
Pushdown Specifications

Orna Kupferman∗

Hebrew University
Nir Piterman†

Weizmann Institute of Science
Moshe Y. Vardi‡

Rice University

May 6, 2008

Abstract

Traditionally, model checking is applied to finite-state systems and regular specifications. While re-
searchers have successfully extended the applicability ofmodel checking to infinite-state systems, almost
all existing work still consider regular specification formalisms. There are, however, many interesting
non-regular properties one would like to model check.

In this paper we study model checking ofpushdown specifications. Our specification formalism is
nondeterministic pushdown parity tree automata (PD-NPT).We show that the model-checking problem
for regular systems and PD-NPT specifications can be solved in time exponential in the system and the
specification. Our model-checking algorithm involves a newsolution to the nonemptiness problem of
nondeterministic pushdown tree automata, where we improvethe best known upper bound from a triple-
exponential to a single exponential. We also consider the model-checking problem for context-free
systems and PD-NPT specifications and show that it is undecidable.

∗Address: School of Computer Science and Engineering, Hebrew University, Jerusalem 91904, Israel.
Email: orna@cs.huji.ac.il

†Department of Computer Science and Applied Mathematics, Weizmann institute, Rehovot 76100, Israel.
Email: nirp@wisdom.weizmann.ac.il

‡Address: Department of Computer Science, Rice University, HoustonTX 77005-1892, U.S.A. Email: vardi@cs.rice.edu

1 Introduction

One of the most significant developments in the area of formal design verification is the discovery of al-
gorithmic methods for verifying on-going behaviors of reactive systems [QS81, LP85, CES86, VW86].
In model-checking, we verify the correctness of a system with respect to a desired behavior by checking
whether a mathematical model of the system satisfies a formal specification of this behavior (for a survey,
see [CGP99]). Traditionally, model checking is applied tofinite-statesystems, typically modeled by labeled
state-transition graphs, and to behaviors that are formally specified astemporal-logicformulas orautomata
on infinite objects. Symbolic methods that enable model-checking of very large state spaces, and the great
ease of use of fully algorithmic methods, led to industrial acceptance of model-checking [BLM01, CFF+01].

In recent years, researchers have tried to extend the applicability of model-checking to infinite-state sys-
tems. An active field of research is model-checking ofinfinite-state sequential systems. These are systems in
which each state carries a finite, but unbounded, amount of information, e.g., a pushdown store. The origin of
this research is the result of M̈uller and Schupp that the monadic second-order theory ofcontext-free graphs
is decidable [MS85]. As the complexity involved in that decidability result is nonelementary, researchers
sought decidability results of elementary complexity. Various algorithms for simpler logics and more general
systems have been proposed. The most powerful result so far is an exponential-time algorithm by Burkart
for model checking formulas of theµ-calculus with respect to prefix-recognizable graphs [Bur97b]. See
also [BS95, Cau96, Wal96, BE96, BQ96, BEM97, Bur97a, FWW97, BS99, BCMS00, KV00] and a short
summary in [Tho01].

An orthogonal line of research considers the applicability of model checking to infinite-state specifica-
tions. Almost all existing work on model checking considers specification formalisms that defineregular
sets of words, trees, or graphs: formulas of LTL,µ-calculus, and even monadic-second order logic can all be
translated to automata [Büc62, Rab69, EJ91], and in fact many model-checking algorithms (for both finite-
state and infinite-state systems) first translate the given specification into an automaton and reason about
the structure of this automaton (cf., [VW86, BEM97, KV00]). Sometimes, however, the desired behavior
is non-regular and cannot be specified by a finite-state automaton. Consider for example the property “p is
inevitable”, for a propositionp. That is, in every computation of the system,p eventually holds. Clearly,
this property is regular and is expressible as∀3p in both CTL [CES86] and LTL [Pnu77]. On the other
hand, the property “p is uniformly inevitable”, namely, there is some timei such that in every computation
of the system,p holds at timei, is not expressible by a finite automaton on infinite trees [Eme87], and hence,
it is non-regular. As another example, consider a system that handles requests and acknowledgments, and
the property “every acknowledgment is preceded by some request”. Again, this property is regular and is
expressible in LTL as(¬ack)Wreq . On the other hand, consider the property of “no redundant acknowledg-
ments”, namely the number of acknowledgments does not exceed the number of requests. The technique of
[Eme87] can be used in order to show that the property is non-regular. More examples to useful non-regular
properties are given in [SCFG84], where the specification of unbounded message buffers is considered.

The need to specify non-regular behaviors led Bouajjani et al. [BER94, BEH95] to consider logics that
are a combination of CTL and LTL with Presburger Arithmetic. The logics, called PCTL and PLTL, use
variables that range over natural numbers. The variables are bound tothe occurrences of state formulas and
comparison between such variables is allowed. The non-regular properties discussed above can be specified
in PCTL and PLTL. For example, we can specify uniform inevitability in PCTL as ∃̃i . ∀[x : true](x =
i → p), where thẽ∃ quantifier quantifies over natural numbers, the∀ quantifier quantifies over computations
of the system, and the combinator[x : true] binds the variablex to count the number of occurrences of
the state formulatrue. Bouajjani et al. consider the model-checking problem for the logics PCTLand
PLTL over finite-state (regular) systems and over infinite-state (non-regular) systems. The logics turned

1

out to be too strong: the model-checking of both PCTL and PLTL over finite-state systems is undecidable.
They proceed to restrict the logics to fragments for which model-checking over finite-state systems and
context-free systems is decidable.

Uniform inevitability is clearly expressible by anondeterministic pushdown tree automaton. Pushdown
tree automata are finite-state automata augmented by a pushdown store. Like a nondeterministic finite-state
tree automaton, a nondeterministic pushdown tree automaton starts reading a tree from the root. At each
node of the tree, the pushdown automaton consults the transition relation and splits into independent copies
of itself to each of the node’s successors. Each copy has an independent pushdown store that diverges from
the pushdown store of the parent. We then check what happens along every branch of the run tree and
determine acceptance. In order to express uniform inevitability, the automaton guesses the timei, pushes
i elements into the pushdown store, and, along every computation, pops one element with every move of
the system. When the pushdown store becomes empty, the automaton requiresp to hold. Similarly, in
order to express “no redundant acknowledgments”, a nondeterministic pushdown tree automaton can push
an element into the pushdown store whenever the system sends a request,pop one element with every
acknowledgment, and reject the tree when an acknowledgment is issued when the pushdown store is empty.
In [PI95], Peng and Iyer study more properties that are non-regularand propose to use nondeterministic
pushdown tree automata as a strong specification formalism. The model studiedby [PI95] isempty store: a
run of the automaton is accepting if the automaton’s pushdown store gets empty infinitely often along every
branch in the run tree.

In this paper we study the model-checking problem for specifications given by nondeterministic push-
down tree automata. We consider both finite-state (regular) and infinite-state(non-regular) systems. We
show that for finite-state systems, the model-checking problem is solvable in timeexponential in both the
system and the specification, even for nondeterministic pushdown parity tree automata – a model that is
much stronger than the one studied in [PI95]. On the other hand, the model-checking problem for context-
free systems is undecidable – already for a weak type of pushdown tree automata. Note that by having tree
automata as our specification formalism, we follow here the branching-time paradigm, where the specifica-
tion describes allowed computation trees and a system is correct if its computation tree is allowed [CES86].
In Remark 4.2, we discuss the undecidability of the linear-time paradigm, and thereasons that make the
(seemingly more general) branching-time framework decidable.

In order to solve the model-checking problem for nondeterministic pushdown tree automata and finite-
state systems, we use the automata theoretic approach to branching time model checking [KVW00]. In
[KVW00], model checking is reduced to theemptinessproblem for nondeterministic finite tree automata,
here we reduce the model checking problem to the emptiness problem for nondeterministic pushdown tree
automata. The first to show that this emptiness problem is decidable were Harel and Raz [HR94]. The
automata considered by Harel and Raz use the Büchi acceptance condition, where some states are designated
as accepting states and a run is accepting if it visits the accepting states infinitelyoften along every branch
in the run tree. It is shown in [HR94] that the problem can be solved in triple-exponential time. Recall that
Peng and Iyer [PI95] consider a simpler acceptance condition, where arun is accepting if the automaton’s
pushdown store gets empty infinitely often along every branch in the run tree. For this acceptance condition,
it is shown in [PI95] that the nonemptiness problem can be solved in exponential time. Nevertheless, empty
store pushdown automata are strictly weaker than nondeterministic Büchi pushdown tree automata [PI95]
and the algorithm in [PI95] cannot be extended to handle the Büchi acceptance condition.

The main result of this paper is an exponential algorithm for the emptiness problem of nondeterministic
parity pushdown tree automata. Thus, apart from improving the known triple-exponential upper bound to a
single exponential, we handle a more general acceptance condition. Our algorithm is based on a reduction

2

of the emptiness problem to the membership problem fortwo-way alternating parity tree automatawith
no pushdown store. We note that our technique can be applied also to specifications given byalternating
pushdown parity tree automata. Indeed, the automata-theoretic approach tobranching-time model checking
involves some type of a product between the system and the specification automaton, making alternation as
easy as nondeterminism [KVW00]. In Remark 4.3, we discuss this point further, and also show that, unlike
the case of regular automata, alternating pushdown automata are strictly more expressive than nondetermin-
istic pushdown tree automata.

Once one realizes that the difficulties in handling the pushdown store of the tree automaton are similar
to the difficulties in handling the pushdown store of infinite-state sequential systems, it is possible to solve
the nonemptiness problem for pushdown automata with various methods that have been suggested for the
latter. In particular, it is possible to reduce the nonemptiness problem for nondeterministic pushdown parity
tree automata to theµ-calculus model-checking problem for pushdown systems [Wal01]. The solution we
suggest here is the first to suggest the application of methods developed for reasoning about infinite-state
sequential systems to the solution of automata-theoretic problems for pushdown automata. In particular, we
believe that methods based on two-way alternating tree automata [KV00, KPV02] are particularly appropri-
ate for this task, as the solution stays in the clean framework of automata.

Finally, in order to show the undecidability result, we reduce the problem of deciding whether a two-
counter machine accepts the empty tape to the model-checking problem of a context-free system with respect
to a nondeterministic pushdown tree automaton. Intuitively, the pushdown store of the system can simulate
one counter, and the pushdown store of the specification can simulate the second counter.

The study of pushdown specifications completes the picture described in thetable in Figure 1 regarding
model checking of regular and context-free systems with respect to regular and pushdown specifications.
When both the system and the specification are regular, the setting is that of traditional model checking
[CGP99]. When only one parameter has a pushdown store, the problem isstill decidable. Yet, when both
the system and the specification have a pushdown store, model checking becomes undecidable. The com-
plexities in the table refer to the case where the specification is given by a nondeterministic or an alternating
parity tree automaton of sizen and indexk. The size of the system ism.

Regular Specifications Pushdown Specifications

Regular Systems decidable;O((nm)k) [EJS93] decidable;exp(mnk) [Theorem 4.1]
Pushdown Systems decidable;exp(mnk) [KV00] undecidable [Theorem 5.1]

Figure 1: Model checking regular and pushdown systems and specifications.

2 Definitions

2.1 Trees

Given a finite setΥ of directions, anΥ-treeis a setT ⊆ Υ∗ such that ifυ ·x ∈ T , whereυ ∈ Υ andx ∈ Υ∗,
then alsox ∈ T . The elements ofT are callednodes, and the empty wordε is theroot of T . For every
υ ∈ Υ andx ∈ T , the nodex is theparentof υ · x andυ · x is asuccessorof x. If z = x · y ∈ T thenz is a
descendant ofy. Each nodex 6= ε of T has adirection in Υ. The direction of the root is the symbol⊥ (we
assume that⊥ 6∈ Υ). The direction of a nodeυ ·x is υ. We denote bydir(x) the direction of the nodex. An
Υ-treeT is a full infinite treeif T = Υ∗. A pathπ of a treeT is a setπ ⊆ T such thatε ∈ π and for every

3

x ∈ π there exists a uniqueυ ∈ Υ such thatυ · x ∈ π. Note that our definitions here reverse the standard
definitions (e.g., whenΥ = {0, 1}, the successors of the node0 are00 and10, rather than00 and01.

Given two finite setsΥ andΣ, aΣ-labeledΥ-tree is a pair〈T, τ〉 whereT is anΥ-tree andτ : T → Σ
maps each node ofT to a letter inΣ. WhenΥ andΣ are not important or clear from the context, we call
〈T, τ〉 a labeled tree. A tree isregular if it is the unwinding of some finite labeled graph. More formally,
a transduceris a tupleD = 〈Υ, Σ, Q, q0, η, L〉, whereΥ is a finite set of directions,Σ is a finite alphabet,
Q is a finite set of states,q0 ∈ Q is an initial state,η : Q × Υ → Q is a deterministic transition function,
andL : Q → Σ is a labeling function. We defineη : Υ∗ → Q in the standard way:η(ε) = q0 and for
x ∈ Υ∗ andA ∈ Υ we haveη(Ax) = η(η(x), A). Intuitively, a transducer is a labeled finite graph with a
designated start node, where the edges are labeled byΥ and the nodes are labeled byΣ. A Σ-labeledΥ-tree
〈Υ∗, τ〉 is regular if there exists a transducerD = 〈Υ, Σ, Q, q0, η, L〉, such that for everyx ∈ Υ∗, we have
τ(x) = L(η(x)). We then say that the size of the regular tree〈Υ∗, τ〉, denoted‖τ‖, is |Q|, the number of
states ofD.

2.2 Alternating two-way tree automata

Alternating automataon infinite trees generalize nondeterministic tree automata and were first introduced
in [MS87]. Here we describe alternatingtwo-waytree automata. For a finite setX, letB+(X) be the set of
positive Boolean formulas overX (i.e., boolean formulas built from elements inX using∧ and∨), where
we also allow the formulastrue andfalse, and, as usual,∧ has precedence over∨. For a setY ⊆ X and
a formulaθ ∈ B+(X), we say thatY satisfiesθ iff assigningtrue to elements inY and assigningfalse to
elements inX \Y makesθ true. For a setΥ of directions, theextensionof Υ is the setext(Υ) = Υ∪{ε, ↑}
(we assume thatΥ ∩ {ε, ↑} = ∅). An alternating two-way automatonover Σ-labeledΥ-trees is a tuple
A = 〈Σ, Q, δ, q0, F 〉, whereΣ is the input alphabet,Q is a finite set of states,δ : Q×Σ → B+(ext(Υ)×Q)
is the transition function,q0 ∈ Q is an initial state, andF specifies the acceptance condition.

A run of an alternating automatonA over a labeled tree〈Υ∗, τ〉 is a labeled tree〈Tr, r〉 in which every
node is labeled by an element ofΥ∗×Q. A node inTr, labeled by(x, q), describes a copy of the automaton
that is in the stateq and reads the nodex of Υ∗. Note that many nodes ofTr can correspond to the same
node ofΥ∗; there is no one-to-one correspondence between the nodes of the runand the nodes of the tree.
The labels of a node and its successors have to satisfy the transition function. Formally, a run〈Tr, r〉 is a
Σr-labeledΓ-tree, for some setΓ of directions, whereΣr = Υ∗ × Q and〈Tr, r〉 satisfies the following:

1. ε ∈ Tr andr(ε) = (ε, q0).

2. Considery ∈ Tr with r(y) = (x, q) and δ(q, τ(x)) = θ. Then there is a (possibly empty) set
S ⊆ ext(Υ) × Q, such thatS satisfiesθ, and for all〈c, q′〉 ∈ S, there isγ ∈ Γ such thatγ · y ∈ Tr

and the following hold:

• If c ∈ Υ, thenr(γ · y) = (c · x, q′).

• If c = ε, thenr(γ · y) = (x, q′).

• If c =↑, thenx = υ · z, for someυ ∈ Υ andz ∈ Υ∗, andr(γ · y) = (z, q′).

Thus,ε-transitions leave the automaton on the same node of the input tree, and↑-transitions take it up to the
parent node. Note that the automaton cannot go up the root of the input tree, as wheneverc =↑, we require
thatx 6= ε.

4

A run 〈Tr, r〉 is acceptingif all its infinite paths satisfy the acceptance condition. We consider hereBüchi
andparity acceptance conditions [Büc62, EJ91]. A parity condition over a state setQ is a finite sequence
F = {F1, F2, . . . , Fk} of subsets ofQ, whereF1 ⊆ F2 ⊆ . . . ⊆ Fk = Q. The numberk of sets is called
the indexof A. Given a run〈Tr, r〉 and an infinite pathπ ⊆ Tr, let inf (π) ⊆ Q be such thatq ∈ inf (π)
if and only if there are infinitely manyy ∈ π for which r(y) ∈ Υ∗ × {q}. That is,inf (π) contains exactly
all the states that appear infinitely often inπ. A pathπ satisfies the parity conditionF if there is an even
1 ≤ i ≤ k such thatinf (π) ∩ Fi 6= ∅ and for allj < i, we haveinf (π) ∩ Fj = ∅. A Büchi acceptance
condition consists of a setF1 ⊆ Q and it can be viewed as a special case of a parity condition of index 3,
whereF = {∅, F1, Q}. Thus, a run is accepting according to the Büchi conditionF1 if every path in the run
visitsF1 infinitely often. An automaton accepts a labeled tree if there exists a run that accepts it. We denote
byL(A) the set of allΣ-labeled trees thatA accepts. The automatonA is nonemptyiff L(A) 6= ∅.

An automaton is 1-way if it does not useǫ-transitions nor↑-transitions. Formally, an automaton is 1-
way if for every stateq ∈ Q and letterσ ∈ Σ the transitionδ(q, σ) is restricted to formulas inB+(Q).
An automaton is nondeterministic if in every transition exactly one copy of the automaton is sent in every
direction inΥ. Formally, an automaton is nondeterministic if for every stateq ∈ Q and letterσ ∈ Σ
there exists some setI such thatδ(q, σ) =

∨
i∈I

∧
υ∈Υ(si,υ, υ). Equivalently, we can describe the transition

function of a nondeterministic automaton asδ : Q × Σ → 2(Q|Υ|). The tuple〈q1, . . . , q|Υ|〉 ∈ δ(q, σ) is
equivalent to the disjunct(q1, υ1)∧. . .∧(q|Υ|, υ|Υ|). We use acronyms in{1, 2}×{A, N}×{B, P}×{T, W}
to denote the different types of automata. The first symbol stands for the type of movement of the automaton:
1 stands for 1-way automata (we often omit the 1) and 2 stands for 2-way automata. The second symbol
stands for the branching mode of the automaton:A for alternating andN for nondeterministic. The third
symbol stands for the type of acceptance used by the automaton:B for Büchi andP for parity, and the last
symbol stands for the object the automaton is reading:W for words (not used in this paper) andT for trees.
For example, a 2APT is a 2-way alternating parity tree automaton and an NPT is a1-way nondeterministic
parity tree automaton.

Theorem 2.1 Given a 2APTA with n states and indexk, we can construct an equivalent NPT whose
number of states is(nk)O(nk) and whose index is linear innk [Var98], and we can check the nonemptiness
ofA in time(nk)O((nk)2) [EJS93].

Themembership problemof a 2APTA and a regular tree〈Υ∗, τ〉 is to decide whether〈Υ∗, τ〉 ∈ L(A).
As described in Theorem 2.2 below, the membership problem can be reduced to the emptiness problem.

Theorem 2.2 The membership problem of a regular tree〈Υ∗, τ〉 and a 2APTA with n states and indexk
is solvable in time(|τ |nk)O((nk)2).

Proof: According to Theorem 2.1, we construct a 1NPTN = 〈Σ, Q, q0, δ, F 〉 that accepts the language of
A. The number of states ofN is exponential innk and its index is linear innk. LetD = 〈Υ, Σ, S, s0, η, L〉
be the transducer generatingτ , with Υ = {υ1, . . . , υd}.

Consider the NPTN ′ = 〈{a}, Q×S, (q0, s0), δ
′, F 〉whereδ((q, s), a) = {〈(q1, s1), . . . , (qd, sd)〉|〈q1, . . . qd〉 ∈

δ(q, L(s)) andsc = η(s, υc)}. It is easy to see thatL(N ′) 6= ∅ iff 〈Υ∗, τ〉 ∈ L(N). AsL(N) = L(A), we
are done. Note that the number of states ofN ′ is (|τ |nk)O(nk) and its index is linear innk. Thus, emptiness
of N ′ can be determined in time(|τ |nk)O((nk)2).

Once we translateA toN , the reduction above is similar the one described in [KVW00]. The translation
of A to N , however, involves an exponential blow up. In the full version of [KPV02] we show that the

5

membership problem for 2ABT is EXPTIME-hard. Thus, the membership problem for 2APT is EXPTIME-
complete.

2.3 Pushdown tree automata

Pushdown tree automata are finite-state automata augmented by a pushdown store. Like a nondeterministic
finite-state tree automaton, a nondeterministic pushdown tree automaton starts reading a tree from the root.
At each node of the tree, the pushdown automaton consults the transition relation and sends independent
copies of itself to each of the node’s successors. Each copy has an independent pushdown store that diverges
from the pushdown store of the parent. We then check what happens along every branch of the run tree and
determine acceptance.

Let d = |Υ| andΥ = {υ1, . . . , υd}. Formally, anondeterministic parity pushdown tree automaton(with
ǫ-transitions) over infiniteΥ-trees (orPD-NPTfor short) isP = 〈Σ, Γ, P, p0, α0, ρ, F 〉, where

• Σ is a finite input alphabet.

• Γ is a finite set of pushdown symbols.

• P is a finite set of states.

• p0 ∈ P is an initial state.

• α0 ∈ Γ∗ · ⊥ is an initial pushdown store content.

• ρ : P × (Σ∪ {ǫ})× (Γ∪ {⊥}) → 2P×Γ∗
∪ 2(P×Γ∗)d

is a transition function such that for every state
p ∈ P and symbolA ∈ Γ, we haveδ(p, a, A) ∈ 2(P×Γ∗)d

, for a ∈ Σ, andδ(p, ǫ, A) ∈ 2P×Γ∗
.

Intuitively, when the automaton is in statep, reading a nodex labeled bya ∈ Σ, and the pushdown
store contains a word inA · Γ∗, it can apply one of the following two types of transitions.

– An ǫ-transitionin δ(p, ǫ, A), where the automaton stays in nodex. Accordingly, eachǫ-transition
is a pair(p′, β) ∈ P × Γ∗. Once the automaton chooses a pair(p′, β), it moves to statep′, and
updates the pushdown store by removingA and pushingβ.

– An advancing transitionin δ(p, a, A), where the automaton splits intod copies, each read-
ing a different successor of the nodex. Accordingly, each advancing transition is a tuple
〈(p1, β1), . . . , (pd, βd)〉 ∈ (P × Γ∗)d. Once the automaton chooses a tuple, it splits intod
copies, theith copy moves to the nodei · x in the input tree, changes to statepi, and updates the
pushdown store by removingA and pushingβi.

We assume that the bottom symbol on the pushdown store is⊥. This symbol cannot be removed (so,
when we say that the pushdown store is empty, we mean that it contains only⊥). Every transition
that removes⊥ also pushes it back. Formally, if(p′, β) ∈ δ(p, ǫ,⊥), thenβ ∈ Γ∗ · ⊥. Similarly, if
〈(p1, β1), . . . , (pd, βd)〉 ∈ δ(p, a,⊥), thenβi ∈ Γ∗ · ⊥ for all 1 ≤ i ≤ d. The symbol⊥ is not used in
another way.

The size|ρ| of the transition function is the sum of all the lengths of the words used in the function.

Formally,|ρ| =
(
Σ〈(p1,β1),...,(pd,βd)〉∈ρ(p,a,A)|β1| + . . . + |βd|

)
+

(
Σ(p′,β)∈ρ(p,ǫ,A)|β|

)
.

• F is a parity condition overP .

6

We note that the automata defined above assume input trees with a fixed and known branching degree,
and can distinguish between the different successors of the node (say, impose a requirement only on the
leftmost successor). In many cases, it is useful to considersymmetrictree automata [JW95], which refer to
the successors of a node in a universal or an existential manner, and thus can handle trees with unknown
and varying branching degrees. While symmetry is naturally defined for alternating automata, it can also be
defined for nondeterministic automata [KV01], and for PD-NPT.

Example 2.3 In Section 1, we mentioned the non-regular property “p is uniformly inevitable”, namely there
is some timei such thatp hold at timei in all the computations. We now describe a PD-NPT for the property.
We defineP = 〈2{p}, {a}, {q0, q1, q2}, q0,⊥, δ, F 〉, whereF = {{q0, q1}, {q0, q1, q2}} is such thatq0 and
q1 has to be visited only finitely often, and the transition function is as follows.

• ρ(q0, ǫ,⊥) = {(q0, a⊥), (q1,⊥)},

• ρ(q0, ǫ, a) = {(q0, aa), (q1, a)},

• δ(q1, {p}, a) = δ(q1, ∅, a) = 〈(q1, ǫ), . . . , (q1, ǫ)〉,

• δ(q1, {p},⊥) = 〈(q2,⊥), . . . , (q2,⊥)〉, and

• δ(q2, ǫ,⊥) = {(q2,⊥)}.

Intuitively, P starts reading the tree in stateq0 with empty pushdown store. It stays in stateq0 taking ǫ-
transitions while pushinga’s into the pushdown store. In some stage,P takes a nondeterministic choice to
move to stateq1, from which it proceeds with advancing transitions while removinga’s from the pushdown
store. When the pushdown store becomes empty,P takes an advancing transition to stateq2 while checking
that the label it reads is indeed{p}.

A run of the PD-NPTP on an infinite tree〈Υ∗, τ〉 is an(Υ∗ × P × Γ∗)-labeled IN-tree〈Tr, r〉. A node
y ∈ Tr labeled by(x, p, α) represents a copy ofP in statep, with pushdown store contentα, reading node
x in 〈Υ∗, τ〉. Formally,r(ǫ) = (ǫ, p0, α0), and for allx ∈ Tr such thatr(x) = (y, p, A · α) one of the
following holds.

• There is a unique successorc·x of x in Tr such thatr(c·x) = (y, p′, β·α) for some(p′, β) ∈ δ(p, ǫ, A).

• There ared successors1 · x, . . . , d · x of x in Tr such that for all1 ≤ c ≤ d, we haver(c · x) =
(υc · y, pc, βc · α) for some〈(p1, β1), . . . , (pd, βd)〉 ∈ δ(p, V (y), A).

Given a pathπ ⊆ Tr, we defineinf(π) ⊆ P to be such thatp ∈ inf(π) if and only if there are infinitely
many nodesy ∈ π for which r(y) ∈ Υ∗ × {p} × Γ∗. As with 2APTs, a path satisfies the parity condition
F = {F1, . . . , Fk} if there is an even1 ≤ i ≤ k such thatinf(π) ∩ Fi 6= ∅ and for allj < i, we have
inf(π)∩Fj = ∅. A run isacceptingif every pathπ ⊆ T is accepting. A PD-NPTP accepts a tree〈T, τ〉 if
there exists an accepting run ofP over〈T, τ〉. The language ofP, denotedL(P) contains all trees accepted
byP. The PD-NPTP is emptyif L(P) = ∅.

Harel and Raz consider only the Büchi acceptance condition (PD-NBT for short) . They showed that the
emptiness problem of PD-NBT can be reduced to the emptiness problem of a PD-NBT with one-letter input
alphabet [HR94]. The parity acceptance condition is more general than the Büchi acceptance condition. The
following theorem generalizes the result of [HR94] to PD-NPT.

7

Theorem 2.4 The emptiness problem for a PD-NPTP with n states, indexk, and input alphabetΣ, is
reducible to the emptiness problem for a PD-NPTP ′ with n · |Σ| states and indexk that has a one-letter
input alphabet.

Note that since our automata haveǫ-transitions, we cannot use the classical reduction to one-letter input
alphabet [Rab69]. For a nondeterministic tree automatonN = 〈Σ, P, p0, ρ, F 〉, Rabin constructs the au-
tomatonN ′ = 〈{a}, P, p0, ρ

′, F 〉 such that for every statep ∈ P we haveρ′(p, a) =
⋃

σ∈Σ ρ(p, σ). Thus,
P ′ guesses which of the input lettersσ ∈ Σ labels the node and chooses a state inρ(p, σ). For automata
with ǫ-transitions, we have to make sure that successor states that read the samenode guess the same label
for the node, and we augment the automatonP ′ with a mechanism that remembers the guessed input letter.

3 The Emptiness Problem of PD-NPT

In this section we give an algorithm to decide the emptiness of a PD-NPT. According to Theorem 2.4, we
can restrict attention to PD-NPT with one-letter input alphabet. We reduce theemptiness of a PD-NPT with
one-letter input alphabetP to the membership of a regular tree in the language of a 2APTA. The idea
behind the construction is that since the one-letter tree is homogeneous, the location of a copy ofP in the
input tree is not important. Accordingly, when a copy ofA simulates a copy ofP, it does not care about the
location on the input tree, and it has to remember only the state of the copy and the content of the pushdown
store.

It is easy for a copy ofA to remember a state ofP. How canA remember the content of the pushdown
store? LetΓ denote the pushdown alphabet ofP. Note that the content of the pushdown store ofP corre-
sponds to a node in the full infiniteΓ-tree. So, ifA reads the treeΓ∗, it can refer to the location of its reading
head inΓ∗ as the content of the pushdown store. We would likeA to “know” the location of its reading head
in Γ∗. A straightforward way to do so is to label a nodex ∈ Γ∗ by x. This, however, involves an infinite
alphabet, and results in trees that are not regular. SinceP does not read the entire pushdown store’s content
and (in each transition) it only reads the top symbol on the pushdown store,it is enough to labelx by its
direction.

Let 〈Γ∗, τ
Γ
〉 be theΓ labeledΓ-tree such that for everyx ∈ Γ∗, we haveτ

Γ
(x) = dir(x). Note that

〈Γ∗, τ
Γ
〉 is a regular tree of size|Γ|+1. We reduce the emptiness of a one-letter PD-NPT to the membership

problem of〈Γ∗, τ
Γ
〉 in the language of a 2APT. Given a PD-NPTP we construct a 2APTA such that

L(P) 6= ∅ iff 〈Γ∗, τ
Γ
〉 ∈ L(A). The 2APT memorizes a control state of the PD-NPT as part of its finite

control. When it has to apply some transition ofP, it consults its finite control and the label of the tree
〈Γ∗, τ

Γ
〉. Knowing the state ofP and the top symbol of the pushdown store, the 2APT can decide which

transition ofP to apply. Moving to a new state ofP is done by changing the state of the 2APT. Adjusting
the pushdown store’s content is done by navigating to a new location in〈Γ∗, τ

Γ
〉.

Theorem 3.1 Given a one-letter PD-NPTP = 〈{a}, Γ, P, p0, α0, ρ, F 〉 with n states and indexk, there
exists a 2APTA with n · |ρ| states and indexk such thatL(P) 6= ∅ iff 〈Γ∗, τ

Γ
〉 ∈ L(A).

As before, letd = |Υ| andΥ = {υ1, . . . , υd}. Formally, given the PD-NPTP = 〈{a}, Γ, P, p0, α0, δ, F 〉,
we construct the 2APTA = 〈Γ, Q, q0, η, F ′〉, where

• Q = P × tails(δ) wheretails(δ) ⊆ Γ∗ is the set of all suffixes of wordsx ∈ Γ∗ for which one of the
following holds.

8

– There are statesp, p1, . . . , pd ∈ P , wordsβ1, . . . , βd ∈ Γ∗, and a letterγ ∈ Γ such that
〈(p1, β1), . . . , (pd, βd)〉 ∈ δ(p, γ, a) andx = βi for some1 ≤ i ≤ d.

– There are statesp, p′ ∈ P and a letterγ ∈ Γ such that(p′, x) ∈ δ(p, ǫ, γ).

– x = α0.

Intuitively, whenA visits a nodex ∈ Γ∗ in state〈p, y〉, it checks thatP with initial configuration
(p, y · x) accepts the one-letterΥ-tree. In particular, wheny = ε, thenP with initial configuration
(p, x) needs to accept the one-letterΥ-tree.

States of the form〈p, ε〉 are calledaction states. From these statesA consultsδ in order to impose
new requirements on〈Γ∗, τ

Γ
〉. States of the form〈p, y〉, for y ∈ Γ+, are callednavigation states.

From these statesA only navigates downwardy to reach new action states.

• q0 = (p0, α0). Thus, in its initial stateA checks thatP with initial configuration(p0, α0) accepts the
one-letterΥ-tree.

• The transition functionη is defined for every state〈p, x〉 ∈ P × tails(δ) andA ∈ Γ as follows.

– η((p, ǫ), A) =




∨

(t,α)∈δ(p,ǫ,A)

(↑, (t, α))


 ∨




∨

((t1,β1),...,(td,βd))∈δ(s,a,A)

d∧

i=1

(↑, (ti, βi))




– η((p, B · α), A) = (B, (p, α))

Thus, in action states,A reads the direction of the current node and applies a transition fromδ. In
navigation states,A needs to go downward toB · α, so it continues in directionB.

• F ′ = F × {ǫ}. Note that only action states can be accepting states.

We show thatA accepts〈Γ∗, τ
Γ
〉 iff P accepts the one letterΥ-tree. Let〈Υ∗, τa〉 denote the labeled tree

such that for allx ∈ Υ∗, we haveτa(x) = a.

Claim 3.2 L(P) 6= ∅ iff 〈Γ∗, τ
Γ
〉 ∈ L(A).

Proof: We have to work with four different trees. We have a PD-NPTP and a 2APTA, each has an input
tree and a run tree. We introduce a special notation as follows.

1. LetT
PD

i
= 〈Υ∗, τa〉 denote the input tree read byP.

2. LetT
A

i
= 〈Γ∗, τ

Γ
〉 denote the input tree read byA.

3. Let〈T
PD

r
, r

PD

〉 denote the run tree ofP and its labeling.

4. Let〈T
A

r
, r

A

〉 denote the run tree ofA and its labeling.

Assume first thatT
PD

i
∈ L(P). Then, there exists an accepting run〈T

PD

r
, r

PD

〉 of P on T
PD

i
. Given

T
PD

i
and〈T

PD

r
, r

PD

〉, we have to construct an accepting run tree〈T
A

r
, r

A

〉 of A on T
A

i
. Consider a node

x ∈ T
PD

r
labeled byr

PD

(x) = (y, (p, γ)). Recall thatx stands for a copy ofP in statep with pushdown

store contentγ, reading nodey ∈ T
PD

i
. We associate withx a nodex′ ∈ T

A

r
labeled byr

A

(γ) = (γ, (p, ǫ)).

9

Recall thatx′ stands for a copy ofA is in state(p, ǫ), reading nodeγ ∈ T
A

i
. Both nodes are labeled by the

statep of P. The pushdown store content ofP is the location ofA in T
A

i
.

We prove by induction that we can build〈T
A

r
, r

A

〉 in such a way. We start from the rootǫ ∈ T
PD

r

labeled byr
PD

(ǫ) = (ǫ, (p0, α0)). The rootǫ ∈ T
A

r
is labeled byr

A

(ǫ) = (ǫ, (p0, α0)). The behavior of

the 2APT is deterministic until it reaches the next action state. Thus, there is some x′ ∈ T
A

r
labeled by

r
A

(x′) = (α0, (p0, ǫ)) which serves as the base case for the induction.

Given a nodex ∈ T
PD

r
labeled byr

PD

(x) = (y, (p, A ·α)), by the induction assumption it is associated

with a nodex′ ∈ T
A

r
labeled byr

A

(x′) = (A · α, (p, ǫ)).

Supposex has one successorc ·x labeled byr
PD

(c ·x) = (y, (p′, β ·α)), that resulted from the transition
(p′, β) ∈ δ(p, ǫ, A). Then there is a disjunct(↑, (p′, β)) ∈ η(p, A). We addc ·x′ to T

A

r
, the unique successor

of x′, and label itr
A

(c · x′) = (α, (p′, β)). Obviously, this satisfiesη. Again the behavior belowc · x′ is
deterministic until reaching a nodez · x′ ∈ T

A

r
labeled byr

A

(z · x′) = (β · α, (p, ǫ)).

Supposex hasd successorsc1 · x, . . . , cd · x ∈ T
PD

r
labeled byr

PD

(ci · x) = (yi, (pi, βi · α)), that
resulted from the transition〈(p1, β1), . . . , (pd, βd)〉 ∈ δ(p, a, A). Then there is a disjunct

∧d
i=1(↑, (pi, βi))

in η(p, A). We addc1 · x
′, . . . cd · x

′ to T
A

r
as the successors ofx′, and label themr

A

(ci · x
′) = (γ, (pi, βi)).

Obviously, this satisfiesη. The behavior of each path belowci · x
′ is deterministic until reaching some node

zi · x
′ ∈ T

A

r
labeled byr

A

(zi · x
′) = (βi · α, (pi, ǫ)).

We have to show now that(T
A

r
, r

A

) is accepting. Take an infinite pathπ ⊆ T
A

r
. Clearly, π visits

infinitely many action states. Every action state and the node it labels, is associated by the construction with
a node inT

PD

r
. It is quite clear that this sequence of nodes inT

PD

r
forms a pathπ′ ⊆ T

PD

r
. Hence ifπ′

satisfiesF , it is also the case thatπ satisfiesF ′.

Assume now thatA accepts〈Γ∗, τ
Γ
〉. There exists an accepting run〈T

A

r
, r

A

〉 of A on 〈Γ∗, τ
Γ
〉. We

construct an accepting run〈T
PD

r
, r

PD

〉 of P on T
PD

i
. We convert the set of nodes inT

A

r
labeled by action

states ofA to the treeT
PD

r
. We update the location ofP in Υ∗ according to the number of successors of

each action state. One successor matches anǫ-move andd successors match a forward move.

Formally, we assume by induction that every nodex′ ∈ T
A

r
labeled byr

A

(x′) = (α, (p, ǫ)) is associated

with some nodex ∈ T
PD

r
labeled byr

PD

(x) = (y, (p, α)) for some nodey ∈ T
PD

i
. As before the rootǫ of

T
A

r
is labeled byr

A

(ǫ) = (ǫ, (p0, α0)). It has some descendantx′ ∈ T
A

r
labeled byr

A

(x′) = (α0, (p0, ǫ)).

We label the rootǫ ∈ T
PD

r
by r

PD

(ǫ) = (ǫ, (p0, α0)). This serves as the induction base.

Given some nodex′ ∈ T
A

r
labeled byr

A

(x′) = (A · α, (p, ǫ)), by induction assumption there is a node

x ∈ T
PD

r
labeled byr

PD

(x) = (y, (p, A · α)).

Supposex′ has one successorc · x′ labeled byr
A

(c · x′) = (α, (p′, β)), that resulted from the disjunct
(↑, (p′, β)) that appears inη(p, A). Again, there is some descendantz · x′ of c · x′ that is an action state
labeled byr(z · x′) = (β · α, (p′, ǫ)). We know that(p′, β) ∈ δ(p, ǫ, A), we addc · x to T

PD

r
, a unique

successor ofx, and label itr
PD

(c · x) = (y, (p′, β · α)). Note thatc · x andx read the same nodey ∈ T
PD

i
.

Supposex′ hasd successorsc1 · x
′, . . . , cd · x

′ ∈ T
A

r
labeled byr

A

(ci · x
′) = (α, (pi, βi)), that resulted

from the disjunct
∧d

i=1(↑, (pi, βi)) in η(p, A). Each one of the nodesci · x
′ has a descendantzi · x

′, that is
labeled by the action stater(zi · x′) = (β · α, (pi, ǫ)). We know that〈(p1, β1), . . . , (pd, βd)〉 ∈ δ(p, a, A).
We addc1 · x, . . . cd · x to T

PD

r
as the successors ofx, and label themr

PD

(ci · x) = (υi · y, (pi, βi · α)).
Obviously, this satisfiesδ.

10

Again every path inT
PD

r
is associated with the action states along a path inT

A

r
. We conclude that

〈T
PD

r
, r

PD

〉 has to satisfyF .

Combining Theorem 3.1 with Theorems 2.2 and 2.4, we get the following.

Corollary 3.3 The emptiness problem for a PD-NPT withn states, indexk, and transition functionρ can
be solved in time exponential innk · |ρ|.

Remark 3.4 Harel and Raz [HR94] show that the emptiness of stack automata on infinite trees is also de-
cidable. Stack automata can read the entire contents of the stack but can change the content only when
standing on the top of the stack. They give a doubly exponential reductionfrom the emptiness problem
of stack automata to the emptiness problem of pushdown automata. As their emptiness of pushdown au-
tomata is triple exponential, it induces a five fold exponential algorithm for the emptiness of stack automata
on infinite trees that use the Büchi acceptance condition. Thus, our emptiness algorithm induces a triple
exponential algorithm for the emptiness of Büchi stack automata. We believe that the reduction used in
[HR94] for Büchi stack automata can be extended to parity stack automata and furthermorethat using our
techniques, the emptiness of parity stack automata can be solved in less than triple exponential time.

4 Model-Checking Pushdown Specifications of Finite-State Systems

Themodel-checkingproblem is to decide whether a given systemS satisfies a specificationP. In this section
we consider the case where the system is finite state and the specification is a PD-NPT. In order to solve the
model-checking problem we combine the system with the PD-NPT and get a PD-NPT whose language is
empty iff the system satisfies the specification.

We uselabeled transition graphsto represent finite-state systems. A labeled transition graph is a quadru-
ple S = 〈W,Act , R, w0〉, whereW is a (possibly infinite) set of states,Act is a finite set of actions,
R ⊆ W × Act × W is a labeled transition relation, andw0 ∈ W is an initial state. We assume that the
transition relationR is total (i.e. for every state there exists some actiona and some statew′ such that
R(w, a, w′)). WhenR(w, a, w′), we say thatw′ is ana-successorof w, andw is ana-predecessorof w′.
For a statew ∈ W , we denote bySw = 〈W,Act , R, w〉, the systemS with w as its initial state. A finite-state
system is given as a labeled transition graph with a finite set of states. Theunwindingof S from statew ∈ W
induces an infinite treeTS . Every node of the treeTS is associated with some statew′ ∈ W , the root ofTS

is associated with statew. A nodex ∈ TS associated withw′ ∈ W has|{w′′ | ∃a ∈ Act s.t.R(w′, a, w′′)}|
successors, each associated with a successorw′′ of w′ and labeled by the actiona such thatR(w′, a, w′′).
The root ofTS is labeled by⊥ /∈ Act . As R is total,TS is infinite. We say that a systemS satisfiesa tree
automatonP over the alphabetAct if TS is accepted byP.1

The unwinding of a finite labeled transition graphS results in a regular tree. In order to determine
whetherS satisfiesP, we have to solve the membership problem of regular trees in the language ofa PD-
NPT. We reduce the membership problem to the emptiness problem by a construction similar to the one in
the proof of Theorem 2.2. Thus, we construct a PD-NPT that either acceptsTS or is empty, and then check
its emptiness.

1There is a slight technical difficulty as in our formalism PD-NPT run on trees with a uniform branching degrees, while labeled
transition graphs are not required to have a uniform outdegree. This difficulty can be finessed by allowing automata on non-uniform
trees, as, for example, in [KVW00].

11

Theorem 4.1 Given a finite labeled transition graphS with m states and a PD-NPTP with n states,
indexk, and transition functionρ, the model-checking problem ofS with respect toP is solvable in time
exponential inmnk · |ρ|.

Given a PD-NPTP = 〈2AP , Γ, P, p0, α0, ρ, F 〉 and a finite labeled transition graphS = 〈W,Act , R, w0〉,
we construct the PD-NPTP ′ = 〈{b}, Γ, P ×Act ×W, (p0,⊥, w0), α0, ρ

′, F ′〉 that is the product of the two.
The states ofP ′ consists of triplets of states ofP, actions ofS, and states ofS. The acceptance condition
F ′ is F × Act × W , where we replace each setFi ∈ F by the setFi × Act × W . The transition function
ρ′ maps a triplet(p, a, w) to all theǫ-successors ofp tagged again bya andw and to all the “a-successors”
of p tagged by successors ofw and the actions taken to get to them. For technical convenience, we assume
that the branching degree ofS is uniform and equivalent to the branching degree of the trees thatP reads.
Modifying the algorithm to systems with nonuniform branching degree is not too complicated. Formally,
we have the following.

• ρ′((p, a, w), ǫ, A) = {〈(p′, a, w), α〉 | 〈p, α〉 ∈ ρ(p, ǫ, A)}.

• ρ′((p, a, w), b, A) =




〈〈(p1, a1, w1), α1〉, . . . , 〈(pd, ad, wd), αd〉〉

∣∣∣∣∣∣∣

〈〈p1, α1〉, . . . , 〈pd, αd〉〉 ∈ ρ(p, a, A) and
{(w, a1, w1), . . . , (w, ad, wd)}
is the set of transitions fromw





It is not hard to see thatP ′ accepts some tree iffP acceptsTS , the unwinding ofS.

Remark 4.2 By having PD-NPT as our specification formalism, we follow here the branching-time paradigm
to specification and verification, where the specification describes allowedcomputation trees and a system
is correct if its (single) computation tree is allowed. Alternatively, in the linear-time paradigm, the specifica-
tion describes the allowed linear computations, and the system is correct if allits computations are allowed.
When the system is nondeterministic, it may have many computations, and we haveto check them all.
Thus, while model checking in the branching-time paradigm corresponds tomembership checking, model
checking in the linear-time paradigm corresponds to checking language containment.

Pushdown specification formalisms are helpful also in the linear-time paradigm[SCFG84]. For exam-
ple, one can use pushdown word automata to specify unbounded LIFO buffers. Nevertheless, since the
containment problem of regular languages in context-free languages is undecidable [HMU00], using push-
down word automata as a specification formalism leads to an undecidable model-checking problem even for
finite-state systems.

The branching-time paradigm is more general than the linear-time paradigm [Lam80, Pnu85] in the sense
that we can view a (universally quantified) linear-time specification as a branching-time specification. This
does not contradict the fact that model checking of pushdown specification is decidable in the branching-
time paradigm. Indeed, a translation of a nondeterministic pushdown word automaton that recognizes a
languageL into a nondeterministic pushdown tree automata that recognizes the language of all the trees
derived byL (that is, trees all of whose paths are inL) is not always possible. For cases where such a
translation is possible (in particular, when the pushdown word automaton is deterministic), linear model
checking is decidable. This is reminiscent of the situation with dense-time temporal logic, where model
checking with respect to linear-time specifications is undecidable, while model checking with respect to
branching-time specifications is decidable, cf. [ACD93].

Remark 4.3 Unlike the case of regular tree automata, it can be proved thatalternatingpushdown automata
are strictly more expressive than nondeterministic pushdown automaton. Forexample, it is easy to define a

12

pushdown alternating automaton over words that recognizes the non-context-free language{aibici : i ≥ 1}.
Indeed, the automaton can send two copies, one for comparing the number of a’s with b’s, and one for
comparing the number ofb’s with c’s. A similar argument shows that alternating pushdown tree automata
are stronger than nondeterministic pushdown tree automata.

On the other hand, as studied in [KVW00], the membership problem for alternating automata is not
harder than the one for nondeterministic automata. This observation does not change when pushdown au-
tomata are involved. In particular, it is easy to extend Theorem 3.1 to alternating automata (without changing
the blow up), and to extend the model-checking algorithm described above tothe stronger framework of al-
ternating pushdown automata.

5 Model-Checking Pushdown Specifications of Context-Free Systems

In this section we show that the decidability results of Section 4 cannot be extended to context-free systems.
We show that the model checking problem for context-free systems is undecidable already for pushdown
path automata, which are a special case of pushdown tree automata.

We first define context-free systems and pushdown path automata. Again we use labeled transition
graphs. This time with an infinite number of states.

A rewrite systemis a quadrupleR = 〈V,Act , R, x0〉, whereV is a finite alphabet,Act is a finite set of
actions,R maps each actiona to a finite set of rewrite rules, to be defined below, andx0 ∈ V ∗ is an initial
word. Intuitively,R(a) describes the possible rules that can be applied by taking the actiona. We consider
herecontext-freerewrite systems. Each rewrite rule is a pair〈A, x〉 ∈ V × V ∗. We refer to rewrite rules in
R(a) asa-rules.

The rewrite systemR induces the labeled transition graphGR = 〈V ∗,Act , ρR, x0〉, where〈x, a, y〉 ∈
ρR if there is a rewrite rule inR(a) whose application onx results iny. In particular, whenR is a context-
free rewrite system, thenρR(A · y, a, x · y) if 〈A, x〉 ∈ R(a). A labeled transition graph that is induced by
a context-free rewrite system is called acontext-free graph.

Consider a labeled transition graphG = 〈S,Act , ρ, s0〉. A nondeterministic pushdown path automaton
on labeled transition graphs is a tupleP = 〈Act , Γ, P, δ, p0, α0, F 〉, whereΓ, P , p0, andα0 are as in
nondeterministic pushdown automata on trees,Act is a set of actions (the automaton’s alphabet), andδ :
P×Act×Γ → 2P×Γ∗

is the transition function. We consider the simpler case whereF is a Büchi acceptance
condition. Intuitively, whenP is in statep with A · α on the pushdown store and it reads a states of G,
the automatonP chooses an atom〈p′, β〉 ∈ δ(p, a, A) and moves to somea-successor ofs in statep′ with
pushdown storeβ ·α. Again we assume that the first symbol inα0 is⊥, and that⊥ cannot be removed from
the pushdown store.

Like a run of a nondeterministic pushdown automaton on words, a run of a path automaton over a labeled
transition graphG = 〈S,Act , ρ, s0〉 is an infinite word in(S × P × Γ∗)ω. A letter (s, p, α), describes that
the automaton is in statep of P with pushdown store contentα reading states of G. Formally, a run is an
infinite sequence(s0, p0, α0), (s1, p1, α1), . . . ∈ (S × P × Γ∗)ω as follows.

• s0 is the initial state ofG, p0 is the initial state ofP, andα0 is the initial pushdown store content.

• For everyi ≥ 0 there exists somea ∈ Act such thatsi+1 is ana-successor ofsi and if αi = A · α
then(pi+1, β) ∈ δ(pi, a, A) andαi+1 = β · α.

13

A run r is acceptingif it satisfies the acceptance condition. The graphG is accepted byP if there is an
accepting run on it. We denote byL(P) the set of all graphs thatP accepts.

We use PD-NBP (pushdown nondeterministic Büchi path automata) as our specification language. We
say that a labeled transition graphG satisfies a PD-NBPP, denotedG |= P, if P acceptsG.

Theorem 5.1 The model-checking problem for context-free systems and pushdown path automata is unde-
cidable.

Proof: It is well known that the termination problem of a two-counter machine is undecidable [Min67].
We show that we can reduce the problem of whether a two-counter machineterminates to the problem of
whether a context-free graph satisfies a PD-NBP.

We first define two-counter machines. A two counter machine isM = 〈S, 7→, Facc, Frej〉, whereS is a
set of states, andFacc ⊆ S andFrej ⊆ S are disjoint sets of accepting and rejecting states, respectively. We
assume that onceM reaches an accepting or rejecting state, it loops there forever. Aconfigurationof M is
a triple〈s, c1, c2〉 ∈ S × IN × IN, indicating the state of the machine and the values of the two counters. The
transition function7→: S × {zero, not zero} × {zero, not zero} → 2S×{inc,dec,idle}×{inc,dec,idle} maps a
representation of a configuration (where the values of the counters arereplaced by flags indicating whether
they are equal to zero) into possible transitions of the machine, where an action involves a move to a new
state and possible updates (increase or decrease) to the counters. We write (s, v1, v2) 7→ (s′, d1, d2) for
(s′, d1, d2) ∈7→ (s, v1, v2).

In order to simulate the two-counter machine by the context-free system and the PD-NBP, we use the
state of the context-free system (a word inV ∗) to maintain the value of the first counter, and we use the
pushdown store of the PD-NBP to maintain the value of the second counter. In order to simulate the two
counters, we have to be able to check whether each counter is zero or not, increase each counter, and decrease
each counter. Handling of the second counter (maintained by the pushdown store of the path automaton) is
straightforward: the path automaton can check whether its pushdown storeis empty or not, can push one
letter into the pushdown store, and can pop one letter from the pushdown store.

Handling of the first counter (maintained by the state of the context-free system) is a bit more compli-
cated. The context-free systemS hasV = {a,⊥}, and its initial state is⊥. The rewrite rules ofS are
such that all the reachable states ofS are ina∗ · ⊥. The systemS has five possible actions (which are
also read by the PD-NBPP): push, pop, idle, empty push, andempty idle. From the state⊥, the system
S may apply the actionsempty push andempty idle, thus signaling to the specification that its counter
is zero. From a state inV + · ⊥, the systemS may apply the actionspush, pop, or idle. The value of
the first counter is simulated by the (number ofa’s in the) location of the PD-NBPP on the context-free
graph. In order to apply a transition ofM from a configuration in which the first counter equals zero,P
tries to read the actionsempty push or empty idle. In order to increase the first counter,P reads the action
push (or empty push). Decreasing the counter and leaving it unchanged is similar. The path automatonP
memorizes the state ofM in its finite control. It accepts if it gets to an accepting state ofM .

More formally, the context-free system isS = 〈{a,⊥},Act , T,⊥〉, with Act as described above, and
the following rewrite rules.

• T (empty push) = 〈⊥, a⊥〉. Signal that the counter is zero and adda to the state.

• T (empty idle) = 〈⊥,⊥〉. Signal that the counter is zero and leave the state unchanged.

• T (push) = 〈a, aa〉. Signal that the counter is not zero and adda to the state.

14

• T (pop) = 〈a, ǫ〉. Signal that the counter is not zero and removea from the state.

• T (idle) = 〈a, a〉. Signal that the counter is not zero and leave the state unchanged.

The path automatonP mimics the two-counter machine. Formally,P = 〈Act , {a}, S, δ, s0,⊥, Facc ∪
Frej〉, where the transition functionδ is induced by the transition relation7→ of M as follows. If(s, v1, v2) 7→
(s′, d1, d2) then(s′, α) ∈ δ(s, a, A), where

• If v1 = empty, thena ∈ {empty push, empty idle}. Otherwise,a ∈ {push, pop, idle}.

• If v2 = empty, thenA = ⊥. OtherwiseA = a.

• If d1 = inc thena ∈ {empty push, push}, if d1 = dec thena = pop, and if d1 = idle then
a ∈ {empty idle, idle}.

• If d2 = inc, thenα ∈ {aa, a⊥}, if d2 = dec, thenα = ǫ, and ifd2 = idle, thenα ∈ {a,⊥}.

It is not too difficult to see thatGS |= P iff M terminates.

We note that path automata are indeed weaker than tree automata. Indeed, a PD-NBT can simulate a PD-
NBP by sending copies in accepting sinks to all directions but the direction to which the PD-NBP chooses
to go. It follows that the model checking problem for context-free systemsand PD-NPT is also undecidable.

6 Conclusions

We consider the model-checking problem for specifications given by pushdown tree automata. We describe
an exponential-time algorithm for model checking a finite-state system with respect to a PD-NPT. The
algorithm consists of a reduction to the emptiness problem of PD-NPT. The best upper bound known for
the emptiness problem is triple exponential, and we improved it to a single exponential. We also show that
model checking a context-free system with respect to a PD-NPT specification is undecidable.

References

[ACD93] R. Alur, C. Courcoubetis, and D. Dill. Model-checking in dense real-time.Information and Computation,
104(1):2–34, May 1993.

[BCMS00] O. Burkart, D. Caucal, F. Moller, and B. Steffen. Verification on infinite structures. Unpublished
manuscript, 2000.

[BE96] O. Burkart and J. Esparza. More infinite results.Electronic Notes in Theoretical Computer Science, 6,
1996.

[BEH95] A. Bouajjani, R. Echahed, and P. Habermehl. On the verification problem of nonregular properties for
nonregular processes. InProc. 10th annual IEEE Symposium on Logic in Computer Science, pages 123–
133, San Diego, CA, USA, June 1995. IEEE computer society press.

[BEM97] A. Bouajjani, J. Esparza, and O. Maler. Reachability analysis of pushdown automata: Application to
model-checking. InProc. 8th Conference on Concurrency Theory, volume 1243 ofLecture Notes in
Computer Science, pages 135–150, Warsaw, July 1997. Springer-Verlag.

15

[BER94] A. Bouajjani, R. Echahed, and R. Robbana. Verification of nonregular temporal properties for context-free
processes. InProc. 5th International Conference on Concurrency Theory, volume 836 ofLecture Notes
in Computer Science, pages 81–97, Uppsala, Sweden, 1994. Springer-Verlag.

[BLM01] P. Biesse, T. Leonard, and A. Mokkedem. Finding bugsin an alpha microprocessors using satisfiability
solvers. InComputer Aided Verification, Proc. 13th International Conference, volume 2102 ofLecture
Notes in Computer Science, pages 454–464. Springer-Verlag, 2001.

[BQ96] O. Burkart and Y.-M. Quemener. Model checking of infinite graphs defined by graph grammers. In
Proc. 1st International workshop on verification of infinitestates systems, volume 6 ofENTCS, page 15.
Elsevier, 1996.

[BS95] O. Burkart and B. Steffen. Composition, decomposition and model checking of pushdown processes.
Nordic J. Comut., 2:89–125, 1995.

[BS99] O. Burkart and B. Steffen. Model checking the full modal µ-calculus for infinite sequential processes.
Theoretical Computer Science, 221:251–270, 1999.

[Büc62] J.R. B̈uchi. On a decision method in restricted second order arithmetic. InProc. Internat. Congr. Logic,
Method. and Philos. Sci. 1960, pages 1–12, Stanford, 1962. Stanford University Press.

[Bur97a] O. Burkart. Automatic verification of sequential infinite-state processes. In G. Goos, J. Hartmanis, and
J. van Leeuwen, editors,Lecture Notes in Computer Science, volume 1354. Springer-Verlag, 1997.

[Bur97b] O. Burkart. Model checking rationally restrictedright closures of recognizable graphs. In F. Moller,
editor,Proc. 2nd International workshop on verification of infinitestates systems, 1997.

[Cau96] D. Caucal. On infinite transition graphs having a decidable monadic theory. InAutomata, Languages, and
Programming, Proc. 23rd ICALP, volume 1099 ofLecture Notes in Computer Science, pages 194–205.
Springer-Verlag, 1996.

[CES86] E.M. Clarke, E.A. Emerson, and A.P. Sistla. Automatic verification of finite-state concurrent systems us-
ing temporal logic specifications.ACM Transactions on Programming Languages and Systems, 8(2):244–
263, January 1986.

[CFF+01] F. Copty, L. Fix, R. Fraer, E. Giunchiglia, G. Kamhi, A. Tacchella, and M.Y. Vardi. Benefits of bounded
model checking at an industrial setting. InComputer Aided Verification, Proc. 13th International Confer-
ence, volume 2102 ofLecture Notes in Computer Science, pages 436–453. Springer-Verlag, 2001.

[CGP99] E.M. Clarke, O. Grumberg, and D. Peled.Model Checking. MIT Press, 1999.

[EJ91] E.A. Emerson and C. Jutla. Tree automata,µ-calculus and determinacy. InProc. 32nd IEEE Symp. on
Foundations of Computer Science, pages 368–377, San Juan, October 1991.

[EJS93] E.A. Emerson, C. Jutla, and A.P. Sistla. On model-checking for fragments ofµ-calculus. InComputer
Aided Verification, Proc. 5th International Conference, volume 697 ofLecture Notes in Comptuer Science,
pages 385–396, Elounda, Crete, June 1993. Springer-Verlag.

[Eme87] E.A. Emerson. Uniform inevitability is tree automaton ineffable. Information Processing Letters,
24(2):77–79, January 1987.

[FWW97] A. Finkel, B. Willems, and P. Wolper. A direct symbolicapproach to model checking pushdown automata.
In F. Moller, editor,Proc. 2nd International Workshop on Verification of InfiniteStates Systems, 1997.

[HMU00] J.E. Hopcroft, R. Motwani, and J.D. Ullman.Introduction to Automata Theory, Languages, and Compu-
tation (2nd Edition). Addison-Wesley, 2000.

[HR94] D. Harel and D. Raz. Deciding emptiness for stack automata on infinite trees.Information and Computa-
tion, 113(2):278–299, September 1994.

16

[JW95] D. Janin and I. Walukiewicz. Automata for the modalµ-calculus and related results. InProc. 20th Inter-
national Symp. on Mathematical Foundations of Computer Science, Lecture Notes in Computer Science,
pages 552–562. Springer-Verlag, 1995.

[KPV02] O. Kupferman, N. Piterman, and M.Y. Vardi. Model checking linear properties of prefix-recognizable
systems. InComputer Aided Verification, Proc. 14th International Conference, volume ? ofLecture
Notes in Computer Science, page ? Springer-Verlag, 2002.

[KV00] O. Kupferman and M.Y. Vardi. An automata-theoretic approach to reasoning about infinite-state systems.
In Computer Aided Verification, Proc. 12th International Conference, volume 1855 ofLecture Notes in
Computer Science, pages 36–52. Springer-Verlag, 2000.

[KV01] O. Kupferman and M.Y. Vardi. On clopen specifications. In Proc. 8th International Conference on
Logic for Programming, Artificial Intelligence and Reasoning, volume 2250 ofLecture Notes in Computer
Science, pages 24–38. Springer-Verlag, 2001.

[KVW00] O. Kupferman, M.Y. Vardi, and P. Wolper. An automata-theoretic approach to branching-time model
checking.Journal of the ACM, 47(2):312–360, March 2000.

[Lam80] L. Lamport. Sometimes is sometimes “not never” - on the temporal logic of programs. InProc. 7th ACM
Symp. on Principles of Programming Languages, pages 174–185, January 1980.

[LP85] O. Lichtenstein and A. Pnueli. Checking that finite state concurrent programs satisfy their linear specifi-
cation. InProc. 12th ACM Symp. on Principles of Programming Languages, pages 97–107, New Orleans,
January 1985.

[Min67] M.L. Minsky. Computation: Finite and Infinite Machines. Prentice Hall, London, 1 edition, 1967.

[MS85] D.E. Muller and P.E. Schupp. The theory of ends, pushdown automata, and second-order logic.Theoret-
ical Computer Science, 37:51–75, 1985.

[MS87] D.E. Muller and P.E. Schupp. Alternating automata oninfinite trees. Theoretical Computer Science,
54:267–276, 1987.

[PI95] W. Peng and S. P. Iyer. A new typee of pushdown automataon infinite tree. International Journal of
Foundations of Computer Science, 6(2):169–186, June 1995.

[Pnu77] A. Pnueli. The temporal logic of programs. InProc. 18th IEEE Symp. on Foundation of Computer Science,
pages 46–57, 1977.

[Pnu85] A. Pnueli. Linear and branching structures in the semantics and logics of reactive systems. InProc. 12th
International Colloquium on Automata, Languages and Programming, pages 15–32. Lecture Notes in
Computer Science, Springer-Verlag, 1985.

[QS81] J.P. Queille and J. Sifakis. Specification and verification of concurrent systems in Cesar. InProc. 5th
International Symp. on Programming, volume 137 ofLecture Notes in Computer Science, pages 337–
351. Springer-Verlag, 1981.

[Rab69] M.O. Rabin. Decidability of second order theories and automata on infinite trees.Transaction of the AMS,
141:1–35, 1969.

[SCFG84] A. Sistla, E.M. Clarke, N. Francez, and Y. Gurevich. Can message buffers be axiomatized in linear
temporal logic.Information and Control, 63(1/2):88–112, 1984.

[Tho01] W. Thomas. A short introduction to infinite automata. In Proc. 5th. international conference on De-
velopments in Language Theory, volume 2295 ofLecture Notes in Computer Science, pages 130–144.
Springer-Verlag, July 2001.

[Var98] M.Y. Vardi. Reasoning about the past with two-way automata. InProc. 25th International Coll. on
Automata, Languages, and Programming, volume 1443 ofLecture Notes in Computer Science, pages
628–641. Springer-Verlag, Berlin, July 1998.

17

[VW86] M.Y. Vardi and P. Wolper. An automata-theoretic approach to automatic program verification. InProc.
1st Symp. on Logic in Computer Science, pages 332–344, Cambridge, June 1986.

[Wal96] I. Walukiewicz. Pushdown processes: games and model checking. InComputer Aided Verification,
Proc. 8th International Conference, volume 1102 ofLecture Notes in Computer Science, pages 62–74.
Springer-Verlag, 1996.

[Wal01] I. Walukiewicz. Pushdown processes: Games and model-checking. Information and Computation,
164(2):234–263, 2001.

18

