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Abstract

Traditionally, model checking is applied to finite-statstgyms and regular specifications. While re-
searchers have successfully extended the applicabilityooel checking to infinite-state systems, almost
all existing work still consider regular specification falisms. There are, however, many interesting
non-regular properties one would like to model check.

In this paper we study model checkingmishdown specification®©ur specification formalism is
nondeterministic pushdown parity tree automata (PD-N®E show that the model-checking problem
for regular systems and PD-NPT specifications can be solvéthe exponential in the system and the
specification. Our model-checking algorithm involves a remlution to the nonemptiness problem of
nondeterministic pushdown tree automata, where we imgrevbest known upper bound from a triple-
exponential to a single exponential. We also consider thdetrchecking problem for context-free
systems and PD-NPT specifications and show that it is undeled
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1 Introduction

One of the most significant developments in the area of formal design waédficis the discovery of al-
gorithmic methods for verifying on-going behaviors of reactive systen88[Q LP85, CES86, VW86].
In model-checkingwe verify the correctness of a system with respect to a desired betmvihecking
whether a mathematical model of the system satisfies a formal specificatios betravior (for a survey,
see [CGP99]). Traditionally, model checking is appliedinite-statesystems, typically modeled by labeled
state-transition graphs, and to behaviors that are formally specifiedrg®ral-logicformulas orautomata
on infinite objects Symbolic methods that enable model-checking of very large state spadabeagreat
ease of use of fully algorithmic methods, led to industrial acceptance of ncbéeking [BLMO01, CFF01].

In recent years, researchers have tried to extend the applicability aflrobecking to infinite-state sys-
tems. An active field of research is model-checkingfihite-state sequential systeniese are systems in
which each state carries a finite, but unbounded, amount of informatgpnagushdown store. The origin of
this research is the result ofiMer and Schupp that the monadic second-order theocpuatext-free graphs
is decidable [MS85]. As the complexity involved in that decidability result isetbementary, researchers
sought decidability results of elementary complexity. Various algorithms forlsirtqgics and more general
systems have been proposed. The most powerful result so far ipanemtial-time algorithm by Burkart
for model checking formulas of the-calculus with respect to prefix-recognizable graphs [Bur97b]. See
also [BS95, Cau96, Wal96, BE96, BQ96, BEM97, Bur97a, FWW9RBBCMS00, KV00] and a short
summary in [ThoO1].

An orthogonal line of research considers the applicability of model dhgdk infinite-state specifica-
tions Almost all existing work on model checking considers specification formalihat defineegular
sets of words, trees, or graphs: formulas of LEikcalculus, and even monadic-second order logic can all be
translated to automata {862, Rab69, EJ91], and in fact many model-checking algorithms (tbrfbote-
state and infinite-state systems) first translate the given specification intet@nadon and reason about
the structure of this automaton (cf., [VW86, BEM97, KV00]). Sometimes,dwas; the desired behavior
is non-regular and cannot be specified by a finite-state automaton. €pfwi@xample the propertyp‘is
inevitable”, for a propositiop. That is, in every computation of the systemeventually holds. Clearly,
this property is regular and is expressiblevasp in both CTL [CES86] and LTL [Pnu77]. On the other
hand, the propertyp'is uniformly inevitable”, namely, there is some timeuch that in every computation
of the systemp holds at time, is not expressible by a finite automaton on infinite trees [Eme87], and hence
it is non-regular. As another example, consider a system that handlesste and acknowledgments, and
the property “every acknowledgment is preceded by some requestinAthis property is regular and is
expressible in LTL ag—ack)Wreq. On the other hand, consider the property of “no redundant ackdgwle
ments”, namely the number of acknowledgments does not exceed the numéguests. The technique of
[Eme87] can be used in order to show that the property is non-regutae &kamples to useful non-regular
properties are given in [SCFG84], where the specification of unbenlintessage buffers is considered.

The need to specify non-regular behaviors led Bouajjani et al. [BEBB#95] to consider logics that
are a combination of CTL and LTL with Presburger Arithmetic. The logics, dd€TL and PLTL, use
variables that range over natural numbers. The variables are bothwldocurrences of state formulas and
comparison between such variables is allowed. The non-regular pespdiscussed above can be specified
in PCTL and PLTL. For example, we can specify uniform inevitability in PCE3a. V[z : true](z =
i — p), where thed guantifier quantifies over natural numbers, thguantifier quantifies over computations
of the system, and the combinator : true] binds the variable: to count the number of occurrences of
the state formularue. Bouajjani et al. consider the model-checking problem for the logics P&Id.
PLTL over finite-state (regular) systems and over infinite-state (nomaBgsystems. The logics turned



out to be too strong: the model-checking of both PCTL and PLTL over fatdte systems is undecidable.
They proceed to restrict the logics to fragments for which model-checkiag finite-state systems and
context-free systems is decidable.

Uniform inevitability is clearly expressible byreondeterministic pushdown tree automat&ushdown
tree automata are finite-state automata augmented by a pushdown store. afiicdeterministic finite-state
tree automaton, a nondeterministic pushdown tree automaton starts readiadrartrehe root. At each
node of the tree, the pushdown automaton consults the transition relatioplasiéh$o independent copies
of itself to each of the node’s successors. Each copy has an indaggnaghdown store that diverges from
the pushdown store of the parent. We then check what happens alengleanch of the run tree and
determine acceptance. In order to express uniform inevitability, the autorgagsses the timg pushes
1 elements into the pushdown store, and, along every computation, popsearenewith every move of
the system. When the pushdown store becomes empty, the automaton reqoiresid. Similarly, in
order to express “no redundant acknowledgments”, a nondeterminisicdipwn tree automaton can push
an element into the pushdown store whenever the system sends a rempeste element with every
acknowledgment, and reject the tree when an acknowledgment is isseedhepushdown store is empty.
In [P195], Peng and lyer study more properties that are non-reguldrpropose to use nondeterministic
pushdown tree automata as a strong specification formalism. The model diydrRI@5] isempty storea
run of the automaton is accepting if the automaton’s pushdown store gets effiitglinoften along every
branch in the run tree.

In this paper we study the model-checking problem for specifications diyenondeterministic push-
down tree automata. We consider both finite-state (regular) and infinite(staieregular) systems. We
show that for finite-state systems, the model-checking problem is solvable irexipmmential in both the
system and the specification, even for nondeterministic pushdown pagtaitemata — a model that is
much stronger than the one studied in [P195]. On the other hand, the mustgtiog problem for context-
free systems is undecidable — already for a weak type of pushdownuticmaata. Note that by having tree
automata as our specification formalism, we follow here the branching-timdigarawhere the specifica-
tion describes allowed computation trees and a system is correct if its computagds allowed [CES86].
In Remark 4.2, we discuss the undecidability of the linear-time paradigm, amgdkens that make the
(seemingly more general) branching-time framework decidable.

In order to solve the model-checking problem for nondeterministic pushdeeg automata and finite-
state systems, we use the automata theoretic approach to branching time nea#@ghkVWO00]. In
[KVWO0O0], model checking is reduced to tlmptinesproblem for nondeterministic finite tree automata,
here we reduce the model checking problem to the emptiness problemnideteoministic pushdown tree
automata. The first to show that this emptiness problem is decidable werkdddr&az [HR94]. The
automata considered by Harel and Raz use iehBacceptance condition, where some states are designated
as accepting states and a run is accepting if it visits the accepting states infiftéslyalong every branch
in the run tree. It is shown in [HR94] that the problem can be solved in tépfenential time. Recall that
Peng and lyer [P195] consider a simpler acceptance condition, wirereia accepting if the automaton’s
pushdown store gets empty infinitely often along every branch in the rurRoe¢his acceptance condition,
it is shown in [P195] that the nonemptiness problem can be solved in erpahtime. Nevertheless, empty
store pushdown automata are strictly weaker than nondeterministici Bushdown tree automata [P195]
and the algorithm in [P195] cannot be extended to handle tiehBacceptance condition.

The main result of this paper is an exponential algorithm for the emptinebepr@f nondeterministic
parity pushdown tree automata. Thus, apart from improving the known triplerextygial upper bound to a
single exponential, we handle a more general acceptance conditionlgOrithen is based on a reduction



of the emptiness problem to the membership problemvie-way alternating parity tree automataith
no pushdown store. We note that our technique can be applied also thcspiens given byalternating
pushdown parity tree automata. Indeed, the automata-theoretic apprdémahdting-time model checking
involves some type of a product between the system and the specificaiionedon, making alternation as
easy as nondeterminism [KVWO0O]. In Remark 4.3, we discuss this poithigiyrand also show that, unlike
the case of regular automata, alternating pushdown automata are strictlyxpssive than nondetermin-
istic pushdown tree automata.

Once one realizes that the difficulties in handling the pushdown store ofeth@titomaton are similar
to the difficulties in handling the pushdown store of infinite-state sequent&®g, it is possible to solve
the nonemptiness problem for pushdown automata with various methods Wedbden suggested for the
latter. In particular, it is possible to reduce the nonemptiness problem foleterministic pushdown parity
tree automata to the-calculus model-checking problem for pushdown systems [Wal01]. ®heicn we
suggest here is the first to suggest the application of methods develmpezh$oning about infinite-state
sequential systems to the solution of automata-theoretic problems for pushdtowmata. In particular, we
believe that methods based on two-way alternating tree automata [KV0O0, 2 Rxparticularly appropri-
ate for this task, as the solution stays in the clean framework of automata.

Finally, in order to show the undecidability result, we reduce the problenecitithg whether a two-
counter machine accepts the empty tape to the model-checking problem ¢éztefoee system with respect
to a nondeterministic pushdown tree automaton. Intuitively, the pushdowenddttie system can simulate
one counter, and the pushdown store of the specification can simulatetnel s®unter.

The study of pushdown specifications completes the picture describedtabthén Figure 1 regarding
model checking of regular and context-free systems with respect ttaregpud pushdown specifications.
When both the system and the specification are regular, the setting is thatlitibtral model checking
[CGP99]. When only one parameter has a pushdown store, the probgith decidable. Yet, when both
the system and the specification have a pushdown store, model cheekimgpds undecidable. The com-
plexities in the table refer to the case where the specification is given bydeteministic or an alternating
parity tree automaton of sizeand indexk. The size of the system is.

] | Regular Specifications | Pushdown Specifications |
Regular System§ decidableD((nm)*) [EJS93]| decidableezp(mnk) [Theorem 4.1]
Pushdown Systems decidableexzp(mnk) [KV0OO] undecidable [Theorem 5.1]

Figure 1: Model checking regular and pushdown systems and sp#otiisa

2 Definitions

2.1 Trees

Given a finite sefl of directions, any-treeis a setl’ C T* such thatifv-x € T, wherev € T andz € Y*,
then alsar € T. The elements of" are callednodes and the empty word is theroot of T. For every
v € T andz € T, the noder is theparentof v - x andv - z is asuccessoof z. If z =z -y € T thenzisa
descendant of. Each node: # ¢ of T" has adirectionin Y. The direction of the root is the symbal (we
assume that. ¢ ). The direction of a node - z is v. We denote bylir(z) the direction of the node. An
T-treeT is afull infinite treeif T = Y*. A pathx of a treeT’ is a setr C T such that € = and for every
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x € 7 there exists a unique € Y such that - z € w. Note that our definitions here reverse the standard
definitions (e.g., whefl = {0, 1}, the successors of the nodare00 and10, rather thard0 and01.

Given two finite setq andX, aX-labeledY-treeis a pair(7', 7) whereT is anY-tree andr : ' — X
maps each node df to a letter inX.. WhenY andX are not important or clear from the context, we call
(T, ) alabeled tree. A tree iggularif it is the unwinding of some finite labeled graph. More formally,
atransduceris a tupleD = (Y, X, @, g0, 1, L), where is a finite set of directions;. is a finite alphabet,
Q is a finite set of stategy € @ is an initial statep) : Q@ x T — @ is a deterministic transition function,
andL : Q — Y is a labeling function. We defing : T* — @ in the standard wayz () = ¢o and for
x € T*andA € T we haven(Az) = n(n(x), A). Intuitively, a transducer is a labeled finite graph with a
designated start node, where the edges are label&ddng the nodes are labeled By A Y-labeledY-tree
(Y*, 7) is regular if there exists a transdudr= (Y, X, Q, g0, 7, L), such that for every € T*, we have
7(x) = L(n(x)). We then say that the size of the regular (&€, 7), denoted| ||, is |Q|, the number of
states ofD.

2.2 Alternating two-way tree automata

Alternating automatan infinite trees generalize nondeterministic tree automata and were firstiosed
in [MS87]. Here we describe alternatihgo-waytree automata. For a finite s&t, let 37 (X) be the set of
positive Boolean formulas oveX (i.e., boolean formulas built from elementsihusingA andV), where
we also allow the formulasrue andfalse, and, as usual\ has precedence over. For a sey” C X and
aformulad € BT (X), we say thal” satisfied iff assigningtrue to elements irt” and assignindalse to
elements inX \ Y maked true. For a sel of directions, thextensiorof T is the setext(T) = TU{e, T}
(we assume thdl N {¢,1} = 0). An alternating two-way automatoaver :-labeledY-trees is a tuple
A=(%,0,9,q, F), whereX is the input alphabeg) is a finite set of statesd,: Q@ x X — B (ext(Y) x Q)

is the transition functionyy € @ is an initial state, and’ specifies the acceptance condition.

A run of an alternating automato# over a labeled tre€Y™, ) is a labeled tre€T.., r) in which every
node is labeled by an element®f x ). A node inT,, labeled by(z, ¢), describes a copy of the automaton
that is in the statg and reads the node of T*. Note that many nodes @f. can correspond to the same
node of T*; there is no one-to-one correspondence between the nodes of thedihe nodes of the tree.
The labels of a node and its successors have to satisfy the transition funedomally, a rux7,., r) is a
Y.,-labeledI'-tree, for some sdt of directions, wher&l, = T* x @ and(7,., r) satisfies the following:

1. e € T, andr(e) = (&, q0)-

2. Considery € T, with r(y) = (z,q) andd(q,7(x)) = 6. Then there is a (possibly empty) set
S C ext(T) x @, such thatS satisfied), and for all(c,¢’) € S, there isy € T" such thaty - y € T,
and the following hold:

o If ce Y, thenr(y-y) = (c-z,¢).
o If c=¢,thenr(y-y) = (z,q).
e If c=7,thenz = v - 2z, forsomev € T andz € T*, andr(y - y) = (z,¢).
Thus,e-transitions leave the automaton on the same node of the input treg;teartsitions take it up to the

parent node. Note that the automaton cannot go up the root of the inpuasr&vhenever =1, we require
thatz # €.



Arun (T, r) isacceptingf all its infinite paths satisfy the acceptance condition. We considerBigrke
andparity acceptance conditions {862, EJ91]. A parity condition over a state &ets a finite sequence
F ={F,F,,..., F} of subsets of), whereF;, C F, C ... C F;, = Q. The numbef of sets is called
theindexof A. Given a run(7,,r) and an infinite patir C T, letinf(w) C @ be such thay € inf(m)
if and only if there are infinitely many € = for whichr(y) € T* x {¢}. Thatis,inf () contains exactly
all the states that appear infinitely oftensin A path= satisfies the parity conditioR' if there is an even
1 <4 < k such thatinf (7) N F; # ( and for allj < 4, we haveinf(r) N F; = (. A Biichi acceptance
condition consists of a séf; C @ and it can be viewed as a special case of a parity condition of index 3,
whereF = {), F1,Q}. Thus, arun is accepting according to thigcBi conditionF; if every path in the run
visits F} infinitely often. An automaton accepts a labeled tree if there exists a run tegitadt. We denote
by £(A) the set of alb>-labeled trees thatl accepts. The automatohis nonemptyff £(.A) # 0.

An automaton is 1-way if it does not usdransitions norf-transitions. Formally, an automaton is 1-
way if for every statey € Q and lettero € ¥ the transitiond(q, o) is restricted to formulas iB*(Q).
An automaton is nondeterministic if in every transition exactly one copy of thevaitm is sent in every
direction inY. Formally, an automaton is nondeterministic if for every state Q and lettero € X
there exists some sétsuch that (¢, o) = V,;c; Aver (i, v). EqQuivalently, we can describe the transition

function of a nondeterministic automaton@s @ x ¥ — 2(@™) The tupleqs, ..., qy)) € d(q,0) is
equivalent to the disjunctyy, v1)A. . .A(g)y), vjy))- We use acronyms ifil, 2} x { A, N} x{B, P} x{T, W}

to denote the different types of automata. The first symbol stands forga@fynovement of the automaton:
1 stands for 1-way automata (we often omit the 1) and 2 stands for 2-wagnata. The second symbol
stands for the branching mode of the automatdrfor alternating andV for nondeterministic. The third
symbol stands for the type of acceptance used by the autom&ttor:Bichi andP for parity, and the last
symbol stands for the object the automaton is readifigor words (not used in this paper) afitfor trees.
For example, a 2APT is a 2-way alternating parity tree automaton and an NPIRigg nondeterministic
parity tree automaton.

Theorem 2.1 Given a 2APTA with n states and inde¥, we can construct an equivalent NPT whose
number of states i@lk)O(”’“) and whose index is linear ink [Var98], and we can check the nonemptiness
of A in time (nk)°("%)*) [EJS93]

Themembership problerof a 2APT.4 and a regular tre€Y™, ) is to decide whethe{Y*, 7) € L(A).
As described in Theorem 2.2 below, the membership problem can be deduite emptiness problem.

Theorem 2.2 The membership problem of a regular trég*, 7) and a 2APTA with n states and indek
is solvable in time|r|nk)C(F)?)

Proof: According to Theorem 2.1, we construct a INRT= (X, @, qo, 9, F') that accepts the language of
A. The number of states o is exponential imk and its index is linear imk. LetD = (Y, %, S, so,n, L)
be the transducer generatingwith ¥ = {v1,...,v4}.
Considerthe NPV’ = ({a}, @%S, (g0, 50), 9, F') whered((q, s),a) = {{(q1, $1), - - -, (qa, $a))|{q1, - - - qa) €
d(q, L(s)) ands. = n(s,v.)}. Itis easy to see that(N’) # 0 iff (Y*,7) € LIN). AsL(N) = L(A), we
are done. Note that the number of statedVéis (|7|nk)°("*) and its index is linear imk. Thus, emptiness
of N’ can be determined in timgr|nk)°("h)?), O

Once we translaté to V, the reduction above is similar the one described in [KVWO00]. The translation
of A to NV, however, involves an exponential blow up. In the full version of [KRYwe show that the
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membership problem for 2ABT is EXPTIME-hard. Thus, the membershiplenofor 2APT is EXPTIME-
complete.

2.3 Pushdown tree automata

Pushdown tree automata are finite-state automata augmented by a pushdewhilstca nondeterministic
finite-state tree automaton, a nondeterministic pushdown tree automaton stdintg i@ tree from the root.
At each node of the tree, the pushdown automaton consults the transitibarrelad sends independent
copies of itself to each of the node’s successors. Each copy hasepeimtent pushdown store that diverges
from the pushdown store of the parent. We then check what happerngsalery branch of the run tree and
determine acceptance.

Letd = |T|andY = {vy,...,vy}. Formally, anondeterministic parity pushdown tree automagaith
e-transitions) over infinité -trees (oPD-NPTfor short) isP = (X, T, P, po, o, p, F'), where

e Y is a finite input alphabet.

e I'is a finite set of pushdown symbols.

e P is afinite set of states.

e py € Pis an initial state.

e o € I'" - L is aninitial pushdown store content.

o p: Px(SU{e}) x (TU{L}) — 2PxI" 4 2(PxI") s g transition function such that for every state
p € Pand symbold € T, we haved(p, a, A) € 2(PXI)" fora € , andd(p, e, A) € 271",

Intuitively, when the automaton is in stgtereading a node labeled bya € X, and the pushdown
store contains a word iA - IT'*, it can apply one of the following two types of transitions.

— An e-transitionin §(p, €, A), where the automaton stays in nadeAccordingly, each-transition
is a pair(p/, 3) € P x I'*. Once the automaton chooses a fgair3), it moves to state’, and
updates the pushdown store by removitignd pushings.

— An advancing transitionin ¢(p,a, A), where the automaton splits intbcopies, each read-
ing a different successor of the node Accordingly, each advancing transition is a tuple
{(p1,P1),---,(pa,Ba)) € (P x T*)4. Once the automaton chooses a tuple, it splits ihto
copies, theth copy moves to the node z in the input tree, changes to state and updates the
pushdown store by removing and pushingg;.

We assume that the bottom symbol on the pushdown stare This symbol cannot be removed (so,
when we say that the pushdown store is empty, we mean that it containd pngvery transition
that removesl also pushes it back. Formally, if’, 3) € d(p, ¢, L), theng € T'* - L. Similarly, if
{((p1,51),---,(pa,Ba)) € d(p,a, L), thens; € T*- L forall 1 < i < d. The symboll is not used in
another way.

The size|p| of the transition function is the sum of all the lengths of the words used in tictifun.

Formally, |p| = (E«plﬂl),,_,,(pd,gd»ep(p,a,A)|ﬁ1| +...+ |ﬁd\) + (E(pf,ﬁ)ep(p,e,A)WD-

e F'is a parity condition oveP.



We note that the automata defined above assume input trees with a fixedoavrd eranching degree,
and can distinguish between the different successors of the noden(gmse a requirement only on the
leftmost successor). In many cases, it is useful to consglametridree automata [JW95], which refer to
the successors of a node in a universal or an existential manner, @dah handle trees with unknown
and varying branching degrees. While symmetry is naturally defined fonatieg automata, it can also be
defined for nondeterministic automata [KV01], and for PD-NPT.

Example 2.3 In Section 1, we mentioned the non-regular propeptis‘uniformly inevitable”, namely there

is some time such thap hold at timei in all the computations. We now describe a PD-NPT for the property.
We defineP = (217}, {a}, {0, q1, 42}, q0, L, 6, F), whereF = {{qo, 1}, {q0, @1, ¢2}} is such thatj, and

q1 has to be visited only finitely often, and the transition function is as follows.

® p(qo,€ 1) = {(q0,al),(q1, 1)},

* p(q0; ¢, @) = {(g0, aa), (q1, @)},
4]

(
(Q1a {p},a) = 6(Q17®7a) = <(Q17€)7 AR (q176)>’
(
(

® ) q1, {p}7 J‘) = <(QQ7 J—)a ) <QZ7 J—)>’ and

* 0(g2, 6, 1) = {(q2, L)}-

Intuitively, P starts reading the tree in stajg with empty pushdown store. It stays in statetaking e-
transitions while pushing’s into the pushdown store. In some stagetakes a nondeterministic choice to
move to statey, from which it proceeds with advancing transitions while removitsgfrom the pushdown
store. When the pushdown store becomes erfiptgkes an advancing transition to statevhile checking
that the label it reads is indedd}. L

A run of the PD-NPTP on an infinite treY*, 7) is an(Y* x P x I'*)-labeled N-tregT;., r). A node
y € T, labeled by(z, p, o) represents a copy @ in statep, with pushdown store content, reading node
x in (Y*, 7). Formally,r(e¢) = (e,po,ap), and for allxz € T, such that(z) = (y,p, A - «) one of the
following holds.

e Thereis aunique successer. of 2 in T, such that(c-x) = (y,p’, 5-«) for some(p’, 5) € §(p, €, A).

e There aref successors - z,...,d - x of x in T, such that for alll < ¢ < d, we haver(c-z) =
(UC Y, Pe, ﬂc : Oé) for Some<(p17 ﬂl)? KIS (pd7 ﬁd)> S 5(1): V(y)u A)

Given a pathr C T,., we defineinf(m) C P to be such thap € inf(n) if and only if there are infinitely
many nodeg € = for whichr(y) € T* x {p} x I'*. As with 2APTSs, a path satisfies the parity condition
F = {F,...,F} ifthere is an everl < i < k such thatinf(r) N F; # 0 and for allj < 4, we have
inf(m) N F; = 0. Arunisacceptingf every pathr C T is accepting. A PD-NPTP accepts a tre€rl’, 7) if
there exists an accepting run®fover (T, 7). The language oP, denoted’(P) contains all trees accepted
by P. The PD-NPTP is emptyif £(P) = 0.

Harel and Raz consider only th&ighi acceptance condition (PD-NBT for short) . They showed that the
emptiness problem of PD-NBT can be reduced to the emptiness problenDeNBP with one-letter input
alphabet [HR94]. The parity acceptance condition is more general ted@iitthi acceptance condition. The
following theorem generalizes the result of [HR94] to PD-NPT.

7



Theorem 2.4 The emptiness problem for a PD-NFT with n states, index, and input alphabek, is
reducible to the emptiness problem for a PD-NPTwith n - |X| states and indek that has a one-letter
input alphabet.

Note that since our automata hav&ransitions, we cannot use the classical reduction to one-letter input
alphabet [Rab69]. For a nondeterministic tree automator= (X, P, po, p, F'), Rabin constructs the au-
tomatonV' = ({a}, P, po, p’, F) such that for every state € P we havey'(p,a) = Uyex, p(p, o). Thus,

P’ guesses which of the input letterse X labels the node and chooses a statg(im o). For automata
with e-transitions, we have to make sure that successor states that read theoslEngeiess the same label
for the node, and we augment the automa®mvith a mechanism that remembers the guessed input letter.

3 The Emptiness Problem of PD-NPT

In this section we give an algorithm to decide the emptiness of a PD-NPTrdiogato Theorem 2.4, we
can restrict attention to PD-NPT with one-letter input alphabet. We redua@péness of a PD-NPT with
one-letter input alphabé® to the membership of a regular tree in the language of a 24P TThe idea
behind the construction is that since the one-letter tree is homogeneous;dtieri@f a copy ofP in the
input tree is not important. Accordingly, when a copy4simulates a copy dP, it does not care about the
location on the input tree, and it has to remember only the state of the copyeacaittent of the pushdown
store.

It is easy for a copy of4 to remember a state @&. How can.4 remember the content of the pushdown
store? Lefl" denote the pushdown alphabet/f Note that the content of the pushdown storéPoforre-
sponds to a node in the full infinile-tree. So, itA reads the tre€*, it can refer to the location of its reading
head in[** as the content of the pushdown store. We would Jikki “know” the location of its reading head
in I'*. A straightforward way to do so is to label a nadec T'* by x. This, however, involves an infinite
alphabet, and results in trees that are not regular. Sihdees not read the entire pushdown store’s content
and (in each transition) it only reads the top symbol on the pushdown gt@gesnough to labek by its
direction.

Let (I'*, 7.) be thel labeledI'-tree such that for every € I'*, we haver,.(z) = dir(x). Note that
(I'*, 7.) is aregular tree of siz@"| + 1. We reduce the emptiness of a one-letter PD-NPT to the membership
problem of (I'"*, 7..) in the language of a 2APT. Given a PD-NFTwe construct a 2APTA such that
L(P) # 0iff (I'*,7.) € L(A). The 2APT memorizes a control state of the PD-NPT as part of its finite
control. When it has to apply some transition78f it consults its finite control and the label of the tree
(I'*, 7.). Knowing the state of? and the top symbol of the pushdown store, the 2APT can decide which
transition of P to apply. Moving to a new state @ is done by changing the state of the 2APT. Adjusting
the pushdown store’s content is done by navigating to a new locati@r jrr.).

Theorem 3.1 Given a one-letter PD-NPP = ({a},T, P, py, a, p, F') with n states and index, there
exists a 2APTA with n - |p| states and indek such thatl(P) # ( iff (I'*, 7.) € L(A).

As before, letl = | Y| andY = {vy,...,vq}. Formally, giventhe PD-NPP = ({a},T', P, po, v, 9, F'),
we construct the 2APH = (', Q, qo,n, F'), where

o () = P x tails(d) wheretails(§) C I'* is the set of all suffixes of words € I'* for which one of the
following holds.



— There are stateg, p1,...,pq € P, words(3y,...,84 € I'*, and a lettery € I" such that
<(p1> ﬁl)v ) (pd7 ﬁd» € 5(p’ e Cl) andr = /BZ for somel g ] S d.
— There are statgs p’ € P and a lettery € T such thatp’, z) € §(p, €, 7).
— T = Q.
Intuitively, when A visits a noder € I'* in state(p, y), it checks thatP with initial configuration

(p,y - ) accepts the one-letté&f-tree. In particular, whep = ¢, thenP with initial configuration
(p, x) needs to accept the one-lettéstree.

States of the formp, £) are calledaction states From these stated consultss in order to impose
new requirements ofl'*, 7..). States of the formp, y), for y € T't, are callednavigation states
From these stated only navigates downwarg to reach new action states.

e qo = (po, ). Thus, in its initial stated checks thaf with initial configuration(pg, ) accepts the
one-letterY-tree.

e The transition functiom is defined for every stat@, x) € P x tails(d) andA € T as follows.

d

\/ (T)(t?a))] v [ \/ /\(T’(tlaﬁl))

(t,a)€5(p,e,A) ((tl7ﬁ1)7"'7(tdvﬁd))€6(szav‘4) i=1
- 7]((197 B- OZ), A) = (Bv (p7 Oé))

Thus, in action states4 reads the direction of the current node and applies a transition droim
navigation states4 needs to go downward 18 - «, so it continues in directiof.

- n((p,e),A) =

e F' = F x {e}. Note that only action states can be accepting states.

We show thatd accepts(I'™*, ..) iff P accepts the one letté&f-tree. Let(Y*, 7,) denote the labeled tree
such that for allz € T*, we haver,(z) = a.

Claim 3.2 L(P) # 0 iff (T*, 7.) € L(A).

Proof: We have to work with four different trees. We have a PD-NP&and a 2APTA, each has an input
tree and a run tree. We introduce a special notation as follows.

1. Let7'~ = (T*,7,) denote the input tree read 1

2. LetTiA = (I'*, 7,.) denote the input tree read by

3. Let (T:DD,TPD> denote the run tree @® and its labeling.

4. Let (TTA, ") denote the run tree oA and its labeling.

Assume firstthat” =~ € L£(P). Then, there exists an accepting i ,r" ) of P onT. . Given
PD PD PD . A A A .
T, and(T. "~,r "), we have to construct an accepting run ttge ,r") of AonT . Consider a node
x € T:DD labeled byr”” (z) = (y, (p,~)). Recall thatz stands for a copy oP in statep with pushdown
store content;, reading nodey € T . We associate with a noder’ € 7" labeled by-" () = (7, (p, €)).



Recall thatz’ stands for a copy ofl is in state(p, €), reading nodey € TiA. Both nodes are labeled by the
statep of P. The pushdown store contentBfis the location of4 in TZ_A.

We prove by induction that we can bui((T:‘,rA> in such a way. We start from the roete TTPD
labeled byr" (¢) = (e, (po, ag)). The roote € T is labeled byr” (¢) = (e, (po, a0)). The behavior of
the 2APT is deterministic until it reaches the next action state. Thus, therensasoc TTA labeled by
P (z") = (a, (po, €)) which serves as the base case for the induction.

Given a noder € TTPD labeled by (z) = (y, (p, A- a)), by the induction assumption it is associated
with a nodexr’ € T labeled byr” (/) = (A - a, (p, ).

Suppose: has one successorz labeled by (c-z) = (y, (p', B-«)), that resulted from the transition
(¥, B) € 4(p,e, A). Then there is a disjun€t, (p', 3)) € n(p, A). We addc- 2’ to TTA, the unique successor
of 2/, and label itrA(c -2') = (a, (p/, 3)). Obviously, this satisfies. Again the behavior below - 2’ is
deterministic until reaching a node 2’ € TTA labeled byrA(z ')y = (B a,(p,e)).

Supposer hasd successors; - x,...,cq - T € TTPD labeled byr"” (¢;i - z) = (yi, (pi, Bi - @), that
resulted from the transitiof(p1, 51), - . ., (pa, Ba)) € 0(p,a, A). Then there is a disjunq'\;-izl(T, (pi, 5i))
inn(p,A). We addey -2/, ...cq- 2’ to TTA as the successors of, and label them™ (¢; - 2/) = (v, (ps, 5;))-

Obviously, this satisfieg. The behavior of each path belew- 2’ is deterministic until reaching some node
A A
zi-o' €T labeled byr” (z; - o) = (Bi - «, (pi, €)).

We have to show now the(t]“f,rA) is accepting. Take an infinite path C TTA. Clearly, 7 visits
infinitely many action states. Every action state and the node it labels, is dsddnyahe construction with
anode inT . Itis quite clear that this sequence of nodegin’ forms a pathe’ C 7. Hence if7’
satisfiesF, it is also the case that satisfiest”.

Assume now thatd accepts(I'*, 7,.). There exists an accepting rujﬂr:‘, ) of A on (I'*, 7). We
construct an accepting ryr” ", 7"”) of P onT"”. We convert the set of nodes i labeled by action
states ofA4 to the treeTTPD. We update the location @ in T* according to the number of successors of
each action state. One successor matchesmaove andl successors match a forward move.

Formally, we assume by induction that every netle Tf labeled byr" (z") = (o, (p, €)) is associated
with some node: € 7" labeled by (x) = (y, (p, @) for some node € 7. As before the root of
TTA is labeled by (€) = (¢, (po, ao)). It has some descendarite TTA labeled byr (2/) = (aw, (po, €)).
We label the root € TTPD by 7" (€) = (e, (po, ). This serves as the induction base.

Given some node’ € TTA labeled by-" (') = (A - «,(p,€)), by induction assumption there is a node
PD PD
reT ~labeledbyr " (z) = (y, (p, A - a)).

Supposer’ has one successor 2’ labeled by (¢ - 2/) = (a, (p/, 3)), that resulted from the disjunct
(1,(p', B)) that appears im(p, A). Again, there is some descendantz’ of ¢ - 2’ that is an action state
labeled byr(z - 2') = (8- a, (¢, €)). We know that(p/, ) € d(p,¢, A), we addc - = to T, a unique
successor aof, and label itrPD(c -x) = (y, (', 8- «)). Note thatc - x andx read the same nodee TiPD.

Suppose:’ hasd successors; -z, ..., cq -2’ € TTA labeled by (c; - ') = (o, (ps, 3;)), that resulted
from the disjunct\%_, (1, (pi, 8;)) in n(p, A). Each one of the nodes - =’ has a descendant - 2/, that is
labeled by the action stai€z; - z') = (8 - «, (pi, €)). We know that((p1, 51), ..., (p4, Ba)) € 0(p, a, A).
We addc; - z,...cq - x tO TTPD as the successors of and label them*PD(ci cx) = (vi -y, (pi, Bi - @)).
Obviously, this satisfies.
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Again every path irﬂ“rPD is associated with the action states along a patﬂrﬁn We conclude that

(", r"") has to satisfy". O

Combining Theorem 3.1 with Theorems 2.2 and 2.4, we get the following.

Corollary 3.3 The emptiness problem for a PD-NPT witlstates, indeX, and transition functiorp can
be solved in time exponential itk - |p|.

Remark 3.4 Harel and Raz [HR94] show that the emptiness of stack automata on infirteisralso de-
cidable. Stack automata can read the entire contents of the stack but ceye ¢ha content only when
standing on the top of the stack. They give a doubly exponential reduttonthe emptiness problem

of stack automata to the emptiness problem of pushdown automata. As their emmtirishdown au-
tomata is triple exponential, it induces a five fold exponential algorithm foriatieess of stack automata

on infinite trees that use theliBhi acceptance condition. Thus, our emptiness algorithm induces a triple
exponential algorithm for the emptiness ofiéhi stack automata. We believe that the reduction used in
[HR94] for Buchi stack automata can be extended to parity stack automata and furthénatareing our
techniques, the emptiness of parity stack automata can be solved in less tlesexpignential time. [

4 Model-Checking Pushdown Specifications of Finite-State Systems

Themodel-checkingroblem is to decide whether a given sysimatisfies a specificatigh. In this section
we consider the case where the system is finite state and the specificatidd-RIPIn order to solve the
model-checking problem we combine the system with the PD-NPT and getNFADwhose language is
empty iff the system satisfies the specification.

We usdabeled transition grapht represent finite-state systems. A labeled transition graph is a quadru-
ple S = (W, Act, R, wo), whereW is a (possibly infinite) set of stateslct is a finite set of actions,
R C W x Act x W is a labeled transition relation, ang), € W is an initial state. We assume that the
transition relationR is total (i.e. for every state there exists some acticand some state@’ such that
R(w,a,w")). WhenR(w, a,w’), we say that’ is ana-successopof w, andw is ana-predecessoof w’.
For a statev € W, we denote bys® = (W, Act, R, w), the systend with w as its initial state. A finite-state
system is given as a labeled transition graph with a finite set of statesinWiedingof S from statew € W
induces an infinite tre@s. Every node of the tre€s is associated with some staté € W, the root ofT’s
is associated with state. A nodex € Ts associated withv’ € W has|{w” | Ja € Act s.t. R(w', a,w”)}|
successors, each associated with a succesSof w’ and labeled by the actiomsuch thatR(w’, a, w").
The root ofTs is labeled byl ¢ Act. As R is total, Ts is infinite. We say that a systef satisfiesa tree
automator over the alphabetct if Ts is accepted byp.!

The unwinding of a finite labeled transition graghresults in a regular tree. In order to determine
whetherS satisfiesP, we have to solve the membership problem of regular trees in the language®f
NPT. We reduce the membership problem to the emptiness problem by a ctinatgimilar to the one in
the proof of Theorem 2.2. Thus, we construct a PD-NPT that eithepésEs or is empty, and then check
its emptiness.

There is a slight technical difficulty as in our formalism PD-NPT run onstrei¢h a uniform branching degrees, while labeled
transition graphs are not required to have a uniform outdegree. Thi&uttif can be finessed by allowing automata on non-uniform
trees, as, for example, in [KVWO0O].
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Theorem 4.1 Given a finite labeled transition grap with m states and a PD-NP7 with n states,
indexk, and transition functiorp, the model-checking problem Sfwith respect tgP is solvable in time
exponential innnk - |p|.

Givena PD-NPTP = (247 T, P, py, a, p, F') and afinite labeled transition graph= (W, Act, R, wy),
we construct the PD-NPP’ = ({b},T", P x Act x W, (po, L, wp), a, p’, F') that is the product of the two.
The states of”’ consists of triplets of states @1, actions ofS, and states of. The acceptance condition
F'is F x Act x W, where we replace each s&t € F' by the setF; x Act x W. The transition function
p' maps a triple{p, a, w) to all thee-successors qgf tagged again by andw and to all the 4-successors”
of p tagged by successors ofand the actions taken to get to them. For technical convenience, we assume
that the branching degree &fis uniform and equivalent to the branching degree of the treesthiaads.
Modifying the algorithm to systems with nonuniform branching degree is rttonplicated. Formally,
we have the following.

o V((p,a,w), e, A) = {((t,a,w), ) | (p, ) € p(p, €, A)}.

<<p17a1>7"'1<pdaad>> Ep(p,a,A) and 1
o J((p,a,w),b,A) = ¢ ({(p1,a1,w1),01),...,{(Pd, aq, wa), aa)) | {(w,a1,wr),...,(w,aq,wq)}
is the set of transitions fromy J

It is not hard to see tha®’ accepts some tree iff acceptss, the unwinding ofS.

Remark 4.2 By having PD-NPT as our specification formalism, we follow here the briagetime paradigm
to specification and verification, where the specification describes alloamgutation trees and a system
is correct if its (single) computation tree is allowed. Alternatively, in the lingae paradigm, the specifica-
tion describes the allowed linear computations, and the system is correégtsfamputations are allowed.
When the system is nondeterministic, it may have many computations, and weoheleck them all.
Thus, while model checking in the branching-time paradigm correspormgmabership checking, model
checking in the linear-time paradigm corresponds to checking languadgimment.

Pushdown specification formalisms are helpful also in the linear-time pard@gmG84]. For exam-
ple, one can use pushdown word automata to specify unbounded LIf€dsbuNevertheless, since the
containment problem of regular languages in context-free languagedésidable [HMUOQQ], using push-
down word automata as a specification formalism leads to an undecidable rhedklrg problem even for
finite-state systems.

The branching-time paradigm is more general than the linear-time paradagngfl, Pnu85] in the sense
that we can view a (universally quantified) linear-time specification asrechiag-time specification. This
does not contradict the fact that model checking of pushdown spaificis decidable in the branching-
time paradigm. Indeed, a translation of a nondeterministic pushdown worthaitto that recognizes a
languagel into a nondeterministic pushdown tree automata that recognizes the landualgéhe trees
derived byL (that is, trees all of whose paths arelii is not always possible. For cases where such a
translation is possible (in particular, when the pushdown word automatortdenieistic), linear model
checking is decidable. This is reminiscent of the situation with dense-time tehipgi@ where model
checking with respect to linear-time specifications is undecidable, while mbeeking with respect to
branching-time specifications is decidable, cf. [ACD93]. Ll

Remark 4.3 Unlike the case of regular tree automata, it can be provedittehatingpushdown automata
are strictly more expressive than nondeterministic pushdown automatoax#ople, it is easy to define a
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pushdown alternating automaton over words that recognizes the ntexténee languagéa’b’c’ : i > 1}.
Indeed, the automaton can send two copies, one for comparing the numddervdth b’'s, and one for
comparing the number dfs with ¢'s. A similar argument shows that alternating pushdown tree automata
are stronger than nondeterministic pushdown tree automata.

On the other hand, as studied in [KVWO0O], the membership problem for atteghautomata is not
harder than the one for nondeterministic automata. This observation doelsamge when pushdown au-
tomata are involved. In particular, it is easy to extend Theorem 3.1 to altagrmatiomata (without changing
the blow up), and to extend the model-checking algorithm described abtive stronger framework of al-
ternating pushdown automata. Ll

5 Model-Checking Pushdown Specifications of Context-Free Systems

In this section we show that the decidability results of Section 4 cannot bededdo context-free systems.
We show that the model checking problem for context-free systems iciglatide already for pushdown
path automata, which are a special case of pushdown tree automata.

We first define context-free systems and pushdown path automata. Agairsavlabeled transition
graphs. This time with an infinite number of states.

A rewrite systenis a quadrupléR = (V, Act, R, xo), whereV is a finite alphabetdct is a finite set of
actions,R maps each actiom to a finite set of rewrite rules, to be defined below, agd= V* is an initial
word. Intuitively, R(a) describes the possible rules that can be applied by taking the actidve consider
herecontext-freeewrite systems. Each rewrite rule is a pal, ) € V' x V*. We refer to rewrite rules in
R(a) asa-rules

The rewrite systenR induces the labeled transition gragh, = (V*, Act, pr, zo), Where(z, a,y) €
pr if there is a rewrite rule irR(a) whose application om results iny. In particular, wherR is a context-
free rewrite system, themr (A - y,a,x - y) if (A, x) € R(a). A labeled transition graph that is induced by
a context-free rewrite system is called@ntext-free graph

Consider a labeled transition graph= (S, Act, p, so). A nondeterministic pushdown path automaton
on labeled transition graphs is a tugke = (Act, I, P, 6, po, ap, F'), wherel', P, py, andag are as in
nondeterministic pushdown automata on treéd, is a set of actions (the automaton’s alphabet), @nd
PxActxT' — 2P*T" is the transition function. We consider the simpler case wh&gea Blichi acceptance
condition. Intuitively, wherP is in statep with A - o on the pushdown store and it reads a staté G,
the automatorP chooses an atorfy’, 3) € d(p, a, A) and moves to some-successor of in statep’ with
pushdown stor@ - o. Again we assume that the first symbohigis L, and thatL cannot be removed from
the pushdown store.

Like a run of a nondeterministic pushdown automaton on words, a run efi@ptomaton over a labeled
transition graptG = (S, Act, p, so) is an infinite word in(S x P x I'*)“. A letter (s, p, «v), describes that
the automaton is in stageof P with pushdown store contentreading state of G. Formally, a run is an
infinite sequenceésy, po, ao), (s1,p1, 1), ... € (S x P x I'")“ as follows.

e sq is the initial state of7, pg is the initial state ofP, andqy is the initial pushdown store content.

e For everyi > 0 there exists some € Act such thats;; is ana-successor of; and ifa; = A - «
then(pi11, 3) € 6(pi,a, A) anda; 1 = 3 - a.
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A run r is acceptingif it satisfies the acceptance condition. The gr#&plis accepted byP if there is an
accepting run on it. We denote lf}(P) the set of all graphs th& accepts.

We use PD-NBP (pushdown nondeterministiacBi path automata) as our specification language. We
say that a labeled transition graphsatisfies a PD-NBFP, denoted~ |= P, if P acceptss.

Theorem 5.1 The model-checking problem for context-free systems and pushddlwaytamata is unde-
cidable.

Proof: It is well known that the termination problem of a two-counter machine is uddble [Min67].
We show that we can reduce the problem of whether a two-counter maehimimates to the problem of
whether a context-free graph satisfies a PD-NBP.

We first define two-counter machines. A two counter machind is: (S, —, Fycc, Fre;), WwhereS'is a
set of states, anfl,.. C S andF,.; C S are disjoint sets of accepting and rejecting states, respectively. We
assume that onck/ reaches an accepting or rejecting state, it loops there foreveonfigurationof M is
atriple (s, c1,c2) € S x N x N, indicating the state of the machine and the values of the two counters. The
transition function—: S x {zero, not_zero} x {zero, not_zero} — 23*{inc.decidlelx{ine,decidle} mapg g
representation of a configuration (where the values of the counters@aeed by flags indicating whether
they are equal to zero) into possible transitions of the machine, wherdian awolves a move to a new
state and possible updates (increase or decrease) to the countersité\e,wy,vs) — (s, dy, dz) for
(s',dy,ds) €— (s,v1,v2).

In order to simulate the two-counter machine by the context-free system eafrrDHNBP, we use the
state of the context-free system (a wordViri) to maintain the value of the first counter, and we use the
pushdown store of the PD-NBP to maintain the value of the second counterdér to simulate the two
counters, we have to be able to check whether each counter is zetpiocnease each counter, and decrease
each counter. Handling of the second counter (maintained by the puststore of the path automaton) is
straightforward: the path automaton can check whether its pushdownistmgty or not, can push one
letter into the pushdown store, and can pop one letter from the pushdown sto

Handling of the first counter (maintained by the state of the context-fraerayss a bit more compli-
cated. The context-free systethhasV = {a, L}, and its initial state isL. The rewrite rules ofS are
such that all the reachable states®fre ina* - 1. The systemS has five possible actions (which are
also read by the PD-NBP): push, pop, idle, empty_push, andempty_idle. From the state_, the system
S may apply the actionsmpty_push andempty _idle, thus signaling to the specification that its counter
is zero. From a state iv ™ - L, the systemS may apply the actionpush, pop, or idle. The value of
the first counter is simulated by the (numberatdf in the) location of the PD-NBFP on the context-free
graph. In order to apply a transition 8f from a configuration in which the first counter equals zé?o,
tries to read the actiorsnpty_push or empty_idle. In order to increase the first count@reads the action
push (or empty_push). Decreasing the counter and leaving it unchanged is similar. The patimatoa?
memorizes the state @f in its finite control. It accepts if it gets to an accepting statéff

More formally, the context-free systemd&s= ({a, L}, Act, T, L), with Act as described above, and
the following rewrite rules.

o T'(empty_push) = (L,al). Signal that the counter is zero and adtb the state.
e T(empty_idle) = (L, 1). Signal that the counter is zero and leave the state unchanged.

e T'(push) = (a, aa). Signal that the counter is not zero and acto the state.
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e T'(pop) = (a,€). Signal that the counter is not zero and remae\fem the state.

e T'(idle) = (a,a). Signal that the counter is not zero and leave the state unchanged.

The path automato® mimics the two-counter machine. Formally,= (Act, {a}, S, 6, so, L, Faec U
F;), where the transition functiahis induced by the transition relatien of M/ as follows. If(s, vi, v2) —
(s',dy,dz2) then(s', a) € §(s,a, A), where

e If vy = empty, thena € {empty_push, empty_idle}. Otherwisea € {push, pop,idle}.
o If vy = empty, thenA = L. OtherwiseA = a.

e If di = incthena € {empty_push,push}, if di = dec thena = pop, and ifd; = idle then
a € {empty_idle,idle}.

o If do =inc, thena € {aa,al},if dy = dec, thena = ¢, and ifds = idle, thena € {a, L}.

It is not too difficult to see that’s = P iff M terminates. U

We note that path automata are indeed weaker than tree automata. Indeeldpa Ran simulate a PD-
NBP by sending copies in accepting sinks to all directions but the directiomitchwthe PD-NBP chooses
to go. It follows that the model checking problem for context-free sysamdsPD-NPT is also undecidable.

6 Conclusions

We consider the model-checking problem for specifications given bydowen tree automata. We describe
an exponential-time algorithm for model checking a finite-state system witlecesp a PD-NPT. The
algorithm consists of a reduction to the emptiness problem of PD-NPT. Tteupper bound known for
the emptiness problem is triple exponential, and we improved it to a single exjedn&Ve also show that
model checking a context-free system with respect to a PD-NPT spéoifica undecidable.
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