89a, R0s92], but this argument is not compelling. First, experieitbeverification shows that even
nonelementary algorithms can be practical, since the worst-case complegg#yndbarise often. For
example, while the model-checking problem for specifications in secatel-tirgic has nonelementary
complexity, the model-checking tool ™A [EKM98, Kla98] successfully verifies many specifications
given in second-order logic. Furthermore, in some sense, synthesishamer than verification. This
may seem to contradict the known fact that while verification is “easy” (fime¢éhe size of the model
and at most exponential in the size of the specification [LLP85]), syntisdsasd (2EXPTIME-complete).
There is, however, something misleading in this fact: while the complexity of egigtlis given with re-
spect to the specification only, the complexity of verification is given witheesfp the specification
and the program, which can be much larger than the specification. In partitis shown in [R0os92]
that there are temporal specifications for which every realizing prognast be at least doubly expo-
nentially larger than the specifications. Clearly, the verification of suchrpms is doubly exponential
in the specification, just as the cost of synthesis.

As argued in [KPV06], we believe that there are two reasons for theofgmlactical impact of synthe-
sis theory. The first is algorithmic and the second is methodological. Coriggtehe algorithmic prob-
lem. The traditional approach for constructing tree automata for realiziatggtes uses determinization
of Buichi automata. Safra’s determinization construction has been notoriossyare to efficient im-
plementations [ATWO05, THBQ@, results in automata with a very complicated state space, and involves
the parity acceptance condition. The best-known algorithms for parityatremmata emptiness [Jur0Q]
are nontrivial already when applied to simple state spaces. Implementing th&xp of the messy state
space that results from determinization is highly complex, and is not amenatyeituizations and a
symbolic implementation. In [KV05c, KPV06], we suggested an alternatipecaeh, which avoids de-
terminization and circumvents the parity condition. While the Safraless agpisacuch simpler and
can be implemented symbolically, it is based on progress ranks. The needifmifate ranks requires
multi-valued data structures, making the symbolic implementation difficult [TVOQI)RThis is in
contrast with symbolic implementations of algorithms based on the subset aiostrwithout ranks,
which perform well in practice [MS08a, MS08b].

Another major issue is methodological. The current theory of prograrthegis assumes that one
gets a comprehensive set of temporal assertions as a starting pointamh be realistic in practice.
A more realistic approach would be to assumeanlvingformal specification: temporal assertions can
be added, deleted, or modified. Since it is rare to have a complete seedi@ssat the very start of
the design process, there is a need to devielogmentakynthesis algorithms. Such algorithms can, for
example, refine designs when provided with additional temporal properties

One approach to tackle the algorithmic problems has been to restrict the fcidksved specifica-
tion. In [AMPS98], the authors studied the case where the LTL formukasfahe formd p, ¢ p, O <C p,
or<&Qd p In [AT04], the authors considered the fragment of LTL consisting afléan combinations

1An alternative construction is equally hard [ATWO05]. Piterman’s improeat of Safra includes the tree structures that
proved hard to implement [Pit07].
2The setting in [AMPS98] is of real-time games, which generalizes synthesis
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of formulas of the fornid p, as well as a richer fragment in which the operator is allowed. Since the
games corresponding to formulas of these restricted fragments are sttmpmthesis problem is much
simpler; it can be solved in PSPACE or EXPSPACE, depending on the gpeadiment. Anther frag-
ment of LTL, termedGR(1), was studied in [PPS06]. In th@R(1) fragment (generalized reactivitl))
the formulas are of the forf0 G pr AOC paA--- OO pp) — (OCPADC g A--- 0O an), where each
pi andq; is a Boolean combination of atomic propositions. It is shown in [PPS06] th#tifragment,
the synthesis problem can be solved in EXPTIME, and with @lgmn- 2/A7)3) symbolic operations,
whereAP is the set of atomic propositions.

We continue the approach on special classes of temporal propertiesheitim of focusing on
properties that are used in practice. We study here the synthesis prableRIGGER LOGIC Modern
industrial-strength property-specification languages such as SuB&[BL], ForSpec [AFF02], and
the recent standards PSL [EF06], and SVA [VRO05] include regulpressions.TRIGGER LOGICIiS a
fragment of these logics that covers most of the properties used in grégtisystem designers. Tech-
nically, TRIGGER LOGICconsists of positive Boolean combinations of assertions about regatsev
connected by the usual regular operators as well as temporal implicati¢tiriggers”). For example,
the TRIGGER LOGICformula (true[x|; req; ack)— (true[x]; grant) holds in an infinite computation if ev-
ery request that is immediately followed by an acknowledge is eventually fetidwy a grant. Also,
the TRIGGER LOGICformula (truefx|; err)—!(true[x];ack) holds in a computation if once an error is
detected, no acks can be sent.

We show thatrRIGGER LoGIcformulas can be translated to deterministitcBi automata using the
two classical subset constructions: the determinization construction 8BJRd the break-point con-
struction of [MH84]. Accordingly, while the synthesis problem f®IGGER LOGICIis still 2EXPTIME-
complete, our synthesis algorithm is significantly simpler than the one usedéregggmporal synthesis.
We show that this also yields several practical consequences: awaapps quite amenable to symbolic
implementation, it can be applied to evolving specifications in an incrementafasimnd it can also be
applied in an assume-guarantee setting. We believe that the simplicity of thitratgand its practical
advantages, coupled with the practical expressivenes®IGFGER LOGIG make an important step in
bridging the gap between temporal-synthesis theory and practice.

2 Trigger Logic

The introduction of temporal logic to computer science, in [Pnu77], wastersfeed point in the speci-
fication of reactive systems, which led to the development of model chepRBB99]. The success of
model checking in industrial applications led to efforts to develop “industtatiporal logics such as
Sugar [BBE 01] and ForSpec [AFF02], as well as two industry-standard languages, PSL [EF06] and
SVA [VRO05].

A common feature of these languages is the use of regular expressi@sctibd temporal patterns.
For example, the regular expressiequesttrue’; grant,true’; ackdescribes an occurrencerefjuest
followed bygrant, followed byack where these events are separated by nonempty intervals of arbitrary
length. The advantage of using regular expressions over the classimgabral operators of LTL is that
it avoids the need for deep nesting of untils. For that reason, regutaessions have proved to be
quite popular with verification engine@stp the point that the regular layer is that main layer of SVA
[VRO5]. The key observation is that a very large fraction of temporaperties that arise in practice can
be expressed in the form ef—e; or e;—!e, (we generally use PSL syntax in this paper), which means

3Seehttp://www.cs.rice.edu/ ~vardi/accelera-properties.pdf
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that ane; pattern should, or should not, be followed byearpattern; see, for example, [SDCO01]. As an
example, consider the property: “If a snoop hits a modified line in the L1e;dbkn the next transaction
must be a snoop writeback.” It can be expressed using the PSL formula

(true[x]; snoo&& modified— (!trans start[«]; trans start&& writeback).

The extension of LTL with regular expressions is called RELTL [BPS]. Here we studyRIGGER
LoGIC— the fragment of RELTL consisting of positive Boolean combinations ahtdas of the form
e;—e or ep—!ey. We now describe this logic formally.

Let Z be a finitealphabet A finite wordoverZ is a (possibly empty) finite sequernwe= gy 01 - - - Oy,
of concatenated letters bh The length of a wordv is denoted byw|. The symbok denotes the empty
word. We usew[i, j] to denote the subworg; - -- gj of w. If i > j, thenwf(i, j| = €. Regular Expressions
(REs) define languages by inductively applying union, concatenatiireggetition operators. Formally,
an RE over an alphab&tis one of the following.

e 0,g,0ro,forocz.

e ri|rp, ri;rz, r[x|, orr[+], for REsr, rq, andrs.

We useL(r) to denote the language thatefines. For the base cases, we hia(@® = 0, L(¢) =
{e}, andL(o0) = {o}. The operators, ;, [] , and[+] stand for union, concatenation, possibly empty
repetition, and strict repetition, respectively. Formally,

° L(rl‘l’z) = L(rl) U L(rz).

o L(ry;ro) ={wy;wo:wy €L(ry)andws € L(r)}.

o Letr9={c} and letr' =r'~1;ry, fori > 1. Thus,L(r') contains words that are the concatenation

of i words inL(ry). Then,L(r[*]) = Usor" andL(r[+]) = Ui=1 1"

For a seiX of elements, letZ(X) denote the set of all Boolean functions 2X — {true,false}. In
practice, members of8(X) are expressed by Boolean expressions &eusing with disjunction|(),
conjunction (&&), and negation (!). Le®8" (X) be the restriction of8(X) to positive Boolean functions.
That is, functions induced by formulas constructed from aton?$ with disjunction and conjunction,
and we also allow the constarntsie andfalse. For a functiorb € #(X) and a se¥ C X, we say thay
satisfied if assigningtrue to the elements ilY andfalseto the elements iX \ Y satisfiesb.

For a setAP of atomic propositions, |eX = Z(AP), and letZ be a set of atoms of the formor !r,
for a regular expressianover. For example, foAP= {p,q}, the setZ contains the regular expression
(p'a)[*]|(p; p) and also containg {p|!a)[+]|(p; p))-

The linear temporal logiCRIGGER LOGICIis a formalism to express temporal implication between
regular events. We considerRIGGER LOGICIn a positive normal form, where formulas are constructed
from atoms inZ by means of Boolean operators, regular expressions, and temporalatiguii¢—).
The syntax offRIGGER LOGICis defined as follows (we assume a fixed ABtof atomic propositions,
which induces the fixed se¥sand.%).

1. Aregular assertioris a positive Boolean formula ovez.

2. Atrigger formulais of the formri— 6, for a regular expressianoverX and a regular assertidgh

3. ATRIGGER LoGIcformula is a positive Boolean formula over trigger formulas.
Intuitively, r— 6 asserts that all prefixes satisfyingare followed by a suffix satisfying. The linear
temporal logiCTRIGGER LOGICis a formalism to express temporal implication between regular events.
For exampletrue[«]; p)— (true[x];q) is regular formula, equivalent to the LTL formu®(p — Fq).
We usef(ey,...,&!€,...,!g,) to indicate that the regular assertifris over the regular expressions
e1,...,& and the negations of the regular express@ns. ., €,. Note that we do not allow nesting f
in our formulas.
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The semantics ofRIGGER LoGICformulas is defined with respect to infinite words over the alphabet
2AP_ Consider an infinite wordr= 1, 78, . . . € (2°P)%. For indiced andj with 0 <i < j, and a language
L C >, we say thatg, ..., 751 tightly satisfies | denotedr,i, j, =L, if there isawordy-b;---bj_1-i €
L such that for all 0< k < j — 1—1i, we have thab;(7, ) = true. Note that when = j, the interval
Th,...,TG_1 is empty, in which casa,i, j = L iff € € L. Foranindex > 0 and a languagle C >*, we say
thatrs, 75,1, . .. satisfied, denotedr,i =L, if m,i, j =L for somej >i. Dually, 77, 751, . . . satisfiesL,
denotedr,i =!L, if there is noj > i such thatm,i, j = L. Note thatm,i =!L iff i [~ L; note that both
are different fromr,i = 2*\ L. For a regular assertiof, we say thats, 15 1,... satisfiesd, denoted
m,i = 0 if there is a se¥ C # such thaty satisfiesd, m,i = L(r) forallr € Y, andr,i =!L(r) for all
Irey,

We can now define the semantics of theoperator.

e 11,i = (r—0)ifforall j >isuchthatti,j = L(r), we haver, j = 6.

For aTRIGGER LoGIcformulay, a pathr satisfies in indexi, denotedrm,i = ¢, if 1,i satisfies a set
X of regular formulas such that satisfiegp. Finally, rT satisfieqp if 11 satisfiesy in index 0.

Thus, the formulgtruel+]; p)— (truef+]; ) holds in an infinite wordt € 2{P4} if every p is even-
tually followed byq. Indeed, for allj > 0, if 1,0, ] = L(truef«]; p), which holds iff ; = p, then
T, j [= truel+]; g. The latter holds iff there ik > j such thatr, j, k = true[*]; g, which holds iff 1§ = g.

3 Automata on Wordsand Trees

An automaton on infinite words a tuplesZ = (%, Q,qo, p, ), whereX is the input alphabeq is a finite
set of statesp : Q x = — 2Q is a transition functiongg € Q is an initial state, andr is an acceptance
condition (a condition that defines a subset®f). Intuitively, p(q, o) is the set of states that can
move into when it is in statq and it reads the lettey. Since the transition function o may specify
many possible transitions for each state and letténis not deterministic If p is such that for every
ge Qando € %, we have thatp(qg,0)| = 1, theng/ is a deterministic automaton. We extendo sets
of states in the expected way, thus, 8 Q, we have thap(S, g) = Ussp(S,0).

A run of &7 onw s a functionr : IN — Q wherer (0) = qp (i.e., the run starts in the initial state) and
for everyl > 0, we haver (1 +1) € p(r(l),0) (i.e., the run obeys the transition function). In automata
over finite words, acceptance is defined according to the last state vigited bun. When the words are
infinite, there is no such thing “last state”, and acceptance is defineddangado the setnf (r) of states
thatr visitsinfinitely ofteni.e.,Inf(r) = {q € Q : for infinitely manyl € IN,we haver(l) =q}. AsQis
finite, it is guaranteed thanf (r) £ 0. The way we refer ténf (r) depends on the acceptance condition
of «7. In Buchi automataa C Q, andr is accepting iffinf(r) N a # 0. Dually, Inco-Buchi automata
o C Q, andr is accepting ifinf (r)Nna = 0.

Since« is not deterministic, it may have many runswan In contrast, a deterministic automaton
has a single run ow. There are two dual ways in which we can refer to the many runs. Whes
an existentialautomaton (or simply aondeterministi@utomaton, as we shall call it in the sequel), it
accepts an input wond iff there exists an accepting run af onw.

Automata can also run on trees. For our application, we only need determBiistit tree automata.
Given a seD of directions, eD-treeis a sefl C D* such that ifx-c € T, wherex € D* andc € D, then
alsoxe T. If T = D*, we say thaT is a full D-tree. The elements df are callechodes and the empty
word ¢ is theroot of T. For everyx € T, the nodex- ¢, for c € D, are thesuccessorsf x. Each nod®*
has adirectionin D. The direction of the root idy, for some designated € D, called theroot direction
The direction of a nodg-d is d. We denote bylir(x) the direction of node. A pathrtof a treeT is a
setrr C T such thate € mand for everyx € m, eitherx is a leaf or there exists a unigues D such that
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X-c € 1. Given an alphabef, aZ-labeled D-trees a pair(T, 1) whereT is atree and : T — X maps
each node of to a letter inZ.

A deterministic Bichi tree automators </ = (%,D,Q, d,qo, o), whereZ, Q, qo, anda, are as in
Biichi word automata, and: Q x = — QP! is a (deterministic) transition function. Intuitively, in each
of its transitions, splits into|D| copies, each proceeding to a subtree whose root is the successor of
the current node. For a directiahe D, havingd(q,0)(d) = d means that ifeZ is now in stateg and it
reads the letteo, then the copy that proceeds to directdbmoves to statey.

Formally, arun of < on an inputZ-labeledD-tree (D*, 1), is a Q-labeled tree(D*,r) such that
r(€) = go and for everyx € D*, and directiond € D, we have that (x-d) = &(r(x), 7(x))(d). If, for
instanceP = {0,1}, r(0) =0y, T(0) =a, andd(qgz,a)(0) = g1 andd (g, a)(1) = gy, thenr (0-0) = ¢ and
r(0-1) = gp. Given arunD*,r) and a pathit C D*, we definenf (r|mm) = {q € Q : for infinitely manyx €
rr,we haver (x) = g}. A runr is accepting iff for all pathst C D*, we haveinf(r|m) Nna # 0. Thatis,
iff for each pathrr C D* there exists a state im thatr visits infinitely often alongt. An automatone’
acceptgD*, 1) its run on it is accepting.

We use three-letter acronyms{bD,N} x {B,C} x {W, T} to describe types of automata. The first
letter describes the transition structure (deterministic or nondeterministicgt¢badletter describes the
acceptance condition (Bhi or co-Bichi), and the third letter designates the objects recognized by the
automata (words or trees). Thus, for example, NCW stands for nonaatstic Blichi word automata
and NBT stands for nondeterministiéighi tree automata.

4 Expressiveness

In this section we characterize the expressive powarRoEGER LoGICand show that is equivalent to
that of DBW.

Proposition 4.1. Given a regular formulap of the form —8(ey,...,&,!€,...,!€,), we can construct
an NCW withir| + (2/&++1&d|g,| ... |g],|) states that accepts exactly all computations that violate

Proof. We start with the special case wheee= k' = 1 and 6 is a disjunction, thus the formula we
consider isp = r—(ev!€). A pathm= m, 3, . .. violates the formula— (eVv!€) iff there isi > 0 such
thatm,0,i = L(r), i = L(€), andm,i =IL(e).

We describe an NCVW/ that accepts paths that violaje Let ., .o%, and.es be NFWs forr, e,
andé€, respectively. Let7, be the DCW obtained by determinizing, replacing its accepting states by
rejecting sinks, and making all other states accepting. Alsazeibe the NCW obtained by replacing
the accepting states af; by accepting sinks. Finally, Let/ be the product ofe; and.<7;. The
NCW % starts witha71. From every accepting state ofy, it can start executing?Z. The acceptance
condition requires a run to eventually get stuck in an accepting siniahat is not a rejecting sink
of «7;. Formally, fori € {1,2,3}, let o = (£,Q;,8,Q°, ai). Then,«, = (£,2%,85,{Q%}, a}), where
a,={S:Sna = 0}, and for allS€ 2% ando € 5, we have

v [ &(S0) ifSnay=0
%(S.0) = [ S otherwise

Note thate7; accepts exactly all infinite words none of whose prefixes are accepted.bAlso, <75 =
(Z,Qs, 6§,Qg, as), where for allg € Qs ando € Z, we have

%(q,0) ifad¢a
33(0,0) = [{q} otherwi33e

6
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Note thate7, accepts exactly all infinite words that have a prefix accepteddy
Now, 7 = (2,Q1U (2% x Q3),5,Q%, ), where for allg € Q; ando € %, we have

_[a@o) Taga
%@9) = 5(qa)u ({85(Q0,0)} x 84(Q2, 0)) otherwise

Also, for all (S q) € 2% x Qs ando < %, we have

5((S0),0) ={5(S 0)} x &(q,0).

We can partition the state space#fto three sets:

e PL=Q1U{(S0):SNna,=0andq¢ a3z},

e ={(Sq):SNna,=0andqc< a3}, and

e P3={(Sq):Snaz# 0andqc Qs}.

The acceptance condition requires an accepting run to eventually leagattimeatongs; and then, in
the product ofe; with <7;, avoid the rejecting sinks of/; and get stuck in the accepting sinks.f.
By the definition ofd, each run ofZ eventually gets trapped in a 98t Hence, the above goal can be
achieved by defining the cotBhi conditiona = P UPs.

In the general case, where the formula is of the form8(ey, ... &,!€,...,!€,), we define, in a
similar way, an NCW?% for paths that violate the formula. As in the special case detailed above, we
determinize the NFWs foey, ...,e and make their accepting states rejecting sinks. 4zgt. .. ,y/zk
be the automata obtained as described above. Then, we take the NFé/s farg, and make their
accepting states accepting sinks. l;zé§,...,,;zf3k’ be the automata obtained as described above. The
NCW % starts with the NFWe; for r. From every accepting state of; it can take the transitions
from the initial states of the produet’ of 42%21, ... ,,szfzk,%l, .. .,4273"/. In the producte’, each state is of
the form(S,...,&,01,...,0¢) and we partition the states to sets according to the membership of the
underlying states in the sinks. Thu®, is partitioned to 1+ 2€t% sets: one for the states of;, and
then a seR,, for eachv € 2K Forv € 2K the sef, contains exactly all staté§y, . .., S, da, - - -, O’
such that for all 1< i <k, we haveS Nnaj # 0 iff v[ij = 0 and for all 1< j < K, we haveq; € a3 iff
vik+ j] = 0.

Itis not hard to see that the s€&gsare orderedR, > R, (that is, a transition fron®, to R, is possible)
iff for each index 1< i < k+K, we havev[i] > V[i]. Itis left to define the acceptance condition. Recall
that 0 is a is positive Boolean formula ovex,...,e,!€,...,!€,. In order to violate a requirement
associated witlg, the projection of a run of/ on the component of7’; has to avoid its rejecting sinks.
In order to violate a requirement associated de the projection of a run of/ on the component of
mf’é has to reach an accepting sink. Accordingly, giderwe say thav € 2« satisfiesd if assigning
truetog, for 1 <i <k, such thavfi] = 0 and to &, for 1 < j <K/, such thav[k+ j] = 1, and assigning
false to all other atoms, satisfie®. Now, we define the acceptance condition#fto that a run is
accepting if it gets stack in a sBt for which v satisfies8. Thus,a is the union of the setR, for which
v does not satisfies. As required# has|r|+ (2&++1&l|g)| ... |d,|) states.

Note that we determinize only NFWs associated with regular expressionaréhabt in the scope
of . Also, a tighter construction can take the structur@afito an account and handle conjunctions in
6 by nondeterminism rather than by taking the product. O

Theorem 4.2. A TRIGGER LOGICcformula can be translated to equivalent DBW. The blow-up in the
translation is doubly exponential.
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Proof. Consider an NCW« with n states. By applying to# a construction dual to the break-point
construction of [MH84] we get a DCW’ equivalent tos with 3°(" states. For completeness, we
describe the construction below. Intuitively,” follows the standard subset construction appliedzto
In order to make sure that every infinite path visits statesamly finitely often,<’” maintains in addition
to the setSthat follows the subset construction, a sulBeif S consisting of states along runs that have
not visiteda since the last time th® component was empty. The acceptance condition76fthen
requiresO to become empty only finitely often. Indeed, this captures the fact that theremsof.< that
eventually prevents the sétfrom becoming empty, and thus it is a run along whiclis visited only
finitely often.

Formally, lete = (%,Q, 0o, p,a). Then,&/' = (X, Q',q,, p’, a’), where

e QC2°x2RissuchthatS0O) c Q if 0OCSCQ.

e o= ({ain}0),

e p':Q xZ— Q@ isdefined, foralkS O) € Q' ando € Z, as follows.

(p(S0),p(0,0)\a) ifO+0

PUSOLT = (pis0).p(S0)\a) ifO=0.

e a' =20x {0}.

Given aTRIGGER LoGICcformulaW, let ¢n,..., Y, be its underlying regular formulas. We saw in
Proposition 4.1 that given a regular formugeof the formr—0(ey, ..., &,!¢,,...,!€d,), we can construct
an NCW with|r| 4 (2/&++l&d|g |- .. |€,|) states that accepts exactly all computations that vialate
Let.en,..., o, be the NCWSs corresponding to the negationggf. . ., g,. For every 1< i < n, we can
construct, as described above, a DG¥/ equivalent toe. By dualizing</’, we get a DBW fory.
Now, since DBWs are closed under union and intersection (cf. [ChoW#]can construct a DBWY
for W. Note thates is doubly exponential in the size &f. O

It remains to show that we can translate from DBWHROGGER LOGIC

Theorem 4.3. Given a DBW.«/, we can construct arRIGGER LOGICformulas of size exponential in
|<7| that is satisfed precisely by the computations that are accepted.by

Proof. Let.«/ = (Z,Q,q0,p, ). Forge a, let.o/g be the DFWe = (Z,Q, 0o, p,{q}), and Iet<z%qq be the
DFW .« = (%,Q,q,p,{q}). We do not wantz, andszfqq to accept the empty worg, so the initial state
can be renamed if needed. L@tande& be regular expressions equivalentdg and.«'. By [HU79],
the lengths ogy andqg are exponential in7.

A word w € 2 is accepted by iff there isq € a such that the run af7 on w visits q infinitely
often. Thus, the run visitq eventually, and all visits tqg are followed by another visits in the (strict)
future. We can therefore specifies the set of words that are acdeptetiusing theTRIGGER LOGIC
formula

V/ ((true—eg) A (eg—€l).

gea

O]

The class of linear temporal properties that can be expressed by DB\&tudied in [KVO5b], where
it is shown to be precisely the class of linear temporal properties that cexpbessed in the alternation-
free u-calculus (AFMC). The translation is with respect to Kripke structures. ivergDBW o7 can
be translated to an AFMC formul such that for every Kripke structute we have thaK = < iff
K | ¢a, whereK |= o7 if all computations oK are accepted by7. Generally, the translation to AFMC

8
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requires going through DBW, which may involve a doubly exponentially blgywas in our translation
from TRIGGER LOGICto DBW. For TRIGGER LOGIG we can go to AFMC via the NCW constructed
Proposition 4.1, with an exponential, rather than a doubly exponential iow-

5 Synthesis

A transduceris a labeled finite graph with a designated start node, where the edgebeaexllayD
(“input alphabet”) and the nodes are labeledzbf’output alphabet”). Az-labeledD-tree isregular if

it is the unwinding of some transducer. More formally, a transducer is a tépte (D,Z,S sp, n,L),
whereD is a finite set of directions. is a finite alphabetSis a finite set of states, € Sis an initial
state,] : Sx D — Sis a deterministic transition function, ahd S— X is a labeling function. We define
n : D* — Sin the standard wayr) (¢) = sn, and forx € D* andd € D, we haven(x-d) = n(n(x),d).
Now, aZ-labeledD-tree (D*, 1) is regular if there exists a transducér = (D, %, S sn,1,L) such that
for everyx € D*, we haver(x) = L(n(x)). We then say that the size of the regular t(Bé&, 1), denoted
IT]|, is|S, the number of states of .

Given aTRIGGER LoGIcformulay over setd andO of input and output signals (that BP=1U0O),
the realizability problemfor  is to decide whether there isstrategy f: (2')* — 2°, generated by a
transduc@such that all the computations of the system generatetidatisfy ¢ [PR89a]. Formally, a
computationp € (2'Y°)® is generated by if p = (ipU0g),(i1U01),(i2U03),... and for allj > 1, we
haveo; = f(ig-ig---ij—1).

5.1 Upper bound

In this section we show that the translationTéfiGGER LoGIcformulas to automata, described earlier,
yields a 2EXPTIME synthesis algorithm fORIGGER LOGIC

Theorem 5.1. The synthesis problem fORIGGER LOGICis in 2EXPTIME.

Proof. Consider arRIGGER LoGIC formulaW over | UO. By Theorem 4.2, the formul& can be
translated to a DBWeZ. The size of</ is doubly exponential in the length &, and its alphabet
is > =20 Let & = (2Y°,Q,q0,0,a), and leto = (2°,2', Q,qo, &, a) be the DBT obtained by
expandinge to 2°-labeled 2-trees. Thus, for everg € Q and and € 2°, we hav

5((q7 0) = Nje2! (Iaé(qvl UO)).

We now have that7 is realizable iff.o4 is not empty. Indeedg accepts exactly all2labeled
2'-trees all of whose computations arelifie7). Furthermore, by the nonemptiness-test algorithm of
[VW86], the DBT .« is not empty iff there is a finite state transducer that realifes ). O

We discuss the practical advantages of our synthesis algorithnRfaIGER LOGICin Section 6.

5.2 Lower Bound

The doubly-exponential lower bound for LTL synthesis is tightly related ¢of#ict a translation of an
LTL formula to a deterministic automaton may involve a doubly-exponential blpikly98a]. For

41t is known that if some transducer that generdtesists, then there is also a finite-state transdiicer [PR89a].
SNote that the fact is deterministic is crucial. A similar construction for a nondeterministicresults in«4 whose
language may be strictly contained in the required language.
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TRIGGER LoGIcformulas, such a blow-up seems less likely, as the translation of reguli@ssiqgns to
nondeterministic automata is linear, while the translation of LTL to automata is expali®W94]. As

we show below, the translation does involve a doubly exponential blowwam for formulas of the form
r—e, that is, when the underlying regular expressions appear positivelyitively, it follows from the
need to monitor all the possible runs of an NFW émn different suffixes (these whose corresponding
prefix satisfies) of the input word.

Theorem 5.2. There is a regular expression r and a family of regular expressigoge. .. such that for
all n > 1, the length of gis polynomial in n and the smallest DBW for theRIGGER LOGICformula
r—e, is doubly-exponential in n.

Proof. Let Y, = r—e,. We definer ande, overZ = {0,1,#,$} so that the language ofy}, constains
exactly all wordsw such that there is a positignwith w[j] = #, w[j + 1, j + n+ 1] € (0|1)", and either
there is no positiok > j with wik] =$, orw[j+1, j +n+ 1] = wik+ 1, k+n+ 1] for the minimal position
k> j with wk] =$.

By [CKS81], the smallest deterministic automaton that recogniggsés at least? states. The
proof in [CKS81] considers a language of the finite words. The key, ideaever, is valid also for our
setting, and implies that the smallest DBW fprhas at least? states: whenever the automaton reads
$, it should remember the set of words in@1)" that have appeared since the last $ (or the beginning
of the word, if we are in the first $).

We definer = (0|1}#)[«]; #, ande, is the union of the following REs:

o trué;(#$), for 1 <i < n: the suffix does not begin with a word {0]1)".

o (trué;0;(!$)[+];$;trué€;10), for 1 <i < n: there is 1< i < nsuch that the letter in thieth position

is 0 and is different from the letter in theth position after the first $ in the suffix.

o (trué;1;(!$)[«];$;trué;!11), for 1 <i < n: there is 1< i < nsuch that the letter in thieth position

is 1 and is different from the letter in theh position after the first $ in the suffix.

It is not hard to see that a wowd satisfiesys, if for every positionj, if w[j] = #, then eithemw/[j +
1,j+n+1] & (0]1)" or there isk > j such thaw[k] = $ andw[j + 1, j +n+ 1] # wk+ 1,k+ n+ 1],
for the minimalk > j with wik] = $. Thus, as required, a womd satisfies {, if there is a position
j with w[j] =#, w[j+1,j+n+1] € (0]1)", and either there is no positidn> j with wik] = $, or
w[j+1,j+n+1] =wlk+1,k+n+ 1] for the minimal positiork > j with wik] = $. O

Theorem 5.2 implies that our algorithm, which involves a translationRoEGER LOGICformulas
to DBWSs, may indeed have a doubly-exponential time complexity. In Thelor8rbeédow we show that
one cannot do better, as the synthesis problem is 2EXPTIME-hards, ®oualgorithm is optimal and
the synthesis problem faRIGGER LOGICis 2EXPTIME-complete.

Theorem 5.3. The synthesis problem foRIGGER LoGIcformulas is 2EXPTIME-hard.

Proof. As in the 2EXPTIME-hardness for CEBatisfiability [VS85], we do a reduction from the prob-
lem whether an alternating exponential-space Turing machiaecepts the empty tape. That is, given
such a machingd and a numben in unary, we construct a trigger formulp such thatlT accepts the
empty tape using spacé #f  is realizable. Lefl = (I', Qu, Qe, —, 0o, dacc), Whererl is the tape al-
phabet, the set®, and Q. of states are disjoint, and contain the universal and the existential states,
respectivelyqp is the initial state, andjycc is the accepting state. We denote the uri@iu Qe by Q.

Our model of alternation prescribes that the transition relatish Q x I' x Q x I' x {L, R} has branch-

ing degree twofp € Qe, and the machind alternates between existential and universal set. When a
universal or an existential state ©fbranches into two states, we distinguish between the left and the

10
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right branches. Accordingly, we u$g, o) — ((q,by,4), (ar,br,4r)) to indicate that wheif is in state
g € QuUQe reading a symbot, it branches to the left witkiq;, b, 4;) and to the right with(g,, by, A;).
(Note that the directions left and right here have nothing to do with the mowedirention of the head,;
these are determined By andA;.)

For a configuratiort of T, let sucg(c) andsucg(c) be the successors ofwhen applying to it the
left and right choices in—, respectively. Given an inpwt, a computation tree of onw is a tree in
which each node corresponds to a configuratiof ofThe root of the tree corresponds to the initial
configuration. A node that corresponds to a universal configurati@s two successors, corresponding
to sucg(c) andsucg(c). A node that corresponds to an existential configuratibas a single successor,
corresponding to eithesucg(c) or sucg(c). The tree is an accepting computation tree if all its branches
eventually reach an accepting configuration — one in which the stajgds We assume that once a
computation reaches an accepting configuration it stagg.iforever.

We encode a configuration d@f by a wordyiys...(Q, %) ... yen. Thatis, all the letters in the config-
uration are i, except for one letter iQ x I'. The meaning of such a configuration is that jtecell
of T, for 1< j <2 is labeledy;, the reading head points on celandT is in stateq. For example, the
initial configuration ofT on the empty tape is @(qo,#),#:- - - #, @2, where # stands for the empty cell,
and @ and @ are special tape-end symbols. We can now encode a computaflobyoh sequence of
configurations.

LetZ=TU(QxT). We can encode letters by a setAP(T) = {p1,..., Pm, P,-- -, Pm} (With
m= [log|X|]) of atomic propositions. The propositiops, .. ., p,, are auxiliary; their roles is made clear
shortly. We define our formulas over the 88 = AP(T) U{Vvi,...,Vn, V4, ...,V } U{real left,, left, ., e}
of atomic propositions. The propositions, ..., Vv, encode the locations of the cells in a configuration.
The propositions/, ..., v, help in increasing the value encoded\ay. .., v, properly. The task of the
last four atoms is explained shortly.

The setAP of propositions is divided into input and output propositions. The inpop@sitions are
real andleft,,. All other propositions are output propositions. With two input propositiarsgrategy can
be viewed as a 4-ary tree. Recall that the branching degréeso?. Why then do we need a 4-ary tree?
Intuitively, the strategy should describe a legal and accepting computa®ofif in a “real” 2-ary tree
embodied in the strategy tree. This real 2-ary tree is the one in which thegngqasitionreal always
holds. Branches in whicteal is eventually false do not correspond to computation$ @ind have a
different role. Within the real tree, the input propositieft;, is used in order to distinguish between the
left and right successors of a configurations.

The propositionsy, ..., v, encode the location of a cell in a configurationTafwith v; being the
most significant bit. Sinc& is an exponential-space Turing machine, this location is a number between
0 and 2 — 1. To ensure thaty, ..., Vv, act as am-bit counters we need the following formulas:

1. The counter starts at 0.
o true—&& 1 ,v
2. The counter is increased properly. For this wejse .,V,, as carry bits.
o true[+]—vy
(truefx]; (vi&& V) )—true; (vi&& Vi), fori=2,...,n
(truef«]; (i&& (")) [|(('vi)&& Vi) )—true; (vi&& (V| _4)), fori=2,...,n
(true]; (('vi)&& (V))))—true; ((1vi)&& (1vi_,)), fori=2,...,n
(truef]; (1&& V))[|((Iv1)&& (1Vp))) )—true; vy
(truefx]; (V1&& (1V)))||(('v1)&& V))) )—true; vy

Let 01...0x,07 ... 05 be two successive configurationsof For each triple(gi_1, 6i, 0i1) with

1<i< 2", we know for each transition relation ®f whata; should be. Lehext((ci_1, g, 0i1 1)) denote

11
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our expectation fooy. le.s
next((¥i-1, i, ¥+1)) = V-

* @k k) ={ G ) - (AR
i neXt(<y|’—1a(q7y|’)7M+1>> y whe re(q,y,) (q/7Vi7A)/
® nexO-1. K (0 Hen))) :{ {Q’,M) :: Eg ‘;iiﬁgg’&t’)m

Since we have two transitions relations, we actually obtain two functieng,andnext.

Consistency witmextgives us a necessary condition for a path in the computation tree to encode a
legal computation. In addition, the computation should start with the initial camfiigem and reach an
accepting state. It is easy to specify the requirements about the initial eeptexgy configurations. For
alettero € , let n(o) be the propositional formula ové&P in which ps,..., pn encodeo. That is,
n(o) holds in a node iff the truth value of the propositigns . ., pm in that node encodes the symlanl
Similarly, n’(o) is the propositional formula oveéxP in which p}, ..., p, encodeo. Thus, to say that the
first configuration correspond to the empty word we use the following faspwhereonesabbreviates
A ,Vi, and # denotes the empty symbol:

o true—n(@1);n({qo,#)

e (truejtrue; (loneg[+])—n (#)

e (('oneg[+];oneg—true;n (@)

We come back to the acceptance condition shortly.

The propositiong, ..., py, capture the symbol encoded in the previous cell, and special symbols at
initial cells. We use the following formula, whererosabbreviates\!' ; (!v;).

o (truefx];zerg—n'(@,)

o (truefx]; ((‘oneg&& pj)—(true; pj)

o (truef+];((‘oneg&é& (!pj))—(true (!pj))

The output propositiore marks existential configurations. Recall that computation$ start in
existential configurations and alternate between universal and existnifggurations. The value &
is maintained throughout the configuration. This is expressed using theifadidormulas:

e true—e

e (truef+]; (('oneg&& e))—(true;e)

o (truex]; (('oneg&& (le))—(true; (le))

o (truex]; (onek& e)))—(true;(le)

o (truefx]; (onek& (le))—(truee)

The output propositioteft,,; marks configurations that are left successors. The valleftgf; is de-
termined according to the value dft,, at the end of the previous configuration, and is maintained
throughout the configuration, where it is used in order to decide whétlkeconfiguration should be
consistent witmext or with next. The following formulas ensure that the value is indeed maintained
and that universal configurations are followed by both left and righfigurations. On the other hand,
for the successors of existential configurations, the strategy hastnigtiens on the value déft,,, and

can choose the same value for the two successors.

(true[x]; ((loneg&& lefty,,) )— (true; lefty,,)
(truex]; ((loneg&& (efty,;))— (true; (tefty,))
(truef«|; (onek& (e)&& (!lefty,)))—(true;lefty,,)
(truef«]; (onek& (le)&& left, ) )—(true; (Mefty,))

6Special handling of end cases is needed, when the hebdesfd the left or right end markers. For simplicity, we ignore
this technicality here.

12
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The difficult part in the reduction is in guaranteeing that the sequencendigarations is indeed
consistent witnext andnext. To enforce this, we have to relatg_1, 6;, and gi;1 with ¢ for each
i in every two successive configurations...ox,0;...05. One natural way to do so is by a con-
junction of formulas like “whenever we meet a cell at locatien1 and the labeling of the next three
cells forms the tripleoi_1, 0i, gi+1), then the next time we meet a cell at locatiothis cell is labeled
next(gi_1, 0, 0i+1))". The problem is that, aiscan take a value from 0 td'2- 1, there are exponentially
many such conjuncts. This is where the non-real part of the tree is hpKE85].

Recall that the input propositiaeal is used to labeled the “real” part of the strategy tree — the one
that corresponds to the computation treeTof Once we branch according teeal, we move to the
auxiliary part of the tree. Consider now an arbitrary trace, either it isahtrace, on whiclreal is
always true, or it reaches the auxiliary part of the tree, wheakis false. We refer to the latter trace as
anauxiliary trace The point at whichreal is true for the last time is thendof this auxiliary trace.

Consider a poink on an auxiliary trace that is followed by the end painiThere are the following
possibilities:

1. onesholds less than or more than once betwramdy, which means that andy do not belong
to successive configurations.

2. onesholds once betweexandy, which means that they belong to successive configurations, but
the assignment tpy, ..., py atx andy disagree, which means that they are not corresponding cells.

3. onesholds once betweexandy, which means that they belong to success configurations, and the
assignments ty, . .., p, atx andy agree, which means that they are corresponding cells.

Accordingly, in order to ensure correct succession of configuraitbddi, we use the formula

e real[+]—y,
wherey is a union of the following regular expressions:

(truef+]; Vyer N((sa, ¥)): the trace reaches an accepting configuration;

('onek& real)[+]; ones the pointsx andy belong to same configuration;

real[«]; one&& real; real[+]; onek& real: the points belong to non-successive configurations;

vi&& real;real[+]; (vi)&& real; Ireal, for i = 1,...,n: the points do not agree on the value of the

i-th bit in the encoding of their address and therefore they have diffeediiocations;

e 1'(01)&& n(02)&& real; n(o03)&& real; real[+]; left, && next (o1, 02, 03)&& real; !real, for 01, 02,03 €
2: the pointsx andy are in the same cell of a configuration and its left successormanxidis re-
spected. Note that the propositiopfsare used in order to refer to the cell befare

e (n'(01)&& n(02))&& real; n(o3)&& real; real[+]; (!left, ) && next (o1, 02, 03)&& real; Ireal, for
01,02,03 € Z: the pointsx andy are in the same cell of a configuration and its right successor, and
next is respected.

O]

Note that theTRIGGER LOGICformula constructed in the reduction is a conjunction of formulas of
the formr—e. Thus, the problem is 2EXPTIME-hard already for this fragmemntrRIGGER LOGIC

6 Practicelssues

In Section 5.1, we proved that the synthesis problemmIGGER LOGIC can be solved in doubly-
exponential time. This bound is no better on its face than the doubly-expaintme upper bound
proved in [PR89a, KV05c] for LTL synthesis. A closer examination eés/ghowever, that the algorithms

in [PR89a, KV05c] have time complexity of the formt"4while the algorithm described here has time
complexity of the form 4". This, however, is not what we view as the main advantage of this algorithm.
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Rather, its main advantage is that it is significantly simpler. Unlike the algorithmR&89R], we need
not apply Safra’s determinization construction nor solving complex gamabkd JKV05b], we need
not use progress measures. Our algorithm is based solely on usingoe sanstruction and solving
the emptiness problem foriBhi tree automata.

In this section we show that our algorithm foRIGGER LOGIChas additional appealing properties
in practice.

A symbolic implementation Theorem 5.1 reduces tHERIGGER LOGIC synthesis problem to the
nonemptiness problem of a DBT obtained by dualizing a DCW that is the rdsapiplying the break-
point construction of [MH84] to the NCW that corresponds to the negatfioimn@TRIGGER LOGIC
formula. In [MS08a, MS08b], the authors described a symbolic implementatithre break-point con-
struction for word automata. For tree automata, the symbolic algorithm for thenmatiness construc-
tion is not more difficult, as both word emptiness and tree emptinessifohiEautomata are based on
nested-fixpoint algorithms [EL86, VW86], using a quadratic number oftsylic operations.

In more details, the state space of the DBT consists of sets of states, it emcded by Boolean
variables, and the DBT's transitions can be encoded by relations onvtieskles and a primed version
of them. The fixpoint solution for the nonemptiness problem of DBT (c.f., BBy then yields a sym-
bolic solution to the synthesis problem. Moreover, the BDDs that are geddrg the symbolic decision
procedure can be used to generate a symbolic witness strategy. Thampatare of BDDs then makes
it very easy to go from this BDD to a sequential circuit for the strategy. Khiswvn that a BDD can be
viewed as an expression (in DAG form) that uses the “if then else” as es#mary operator. Thus, a
BDD can be viewed as a circuit built from if-then-else gates. More adggs of the symbolic approach
are described in [HRSO05]. As mentioned above, [HRSO05] also suggssgtabolic solution for the LTL
synthesis problem. However, the need to circumvent Safra’s determimizzdisses the algorithm in
[HRSO05] to be complete only for a subset of LTL. Likewise, the need to imphetthe progress ranks of
[KV05a] using a binary encoding challenges BDD-based implementation87]l Our approach here
circumvents both Safra’s determinization and ranks, facilitating a symbolic imphatien.

Incremental synthesis A serious drawback of current synthesis algorithms is that they assuom-a ¢
prehensive set of temporal assertions as a starting point. In pracigeyér, specifications are evolving:
temporal assertions are added, deleted, or modified during the desiggsprdiere, we describe how
our synthesis algorithm can supportrementalsynthesis, where the temporal assertions are given one
by one. We show how working with DBWs enables us, when we check glizability of ¢&& ¢/, to

use much of the work done in checking the realizabilitypoindy/’ in isolation.

Essentially, we show that when we construct and check the emptinesaBihi which realizabil-
ity of @&& /' is reduced, we can use much of the work done in the process of chebkirgnptiness
of the two (much smaller) DBTs to which realizability gfandy/’ is reduced (in isolation). Let” and
</’ be the DBTs to which realizability oy andy/’ is reduced, respectively. Recall that and.<7’ are
obtained from NCWs with state spac®sandQ’. A non-incremental approach generates the DBT that
corresponds tq&& . By Theorem 5.1, this results in a DBZ with state space®'?. On the other
hand, the state spaces.afand.«’’ are much smaller, and ar€ and BQ/, respectively.

Let us examine the structure of the state spac# ahore carefully. Each of its states can be viewed
asapaifSuUS,0u0’), forOC SC QandO’' C S C Q. The state corresponds to the std®©) of </
and(S,0’) of &/’. Clearly, if one of these states is empty (that is, if the automaton accept retdrérg
from these states), then so(SUS,0U Q). Thus, an incremental algorithm can start by marking all
such states as empty and continue the emptiness check only with the (hopefallysmaller) state
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space.

(Note that this idea does not apply to disjunctions. Suppose that négither ¢/’ is realizable, and
we want to check iiy||(/ is realizable. It is not clear how to leverage realizability checking/aind
¢', when we check realizability ap||y'.)

Adding assumptions The method described above cannot be applied for formulas of thefiormy,
with ¢/ and ¢ formulas inTRIGGER LOGIC Note that SiNnCETRIGGER LOGICis not closed under
negation, the specificatiofy’ —  is not aTRIGGER LoGICformula. Still, such an implication arises
naturally when we want to synthesize with respect to environments satisfyigg. To handle such
specifications, we apply the automata-theoretic constructions of Sectionothtgy’ and ( obtaining
DBT gft"’/ and.«4¥, with acceptance conditiors’ anda. We now take the product offtw/ and.«4?,
and use as acceptance condition the Streett(pdjo’). A symbolic algorithm for Streett tree automata
is described in [KV98b]. For Street(1) condition, that is, a single paireBtieondition, the algorithm
requires a cubic number of symbolic operations.
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