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Abstract

In automated synthesis, we transform a specification into a system that is guaranteed to satisfy
the specification. In spite of the rich theory developed for temporal synthesis, little of this theory has
been reduced to practice. This is in contrast with model-checking theory, which has led to industrial
development and use of formal verification tools. We addressthis problem here by considering a
certain class of PSL properties; this class covers most of the properties used in practice by system
designers. We refer to this class as the class of trigger properties.

We show that the synthesis problem for trigger properties ismore amenable to implementation
than that of general PSL properties. While the problem is still 2EXPTIME-complete, it can be
solved using techniques that are significantly simpler thanthe techniques used in general temporal
synthesis. Not only can we avoid the use of Safra’s determinization, but we can also avoid the use of
progress ranks. Rather, the techniques used are based on classical subset constructions. This makes
our approach amenable also to symbolic implementation, as well as an incremental implementation,
in which the specification evolves over time.

1 Introduction

One of the most significant developments in the area of program verificationover the last two decades
has been the development of algorithmic methods for verifying temporal specifications offinite-state
programs; see [CGP99]. A frequent criticism against this approach, however, is that verification is done
aftersignificant resources have already been invested in the development ofthe program. Since programs
invariably contain errors, verification simply becomes part of the debugging process. The critics argue
that the desired goal is to use the specification in the program development process in order to guarantee
the design of correct programs. This is calledprogram synthesis.

The classical approach to program synthesis is to extract a program from a proof that the specification
is satisfiable [BDF+04, EC82, MW80, MW84]. In the late 1980s, several researchers realized that the
classical approach to program synthesis is well suited toclosedsystems, but not toopen(also calledreac-
tive) systems [ALW89, Dil89, PR89a]. In reactive systems, the program interacts with the environment,
and a correct program should satisfy the specification with respect to allenvironments. Accordingly, the
right way to approach synthesis of reactive systems is to consider the situation as a (possibly infinite)
game between the environment and the program. A correct program can be then viewed as a winning
strategy in this game. It turns out that satisfiability of the specification is not sufficient to guarantee the
existence of such a strategy. Abadi et al. called specifications for whicha winning strategy existsreal-
izable. Thus, a strategy for a program with inputs inI and outputs inO maps finite sequences of inputs
(words in(2I )∗ – the actions of the environment so far) to an output in 2O – a suggested action for the
program. Thus, a strategy can be viewed as a labeling of a tree with directions in 2I by labels in 2O.

The traditional algorithm for finding a winning strategy transforms the specification into a par-
ity automaton over such trees such that a program is realizable precisely when this tree automaton is
nonempty, i.e., it accepts some infinite tree [PR89a]. A finite generator of an infinite tree accepted by
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this automaton can be viewed as a finite-state program realizing the specification. This is closely re-
lated to the approach taken in [BL69, Rab72] in order to solve Church’ssolvability problem[Chu63]. In
[KV00, PR89b, WTD91, Var95] it was shown how this approach to program synthesis can be carried out
in a variety of settings.

In spite of the rich theory developed for program synthesis, and recentdemonstrations of its ap-
plicability [BGJ+07], little of this theory has been reduced to practice. Some people argue thatthis is
because the realizability problem for linear-temporal logic (LTL) specifications is 2EXPTIME-complete
[PR89a, Ros92], but this argument is not compelling. First, experience with verification shows that even
nonelementary algorithms can be practical, since the worst-case complexity does not arise often. For
example, while the model-checking problem for specifications in second-order logic has nonelementary
complexity, the model-checking tool MONA [EKM98, Kla98] successfully verifies many specifications
given in second-order logic. Furthermore, in some sense, synthesis is not harder than verification. This
may seem to contradict the known fact that while verification is “easy” (linear in the size of the model
and at most exponential in the size of the specification [LP85]), synthesisis hard (2EXPTIME-complete).
There is, however, something misleading in this fact: while the complexity of synthesis is given with re-
spect to the specification only, the complexity of verification is given with respect to the specification
and the program, which can be much larger than the specification. In particular, it is shown in [Ros92]
that there are temporal specifications for which every realizing programmust be at least doubly expo-
nentially larger than the specifications. Clearly, the verification of such programs is doubly exponential
in the specification, just as the cost of synthesis.

As argued in [KPV06], we believe that there are two reasons for the lackof practical impact of synthe-
sis theory. The first is algorithmic and the second is methodological. Considerfirst the algorithmic prob-
lem. The traditional approach for constructing tree automata for realizing strategies uses determinization
of Büchi automata. Safra’s determinization construction has been notoriously resistant to efficient im-
plementations [ATW05, THB95]1, results in automata with a very complicated state space, and involves
the parity acceptance condition. The best-known algorithms for parity-tree-automata emptiness [Jur00]
are nontrivial already when applied to simple state spaces. Implementing them on top of the messy state
space that results from determinization is highly complex, and is not amenable tooptimizations and a
symbolic implementation. In [KV05c, KPV06], we suggested an alternative approach, which avoids de-
terminization and circumvents the parity condition. While the Safraless approach is much simpler and
can be implemented symbolically, it is based on progress ranks. The need to manipulate ranks requires
multi-valued data structures, making the symbolic implementation difficult [TV07, DR09]. This is in
contrast with symbolic implementations of algorithms based on the subset construction without ranks,
which perform well in practice [MS08a, MS08b].

Another major issue is methodological. The current theory of program synthesis assumes that one
gets a comprehensive set of temporal assertions as a starting point. This cannot be realistic in practice.
A more realistic approach would be to assume anevolvingformal specification: temporal assertions can
be added, deleted, or modified. Since it is rare to have a complete set of assertions at the very start of
the design process, there is a need to developincrementalsynthesis algorithms. Such algorithms can, for
example, refine designs when provided with additional temporal properties.

One approach to tackle the algorithmic problems has been to restrict the class of allowed specifica-
tion. In [AMPS98], the authors studied the case where the LTL formulas are of the form2 p, 3 p, 23 p,
or 32 p.2 In [AT04], the authors considered the fragment of LTL consisting of boolean combinations

1An alternative construction is equally hard [ATW05]. Piterman’s improvement of Safra includes the tree structures that
proved hard to implement [Pit07].

2The setting in [AMPS98] is of real-time games, which generalizes synthesis.
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of formulas of the form2 p, as well as a richer fragment in which thef operator is allowed. Since the
games corresponding to formulas of these restricted fragments are simpler,the synthesis problem is much
simpler; it can be solved in PSPACE or EXPSPACE, depending on the specific fragment. Anther frag-
ment of LTL, termedGR(1), was studied in [PPS06]. In theGR(1) fragment (generalized reactivity(1))
the formulas are of the form(23 p1∧23 p2∧·· ·23 pm)→ (23q1∧23q2∧·· ·23qn), where each
pi andqi is a Boolean combination of atomic propositions. It is shown in [PPS06] that for this fragment,
the synthesis problem can be solved in EXPTIME, and with onlyO((mn·2|AP|)3) symbolic operations,
whereAP is the set of atomic propositions.

We continue the approach on special classes of temporal properties, withthe aim of focusing on
properties that are used in practice. We study here the synthesis problemfor TRIGGER LOGIC. Modern
industrial-strength property-specification languages such as Sugar [BBE+01], ForSpec [AFF+02], and
the recent standards PSL [EF06], and SVA [VR05] include regular expressions.TRIGGER LOGIC is a
fragment of these logics that covers most of the properties used in practice by system designers. Tech-
nically, TRIGGER LOGICconsists of positive Boolean combinations of assertions about regular events,
connected by the usual regular operators as well as temporal implication,7→ (“triggers”). For example,
theTRIGGER LOGICformula(true[∗]; req;ack)7→(true[∗];grant) holds in an infinite computation if ev-
ery request that is immediately followed by an acknowledge is eventually followed by a grant. Also,
the TRIGGER LOGIC formula (true[∗];err)7→!(true[∗];ack) holds in a computation if once an error is
detected, no acks can be sent.

We show thatTRIGGER LOGICformulas can be translated to deterministic Büchi automata using the
two classical subset constructions: the determinization construction of [RS59] and the break-point con-
struction of [MH84]. Accordingly, while the synthesis problem forTRIGGER LOGICis still 2EXPTIME-
complete, our synthesis algorithm is significantly simpler than the one used in general temporal synthesis.
We show that this also yields several practical consequences: our approach is quite amenable to symbolic
implementation, it can be applied to evolving specifications in an incremental fashion, and it can also be
applied in an assume-guarantee setting. We believe that the simplicity of the algorithm and its practical
advantages, coupled with the practical expressiveness ofTRIGGER LOGIC, make an important step in
bridging the gap between temporal-synthesis theory and practice.

2 Trigger Logic

The introduction of temporal logic to computer science, in [Pnu77], was a watershed point in the speci-
fication of reactive systems, which led to the development of model checking[CGP99]. The success of
model checking in industrial applications led to efforts to develop “industrial”temporal logics such as
Sugar [BBE+01] and ForSpec [AFF+02], as well as two industry-standard languages, PSL [EF06] and
SVA [VR05].

A common feature of these languages is the use of regular expressions to describe temporal patterns.
For example, the regular expressionrequest; true+;grant; true+;ackdescribes an occurrence ofrequest,
followed bygrant, followed byack, where these events are separated by nonempty intervals of arbitrary
length. The advantage of using regular expressions over the classicaltemporal operators of LTL is that
it avoids the need for deep nesting of untils. For that reason, regular expressions have proved to be
quite popular with verification engineers,3 to the point that the regular layer is that main layer of SVA
[VR05]. The key observation is that a very large fraction of temporal properties that arise in practice can
be expressed in the form ofe1 7→e2 or e1 7→!e2 (we generally use PSL syntax in this paper), which means

3Seehttp://www.cs.rice.edu/ ˜ vardi/accelera-properties.pdf .
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that ane1 pattern should, or should not, be followed by ane2 pattern; see, for example, [SDC01]. As an
example, consider the property: “If a snoop hits a modified line in the L1 cache, then the next transaction
must be a snoop writeback.” It can be expressed using the PSL formula

(true[∗];snoop&& modified)7→(!trans start[∗]; trans start&& writeback).

The extension of LTL with regular expressions is called RELTL [BFG+05]. Here we studyTRIGGER

LOGIC– the fragment of RELTL consisting of positive Boolean combinations of formulas of the form
e1 7→e2 or e1 7→!e2. We now describe this logic formally.

Let Σ be a finitealphabet. A finite wordoverΣ is a (possibly empty) finite sequencew= σ0 ·σ1 · · ·σn

of concatenated letters inΣ. The length of a wordw is denoted by|w|. The symbolε denotes the empty
word. We usew[i, j] to denote the subwordσi · · ·σ j of w. If i > j, thenw[i, j] = ε. Regular Expressions
(REs) define languages by inductively applying union, concatenation, and repetition operators. Formally,
an RE over an alphabetΣ is one of the following.

• /0, ε, or σ , for σ ∈ Σ.
• r1|r2, r1; r2, r[∗], or r[+], for REsr, r1, andr2.
We useL(r) to denote the language thatr defines. For the base cases, we haveL( /0) = /0, L(ε) =

{ε}, andL(σ) = {σ}. The operators|, ;, [∗] , and[+] stand for union, concatenation, possibly empty
repetition, and strict repetition, respectively. Formally,

• L(r1|r2) = L(r1)∪L(r2).
• L(r1; r2) = {w1;w2 : w1 ∈ L(r1) andw2 ∈ L(r2)}.
• Let r0 = {ε} and letr i = r i−1; r1, for i ≥ 1. Thus,L(r i) contains words that are the concatenation

of i words inL(r1). Then,L(r[∗]) =
⋃

i≥0 r i andL(r[+]) =
⋃

i≥1 r i .
For a setX of elements, letB(X) denote the set of all Boolean functionsb : 2X → {true, false}. In

practice, members ofB(X) are expressed by Boolean expressions overX, using with disjunction (||),
conjunction (&&), and negation (!). LetB+(X) be the restriction ofB(X) to positive Boolean functions.
That is, functions induced by formulas constructed from atoms inX with disjunction and conjunction,
and we also allow the constantstrue andfalse. For a functionb∈ B(X) and a setY ⊆ X, we say thatY
satisfiesb if assigningtrue to the elements inY andfalse to the elements inX \Y satisfiesb.

For a setAP of atomic propositions, letΣ = B(AP), and letR be a set of atoms of the formr or !r,
for a regular expressionr overΣ. For example, forAP= {p,q}, the setR contains the regular expression
(p|!q)[∗]|(p; p) and also contains !((p|!q)[∗]|(p; p)).

The linear temporal logicTRIGGER LOGIC is a formalism to express temporal implication between
regular events. We considerTRIGGER LOGICin a positive normal form, where formulas are constructed
from atoms inR by means of Boolean operators, regular expressions, and temporal implication (7→).
The syntax ofTRIGGER LOGIC is defined as follows (we assume a fixed setAP of atomic propositions,
which induces the fixed setsΣ andR).

1. A regular assertionis a positive Boolean formula overR.
2. A trigger formulais of the formr 7→θ , for a regular expressionr overΣ and a regular assertionθ .
3. A TRIGGER LOGICformula is a positive Boolean formula over trigger formulas.

Intuitively, r 7→θ asserts that all prefixes satisfyingr are followed by a suffix satisfyingθ . The linear
temporal logicTRIGGER LOGIC is a formalism to express temporal implication between regular events.
For example,(true[∗]; p)7→(true[∗];q) is regular formula, equivalent to the LTL formulaG(p → Fq).
We useθ(e1, . . . ,ek, !e′1, . . . , !e

′
k′) to indicate that the regular assertionθ is over the regular expressions

e1, . . . ,ek and the negations of the regular expressionse′1, . . . ,e
′
k′ . Note that we do not allow nesting of7→

in our formulas.
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The semantics ofTRIGGER LOGICformulas is defined with respect to infinite words over the alphabet
2AP. Consider an infinite wordπ = π0,π1, . . .∈ (2AP)ω . For indicesi and j with 0≤ i ≤ j, and a language
L⊆ Σ∗, we say thatπi , . . . ,π j−1 tightly satisfies L, denotedπ, i, j, |= L, if there is a wordb0 ·b1 · · ·b j−1−i ∈

L such that for all 0≤ k ≤ j −1− i, we have thatbi(πi+k) = true. Note that wheni = j, the interval
πi , . . . ,π j−1 is empty, in which caseπ, i, j |= L iff ε ∈ L. For an indexi ≥ 0 and a languageL⊆ Σ∗, we say
thatπi ,πi+1, . . . satisfiesL, denotedπ, i |= L, if π, i, j |= L for somej ≥ i. Dually, πi ,πi+1, . . . satisfies !L,
denotedπ, i |=!L, if there is noj ≥ i such thatπ, i, j |= L. Note thatπ, i |=!L iff π, i 6|= L; note that both
are different fromπ, i |= Σ∗ \L. For a regular assertionθ , we say thatπi ,πi+1, . . . satisfiesθ , denoted
π, i |= θ if there is a setY ⊆ R such thatY satisfiesθ , π, i |= L(r) for all r ∈Y, andπ, i |=!L(r) for all
!r ∈Y,

We can now define the semantics of the7→ operator.
• π, i |= (r 7→θ) if for all j ≥ i such thatπ, i, j |= L(r), we haveπ, j |= θ .

For aTRIGGER LOGICformulaψ , a pathπ satisfiesψ in index i, denotedπ, i |= ψ , if π, i satisfies a set
X of regular formulas such thatX satisfiesψ . Finally, π satisfiesψ if π satisfiesψ in index 0.

Thus, the formula(true[∗]; p)7→(true[∗];q) holds in an infinite wordπ ∈ 2{p,q} if every p is even-
tually followed by q. Indeed, for all j ≥ 0, if π,0, j |= L(true[∗]; p), which holds iff π j |= p, then
π, j |= true[∗];q. The latter holds iff there isk≥ j such thatπ, j,k |= true[∗];q, which holds iffπk |= q.

3 Automata on Words and Trees

An automaton on infinite wordsis a tupleA = 〈Σ,Q,q0,ρ,α〉, whereΣ is the input alphabet,Q is a finite
set of states,ρ : Q×Σ → 2Q is a transition function,q0 ∈ Q is an initial state, andα is an acceptance
condition (a condition that defines a subset ofQω ). Intuitively, ρ(q,σ) is the set of states thatA can
move into when it is in stateq and it reads the letterσ . Since the transition function ofA may specify
many possible transitions for each state and letter,A is not deterministic. If ρ is such that for every
q∈ Q andσ ∈ Σ, we have that|ρ(q,σ)| = 1, thenA is a deterministic automaton. We extendρ to sets
of states in the expected way, thus, forS⊆ Q, we have thatρ(S,σ) =

⋃

s∈Sρ(s,σ).
A run of A onw is a functionr : IN → Q wherer(0) = q0 (i.e., the run starts in the initial state) and

for every l ≥ 0, we haver(l + 1) ∈ ρ(r(l),σl ) (i.e., the run obeys the transition function). In automata
over finite words, acceptance is defined according to the last state visited by the run. When the words are
infinite, there is no such thing “last state”, and acceptance is defined according to the setInf (r) of states
thatr visits infinitely often, i.e., Inf (r) = {q∈ Q : for infinitely manyl ∈ IN,we haver(l) = q}. As Q is
finite, it is guaranteed thatInf (r) 6= /0. The way we refer toInf (r) depends on the acceptance condition
of A . In Büchi automata, α ⊆ Q, andr is accepting iffInf (r)∩α 6= /0. Dually, Inco-Büchi automata,
α ⊆ Q, andr is accepting iffInf (r)∩α = /0.

SinceA is not deterministic, it may have many runs onw. In contrast, a deterministic automaton
has a single run onw. There are two dual ways in which we can refer to the many runs. WhenA is
an existentialautomaton (or simply anondeterministicautomaton, as we shall call it in the sequel), it
accepts an input wordw iff there exists an accepting run ofA onw.

Automata can also run on trees. For our application, we only need deterministicBüchi tree automata.
Given a setD of directions, aD-tree is a setT ⊆ D∗ such that ifx ·c∈ T, wherex∈ D∗ andc∈ D, then
alsox∈ T. If T = D∗, we say thatT is a full D-tree. The elements ofT are callednodes, and the empty
wordε is theroot of T. For everyx∈ T, the nodesx·c, for c∈ D, are thesuccessorsof x. Each nodeD∗

has adirectionin D. The direction of the root isd0, for some designatedd0 ∈ D, called theroot direction.
The direction of a nodex ·d is d. We denote bydir(x) the direction of nodex. A pathπ of a treeT is a
setπ ⊆ T such thatε ∈ π and for everyx∈ π, eitherx is a leaf or there exists a uniquec∈ D such that
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x ·c∈ π. Given an alphabetΣ, a Σ-labeled D-treeis a pair〈T,τ〉 whereT is a tree andτ : T → Σ maps
each node ofT to a letter inΣ.

A deterministic B̈uchi tree automatonis A = 〈Σ,D,Q,δ ,q0,α〉, whereΣ, Q, q0, andα , are as in
Büchi word automata, andδ : Q×Σ → Q|D| is a (deterministic) transition function. Intuitively, in each
of its transitions,A splits into|D| copies, each proceeding to a subtree whose root is the successor of
the current node. For a directiond ∈ D, havingδ (q,σ)(d) = q′ means that ifA is now in stateq and it
reads the letterσ , then the copy that proceeds to directiond moves to stateq′.

Formally, arun of A on an inputΣ-labeledD-tree 〈D∗,τ〉, is a Q-labeled tree〈D∗, r〉 such that
r(ε) = q0 and for everyx ∈ D∗, and directiond ∈ D, we have thatr(x · d) = δ (r(x),τ(x))(d). If, for
instance,D = {0,1}, r(0) = q2, τ(0) = a, andδ (q2,a)(0)= q1 andδ (q2,a)(1)= q2, thenr(0·0)= q1 and
r(0·1) = q2. Given a run〈D∗, r〉 and a pathπ ⊂D∗, we definein f (r|π) = {q∈Q : for infinitely manyx∈
π,we haver(x) = q}. A run r is accepting iff for all pathsπ ⊂ D∗, we havein f (r|π)∩α 6= /0. That is,
iff for each pathπ ⊂ D∗ there exists a state inα that r visits infinitely often alongπ. An automatonA
accepts〈D∗,τ〉 its run on it is accepting.

We use three-letter acronyms in{D,N}×{B,C}×{W,T} to describe types of automata. The first
letter describes the transition structure (deterministic or nondeterministic), the second letter describes the
acceptance condition (B̈uchi or co-B̈uchi), and the third letter designates the objects recognized by the
automata (words or trees). Thus, for example, NCW stands for nondeterministic Büchi word automata
and NBT stands for nondeterministic Büchi tree automata.

4 Expressiveness

In this section we characterize the expressive power ofTRIGGER LOGICand show that is equivalent to
that of DBW.

Proposition 4.1. Given a regular formulaψ of the form r7→θ(e1, . . . ,ek, !e′1, . . . , !e
′
k′), we can construct

an NCW with|r|+(2|e1|+···+|ek||e′1| · · · |e
′
k′ |) states that accepts exactly all computations that violateψ .

Proof. We start with the special case wherek = k′ = 1 andθ is a disjunction, thus the formula we
consider isψ = r 7→(e∨!e′). A pathπ = π0,π1, . . . violates the formular 7→(e∨!e′) iff there is i ≥ 0 such
thatπ,0, i |= L(r), π, i |= L(e′), andπ, i |=!L(e).

We describe an NCWU that accepts paths that violateψ . Let A1,A2, andA3 be NFWs forr,e,
ande′, respectively. LetA ′

2 be the DCW obtained by determinizingA2, replacing its accepting states by
rejecting sinks, and making all other states accepting. Also, letA ′

3 be the NCW obtained by replacing
the accepting states ofA3 by accepting sinks. Finally, LetA be the product ofA ′

2 and A ′
3. The

NCW U starts withA1. From every accepting state ofA1, it can start executingA . The acceptance
condition requires a run to eventually get stuck in an accepting sink ofA ′

3 that is not a rejecting sink
of A ′

2. Formally, for i ∈ {1,2,3}, let Ai = 〈Σ,Qi ,δi ,Q0
i ,αi〉. Then,A ′

2 = 〈Σ,2Q2,δ ′
2,{Q0

2},α ′
2〉, where

α ′
2 = {S: S∩α2 = /0}, and for allS∈ 2Q2 andσ ∈ Σ, we have

δ ′
2(S,σ) =

[

δ2(S,σ) if S∩α2 = /0
S otherwise

Note thatA ′
2 accepts exactly all infinite words none of whose prefixes are accepted by A2. Also, A ′

3 =

〈Σ,Q3,δ ′
3,Q

0
3,α3〉, where for allq∈ Q3 andσ ∈ Σ, we have

δ ′
3(q,σ) =

[

δ3(q,σ) if q 6∈ α3

{q} otherwise
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Note thatA ′
2 accepts exactly all infinite words that have a prefix accepted byA3.

Now, U = 〈Σ,Q1∪ (2Q2 ×Q3),δ ,Q0
1,α〉, where for allq∈ Q1 andσ ∈ Σ, we have

δ (q,σ) =

[

δ1(q,σ) if q 6∈ α1

δ1(q,σ)∪ ({δ ′
2(Q

0
2,σ)}×δ ′

3(Q
0
3,σ)) otherwise

Also, for all 〈S,q〉 ∈ 2Q2 ×Q3 andσ ∈ Σ, we have

δ (〈S,q〉,σ) = {δ ′
2(S,σ)}×δ ′

3(q,σ).

We can partition the state space ofU to three sets:
• P1 = Q1∪{〈S,q〉 : S∩α2 = /0 andq 6∈ α3},
• P2 = {〈S,q〉 : S∩α2 = /0 andq∈ α3}, and
• P3 = {〈S,q〉 : S∩α2 6= /0 andq∈ Q3}.

The acceptance condition requires an accepting run to eventually leave theautomatonA1 and then, in
the product ofA ′

2 with A ′
3, avoid the rejecting sinks ofA ′

2 and get stuck in the accepting sinks ofA ′
3.

By the definition ofδ , each run ofU eventually gets trapped in a setPi . Hence, the above goal can be
achieved by defining the co-Büchi conditionα = P1∪P3.

In the general case, where the formula is of the formr 7→θ(e1, . . . ,ek, !e′1, . . . , !e
′
k′), we define, in a

similar way, an NCWU for paths that violate the formula. As in the special case detailed above, we
determinize the NFWs fore1, . . . ,ek and make their accepting states rejecting sinks. LetA 1

2 , . . . ,A k
2

be the automata obtained as described above. Then, we take the NFWs fore′1, . . . ,e
′
k′ and make their

accepting states accepting sinks. LetA 1
3 , . . . ,A k′

3 be the automata obtained as described above. The
NCW U starts with the NFWA1 for r. From every accepting state ofA1 it can take the transitions
from the initial states of the productA of A 1

2 , . . . ,A k
2 ,A 1

3 , . . . ,A k′
3 . In the productA , each state is of

the form〈S1, . . . ,Sk,q1, . . . ,qk′〉 and we partition the states to sets according to the membership of the
underlying states in the sinks. Thus,U is partitioned to 1+ 2k+k′ sets: one for the states ofA1, and
then a setPv, for eachv∈ 2k+k′ . Forv∈ 2k+k′ , the setPv contains exactly all states〈S1, . . . ,Sk,q1, . . . ,qk′〉

such that for all 1≤ i ≤ k, we haveSi ∩α i
2 6= /0 iff v[i] = 0 and for all 1≤ j ≤ k′, we haveq j ∈ α j

3 iff
v[k+ j] = 0.

It is not hard to see that the setsPv are ordered:Pv ≥ Pv′ (that is, a transition fromPv to Pv′ is possible)
iff for each index 1≤ i ≤ k+k′, we havev[i] ≥ v′[i]. It is left to define the acceptance condition. Recall
that θ is a is positive Boolean formula overe1, . . . ,ek, !e′1, . . . , !e

′
k′ . In order to violate a requirement

associated withei , the projection of a run ofU on the component ofA ′i
2 has to avoid its rejecting sinks.

In order to violate a requirement associated with !e′j , the projection of a run ofU on the component of

A ′ j
3 has to reach an accepting sink. Accordingly, givenθ , we say thatv∈ 2k+k′ satisfiesθ if assigning

true to ei , for 1≤ i ≤ k, such thatv[i] = 0 and to !e′j , for 1≤ j ≤ k′, such thatv[k+ j] = 1, and assigning
false to all other atoms, satisfiesθ . Now, we define the acceptance condition ofU to that a run is
accepting if it gets stack in a setPv for which v satisfiesθ . Thus,α is the union of the setsPv for which
v does not satisfiesα . As required,U has|r|+(2|e1|+···+|ek||e′1| · · · |e

′
k′ |) states.

Note that we determinize only NFWs associated with regular expressions thatare not in the scope
of ! . Also, a tighter construction can take the structure ofθ into an account and handle conjunctions in
θ by nondeterminism rather than by taking the product.

Theorem 4.2. A TRIGGER LOGIC formula can be translated to equivalent DBW. The blow-up in the
translation is doubly exponential.
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Proof. Consider an NCWA with n states. By applying toA a construction dual to the break-point
construction of [MH84] we get a DCWA ′ equivalent toA with 3O(n) states. For completeness, we
describe the construction below. Intuitively,A ′ follows the standard subset construction applied toA .
In order to make sure that every infinite path visits states inα only finitely often,A ′ maintains in addition
to the setS that follows the subset construction, a subsetO of Sconsisting of states along runs that have
not visitedα since the last time theO component was empty. The acceptance condition ofA ′ then
requiresO to become empty only finitely often. Indeed, this captures the fact that there isa run ofA that
eventually prevents the setO from becoming empty, and thus it is a run along whichα is visited only
finitely often.

Formally, letA = 〈Σ,Q,q0,ρ,α〉. Then,A ′ = 〈Σ,Q′,q′0,ρ ′,α ′〉, where
• Q′ ⊆ 2Q×2Q is such that〈S,O〉 ∈ Q′ if O⊆ S⊆ Q.
• q′0 = 〈{qin}, /0〉,
• ρ ′ : Q′×Σ → Q′ is defined, for all〈S,O〉 ∈ Q′ andσ ∈ Σ, as follows.

ρ ′(〈S,O〉,σ) =

[

〈ρ(S,σ),ρ(O,σ)\α〉 if O 6= /0
〈ρ(S,σ),ρ(S,σ)\α〉 if O = /0.

• α ′ = 2Q×{ /0}.
Given aTRIGGER LOGIC formula Ψ, let ψ1, . . . ,ψn be its underlying regular formulas. We saw in

Proposition 4.1 that given a regular formulaψ of the formr 7→θ(e1, . . . ,ei , !e′k, . . . , !e
′
k′), we can construct

an NCW with |r|+(2|e1|+···+|ek||e′1| · · · |e
′
k′ |) states that accepts exactly all computations that violateψ .

Let A1, . . . ,An be the NCWs corresponding to the negations ofψ1, . . . ,ψn. For every 1≤ i ≤ n, we can
construct, as described above, a DCWA ′

i equivalent toAi . By dualizingA ′
i , we get a DBW forψi .

Now, since DBWs are closed under union and intersection (cf. [Cho74]), we can construct a DBWA
for Ψ. Note thatA is doubly exponential in the size ofΨ.

It remains to show that we can translate from DBW toTRIGGER LOGIC.

Theorem 4.3. Given a DBWA , we can construct aTRIGGER LOGIC formulas of size exponential in
|A | that is satisfed precisely by the computations that are accepted byA .

Proof. Let A = 〈Σ,Q,q0,ρ,α〉. Forq∈ α , letAq be the DFWA = 〈Σ,Q,q0,ρ,{q}〉, and letA q
q be the

DFW A = 〈Σ,Q,q,ρ,{q}〉. We do not wantAq andA
q

q to accept the empty wordε, so the initial state
can be renamed if needed. Leteq andeq

q be regular expressions equivalent toAq andA
q

q . By [HU79],
the lengths ofeq andqq

q are exponential inA .
A word w ∈ Σω is accepted byA iff there isq ∈ α such that the run ofA on w visits q infinitely

often. Thus, the run visitsq eventually, and all visits toq are followed by another visits in the (strict)
future. We can therefore specifies the set of words that are acceptedby A using theTRIGGER LOGIC

formula
∨

q∈α
((true7→eq)∧ (eq 7→eq

q).

The class of linear temporal properties that can be expressed by DBW was studied in [KV05b], where
it is shown to be precisely the class of linear temporal properties that can beexpressed in the alternation-
free µ-calculus (AFMC). The translation is with respect to Kripke structures. A given DBW A can
be translated to an AFMC formulaϕA such that for every Kripke structureK we have thatK |= A iff
K |= ϕA, whereK |= A if all computations ofK are accepted byA . Generally, the translation to AFMC

8
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requires going through DBW, which may involve a doubly exponentially blow-up, as in our translation
from TRIGGER LOGIC to DBW. For TRIGGER LOGIC, we can go to AFMC via the NCW constructed
Proposition 4.1, with an exponential, rather than a doubly exponential blow-up.

5 Synthesis

A transduceris a labeled finite graph with a designated start node, where the edges are labeled byD
(“input alphabet”) and the nodes are labeled byΣ (“output alphabet”). AΣ-labeledD-tree isregular if
it is the unwinding of some transducer. More formally, a transducer is a tupleT = 〈D,Σ,S,sin,η ,L〉,
whereD is a finite set of directions,Σ is a finite alphabet,S is a finite set of states,sin ∈ S is an initial
state,η : S×D → S is a deterministic transition function, andL : S→ Σ is a labeling function. We define
η : D∗ → S in the standard way:η(ε) = sin, and forx∈ D∗ andd ∈ D, we haveη(x ·d) = η(η(x),d).
Now, aΣ-labeledD-tree〈D∗,τ〉 is regular if there exists a transducerT = 〈D,Σ,S,sin,η ,L〉 such that
for everyx∈ D∗, we haveτ(x) = L(η(x)). We then say that the size of the regular tree〈D∗,τ〉, denoted
‖τ‖, is |S|, the number of states ofT .

Given aTRIGGER LOGICformulaψ over setsI andO of input and output signals (that is,AP= I ∪O),
the realizability problemfor ψ is to decide whether there is astrategy f: (2I )∗ → 2O, generated by a
transducer4 such that all the computations of the system generated byf satisfyψ [PR89a]. Formally, a
computationρ ∈ (2I∪O)ω is generated byf if ρ = (i0∪o0),(i1∪o1),(i2∪o2), . . . and for all j ≥ 1, we
haveo j = f (i0 · i1 · · · i j−1).

5.1 Upper bound

In this section we show that the translation ofTRIGGER LOGICformulas to automata, described earlier,
yields a 2EXPTIME synthesis algorithm forTRIGGER LOGIC.

Theorem 5.1. The synthesis problem forTRIGGER LOGICis in 2EXPTIME.

Proof. Consider aTRIGGER LOGIC formula Ψ over I ∪O. By Theorem 4.2, the formulaΨ can be
translated to a DBWA . The size ofA is doubly exponential in the length ofΨ, and its alphabet
is Σ = 2I∪O. Let A = 〈2I∪O,Q,q0,δ ,α〉, and letAt = 〈2O,2I ,Q,q0,δt ,α〉 be the DBT obtained by
expandingA to 2O-labeled 2I -trees. Thus, for everyq∈ Q and ando∈ 2O, we have5

δt(q,o) = ∧i∈2I (i,δ (q, i∪o)).

We now have thatA is realizable iffAt is not empty. Indeed,At accepts exactly all 2O-labeled
2I -trees all of whose computations are inL(A ). Furthermore, by the nonemptiness-test algorithm of
[VW86], the DBTAt is not empty iff there is a finite state transducer that realizesL(A ).

We discuss the practical advantages of our synthesis algorithm forTRIGGER LOGICin Section 6.

5.2 Lower Bound

The doubly-exponential lower bound for LTL synthesis is tightly related to the fact a translation of an
LTL formula to a deterministic automaton may involve a doubly-exponential blow-up [KV98a]. For

4It is known that if some transducer that generatesf exists, then there is also a finite-state transducer [PR89a].
5Note that the factA is deterministic is crucial. A similar construction for a nondeterministicA results inAt whose

language may be strictly contained in the required language.
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TRIGGER LOGICformulas, such a blow-up seems less likely, as the translation of regular expressions to
nondeterministic automata is linear, while the translation of LTL to automata is exponential [VW94]. As
we show below, the translation does involve a doubly exponential blow-up,even for formulas of the form
r 7→e, that is, when the underlying regular expressions appear positively. Intuitively, it follows from the
need to monitor all the possible runs of an NFW fore on different suffixes (these whose corresponding
prefix satisfiesr) of the input word.

Theorem 5.2. There is a regular expression r and a family of regular expression e1,e2, . . . such that for
all n ≥ 1, the length of en is polynomial in n and the smallest DBW for theTRIGGER LOGIC formula
r 7→en is doubly-exponential in n.

Proof. Let ψn = r 7→en. We definer anden over Σ = {0,1,#,$} so that the language of !ψn constains
exactly all wordsw such that there is a positionj with w[ j] = #, w[ j +1, j +n+1] ∈ (0|1)n, and either
there is no positionk> j with w[k] = $, orw[ j +1, j +n+1] = w[k+1,k+n+1] for the minimal position
k > j with w[k] = $.

By [CKS81], the smallest deterministic automaton that recognizes !ψn has at least 22
n

states. The
proof in [CKS81] considers a language of the finite words. The key idea, however, is valid also for our
setting, and implies that the smallest DBW forψ has at least 22

n
states: whenever the automaton reads

$, it should remember the set of words in #;(0|1)n that have appeared since the last $ (or the beginning
of the word, if we are in the first $).

We definer = (0|1|#)[∗];#, anden is the union of the following REs:
• truei ;(#|$), for 1≤ i ≤ n: the suffix does not begin with a word in(0|1)n.
• (truei ;0;(!$)[∗];$;truei ; !0), for 1≤ i ≤ n: there is 1≤ i ≤ n such that the letter in thei-th position

is 0 and is different from the letter in thei-th position after the first $ in the suffix.
• (truei ;1;(!$)[∗];$;truei ; !1), for 1≤ i ≤ n: there is 1≤ i ≤ n such that the letter in thei-th position

is 1 and is different from the letter in thei-th position after the first $ in the suffix.
It is not hard to see that a wordw satisfiesψn if for every position j, if w[ j] = #, then eitherw[ j +

1, j + n+ 1] 6∈ (0|1)n or there isk > j such thatw[k] = $ andw[ j + 1, j + n+ 1] 6= w[k+ 1,k+ n+ 1],
for the minimalk > j with w[k] = $. Thus, as required, a wordw satisfies !ψn if there is a position
j with w[ j] = #, w[ j + 1, j + n+ 1] ∈ (0|1)n, and either there is no positionk > j with w[k] = $, or
w[ j +1, j +n+1] = w[k+1,k+n+1] for the minimal positionk > j with w[k] = $.

Theorem 5.2 implies that our algorithm, which involves a translation ofTRIGGER LOGIC formulas
to DBWs, may indeed have a doubly-exponential time complexity. In Theorem 5.3 below we show that
one cannot do better, as the synthesis problem is 2EXPTIME-hard. Thus, our algorithm is optimal and
the synthesis problem forTRIGGER LOGICis 2EXPTIME-complete.

Theorem 5.3. The synthesis problem forTRIGGER LOGICformulas is 2EXPTIME-hard.

Proof. As in the 2EXPTIME-hardness for CLT⋆ satisfiability [VS85], we do a reduction from the prob-
lem whether an alternating exponential-space Turing machineT accepts the empty tape. That is, given
such a machineT and a numbern in unary, we construct a trigger formulaψ such thatT accepts the
empty tape using space 2n iff ψ is realizable. LetT = 〈Γ,Qu,Qe,→,q0,qacc〉, whereΓ is the tape al-
phabet, the setsQu and Qe of states are disjoint, and contain the universal and the existential states,
respectively,q0 is the initial state, andqacc is the accepting state. We denote the unionQu∪Qe by Q.
Our model of alternation prescribes that the transition relation→⊆ Q×Γ×Q×Γ×{L,R} has branch-
ing degree two,q0 ∈ Qe, and the machineT alternates between existential and universal set. When a
universal or an existential state ofT branches into two states, we distinguish between the left and the
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right branches. Accordingly, we use(q,σ) → 〈(ql ,bl ,∆l ),(qr ,br ,∆r)〉 to indicate that whenT is in state
q∈ Qu∪Qe reading a symbolσ , it branches to the left with(ql ,bl ,∆l ) and to the right with(qr ,br ,∆r).
(Note that the directions left and right here have nothing to do with the movement direction of the head;
these are determined by∆l and∆r .)

For a configurationc of T, let succl (c) andsuccr(c) be the successors ofc when applying to it the
left and right choices in→, respectively. Given an inputw, a computation tree ofT on w is a tree in
which each node corresponds to a configuration ofT. The root of the tree corresponds to the initial
configuration. A node that corresponds to a universal configurationc has two successors, corresponding
to succl (c) andsuccr(c). A node that corresponds to an existential configurationc has a single successor,
corresponding to eithersuccl (c) or succr(c). The tree is an accepting computation tree if all its branches
eventually reach an accepting configuration – one in which the state isqacc. We assume that once a
computation reaches an accepting configuration it stays inqacc forever.

We encode a configuration ofT by a wordγ1γ2 . . .(q,γi) . . .γ2n. That is, all the letters in the config-
uration are inΓ, except for one letter inQ×Γ. The meaning of such a configuration is that thej ’s cell
of T, for 1≤ j ≤ 2n, is labeledγ j , the reading head points on celli, andT is in stateq. For example, the
initial configuration ofT on the empty tape is @1,(q0,#),#· · ·#,@2, where # stands for the empty cell,
and @1 and @2 are special tape-end symbols. We can now encode a computation ofT by a sequence of
configurations.

Let Σ = Γ∪ (Q×Γ). We can encode letters inΣ by a setAP(T) = {p1, . . . , pm, p′1, . . . , p′m} (with
m= ⌈log|Σ|⌉) of atomic propositions. The propositionsp′1, . . . , p′m are auxiliary; their roles is made clear
shortly. We define our formulas over the setAP= AP(T)∪{v1, . . . ,vn,v′1, . . . ,v

′
n}∪{real, leftin, leftout,e}

of atomic propositions. The propositionsv1, . . . ,vn encode the locations of the cells in a configuration.
The propositionsv′1, . . . ,v

′
n help in increasing the value encoded byv1, . . . ,vn properly. The task of the

last four atoms is explained shortly.

The setAP of propositions is divided into input and output propositions. The input propositions are
real andleftin. All other propositions are output propositions. With two input propositions, a strategy can
be viewed as a 4-ary tree. Recall that the branching degree ofT is 2. Why then do we need a 4-ary tree?
Intuitively, the strategy should describe a legal and accepting computation tree ofT in a “real” 2-ary tree
embodied in the strategy tree. This real 2-ary tree is the one in which the inputpropositionreal always
holds. Branches in whichreal is eventually false do not correspond to computations ofT and have a
different role. Within the real tree, the input propositionleftin is used in order to distinguish between the
left and right successors of a configurations.

The propositionsv1, . . . ,vn encode the location of a cell in a configuration ofT, with v1 being the
most significant bit. SinceT is an exponential-space Turing machine, this location is a number between
0 and 2n−1. To ensure thatv1, . . . ,vn act as ann-bit counters we need the following formulas:

1. The counter starts at 0.
• true7→&& n

i=1!vi

2. The counter is increased properly. For this we usev′1, . . . ,v
′
n as carry bits.

• true[+]7→v′n
• (true[∗];(vi&& v′i))7→true;(!vi&& v′i−1), for i = 2, . . . ,n
• (true[∗];((vi&& (!v′i))||((!vi)&& v′i)))7→true;(vi&& (!v′i−1)), for i = 2, . . . ,n
• (true[∗];((!vi)&& (!v′i)))7→true;((!vi)&& (!v′i−1)), for i = 2, . . . ,n
• (true[∗];((v1&& v′1)||((!v1)&& (!v′1))))7→true; !v1

• (true[∗];((v1&& (!v′1))||((!v1)&& v′1)))7→true;v1

Let σ1 . . .σ2n,σ ′
1 . . .σ ′

2n be two successive configurations ofT. For each triple〈σi−1,σi ,σi+1〉 with
1< i < 2n, we know for each transition relation ofT, whatσ ′

i should be. Letnext(〈σi−1,σi ,σi+1〉) denote
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our expectation forσ ′
i . I.e. 6

• next(〈γi−1,γi ,γi+1〉) = γi .

• next(〈(q,γi−1),γi ,γi+1〉) =

{

γi If (q,γi−1) → (q′,γ ′i−1,L).
(q′,γi) If (q,γi−1) → (q′,γ ′i−1,R).

• next(〈γi−1,(q,γi),γi+1〉) = γ ′i where(q,γi) → (q′,γ ′i ,∆).

• next(〈γi−1,γi ,(q,γi+1)〉) =

{

γi If (q,γi+1) → (q′,γ ′i+1,R).
(q′,γi) If (q,γi+1) → (q′,γ ′i ,L).

Since we have two transitions relations, we actually obtain two functions,nextl andnextr .
Consistency withnextgives us a necessary condition for a path in the computation tree to encode a

legal computation. In addition, the computation should start with the initial configuration and reach an
accepting state. It is easy to specify the requirements about the initial and accepting configurations. For
a letterσ ∈ Σ, let η(σ) be the propositional formula overAP in which p1, . . . , pn encodeσ . That is,
η(σ) holds in a node iff the truth value of the propositionsp1 . . . , pm in that node encodes the symbolσ .
Similarly, η ′(σ) is the propositional formula overAP in which p′1, . . . , p′n encodeσ . Thus, to say that the
first configuration correspond to the empty word we use the following formulas, whereonesabbreviates
∧n

i=1vi , and # denotes the empty symbol:
• true7→η(@1);η(〈q0,#〉
• (true; true;(!ones)[+])7→η(#)

• ((!ones)[+];ones)7→true;η(@2)

We come back to the acceptance condition shortly.
The propositionsp′1, . . . , p′m capture the symbol encoded in the previous cell, and special symbols at

initial cells. We use the following formula, wherezerosabbreviates∧n
i=1(!vi).

• (true[∗];zero)7→η ′(@2)

• (true[∗];((!ones)&& p j)7→(true; p′j)
• (true[∗];((!ones)&& (!p j))7→(true;(!p′j))
The output propositione marks existential configurations. Recall that computations ofT start in

existential configurations and alternate between universal and existential configurations. The value ofe
is maintained throughout the configuration. This is expressed using the following formulas:

• true7→e
• (true[∗];((!ones)&& e))7→(true;e)
• (true[∗];((!ones)&& (!e))7→(true;(!e))
• (true[∗];(ones&& e)))7→(true;(!e)
• (true[∗];(ones&& (!e))7→(true;e)

The output propositionleftout marks configurations that are left successors. The value ofleftout is de-
termined according to the value ofleftin at the end of the previous configuration, and is maintained
throughout the configuration, where it is used in order to decide whetherthe configuration should be
consistent withnextl or with nextr . The following formulas ensure that the value is indeed maintained
and that universal configurations are followed by both left and right configurations. On the other hand,
for the successors of existential configurations, the strategy has no restrictions on the value ofleftout, and
can choose the same value for the two successors.

• (true[∗];((!ones)&& leftout))7→(true; leftout)

• (true[∗];((!ones)&& (!leftout))7→(true;(!leftout))

• (true[∗];(ones&& (!e)&& (!leftin)))7→(true; leftout)

• (true[∗];(ones&& (!e)&& leftin))7→(true;(!leftout))

6Special handling of end cases is needed, when the head ofT read the left or right end markers. For simplicity, we ignore
this technicality here.
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The difficult part in the reduction is in guaranteeing that the sequence of configurations is indeed
consistent withnextl andnextr . To enforce this, we have to relateσi−1,σi , andσi+1 with σ ′

i for each
i in every two successive configurationsσ1 . . .σ2n,σ ′

1 . . .σ ′
2n. One natural way to do so is by a con-

junction of formulas like “whenever we meet a cell at locationi −1 and the labeling of the next three
cells forms the triple〈σi−1,σi ,σi+1〉, then the next time we meet a cell at locationi, this cell is labeled
next(〈σi−1,σi ,σi+1〉)”. The problem is that, asi can take a value from 0 to 2n−1, there are exponentially
many such conjuncts. This is where the non-real part of the tree is helpful [VS85].

Recall that the input propositionreal is used to labeled the “real” part of the strategy tree – the one
that corresponds to the computation tree ofT. Once we branch according to !real, we move to the
auxiliary part of the tree. Consider now an arbitrary trace, either it is a real trace, on whichreal is
always true, or it reaches the auxiliary part of the tree, wherereal is false. We refer to the latter trace as
anauxiliary trace. The point at whichreal is true for the last time is theendof this auxiliary trace.

Consider a pointx on an auxiliary trace that is followed by the end pointy. There are the following
possibilities:

1. onesholds less than or more than once betweenx andy, which means thatx andy do not belong
to successive configurations.

2. onesholds once betweenx andy, which means that they belong to successive configurations, but
the assignment top1, . . . , pn atx andy disagree, which means that they are not corresponding cells.

3. onesholds once betweenx andy, which means that they belong to success configurations, and the
assignments top1, . . . , pn atx andy agree, which means that they are corresponding cells.

Accordingly, in order to ensure correct succession of configurations ofT, we use the formula
• real[+]7→ψ ,

whereψ is a union of the following regular expressions:
• (true[+];

∨

γ∈Γ η(〈sa,γ〉): the trace reaches an accepting configuration;
• (!ones&& real)[+];ones: the pointsx andy belong to same configuration;
• real[∗];ones&& real; real[+];ones&& real: the points belong to non-successive configurations;
• vi&& real; real[+];(!vi)&& real; !real, for i = 1, . . . ,n: the points do not agree on the value of the

i-th bit in the encoding of their address and therefore they have different cell locations;
• η ′(σ1)&& η(σ2)&& real;η(σ3)&& real; real[+]; leftout&& nextl (σ1,σ2,σ3)&& real; !real, for σ1,σ2,σ3∈

Σ: the pointsx andy are in the same cell of a configuration and its left successor, andnextl is re-
spected. Note that the propositionsp′i are used in order to refer to the cell beforex.

• (η ′(σ1)&& η(σ2))&& real;η(σ3)&& real; real[+];(!leftout)&& nextr(σ1,σ2,σ3)&& real; !real, for
σ1,σ2,σ3 ∈ Σ: the pointsx andy are in the same cell of a configuration and its right successor, and
nextl is respected.

Note that theTRIGGER LOGIC formula constructed in the reduction is a conjunction of formulas of
the formr 7→e. Thus, the problem is 2EXPTIME-hard already for this fragment ofTRIGGER LOGIC.

6 Practice Issues

In Section 5.1, we proved that the synthesis problem forTRIGGER LOGIC can be solved in doubly-
exponential time. This bound is no better on its face than the doubly-exponential time upper bound
proved in [PR89a, KV05c] for LTL synthesis. A closer examination reveals, however, that the algorithms
in [PR89a, KV05c] have time complexity of the form 44n

, while the algorithm described here has time
complexity of the form 42

n
. This, however, is not what we view as the main advantage of this algorithm.
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Rather, its main advantage is that it is significantly simpler. Unlike the algorithm in [PR89a], we need
not apply Safra’s determinization construction nor solving complex games. Unlike [KV05b], we need
not use progress measures. Our algorithm is based solely on using the subset construction and solving
the emptiness problem for Büchi tree automata.

In this section we show that our algorithm forTRIGGER LOGIChas additional appealing properties
in practice.

A symbolic implementation Theorem 5.1 reduces theTRIGGER LOGIC synthesis problem to the
nonemptiness problem of a DBT obtained by dualizing a DCW that is the result of applying the break-
point construction of [MH84] to the NCW that corresponds to the negation of the TRIGGER LOGIC

formula. In [MS08a, MS08b], the authors described a symbolic implementationof the break-point con-
struction for word automata. For tree automata, the symbolic algorithm for the nonemptiness construc-
tion is not more difficult, as both word emptiness and tree emptiness for Büchi automata are based on
nested-fixpoint algorithms [EL86, VW86], using a quadratic number of symbolic operations.

In more details, the state space of the DBT consists of sets of states, it can beencoded by Boolean
variables, and the DBT’s transitions can be encoded by relations on thesevariables and a primed version
of them. The fixpoint solution for the nonemptiness problem of DBT (c.f., [VW86]) then yields a sym-
bolic solution to the synthesis problem. Moreover, the BDDs that are generated by the symbolic decision
procedure can be used to generate a symbolic witness strategy. The Boolean nature of BDDs then makes
it very easy to go from this BDD to a sequential circuit for the strategy. It isknown that a BDD can be
viewed as an expression (in DAG form) that uses the “if then else” as a single ternary operator. Thus, a
BDD can be viewed as a circuit built from if-then-else gates. More advantages of the symbolic approach
are described in [HRS05]. As mentioned above, [HRS05] also suggestsa symbolic solution for the LTL
synthesis problem. However, the need to circumvent Safra’s determinization causes the algorithm in
[HRS05] to be complete only for a subset of LTL. Likewise, the need to implement the progress ranks of
[KV05a] using a binary encoding challenges BDD-based implementations [TV07]. Our approach here
circumvents both Safra’s determinization and ranks, facilitating a symbolic implementation.

Incremental synthesis A serious drawback of current synthesis algorithms is that they assume a com-
prehensive set of temporal assertions as a starting point. In practice, however, specifications are evolving:
temporal assertions are added, deleted, or modified during the design process. Here, we describe how
our synthesis algorithm can supportincrementalsynthesis, where the temporal assertions are given one
by one. We show how working with DBWs enables us, when we check the realizability of ψ&& ψ ′, to
use much of the work done in checking the realizability ofψ andψ ′ in isolation.

Essentially, we show that when we construct and check the emptiness of theDBT to which realizabil-
ity of ψ&& ψ ′ is reduced, we can use much of the work done in the process of checkingthe emptiness
of the two (much smaller) DBTs to which realizability ofψ andψ ′ is reduced (in isolation). LetA and
A ′ be the DBTs to which realizability ofψ andψ ′ is reduced, respectively. Recall thatA andA ′ are
obtained from NCWs with state spacesQ andQ′. A non-incremental approach generates the DBT that
corresponds toψ&& ψ ′. By Theorem 5.1, this results in a DBTU with state space 3Q∪Q′

. On the other
hand, the state spaces ofA andA ′ are much smaller, and are 3Q and 3Q

′
, respectively.

Let us examine the structure of the state space ofU more carefully. Each of its states can be viewed
as a pair〈S∪S′,O∪O′〉, for O⊆S⊆Q andO′ ⊆S′ ⊆ Q′. The state corresponds to the states〈S,O〉 of A

and〈S′,O′〉 of A ′. Clearly, if one of these states is empty (that is, if the automaton accept no treestarting
from these states), then so is〈S∪S′,O∪O′〉. Thus, an incremental algorithm can start by marking all
such states as empty and continue the emptiness check only with the (hopefully much smaller) state
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space.
(Note that this idea does not apply to disjunctions. Suppose that neitherψ nor ψ ′ is realizable, and

we want to check ifψ ||ψ ′ is realizable. It is not clear how to leverage realizability checking ofψ and
ψ ′, when we check realizability ofψ ||ψ ′.)

Adding assumptions The method described above cannot be applied for formulas of the formψ ′ →ψ ,
with ψ ′ and ψ formulas in TRIGGER LOGIC. Note that sinceTRIGGER LOGIC is not closed under
negation, the specificationψ ′ → ψ is not aTRIGGER LOGIC formula. Still, such an implication arises
naturally when we want to synthesizeψ with respect to environments satisfyingψ ′. To handle such
specifications, we apply the automata-theoretic constructions of Section 5.1 tobothψ ′ andψ obtaining
DBT A

ψ ′

t andA
ψ

t , with acceptance conditionsα ′ andα . We now take the product ofA ψ ′

t andA
ψ

t ,
and use as acceptance condition the Streett pair〈α ′,α〉. A symbolic algorithm for Streett tree automata
is described in [KV98b]. For Street(1) condition, that is, a single pair Streett condition, the algorithm
requires a cubic number of symbolic operations.
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