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Abstract

Perspective games model multi-agent systems in which agents can view
only the parts of the system that they own. Unlike the observation-based
model of partial visibility, where uncertainty is longitudinal – agents par-
tially observe the full history, uncertainty in perspective games is trans-
verse – agents fully observe parts of the history. So far, researchers studied
zero-sum two-player perspective games. There, the objective of one agent
(the system) is to satisfy a given specification, and the objective of the
second agent (the environment) is to fail the specification.

We study richer and more realistic settings of perspective games. We
consider games with more than two players, and distinguish between zero-
sum games, where the objectives of the players form a partition of all
possible behaviors, zero-sum games among coalitions, where agents in a
coalition share their objectives but do not share their visibility, and non-
zero-sum games, where each agent has her own objectives and is assumed
to be rational rather than hostile. In the non-zero-sum setting, we are
interested in stable outcomes of the game; in particular, Nash equilibria.

We show that, as is the case with longitudinal uncertainty, transverse
uncertainty leads to undecidability in settings with three or more play-
ers that include coalitions or non-zero-sum objectives. We then focus on
two-player non-zero-sum perspective games. There, finding and reason-
ing about stable outcomes is decidable, and in fact, unlike the case with
longitudinal uncertainty, can be done in the same complexity as in games
with full visibility. In particular, we study rational synthesis in the per-
spective setting, where the goal is to generate systems that satisfy their
specification when interacting with rational environments. Our study in-
cludes Boolean objectives given by automata or LTL formulas, as well as
a multi-valued setting, where the objectives are LTL[F ] formulas with sat-
isfaction values in [0, 1], and the agents aim to maximize the satisfaction
value of their objectives.

1 Introduction

Design and control of multi-agent systems correspond to the synthesis of winning
strategies in a game that models the interaction between the agents. Different
settings induce different classes of games. In all classes, the game is played on
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a graph and the players generate a play, namely a path in the graph, by jointly
moving a token along the graph. Classes then differ in the way the players
proceed, the type of objectives, and the relation among the player’s objectives.

We focus on settings in which each of the players has control in different parts
of the system. Thus, the game is turn-based , with each player owning a subset
of the vertices and deciding the successor vertex when the play reaches a vertex
she owns. A strategy for a player directs her how to continue a play that reaches
her vertices. Each vertex in the game graph is labeled by an assignment to a
set AP of atomic propositions, and the objectives of the players are behavioral
– each objective is a language of infinite words in (2AP )ω. In games with full
visibility, strategies may depend on the full history of the play. In games with
partial visibility, strategies depend only on visible components of the history.
We distinguish between two approaches to partial visibility. The first is the
traditional longitudinal uncertainty (a.k.a. observation-based games), where in
all vertices, the players observe the assignment only to an observable subset of
the atomic propositions [5, 13, 14, 26, 38]. The second is the recently introduced
transverse uncertainty (a.k.a. perspective games), where players observe the
assignment to all the atomic propositions, but only in the vertices they own
[25, 23].

Both types of partial visibility correspond to realistic settings. In games
with longitudinal uncertainty, we model systems in which each of the underlying
components can only view and control a subset of the system’s variables. For
example, a program that interacts with a user with private variables. In games
with transverse uncertainty, we model systems in which control is switched
among the underlying components, which can observe only these parts of the
interaction that they control. For example, a communication network in which
a company that owns part of the routers has to make routing decisions based
only on information about visits to its routers [1], a component in a reactive
system that is not aware of the activity in other components, for example in
software and web services systems [29], and switched systems where components
are activated by a scheduler and are not aware of the evolution of the system
while being switched off [20, 28, 30, 37].

So far, transverse uncertainty was studied only in two-player zero-sum per-
spective games [25]. There, the objective of one player (the system) is to satisfy
a given specification, whereas the second player (the environment) is assumed to
be hostile and her objective is to fail the specification. The conceptual difference
between longitudinal and transverse uncertainty is reflected in the properties of
the game and the algorithms developed for deciding them. In particular, while
the complexity of deciding whether the system wins an observation-based game
is exponential in the size of the game [5, 38], it is only polynomial in perspec-
tive games. Intuitively, this follows from the fact that when a player moves the
token in an observation-based game, her partial visibility leads to uncertainty
about the location of the token, which requires algorithms to maintain subsets
of vertices. On the other hand, in a perspective game, players know the vertex
where the token is, and uncertainty is about the path the token has traversed
so far.
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In this work we study transverse uncertainty in richer and more realistic set-
tings. We first stay in the zero-sum terrain, yet consider perspective games with
more than two players. Unsurprisingly, if the objectives of the players form a
partition of (2AP )ω, then reasoning can be reduced to the setting of two-players
zero-sum perspective games. When, however, we allow the players to form coali-
tions [12], where players in a coalition share their objectives but do not share
their visibility, then transverse uncertainty can capture the “information fork”
that causes the longitudinal setting to be undecidable [36]. Specifically, we show
that perspective games with two coalitions can model the undecidable setting
of three-player observation-based games, in fact even concurrent ones [17]. Es-
sentially, by carefully ordering the turns in which the players in our perspective
game proceed, we can mimic both the concurrency and the observation-based
behavior of the players in [17].

In the traditional approach to synthesis, the system has to satisfy its specifi-
cation in all environments. Thus, the components that compose the environment
can be seen as if their only objective is to conspire to fail the system. Hence
the term “hostile environment” that is traditionally used in the context of syn-
thesis [35]. In real life, however, the components that compose the environment
are often entities that have objectives of their own. The approach taken in
the field of algorithmic game theory [33] is to assume that agents interacting
with a computational system are rational, and thus act to achieve their own
objectives. Assuming agents’ rationality softens the universal quantification on
the environment, and motivates the study of non-zero-sum games, which model
settings where the players are rational rather than hostile.

Technically, in non-zero-sum games, the objective of each player is still a
language of infinite words in (2AP )ω, but now these languages may overlap,
and need not cover all behaviors in (2AP )ω. A profile in the game is a vector
of strategies, one for each player. The interesting questions for non-zero-sum
games concern stable profiles. In particular, a profile is a Nash equilibrium (NE,
for short) if no player has an incentive to deviate from her assigned strategy,
provided that the other players adhere to the strategies assigned to them [32].
As it turns out, an NE need not exist, even in non-zero-sum games with no
uncertainty. There, deciding the existence of an NE can be solved in time
polynomial in the size of the graph, for a wide range of structural and behavioral
objectives. Increasing the number of players increases the complexity, but it is
still decidable [8, 9, 10]. In games with no uncertainty, researchers have studied
also settings with coalitions [6, 12], probability [7, 15], as well as the problem
of repairing unstable games [2]. Finally, back to synthesis, researchers have
studied the problem of rational synthesis, where we seek a strategy for the
system player that would guarantee the satisfaction of her specification in all
rational environments [21, 24]. In settings with no uncertainty, the complexity
of rational synthesis is again polynomial in the graph [16].

Non-zero-sum games with longitudinal uncertainty are studied in [22, 19].
In [22], the authors study the NE-existence decision problem, showed that it
is undecidable for three or more players, and decidable for two players. For
objectives in LTL, the complexity is again 2EXPTIME-complete. The game
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graph in [22] is implicit, and induced by the objectives of the players. In [19],
the authors study rational synthesis in games with longitudinal uncertainty, and
the complexities are similar, with an exponential dependency in the graph.

Here, we study non-zero-sum perspective games. We show that while unde-
cidability for three or more players in the longitudinal setting is carried over to
the transverse one, for games with two players we are able to show decidability,
and the problem is only polynomial in the game graph. Our algorithm is based
on dividing the general question of NE-existence into four questions, namely
existence of NEs that are characterized by the set of players that win. For ex-
ample, a WL-NE is an NE in which only Player 1 wins, and we show that we
can reduce the question of existence of a WL-NE to questions about zero-sum
perspective games. In more details, by manipulating tree automata used for
solving zero-sum perspective games with related objectives, we construct a tree
automaton that accepts strategies for Player 1 if they participate in a WL-NE.
Similar techniques are used for the other types of NEs, and together enable us
to solve the NE-existence problem in a complexity that is only polynomial in
the graph game.

As for the complexity in terms of the objectives, we distinguish between
objectives given by different types of automata as well as by LTL formulas, and
give a complete picture of all formalisms. The bottom line of our results is that
unless the specification formalism is a deterministic automaton, the complexi-
ties of the problems we study coincide with their complexity in a setting with
no uncertainty. Intuitively, this follows from the fact that the transverse setting
adds uncertainty only about the state of an automaton that follows the play
traversed by the token, and such uncertainty anyway exists in nondeterminis-
tic or alternating automata. The details, however, require careful acrobatics
that synchronize uncertainty due to partial visibility with uncertainty due to
branches in the automaton.

We continue and study rational synthesis for settings with transverse uncer-
tainty. Recall that the basic challenge is to find a strategy for the system player
with which her objective is guaranteed to be satisfied, assuming rationality of
the other players. The above can be formalized in two different ways [21, 24].
The first is cooperative rational synthesis (CRS), where the desired output is an
NE in which the objective of the system is satisfied. Thus, the assumption is
that we can suggest strategies to the other players, and they would follow our
suggestion unless they have a beneficial deviation. This assumption is removed
in non-cooperative rational synthesis (NRS), where the desired output is a strat-
egy for the system player such that her objective is satisfied in every NE where
she follows this strategy, and at least one such NE exists.

While automata and LTL formulas enable the description of rich on-going
behaviors, their semantics is Boolean: a play may satisfy an objective or it may
not. As argued in [3], the Boolean nature of LTL is a real obstacle in synthesis.
Indeed, while many systems may satisfy a specification, they may do so at differ-
ent levels of quality. Consequently, designers would be willing to give up manual
design only after being convinced that the automatic procedure that replaces
it generates systems of comparable quality. As argued in [24], the extension
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of the synthesis problem to the rational setting makes the quantitative setting
even more appealing. Indeed, objectives in typical game-theory applications
are quantitative, and interesting properties of games often refer to their quan-
titative aspects. We extend rational synthesis with transverse uncertainty to a
multi-valued setting, where the objectives are LTL[F ] formulas – an extension of
LTL by quality operators. The satisfaction value of an LTL[F ] formula is a real
value in [0, 1], where the higher the value is, the higher is the quality in which
the computation satisfies the specification [3]. The goal of the players is then to
maximize the satisfaction value of their objectives. In particular, a profile is an
NE if no player can deviate to a strategy with which the satisfaction value of her
objective is increased. Rational synthesis for games with LTL[F ] objectives and
no uncertainty was studied in [4]. Here, we study rational synthesis in settings
with transverse uncertainty, for both Boolean and multi-valued objectives. We
show that while the two variants are undecidable for three or more players, the
case of two players can be solved in the same complexity as the NE-existence
problem. Thus, it is not more difficult than rational synthesis in settings with
no uncertainty. In fact (see Remark 7.2), our results improve the known upper
bound also for rational synthesis in settings with no uncertainty.

2 Preliminaries

2.1 Perspective Non-Zero-Sum Games

For k ≥ 1, let [k] = {1, . . . , k}. A k-player game graph is a tuple G =
〈AP, {Vi}i∈[k], v0, E, τ〉, where AP is a finite set of atomic propositions, {Vi}i∈[k]
are disjoint sets of vertices, each owned by a different player, and we let V =⋃
i∈[k] Vi. Then, v0 ∈ V1 is an initial vertex, which we assume to be owned by

Player 1, and E ⊆ V × V is a total edge relation, thus for every v ∈ V there is
u ∈ V such that 〈v, u〉 ∈ E. The function τ : V → 2AP maps each vertex to a
set of atomic propositions that hold in it. The size |G| of G is |E|, namely the
number of edges in it.

In a beginning of a play in the game, a token is placed on v0. Then, in each
turn, the player that owns the vertex that hosts the token chooses a successor
vertex and moves the token to it. Together, the players generate a play ρ =
v0, v1, . . . in G, namely an infinite path that starts in v0 and respects E: for
all i ≥ 0, we have that 〈vi, vi+1〉 ∈ E. The play ρ induces a computation
τ(ρ) = τ(v0), τ(v1), ... ∈ (2AP )

ω
.

A game is a tuple G = 〈G, {Li}i∈[k]〉, where G is a k-player game graph, and
for every i ∈ [k], the language Li ⊆ (2AP )ω is a behavioral objective, namely
an ω-regular language over the atomic propositions, given by an LTL formula
or an automaton. Intuitively, for every i ∈ [k], Player i aims for a play whose
computation is in Li. For a language L ⊆ (2AP )ω, let L denote the complement
of L, thus L = (2AP )ω \ L.

Let Prefs(G) be the set of nonempty prefixes of plays in G. For a sequence
ρ = v0, . . . , vn of vertices, let Last(ρ) = vn. For i ∈ [k], let Prefsi(G) = {ρ ∈
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Prefs(G) : Last(ρ) ∈ Vi}. In games with full visibility, the players have a full
view of the generated play. Accordingly, a strategy for Player i maps Prefsi(G)
to vertices in V in a way that respects E. In perspective games, Player i can
view only visits to Vi. Accordingly, strategies are defined as follows. For a prefix
ρ = v0, . . . , vj ∈ Prefs(G), and i ∈ [k], the perspective of player i on ρ, denoted
Perspi(ρ), is the restriction of ρ to vertices in Vi. We denote the perspectives of
Player i on prefixes in Prefsi(G) by PPrefsi(G), namely PPrefsi(G) = {Perspi(ρ) :
ρ ∈ Prefsi(G)}. Note that PPrefsi(G) ⊆ Vi∗. A perspective strategy for Player i
(P-strategy, for short), is then a function fi : PPrefsi(G) → V such that for all
ρ ∈ PPrefsi(G), we have that 〈Last(ρ), fi(ρ)〉 ∈ E. That is, a P-strategy for
Player i maps her perspective of prefixes of plays that end in a vertex v ∈ Vi to
a successor of v.

A profile is a tuple π = 〈f1, ..., fk〉 of P-strategies, one for each player. The
outcome of a profile π = 〈f1, ..., fk〉 is the play obtained when the players follow
their P-strategies. Formally, Outcome(π) = v0, v1, ... is such that for all j ≥ 0
and i ∈ [k], if vj ∈ Vi, then vj+1 = fi(Perspi(v0, . . . , vj)).

The set of winners in π, denoted by Win(π) ⊆ [k], is the set of players whose
objective is satisfied in Outcome(π). The set of losers in π, denoted Lose(π), is
then [k] \Win(π), namely the set of players whose objective is not satisfied in
Outcome(π).

The game G = 〈G, {Li}i∈[k]〉 is zero sum if the objectives of the players
form a partition of (2AP )ω. Thus, for i 6= j, we have that Li ∩ Lj = ∅, and
(2AP )ω =

⋃
i∈[k] Li. Then, for every profile π, we have that |Win(π)| = 1 and

|Lose(π)| = k − 1. For i ∈ [k], we say that a P-strategy fi for Player i is a
winning strategy if for every profile π of strategies in which Player i follows fi,
we have that Win(π) = {i}.

When G is a non-zero-sum game, the objectives of the players may overlap,
and we are interested in stable profiles in the game. In particular, a profile
π = 〈f1, ..., fk〉 is a Nash Equilibrium (NE, for short) [32] if, intuitively, no
(single) player can benefit from unilaterally changing her strategy. In our set-
ting, “benefiting” amounts to moving from the set of losers to the set of win-
ners. Formally, for i ∈ [k] and some perspective strategy f ′i for Player i, let
π[i← f ′i ] = 〈f1, ..., fi−1, f ′i , fi+1, ..., fk〉 be the profile in which Player i deviates
to the strategy f ′i . We say that π is an NE if for every i ∈ [k], if i ∈ Lose(π),
then for every perspective strategy f ′i we have that i ∈ Lose(π[i← f ′i ]).

2.2 Linear Temporal Logic

The logic LTL is used for specifying on-going behaviors of reactive systems [34].
Formulas of LTL are constructed from a set AP of atomic propositions using
the usual Boolean operators and the temporal operators X (“next time”) and
U (“until”). Formally, an LTL formula over AP is defined as follows:

• True, False, or p, for p ∈ AP .

• ¬ψ1, ψ1 ∧ ψ2, Xψ1, or ψ1Uψ2, where ψ1 and ψ2 are LTL formulas.
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The semantics of LTL is defined with respect to infinite computations in
(2AP )ω. Consider a computation ρ = σ1, σ2, σ3, . . .. We denote the suffix
σj , σj+1, . . . of ρ by ρj . We use ρ |= ψ to indicate that an LTL formula ψ
holds in the computation ρ. The relation |= is inductively defined as follows:

• For all ρ, we have that ρ |= True and ρ 6|= False.

• For an atomic proposition p ∈ AP , we have that ρ |= p iff p ∈ σ1.

• ρ |= ¬ψ1 iff ρ 6|= ψ1.

• ρ |= ψ1 ∧ ψ2 iff ρ |= ψ1 and ρ |= ψ2.

• ρ |= Xψ1 iff ρ2 |= ψ1.

• ρ |= ψ1Uψ2 iff there exists k ≥ 1 such that ρk |= ψ2 and ρi |= ψ1 for all
1 ≤ i < k.

Writing LTL formulas, it is convenient to use the abbreviationsG (“always”),
F (“eventually”), and R (“release”). Formally, the abbreviations follow the
following semantics.

• Fψ1 = trueUψ1. That is, ρ |= Fψ1 iff there exists k ≥ 1 such that
ρk |= ψ1.

• Gψ1 = ¬F¬ψ1. That is, ρ |= Gψ1 iff for all k ≥ 1 we have that ρk |= ψ1.

2.3 Trees and Automata

Given a set D of directions, a D-tree is a set T ⊆ D∗ such that if x · c ∈ T ,
where x ∈ D∗ and c ∈ D, then also x ∈ T . The elements of T are called nodes,
and the empty word ε is the root of T . For every x ∈ T , the nodes x · c, for
c ∈ D, are the successors of x. A path π of a tree T is a set π ⊆ T such that
ε ∈ π and for every x ∈ π, either x is a leaf or there exists a unique c ∈ D such
that x · c ∈ π. Given an alphabet Σ, a Σ-labeled D-tree is a pair 〈T, τ〉 where T
is a tree and τ : T → Σ maps each node of T to a letter in Σ.

Our algorithms use automata on infinite words and trees, defined below.
For a set X, let B+(X) be the set of positive Boolean formulas over X (i.e.,
Boolean formulas built from elements in X using ∧ and ∨), where we also allow
the formulas true and false. For a set Y ⊆ X and a formula θ ∈ B+(X),
we say that Y satisfies θ iff assigning true to elements in Y and assigning
false to elements in X \ Y makes θ true. An alternating tree automaton is
A = 〈Σ, D,Q, qin, δ, α〉, where Σ is the input alphabet, D is a set of directions,
Q is a finite set of states, δ : Q × Σ → B+(D × Q) is a transition function,
qin ∈ Q is an initial state, and α ⊆ Q specifies a Büchi or a co-Büchi acceptance
condition. For a state q ∈ Q, we use Aq to denote the automaton obtained from
A by setting the initial state to be q. The size of A, denoted |A|, is the sum of
lengths of formulas that appear in δ.
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The alternating automaton A runs on Σ-labeled D-trees. A run of A over
a Σ-labeled D-tree 〈T, τ〉 is a (T ×Q)-labeled IN-tree 〈Tr, r〉. Each node of Tr
corresponds to a node of T . A node in Tr, labeled by (x, q), describes a copy of
the automaton that reads the node x of T and visits the state q. Note that many
nodes of Tr can correspond to the same node of T . The labels of a node and its
successors have to satisfy the transition function. Formally, 〈Tr, r〉 satisfies the
following:

1. (1) ε ∈ Tr and r(ε) = 〈ε, qin〉.

2. (2) Let y ∈ Tr with r(y) = 〈x, q〉 and δ(q, τ(x)) = θ. Then there is a
(possibly empty) set S = {(c0, q0), (c1, q1), . . . , (cn−1, qn−1)} ⊆ D × Q,
such that S satisfies θ, and for all 0 ≤ i ≤ n − 1, we have y · i ∈ Tr and
r(y · i) = 〈x · ci, qi〉.

For example, if 〈T, τ〉 is a {0, 1}-tree with τ(ε) = a and δ(qin, a) = ((0, q1)∨
(0, q2))∧((0, q3)∨(1, q2)), then, at level 1, the run 〈Tr, r〉 includes a node labeled
(0, q1) or a node labeled (0, q2), and includes a node labeled (0, q3) or a node
labeled (1, q2). Note that if, for some y, the transition function δ has the value
true, then y need not have successors. Also, δ can never have the value false
in a run.

A run 〈Tr, r〉 is accepting if all its infinite paths satisfy the acceptance con-
dition. Given a run 〈Tr, r〉 and an infinite path π ⊆ Tr, let inf(π) ⊆ Q be
such that q ∈ inf(π) if and only if there are infinitely many y ∈ π for which
r(y) ∈ T × {q}. That is, inf(π) contains exactly all the states that appear
infinitely often in π. A path π satisfies a Büchi acceptance condition α iff
inf(π)∩α 6= ∅, and satisfies a co-Büchi acceptance condition α iff inf(π)∩α = ∅.
We also consider the parity acceptance condition, where α : Q → {0, 1, . . . , k}
maps each state to a color in {0, 1, . . . , k}, and a path π satisfies α if the minimal
color visited infinitely often is even, thus min{i : inf(π) ∩ α−1(i) 6= ∅} is even.
An automaton accepts a tree iff there exists a run that accepts it. We denote
by L(A) the set of all Σ-labeled trees that A accepts.

The alternating automaton A is nondeterministic if for all the formulas that
appear in δ, if (c1, q1) and (c2, q2) are conjunctively related, then c1 6= c2. (i.e.,
if the transition is rewritten in disjunctive normal form, there is at most one
element of {c} × Q, for each c ∈ D, in each disjunct). The automaton A
is universal if all the formulas that appear in δ are conjunctions of atoms in
D×Q, and A is deterministic if it is both nondeterministic and universal. The
automaton A is a word automaton if |D| = 1. Then, we can omit D from
the specification of the automaton and denote the transition function of A as
δ : Q × Σ → B+(Q). If the word automaton is nondeterministic or universal,
then δ : Q× Σ→ 2Q.

We denote different types of automata by three-letter acronyms in {D,N,U,A}×
{F,B,C, P}×{W,T}, where the first letter describes the branching mode of the
automaton (deterministic, nondeterministic, universal, or alternating), the sec-
ond letter describes the acceptance condition (finite, Büchi, co-Büchi, or parity),
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and the third letter describes the object over which the automaton runs (words
or trees). For example, UCT stands for a universal co-Büchi tree automaton.

2.4 Transducers

A Σ-labeled D-tree 〈T, τ〉 is regular if for every letter σ ∈ Σ, we have that
τ−1(σ), namely the language of words in D∗ that τ maps to σ, is a regular lan-
guage. We describe a regular tree 〈T, τ〉 by a transducer, which is a deterministic
automaton over the alphabet D in which each state is labeled by a letter in Σ.
Then, τ(x), for x ∈ D∗, is the label of the state that the transducer reaches
after reading x. Recall that a perspective strategy for Player i is a function
fi : PPrefsi(G)→ V . Also, as PPrefsi(G) ⊆ V ∗i , then every perspective strategy
is a V -labeled Vi-tree 〈V ∗i , fi〉. When we seek winning strategies, we seek ones
that are generated by finite-state transducers.

3 Multi-Player Zero-Sum Perspective Games

In [25], the authors study two-player zero-sum perspective games. Thus, games
with k = 2 in which L2 = L1. When considering such games, we refer to Player 1
and Player 2 as Player or and Player and, respectively, denote V1 and V2 by
Vor and Vand, respectively, and denote a game by a tuple 〈G,L〉, namely only
with the objective of Player or.

In this section we stay in the zero-sum setting, but increase the number of
players. As is the case in similar settings [5], a reduction to the two-player case
is easy, and we describe it for completeness:

Lemma 3.1 Consider a zero-sum perspective game G = 〈G, {Li}i∈[k]〉, with
G = 〈AP, {Vi}i∈[k], v0, E, τ〉. For every j ∈ [k], Player j has a winning strategy
in G iff Player or has a winning strategy in the two-player zero-sum game G′ =
〈G′, Lj〉, where G′ = 〈AP, Vor, Vand, v0, E, τ〉 is such that Vor = Vj and Vand =⋃
i∈[k]\{j} Vi.

Proof: If Player or wins G′, then Player j can win G by following the winning
P-strategy of Player or. For the other direction, assume Player or cannot
win G′. Then, for every strategy f for Player or in G′, there is a strategy f ′

for Player and such that Outcome(f, f ′) /∈ Lj . Then, Outcome(f1, ..., fk) =
Outcome(f, f ′) /∈ Lj , where fj = f , and fi is the projection of f ′ on V ∗i , for
every i ∈ [k] \ {j}. Namely, for every ρ ∈ Prefsi(G), we define fi(Perspi(ρ)) to
be f ′(ρ). So, for every strategy fj for Player j in G, there is a set of strategies
{fi}i∈[k]\{j} such that Outcome(f1, ..., fk) /∈ Lj . Thus, Player j cannot win G.

Lemma 3.1, together with the complexity of deciding two-player perspective
games [25], implies the following.
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Theorem 3.2 Consider a zero-sum game G = 〈G, {Li}i∈[k]〉, and j ∈ [k]. The
problem of deciding whether Player j has a winning P-strategy is EXPTIME-
complete (2EXPTIME-complete) when the objectives Li are given by UPWs
(respectively, LTL formulas). The problem can be solved in time polynomial in
|G| and exponential in the UPW (respectively, doubly-exponential in the LTL
formula) for Lj.

4 Multi-Player Zero-Sum Perspective Games with
Coalitions

In k-player zero-sum games between m coalitions, the k ≥ 2 players are parti-
tioned into m coalitions, C1, C2, . . . , Cm ⊆ [k], where the players in each coali-
tion Cj all have the same objective Lj . The game being zero-sum means that
the objectives Lj form a partition of (2AP )ω.

We describe k-player zero-sum games between m coalitions by a tuple 〈G,
{Cj}j∈[m], {Lj}j∈[m]〉. Visibility is perspective, in the sense that each player
views only visits to vertices she owns. It is not hard to see that if players in a
coalition share also their views, the game can be easily reduced to an m-player
zero-sum perspective game in which Player j owns the vertices of all the players
in Cj . We show that once visibility is perspective, the problem of deciding
whether a coalition of players has a strategy to win is undecidable, even for
k = 3, m = 2, C1 = {1, 2} and C2 = {3}. Note that reasoning about games
between two coalitions, we have that L2 = L1, and we denote the game by
G = 〈G,C1, C2, L〉.

Theorem 4.1 The problem of deciding a zero-sum perspective game between
two coalitions is undecidable.

Proof: In [17], the authors describe a reduction from the halting problem
for deterministic Turing machines to the problem of deciding whether a coali-
tion of Player 1 and Player 2 can win a 3-player concurrent observation-based
game between two coalitions. The game being concurrent means that all play-
ers participate in the transition of the token in all vertices. The game being
observation-based means that the players observe only a subset of the atomic
propositions, in all vertices. Formally, a k-player concurrent observation-based
game graph is a tuple G = 〈AP,Q, τ, {∼i}i∈[k], Act, d, δ〉, where AP is a finite
set of atomic propositions, Q is a finite set of states, τ : Q→ 2AP is a labelling
function, ∼i⊆ Q × Q is an equivalence relation, Act is a finite set of actions,
d : Q × [k] → 2Act \ ∅ describes the set of actions available to the players at
each state, satisfying d(q, k) = d(q′, k) for q ∼k q′, and δ : Q × Actk → Q is a
transition function. Thus, in each state, each of the players chooses an action,
and the play proceeds to a successor state that depends on all actions.

A k-player concurrent observation-based game is a tuple G = 〈G, {Li}i∈[k]〉,
where G is a game graph, and for all i ∈ [k], the language Li ⊆ (2AP )ω is an
objective for Player i. A strategy for Player i in G is then a function fi : Q+ →
Act that is compatible with d and ∼i, Thus,
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• fi(ρ · q) ∈ d(q, i), for every ρ ∈ Q∗ and q ∈ Q;

• fi(ρ) = fi(ρ
′), for every ρ, ρ′ ∈ Q+ such that ρ ∼i ρ′.

The outcome of a profile π = 〈f1, ..., fk〉 of strategies is the play obtained when
the players follow their strategies. Formally, Outcome(π) = v0, v1, ... is such
that for all j ≥ 0, we have that vj+1 = δ(vi, f1(v0, ..., vi), . . . , fk(v0, ..., vi)). As
in perspective games, each profile induces a set of winners and losers.

The reduction in [17] constructs, given a Turing machine M , a 3-player
concurrent observation-based zero-sum game between two coalitions. Thus,
GM = 〈GM , C1, C2, L〉, where C1 = {1, 2} and C2 = {3} are a partition of
the players into coalitions, and L is a joint objective of Player 1 and Player 2,
who compose the coalition C1. The objective of Player 3 is then L.

The key features of the game GM = 〈GM , {1, 2}, {3}, L〉 constructed in [17]
are as follows. First, the game graph GM = 〈AP,Q, τ, {∼i}i∈{1,2,3}, Act, d, δ〉
satisfies the following conditions.

• AP = {ok, p1, p2}.

• There are three states q1, q2, and qerr , such that q1 is the only state in
which p1 holds, q2 is the only state in which p2 holds, and qerr is the only
state in which ok does not hold.

• The relation ∼3 is the identity. Thus, Player 3 can distinguish between
all the states in GM .

• For i ∈ {1, 2}, the equivalence relation ∼i is defined by q ∼i q′ iff (pi ∈
τ(q)⇔ pi ∈ τ(q′)). That is, q and q′ are ∼i-equivalent if Player i observes
pi either in both q and q′, or in none of them. Thus, Player 1 cannot
distinguish between states in Q \ {q1}, and similarly for Player 2 and
Q \ {q2}.

• There are two sets Act1,Act2 ⊆ Act such that Player 1 and Player 2 are
allowed to take all actions in Act1 and Act2 in all states, respectively.
Thus, for all states q ∈ Q and i ∈ {1, 2}, we have that d(q, i) = Act i.
Also, for convenience purposes, we assume that Act1,Act2 and Act3 are
disjoint sets.

The objective of the coalition C1 is L = Gok , and the coalition C1 wins iff M
does not halt on the empty tape.

We show that there is a zero-sum perspective game G = 〈G,C1, C2, L
′〉,

again between the coalitions C1 = {1, 2} and C2 = {3}, such that C1 wins
G iff C1 wins GM. Constructing G, we have to address the fact that G is
perspective (rather than with observation-based) and turn-based (rather than
concurrent). The idea of our reduction is to use the perspective view in order to
mimic the concurrent choices of the players in GM: We first let Player 3 choose
her action. Then, Player 1 chooses her action without knowing the choice of
Player 3, and then Player 2 chooses her action without knowing the choices
of Player 3 and Player 1. This corresponds to the three choices being made
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concurrently. Finally, Player 3, the only player that sees all choices (but who
made her choice before Player 1 and Player 2) moves the token to the successor
vertex. While Player 3 need not follow δ, we define the objectives of the players
in a way so that Player 3 has no incentive to do so. Specifically, a computation
fulfils the objective of the coalition of Player 1 and Player 2 if it satisfies Gok
or includes a violation of δ. Accordingly, it fulfils the objective of Player 3 if it
respects δ and eventually reaches the vertex qerr , where ok does not hold.

Figure 1: The game graph G. The circles, squares, and diamonds are vertices
controlled by Player 1, Player 2, and Player 3, respectively.

Formally, G = 〈G, {1, 2}, {3}, L′〉 is defined as follows (see Figure 1). The
game graph is G = 〈AP ′, {Vi}i∈{1,2,3}, q0, E, τ ′〉, where

1. AP ′ = AP ∪Act ∪Q.

2. For i ∈ {1, 2}, we have that Vi = {qi, vi}. Recall that qi is the only state
labeled by pi. The vertex vi is where Player i chooses her action.

3. V3 = Q \ {q1, q2} ∪ {q31 , q32} ∪ Act . For i ∈ {1, 2, 3}, the vertices in Act i
correspond to the different actions that Player i can take. The vertices
q31 and q32 allow Player 3 to choose her action after a visit in q1 and q2,
respectively. Note that Player 3 choosing her action before Player 1 and
Player 2 guarantees that it is independent of their choices, and thus the se-
quence of transitions between states in Q in G corresponds to a concurrent
transition in GM .

4. The set E contains the following edges:
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• 〈q, a〉, for every q ∈ Q \ {q1, q2, qerr} and a ∈ d(q, 3).

• 〈qi, q3i 〉, for every i ∈ {1, 2}.
• 〈q3i , a〉, for every i ∈ {1, 2} and a ∈ d(qi, 3).

• 〈vi, a〉, for every i ∈ {1, 2} and a ∈ Act i.

• 〈a, v1〉, for every a ∈ Act3.

• 〈a, v2〉, for every a ∈ Act1.

• 〈a, q〉, for every a ∈ Act2 and q ∈ Q.

• 〈qerr , qerr 〉.

5. The labelling function τ ′ is defined as follows.

• For every a ∈ Act , we have that τ ′(a) = {a, ok}.
• For every i ∈ {1, 2}, we have that τ ′(qi) = {pi, ok},
• For every q ∈ Q \ {qerr, q1, q2}, we have that τ ′(q) = {q, ok}.
• For every i ∈ {1, 2}, we have τ ′(q3i ) = {qi, ok}.
• τ ′(qerr ) = {qerr}.

Now, the objective of Player 1 and Player 2 is

L′ = Gok ∨
∨

〈q,a1,a2,a3〉∈Q×Act1×Act2×Act3

F (q ∧X(a3 ∧XX(a1 ∧XX(a2) ∧XX¬δ(q, (a1, a2, a3)))).

Thus1, either the generated computation satisfies Gok , or Player 3 does not
respect δ: eventually the computation reaches a state q, the players choose
actions a1, a2, and a3, and Player 3 moves the token to a vertex that is not
δ(q, a1, a2, a3).

Recall that the strategies of Player 1 and Player 2 in GM observe only visits
in q1 and q2, respectively, as well as the number of vertices visited since q1
and q2 have been visited. This is exactly what the perspective view of Player 1
and Player 2 in G includes. In addition, Player 3 can observe choices made by
Player 1 and Player 2 and can always respect δ. Accordingly, the coalition of
Player 1 and Player 2 wins in G iff it wins in GM, and we are done.

5 Multi-Player Non-Zero-Sum Perspective Games

We proceed to non-zero-sum perspective games. Here, the basic question is
whether an NE profile exists.

Theorem 5.1 Deciding the existence of an NE in k-player non-zero-sum per-
spective games is undecidable for k ≥ 3.

1For clarity, our definition of L′ ignores the special treatment for q ∈ {q1, q2}, where the
first X should be XX, corresponding to the computation passing through q31 and q32 .
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Proof: We describe a reduction from the problem of deciding a zero-sum per-
spective game between two coalitions, proved to be undecidable in Theorem 4.1.
There, undecidability is shown for G = 〈G,C1, C2, L〉, with C1 = {1, 2} and
C2 = {3}. We construct a 3-player non-zero-sum perspective game G′ such that
there is an NE in G′ iff C1 wins G.

The idea behind G′ is to add to G a matching-pennies game, which does not
have an NE, between Player 1 and Player 2, and let Player 1 choose whether
to play G or play the matching-pennies game [11]. Now, if C1 wins G, then
Player 1 would chose to play G, resulting in a profile in which C1 wins and no
deviation of Player 3 can make her winning, and thus that profile is an NE. On
the other hand, if C1 does not win G, then no profile in which Player 1 plays
G is an NE. Indeed, Player 1 would deviate to a strategy in which she chooses
the matching-pennies game and wins there. Also, no profile in which Player 1
plays the matching-pennies game is an NE. Indeed, the player that looses the
matching-pennies game can deviate to a strategy in which she wins the game.

Formally, let G = 〈AP, {V1, V2, V3}, E, v0, τ〉. We define G′ = 〈G′, L1, L2, L3〉
as follows (see Figure 2). The game graph is G′ = 〈AP ′, {V ′i }i∈[3], v10 , E′, τ ′〉,
where

1. AP ′ = AP ∪ {p}, for some p /∈ AP .

2. The vertices owned by Player 1 are V ′1 = V1 ∪ {v10 , v1p, v1¬p}.

3. The vertices owned by Player 2 are V ′2 = V2 ∪ {v2, v2p, v2¬p}.

4. The vertices owned by Player 3 are V ′3 = V3.

5. The set of edges E′ contains E and the following edges.

• 〈v10 , v〉, for every v ∈ {v0, v1p, v1¬p}.
• 〈v, v2〉, for every v ∈ {v1p, v1¬p}.
• 〈v2, v〉 and 〈v, v〉, for every v ∈ {v2p, v2¬p}.

6. The function τ ′ : V ′ → 2AP
′

is defined as follows.

• τ ′(v) = τ(v), for every v ∈ V .

• τ ′(v) = p, for every v ∈ {v1p, v2, v2p}.
• τ ′(v) = ∅, for every v ∈ {v10 , v1¬p, v2¬p}.

As for the objectives, Player 1 wins the matching-pennies sub-game if she
and Player 2 choose vertices that agree on p, and Player 2 wins the sub-game
if she and Player 1 choose vertices that do not agree on p. Recall that the
objective of C1 in G is L. Accordingly, L1 = (¬p) · (L+ p · p · pω + ¬p · p · ¬pω)
and L2 = (¬p) · (L+p ·p ·¬pω +¬p ·p ·pω). Then, L3 = (¬p) ·L. Thus, Player 1
wins if either she wins G (with Player 2) or she wins (without Player 2) the
matching-pennies game, and similarly for Player 2. Then, Player 3 wins if the
game proceeds to G and her objective there is satisfied.
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Figure 2: The game graph G′. The circles and squares are vertices controlled
by Player 1 and Player 2, respectively. At the beginning, Player 1 can choose
to proceed to G, or move to the “matching-pennies” sub-game on the right.

6 Two-Player Non-Zero-Sum Perspective Games

Consider a perspective two-player non-zero-sum game G = 〈G, {L1, L2}〉. We
distinguish between four types of NE profiles in G, characterized by the partition
of the players to winners and losers. We term the four types LL-NE (both players
lose), LW-NE (Player 1 loses and Player 2 wins), WL-NE (Player 1 wins and
Player 2 loses), and WW-NE (both players win). We show that we can decide
existence for each of the four types, which implies decidability of some NE.

During the section, we fix a game G = 〈G, {L1, L2}〉, where G = 〈AP ,
V1, V2, E, v0, τ〉. Analyzing the complexity of the problem, we consider various
possible representations of the objectives L1 and L2. We start with NBWs N1

and N2, recognizing L1 and L2, respectively. In Section 6.4, we analyze the
complexity also for the case L1 and L2 are given by LTL formulas or other
types of automata.

6.1 Deciding the existence of an LL-NE

Lemma 6.1 A profile 〈f1, f2〉 is an LL-NE in G iff f1 is a winning P-strategy
for Player or in the zero-sum game 〈G,L2〉 and f2 is a winning P-strategy for
Player and in the zero-sum game 〈G,L1〉.

Proof: Consider an LL-NE 〈f1, f2〉. By definition, for every strategy f ′2 of
Player 2, we have that 2 ∈ Lose(π[2 ← f ′2]). Thus, τ(Outcome(f1, f

′
2)) ∈ L2,

and so f1 is a winning P-strategy for Player or in the zero-sum game with the
objective L2. Similarly, as 1 ∈ Lose(π[1← f ′1]) for every strategy f ′1 for Player 1,
we have that f2 is a winning P-strategy for Player and in the zero-sum game
where Player and’s objective is L1.

For the other direction, assume that f1 and f2 are winning P-strategies
for Player or and Player and in the zero-sum games 〈G,L2〉 and 〈G,L1〉, re-
spectively. Then, τ(Outcome(f1, f2)) ∈ L1 ∩ L2, and neither Player or nor
Player and has a beneficial deviation. Hence, the profile 〈f1, f2〉 is an LL-NE,
and we are done.
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Theorem 6.2 Deciding the existence of an LL-NE in G can be done in time
polynomial in |G| and exponential in |N1| and |N2|.

Proof: By Lemma 6.1, the problem can be reduced to deciding the zero-sum
games 〈G,L2〉 and 〈G,L1〉. By [25], the latter can be done in time polynomial
in |G| and exponential in |U2| and |U1|, for UCWs |U2| and |U1| that recognize
L2 and L1, respectively, and which we can obtain by dualizing N2 and N1.

6.2 Deciding the existence of a WW-NE

Lemma 6.3 There is a WW-NE in G iff there is a computation of G that is a
member of L1 ∩ L2.

Proof: It is easy to see that if there is a WW-NE in G, then there is a path in
G that satisfies L1∩L2. First, it is easy to see that if π = 〈f1, f2〉 is a WW-NE,
then τ(Outcome(f1, f2)), which is a computation of G, is in L1 ∩ L2.

For the other direction, assume there is a path ρ in G such that τ(ρ) ∈
L1 ∩L2. Every two different prefixes ρ′ and ρ′′ of ρ that are of the form V ∗ ·V1,
satisfy |Persp1(ρ′)| 6= |Persp1(ρ′′)|, so in particular, Persp1(ρ′) 6= Persp1(ρ′′).
Likewise, if ρ′ and ρ′′ are of the form V ∗ · V2, then Persp2(ρ′) 6= Persp2(ρ′′).
Thus, the projection of ρ on V ∗1 and V ∗2 induces two perspective strategies f1
and f2 for Player 1 and Player 2, respectively, such that Outcome(f1, f2) = ρ.
Hence, 〈f1, f2〉 is a WW-NE.

Theorem 6.4 Deciding the existence of a WW-NE in G can be done in NLOGSPACE,
and in time polynomial in |G|, |N1|, and |N2|.

Proof: By Lemma 6.3, deciding the existence of a WW-NE can be reduced to
checking the nonemptiness of the intersection of G, N1, and N2, implying the
desired complexity.

6.3 Deciding the existence of a WL-NE

We say that a strategy f1 for Player 1 is a WL-strategy if there is a strategy
f2 for Player 2 such that 1 ∈ Win(〈f1, f2〉), 2 ∈ Lose(〈f1, f2〉), and for every
strategy f ′2 for Player 2, we have that 2 ∈ Lose(〈f1, f ′2〉). We decide the existence
of a WL-NE by deciding the existence of a WL-strategy for Player 1.

Lemma 6.5 We can construct an NBT N that is not empty iff there is a WL-
strategy for Player 1 in G. The size of N is polynomial in |G| and |N1|, and is
exponential in |N2| .

Proof: We defineN as the intersection of an NBT A1 that accepts a V -labeled
V1-tree 〈V ∗1 , f1〉 iff there is a strategy f2 for Player 2 such that 1 ∈Win(〈f1, f2〉),
and an NBT A′2 that is sufficiently equivalent to a UCT A2 that accepts a V -
labeled V1-tree 〈V ∗1 , f1〉 iff for all strategies f2, we have that 2 ∈ Lose(〈f1, f2〉).
Intuitively, in “sufficiently equivalent” we mean that if the intersection of A1
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and A2 is not empty, then so is the intersection of A1 and A′2. We formalize
this intuition when we define A′2 below. The size of A1 is polynomial in |G| and
|N1|. The size of A′2 is polynomial in |G| and |N1|, and exponential in |N2|.
Consequently, as intersection of NBTs involves two copies of their product, so
is the size of N .

We start with the construction of the NBT A1. Note that A1 should reject
〈V ∗1 , f1〉 iff for every strategy f2 for Player 2, we have that 1 ∈ Lose(〈f1, f2〉).
Equivalently, if 〈V ∗1 , f1〉 is a winning strategy for Player or in the two-player
zero-sum game 〈G,L1〉. By [25], we can construct a UCT Ã1 that accepts such
winning strategies, of size polynomial in |G| and in a UCW for L1, which we
have by dualizing N1. We obtain the NBT A1 by dualizing Ã1. Note that the
NBT A1 searches for a path, in the sense that in each state, it sends a single
copy to a single successor.

We continue to the construction of the NBT A′2, and we start with the
UCT A2. Note that A2 should accept 〈V ∗1 , f1〉 iff it is a winning strategy for
Player or in the two-player zero-sum game 〈G,L2〉. By [25], we can construct
a UCT that accepts such winning strategies, of size polynomial in |G| and in a
UCW for L2, which we have by dualizing N2. Thus, the size of A2 is polynomial
in |G| and |N2|. As described in [25], the states of the UCT A2 are triples in
V ×Q2×{>,⊥}, where Q2 is the state space of N2. Also, A2 is deterministic in
its V -element: all states sent to the same direction v of the tree agree on their
V -element, which is v.

Now we have to transform the UCT A2 to an NBT. In [27], the authors
describe such a transformation, which preserves nonemptiness. Here, we need to
preserve nonemptiness of the intersection of A2 with A1, so we need to delve into
the details of the construction in [27]. The construction there is parameterized
by m ≥ 1, and transforms a UCT A to an NBT A′ that accepts only trees in
L(A), and accepts all trees in L(A) that are generated by a transducer with m
states. Since a UCT with n states is nonempty iff it accepts a tree generated
by a transducer with n3n · n6 states, taking m = n3n · n6 guarantees that A′ is
nonempty iff A is nonempty. The bound in [27] is a bit tighter (yet less clean),
and follows from a bound on the size of a nondeterministic Rabin tree automaton
equivalent to A [31], and the fact a nonempty nondeterministic Rabin tree
automaton with n states accepts a tree that is generated by a transducer with
n states [18].

Now, the intersection of A2 with A1 is not empty iff it contains a tree
generated by a transducer with m states, where m bounds the size of a non-
deterministic Rabin tree automaton for this intersection. Since A1 searches a
path and A2 is deterministic in its V -element, the size of such a nondetermin-
istic Rabin tree automaton is polynomial in |G| and |N1|, and is exponential in
|N2|. Applying the construction in [27] with the parameter m, again using the
fact that A2 is deterministic in its V -element, then results in an NBT A′2 of size
polynomial in |G| and |N1|, and exponential in |N2|, which is also the size of
the NBT N for the intersection of A1 and A′2.
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Theorem 6.6 Deciding the existence of a WL-NE can be done in time poly-
nomial in |G| and |N1| and exponential in |N2|. For LW-NE, the complexity is
polynomial in |G| and |N2| and exponential in |N1|.

Proof: By Lemma 6.5, we can construct an NBT of size polynomial in |G|
and |N1|, and exponential in |N2|, that is not empty iff there is a WL-NE. The
complexity for WL-NE then follows from the fact the nonemptiness problem
for NBTs can be solved in quadratic time [39]. For LW-NE, we simply switch
Player 1 and Player 2.

6.4 Other formalisms

The results from Theorems 6.2, 6.4, and 6.6 can be adjusted to show that the
problem of deciding the existence of an NE with objectives given by DFWs and
LTL formulas, can be solved in EXPTIME and 2EXPTIME, respectively. In
Theorem 6.7 below we describe the exact complexities and provide matching
lower bounds for all classes.2

Theorem 6.7 Consider a two-player non-zero-sum perspective game G = 〈G,L1, L2〉.
Deciding the existence of an NE can be done in time polynomial in |G| and

• exponential in L1 and L2, when given by NBWs or DFWs, in which case
the problem is EXPTIME-complete.

• doubly-exponential in L1 and L2, when given by LTL formulas, in which
case the problem is 2EXPTIME-complete.

Proof: Since there is an NE in G iff there is an LL, LW, WL, or WW-NE in
G, the upper bound for NBWs followsfrom Theorems 6.2, 6.4, and 6.6. Since
DBWs are a special case of NBWs, and all considerations can be applied also to
objectives describing finite words, the upper bound for DFWs follows. Finally,
an exponentially higher bound for LTL follows from the exponential translation
of LTL formulas to NBWs [40].

For the lower bound, we describe a reduction from the problem of decid-
ing whether Player or wins in a zero-sum perspective game, proved to be
2EXPTIME-hard in case the objective is given by an LTL formula and EXPTIME-
hard in case it is given by a DFW [25]. Given a two-player zero-sum per-
spective game G = 〈G,L〉, we construct a non-zero-sum perspective game
G′ = 〈G′, L1, L2〉, such that there is an NE in G′ iff Player or wins G.

The construction of G′ = 〈G′, L1, L2〉 is similar to the one in the proof of
Theorem 5.1, and consists of adding to G a matching-pennies game between
Player 1 and Player 2. The initial vertex of G′ is controlled by Player 1, who

2Note that objectives in DFWs refer to finite outcomes of games. A lower bound for them
implies a lower bound on the special case of DBWs that correspond to safety and co-safety
objectives. Also, an upper bound for DPWs (deterministic parity word automata) follows
either by an adjustment of the proofs of Theorems 6.2, 6.4, or by a polynomial translation of
the DPWs to NBWs.
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chooses to either play G or to play the matching-pennies game. In that game
(as in Figure 2), Player 1 wins if Player 1 and Player 2 chose to proceed to
vertices that agree on the labelling of a new atomic proposition p, and Player 2
wins otherwise. Then, the objective L1 of Player 1 is to satisfy L or to win the
matching-pennies game. The objective L2 of Player 2 is to satisfy L or win the
matching-pennies game.

We prove that there is an NE in G′ iff Player or wins G. First, if Player or
has a winning strategy f1 in G, then a profile in which Player or proceeds to
the sub-graph G and follows f1 is an NE. Indeed, Player or satisfies L1 and
Player 2 has no beneficial deviation. Also, if Player or does not win G, every
profile in which Player 1 proceeds to G is not an NE: if Player 2 loses, she has
a beneficial deviation to ensure that L is satisfied, and if Player 1 loses, she has
a beneficial deviation to win the matching-pennies game. In addition, every
profile in which Player 1 proceeds to the matching-pennies game is not an NE
either; the loser always has a beneficial deviation.

Finally, in the three formalisms we consider, the objectives L1 and L2 can
be obtained by taking a disjunction of L with an objective that specifies win-
ning outcomes in the matching-pennies game. The latter is of a constant size,
and the disjunction of L with it (either by ∧, in case of LTL formulas, or by
an intersection, in case of automata) does not include a blow-up. Hence, the
reduction is polynomial, and we are done.

7 Rational Synthesis

In rational synthesis, we are given a k-player non-zero-sum game G = 〈G, {Li}i∈[k]〉
and we seek a strategy for Player 1 with which her objective is guaranteed to
be satisfied, assuming rationality of the other players. Intuitively, Player 1 is
assumed to be the authority, which we control, and thus we do not have to
count on her rationality. Technically, in settings when Player i is controllable,
we say that a profile π = 〈f1, ..., fk〉 is an i-fixed NE, if no player in [k] \ {i} has
a beneficial deviation. We formalize the intuition behind rational synthesis in
two different ways:

Definition 7.1 [Rational Synthesis] Consider a k-player non-zero-sum per-
spective game G = 〈G, {Li}i∈[k]〉. We define the following two variants of ratio-
nal synthesis (RS):

• Cooperative rational synthesis (CRS), where the desired output is a 1-fixed
NE π such that 1 ∈Win(π).

• Non-cooperative rational synthesis (NRS), where the desired output is a
strategy f1 for Player 1 such that there is a 1-fixed NE π = 〈f1, f2, . . . , fk〉
with 1 ∈ Win(π), and for every 1-fixed NE π = 〈f1, f2, . . . , fk〉, we have
that 1 ∈Win(π).

As in traditional synthesis, one can also define the corresponding decision
problems, of rational realizability, where we only need to decide whether the
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desired profile (in the cooperative variant) or strategy (in the non-cooperative
variant) exists. In order to avoid additional notations, we sometimes refer to
CRS and NRS also as decision problems.

Example 7.1 Consider the two-player game G described in Figure 3. Recall
that we denote vertices owned by Player 1 by circles and those owned by Player 2
by squares. We first view G as a zero-sum game, where the objective of Player 1

v# #

vp p

vq
q

v$ $

up p

uq
q

Figure 3: The game graph G.

is L1 = G(($ ∧ Xp) → XXXp) ∧ (($ ∧ Xq) → XXXq)). That is, whenever
Player 2 moves the token from v$ to up, then Player 1 should move the token
from v# to vp, and similarly for uq and vq. Clearly, since Player 1 cannot observe
the choice of Player 2, she has no winning strategy. We proceed to the non-
zero-sum setting and assume that Player 2 has an objective L2 = G($ → Xp).
Keeping this in mind, Player 1 has an NRS solution (and then, also a CRS
solution). To see this, consider a strategy f1 for Player 1 that always moves the
token from v# to vp. Then, for every strategy f2 of Player 2, if a profile 〈f1, f2〉
is a 1-fixed NE, then τ(Outcome(〈f1, f2〉)) is in L1. Indeed, as Player 2 has a
strategy with which her objective is satisfied, namely f ′2 that always moves the
token from v$ to up, and this is the only strategy with which L2 is satisfied, then
every profile 〈f1, f2〉 that is a 1-fixed NE has f2 = f ′2. Since τ(Outcome(〈f1, f ′2〉))
is in L1, it follows that f1 is an NRS solution.

Consider now a strategy f ′1 of Player 1 that always directs the token from
v# to vq. It is easy to see that f ′1 is not an NRS solution. Indeed, the profile
〈f ′1, f ′2〉 is a 1-fixed NE in which L1 is not satisfied. Note also that f ′1 cannot be
a part of a CRS solution, as 〈f ′1, f ′2〉 is the only 1-fixed NE containing f ′1, and
Player 1 loses in it. Finally, note that the strategy f ′1 is a solution in a variant of
NRS that requires all NEs (rather than all 1-fixed-NEs) to satisfy the objective
of Player 1. Indeed, the profile 〈f ′1, f ′2〉 and other profiles in which Player 1 loses
are not NEs.

We first show that the two variants of rational synthesis are undecidable in
perspective games with three or more players.

Theorem 7.2 The cooperative and non-cooperative rational synthesis are un-
decidable in perspective games with three or more players.

Proof: In the proof of Theorem 5.1, we construct, given a Turing machine
M , a 3-player non-zero-sum perspective game G′ such that there is an NE π in
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G′ iff M does not halt on the empty tape. Essentially, G′ is defined by letting
Player 1 choose between playing a game on a graph G in which the coalition of
Player 1 and Player 2 wins iff M does not halt on the empty tape, or playing a
matching-pennies game between Player 1 and Player 2, in which no NE exists.
Accordingly, M does not halt on the empty tape iff there is an NE in G′, in
which case Win(π) = {1, 2} for every NE π.

We start with CRS. By the characteristics of G′ above, there is a CRS
solution for Player 1 iff M does not halt on the empty tape. Indeed, the solution
is an NE π, which by definition is also a 1-fixed NE, with Win(π) = {1, 2}.

We continue to NRS. Here, we use a variant of G′ where we let Player 1
and Player 3 play the matching-pennies game, and we seek an NRS solution for
Player 2. For a strategy f2 of Player 2, we say that a strategy f1 for Player 1 is
good with f2 if for every strategy f3 for Player 3, we have that π = 〈f1, f2, f3〉 is
an NE with Win(π) = {1, 2}. Assume first that M does not halt on the empty
tape. By the definition of G′, we then have a strategy f2 for Player 2 such that
there is a strategy f1 for Player 1 that is good with f2. Indeed, f1 and f2 are the
strategies with which the coalition of Player 1 and Player 2 wins when the game
proceeds to G. We claim that f2 is an NRS solution. First, by the above, there
are strategies f1 for Player 1 and f3 for Player 3, such that π = 〈f1, f2, f3〉 is a
2-fixed NE with 2 ∈ Win(π). Indeed, we can take any strategy f1 for Player 1
that is good with f2 and then any strategy f3 for Player 3. In addition, since
there exists a strategy for Player 1 that is good with f2, then for all profiles
π = 〈f1, f2, f3〉, if π a 2-fixed NE, and so Player 1 does not deviate, then it
must be that Win(π) = {1, 2}, and we are done. Assume now that M halts on
the empty tape. We claim that then, for every strategy f2 of Player 2, the profile
π = 〈f1, f2, f3〉 is not a 2-fixed NE. Indeed, if f1 is such that Player 1 chooses
to play in G, then Player 3 has a beneficial deviation to win there. Also, if
f1 chooses to play the matching-pennies game, then either Player 1 wins there,
in which case Player 3 would deviate, or Player 3 wins, in which case Player 1
deviates. Hence, no strategy for Player 2 can be an NRS solution, and we are
done.

Following Theorem 7.2, we continue to study rational synthesis for settings
with k = 2. We fix G = 〈G,L1, L2〉. We assume that L1 and L2 are given
by LTL formulas ψ1 and ψ2. This is both because rational synthesis has been
traditionally studied for the temporal logic formalism and because our algorithm
for the CRS requires complementation of L2, which involves no blow-up for LTL.

Remark 7.1 We could have defined a variant of NRS where the desired output
is a strategy f1 for Player 1 such that for every 1-fixed NE π = 〈f1, f2, . . . , fk〉,
we have that 1 ∈Win(π). Thus, without requiring a 1-fixed NE to exist. When
k = 2, the two variants coincide. Indeed, assume f1 is a strategy for Player 1
such that for every 1-fixed NE π = 〈f1, f2〉, we have that 1 ∈ Win(π). Now,
if there is f2 such that 2 ∈ Win(〈f1, f2〉), then 〈f1, f2〉 is the required 1-fixed
NE. Also, if no such f2 exists, then Player 2 has no incentive to deviate from a
profile 〈f1, f2〉, which is therefore a 1-fixed NE.
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7.1 Solving cooperative rational synthesis

Theorem 7.3 CRS can be solved in time polynomial in |G|, exponential in |ψ1|
and doubly-exponential in |ψ2|.

Proof: For every profile π with 1 ∈ Win(π), we have that π is an NE iff π is
a 1-fixed NE. Indeed, Player 1 has no incentive to deviate. It is thus not hard
to see that a solution π to CRS is a WW-NE or a WL-NE. In Theorems 6.4
and 6.6, we solved the corresponding decision problems. Here, we show we can
extend them to return the strategies that constitute the NEs. Solving CRS is
then done by first searching a WW-NE (both out of courtesy to Player 2 and
since it is computationally easier), in time polynomial in |G|, and exponential
in |ψ1| and |ψ2|, and then, if no WW-NE exists, searching a WL-NE, which can
be done in time polynomial in |G|, exponential in |ψ1| and doubly-exponential
in |ψ2|.

In Theorem 6.4, deciding the existence of a WW-NE is reduced checking
if there is a path ρ in G such that τ(ρ) satisfies both ψ1 and ψ2. Once
such a path ρ = v1, v2, v3, ... ∈ V ω is found, we define fi, for i ∈ {1, 2} by
fi(Perspi(v1, ..., vj)) = vj+1, for every j ≥ 1 such that vj ∈ Vi. Then, we have
that Outcome(f1, f2) = τ(ρ). Since ρ can be found in time polynomial P and
exponential in |ψ1| and |ψ2|, the desired complexity follows.

We continue to a WL-NE. By Theorem 6.6, deciding the existence of a WL-
NE, and finding a strategy f1 for Player 1 that is part of a WL-NE, can be done
in time polynomial in |G|, exponential in |ψ1|, and doubly-exponential in |ψ2|.
Note that given a strategy f1 for Player 1, we have that 2 ∈ Lose(〈f1, f2〉) for
every strategy f2 for Player 2. Then, it is left to find a path ρ in G that agrees
with f1 and satisfies ψ1. The projection of ρ on V ∗2 results in a strategy f2 for
Player 2 such that 1 ∈Win(〈f1, f2〉).

Remark 7.2 [On the complexity of CRS] The observant reader may be
concerned by the exponential complexity in terms of |ψ1|, as rational synthesis
is 2EXPTIME-hard for LTL specifications even in a setting with no uncertainty
[21, 24]. The concern is justified: A careful analysis reveals that in a setting with
two players, rational synthesis is in fact easier than traditional synthesis. Intu-
itively, this follows from the fact CRS searches for a single 1-fixed NE, which can
be found by reasoning about a nondeterministic automaton for ψ1. Specifically,
the reduction from LTL synthesis to LTL rational synthesis (Theorem 2 in [24])
argues that ψ is realizable (in the traditional sense) iff there is a CRS solution
to the system player in a game with objectives ψ, for the system player, and
True, for the environment player. This is, however, wrong, as the environment
player has no incentive to deviate from any profile. Consequently, every profile
in which ψ is satisfied in a 1-fixed NE.

7.2 Solving non-cooperative rational synthesis

Following Remark 7.1, a strategy f1 for Player 1 is an NRS solution if for every
1-fixed NE π = 〈f1, f2〉, we have that 1 ∈Win(π). Searching for strategies that
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are NRS solutions for Player 1, we distinguish, for every candidate strategy f1
of Player 1, between the case there is a strategy f2 for Player 2 such that 2 ∈
Win(〈f1, f2〉) (Lemma 7.4), and the case no such strategy exists (Lemma 7.5).

Lemma 7.4 Consider a strategy f1 for Player 1. If there is a strategy f2 for
Player 2 such that 2 ∈ Win(〈f1, f2〉), then f1 is an NRS solution iff f1 is a
winning strategy for Player or in the zero-sum game 〈G,L1 ∪ L2〉.

Proof: Assume first that f1 is an NRS solution, and consider a strategy f ′2
for Player 2. If the profile 〈f1, f ′2〉 is a 1-fixed NE, then as f1 is an NRS so-
lution, we have that τ(Outcome(f1, f

′
2)) ∈ L1. If the profile 〈f1, f ′2〉 is not

a 1-fixed NE, it implies that Player 2 has an inventive to deviate, and so
τ(Outcome(f1, f

′
2)) ∈ L2. It follows that for every strategy f ′2 for Player 2,

we have that τ(Outcome(f1, f
′
2)) ∈ L1 or τ(Outcome(f1, f

′
2)) ∈ L2. Hence, f1 is

a winning strategy for Player or in the zero-sum game 〈G,L1 ∪ L2〉.
For the other direction, assume that f1 is a winning strategy for Player or in

the zero-sum game 〈G,L1∪L2〉. Then, for every strategy f ′2, we have that either
τ(Outcome(f1, f

′
2)) ∈ L1 or τ(Outcome(f1, f

′
2)) ∈ L2. If τ(Outcome(f1, f

′
2)) ∈

L2, then the profile 〈f1, f ′2〉 is not a 1-fixed NE, as Player 2 can deviate to f2.
Hence, every profile π = 〈f1, f ′2〉 in which L1 is not fulfilled is not an 1-fixed
NE. Thus, f1 is an NRS solution.

Lemma 7.5 Consider a strategy f1 for Player 1. If 2 ∈ Lose(〈f1, f2〉) for every
strategy f2 of Player 2, then f1 is an NRS solution iff f1 is a winning strategy
for Player or in the zero-sum game 〈G,L1〉.

Proof: Since 2 ∈ Lose(〈f1, f2〉) for every strategy f2 of Player 2, then every
profile 〈f1, f2〉 is a 1-fixed NE. Hence, f1 is an NRS solution iff 1 ∈Win(〈f1, f2〉)
for every strategy f2 for Player 2, which holds iff f1 is a winning strategy for
Player or in the zero-sum game 〈G,L1〉.

Theorem 7.6 Finding an NRS solution for Player 1 can be done in time poly-
nomial in |G| and doubly-exponential in |ψ1| and |ψ2|.

Proof: We start by constructing an NBT N that is not empty iff there is a
strategy f1 such that 2 ∈ Win(〈f1, f2〉) for some strategy f2 for Player 2, and
f1 is a winning strategy for Player or in the zero-sum game 〈G,L1 ∪ L2〉.

Next, we construct an NBT N ′ that is not empty iff there is a strategy
f1 such that 2 ∈ Lose(〈f1, f2〉) for every strategy f2 for Player 2, and f1 is a
winning strategy for Player or in the zero-sum game 〈G,L1〉.

By Lemmas 7.4 and 7.5, there is an NRS solution for Player 1 iff the NBTs
N or N ′ are not empty. We show that N and N ′ are of size polynomial in |G|
and doubly-exponential in |ψ1| and |ψ2|. The complexity then follows from the
polynomial nonemptiness check for NBTs [39].

First, we define N as the intersection of an NBT A1 that accepts a V -labeled
V ∗1 -tree 〈V ∗1 , f1〉 iff there is a strategy f2 for Player 2 such that 2 ∈Win(〈f1, f2〉),
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and an NBT A′2 that is sufficiently equivalent to a UCT A2 that accepts a V -
labeled V ∗1 -tree 〈V ∗1 , f1〉 iff it is a winning strategy for Player or in the zero-sum
game 〈G,L1∪L2〉. The NBTs A1 and A′2 are defined in a similar manner to the
automata described in the proof of Lemma 6.5, with the appropriate objectives.
Accordingly, the size of A1 is polynomial in |G| and exponential in |ψ2|, and the
size of A′2 is polynomial in |G|, exponential in |ψ2|, and doubly-exponential in
|ψ1 ∨ ¬ψ2|.

If N is empty, we proceed to check the nonemptiness of N ′. We start by
defining a UCT U as the intersection of the UCT Ã1 that accepts a V -labeled
V ∗1 -tree 〈V ∗1 , f1〉 iff 2 ∈ Lose(〈f1, f2〉) for every strategy f2 for Player 2, and the
UCT A3 that accepts a V -labeled V ∗1 -tree 〈V ∗1 , f1〉 iff it is a winning strategy
for Player or in the zero-sum game 〈G,L1〉. The size of Ã1 is polynomial in |G|
and exponential in |ψ2|, and the size of A3 is polynomial in |G| and exponential
in |ψ1|. The NBT N ′ is then obtained from U by applying the construction
in [25], using the fact that Ã1 and A3 are deterministic in their V -component.
The size of N ′ is then polynomial in |G| and doubly exponential in |ψ1| and
|ψ2|.

8 Multi-valued Objectives

The linear temporal logic LTL[F ], introduced in [3], generalizes LTL by replac-
ing the Boolean operators of LTL with arbitrary functions over [0, 1]. The logic
is actually a family of logics, each parameterized by a set F of functions.

Let AP be a set of Boolean atomic propositions, and let F ⊆ {g : [0, 1]m →
[0, 1]|m ∈ IN} be a set of functions over [0, 1]. Note that the functions in F may
have different arities. An LTL[F ] formula is one of the following:

• True, False, or p, for p ∈ AP .

• g(ϕ1, ..., ϕm), Xϕ1, or ϕ1Uϕ2, for LTL[F ] formulas ϕ1, . . . , ϕm and a func-
tion g ∈ F .

The semantics of LTL[F ] formulas is defined with respect to infinite computa-
tions over ρ ∈ (2AP )ω. We use ρi to denote the suffix ρi, ρi+1, . . .. The semantics
maps a computation ρ and an LTL[F ] formula ϕ to the satisfaction value of ϕ
in ρ, denoted [[ρ, ϕ]]. The satisfaction value is defined inductively as described
in Table 1 below.

It is not hard to prove, by induction on the structure of the formula, that for
every ϕ, there exists a finite set V (ϕ) ⊆ [0, 1] of possible satisfaction values, such
that for every computation ρ, it holds that [[ρ, ϕ]] ∈ V (ϕ) and |V (ϕ)| = 2O(|ϕ|)

[3].
The logic LTL coincides with the logic LTL[F ] for F that corresponds to the

usual Boolean operators. The novelty of LTL[F ] is the ability to manipulate
values by arbitrary functions. For example, F may contain the weighted-average
function ⊕λ. The satisfaction value of the formula ϕ ⊕λ ψ is the weighted
(according to λ) average between the satisfaction values of ϕ and ψ. This enables
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Formula Satisfaction value

[[ρ, True]] 1
[[ρ, False]] 0

[[ρ, p]]
1 if p ∈ ρ0
0 if p /∈ ρ0

[[ρ, g(ϕ1, ..., ϕm)]] g([[ρ, ϕ1]], ..., [[ρ, ϕm]])
[[ρ,Xϕ1]] [[ρ1, ϕ1]]

[[ρ, ϕ1Uϕ2]] max
i≥0
{min{[[ρi, ϕ2]], min

0≤j<i
[[ρj , ϕ1]]}}

Table 1: The semantics of LTL[F ].

the quality of the system to be an interpolation of different aspects of it. As
an example, consider the LTL[F ] formula G(req → (grant ⊕ 2

3
Xgrant)). The

formula specifies the fact that we want requests to be granted immediately and
the grant to hold for two transactions. When this always holds, the satisfaction
value is 1 ⊕ 2

3
1 = 2

3 + 1
3 = 1. We are quite okay with grants that are given

immediately and last for only one transaction, in which case the satisfaction
value is 2

3 , and less content when grants arrive with a delay, in which case the
satisfaction value is 1

3 .

Theorem 8.1 [3] Let ϕ be an LTL[F ] formula and V ⊆ [0, 1] be a predicate.
There exists an NBW Aϕ,V such that for every computation ρ ∈ (2AP )ω, it

holds that [[ρ, ϕ]] ∈ V iff Aϕ,V accepts ρ. Furthermore, Aϕ,V has at most 2O(|ϕ|2)

states.

Consider a two-player non-zero-sum game G = 〈G,ϕ1, ϕ2〉, for LTL[F ] ob-
jectives ϕ1 and ϕ2. For a profile π = 〈f1, f2〉 and an LTL[F ] formula ϕ, we use
[[π, ϕ]] to denote [[τ(Outcome(π)), ϕ]], namely the satisfaction value of ϕ when
the players follow the strategies in π. A profile π = 〈f1, f2〉 is an NE if for all
i ∈ {1, 2} and strategies f ′i for Player i, we have that [[π[i ← f ′i ], ϕi]] ≤ [[π, ϕi]].
Thus, no player has a beneficial deviation – one that would increase the satis-
faction value of her objective. Then, π is a 1-fixed-NE if Player 2 does not have
a beneficial deviation in π.

Definition 8.1 [Multi-Valued Rational Synthesis] Consider a two-player
non-zero-sum perspective game G = 〈G,ϕ1, ϕ2〉, for LTL[F ] formulas ϕ1 and
ϕ2, and a desired satisfaction value v1 for Player 1. We define the following
two variants of multi-valued rational synthesis:

• Cooperative rational synthesis (v1-CRS), where the desired output is an
1-fixed-NE π such that [[π, ϕ1]] ≥ v1.

• Non-cooperative rational synthesis (v1-NRS), where the desired output is
a strategy f1 for Player 1 such that there is a 1-fixed-NE π = 〈f1, f2〉
with [[π, ϕ1]] ≥ v1, and for every 1-fixed-NE π = 〈f1, f2〉, we have that
[[π, ϕ1]] ≥ v1.
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As has been the case in the Boolean setting (see Remark 7.1), a strategy f1
for Player 1 is a v1-NRS solution iff for every 1-fixed-NE π = 〈f1, f2〉, we have
that [[π, ϕ1]] ≥ v1.

Note that we could have also defined multi-valued rational synthesis for k ≥ 3
players. Since, however, LTL is a special case of LTL[F ], and, by Theorem 7.2,
this setting is undecidable, we restrict attention to two-player games.

Before we solve multi-valued rational synthesis, we show that for zero-sum
perspective games, the framework in [25] can be easily extended to LTL[F ] ob-
jectives. An atomic objective is a pair 〈ϕ, V 〉 for an LTL[F ] formula ϕ and a
predicate V ⊆ [0, 1]. A computation ρ satisfies an atomic objective 〈ϕ, V 〉 iff
[[ρ, ϕ]] ∈ V . An objective is then a Boolean assertion θ of atomic objectives, with
the expected semantics. For example, a computation ρ satisfies the objective
〈ϕ1, [v1, 1]〉 ∨ 〈ϕ2, [0, v2)〉 if [[ρ, ϕ1]] ≥ v1 or [[ρ, ϕ1]] < v2. We say that a strat-
egy f1 for Player or is P-winning in a game G = 〈G, θ〉 if for every strategy
f2 for Player and, we have that τ(Outcome(f1, f2)) satisfies θ. By dualizing
Theorem 8.1, we can construct, given an atomic objective 〈ϕ, V 〉, a UCW Aϕ,V
that accepts exactly all computations ρ ∈ (2AP )ω for which [[ρ, ϕ]] ∈ V . For a
Boolean assertion θ of atomic objectives, we can use closure properties of UCWs
and construct the desired UCW. Since the algorithm in [25] is based on UCWs
for the objectives, we have the following.

Theorem 8.2 Consider a perspective zero-sum multi-valued game G = 〈G, θ〉,
where θ is a Boolean assertion of atomic objectives. Deciding whether Player or
has a winning P -strategy in G, and finding a winning P -strategy, is 2EXPTIME-
complete, and PTIME-complete in the size of the graph.

8.1 Solving cooperative rational synthesis

Theorem 8.3 For a value v1 ∈ V (ϕ1), we have that v1-CRS can be solved in
time polynomial in |G|, exponential in |ϕ1|, and doubly-exponential in |ϕ2|.

Proof: By definition, a solution π = 〈f1, f2〉 to v1-CRS satisfies [[π, ϕ1]] ≥ v1
and for every v2 ∈ V (ϕ2), if [[π, ϕ2]] = v2, then for every strategy f ′2 for Player 2,
we have that [[〈f1, f ′2〉, ϕ2]] ≤ v2. In other words, there is v2 ∈ V (ϕ2) such that
[[π, ϕ1]] ≥ v1, [[π, ϕ2]] = v2, and for every strategy f ′2 for Player 2, we have
that [[〈f1, f ′2〉, ϕ2]] ≤ v2. Accordingly, we search for a v1-CRS solution by go-
ing over all values v2 ∈ V (ϕ2) and intersecting two NBTs: an NBT A1, which
accepts a strategy f1 for Player 1 iff there is a strategy f2 for Player 2 such
that [[〈f1, f2〉, ϕ1]] ≥ v1 and [[〈f1, f2〉, ϕ2]] = v2, and an NBT A2, which ac-
cepts a strategy f1 for Player 1 iff for all strategies f2 for Player 2, we have
[[〈f1, f ′2〉, ϕ2]] ≤ v2. Both NBTs can be constructed as in the proofs of Theo-
rem 6.6, using the Theorem 8.1 for constructing the corresponding UCWs. In
particular, the NBT A1 should reject a strategy f1 if for all strategies f2, their
outcome is not in the language of an NBW that is the intersection of Aϕ1,[v1,1]

and Aϕ2,[v2,v2]. If there is a value v2 ∈ V (ϕ2) for which the intersection is not
empty, we construct from it the desired 1-fixed NE as described in Theorem 7.3.
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8.2 Solving non-cooperative rational synthesis

Recall that a strategy f1 for Player 1 is an NRS solution if for every 1-fixed-
NE π = 〈f1, f2〉, we have that [[π, ϕ1]] ≥ v1. Equivalently, for every v2 ∈
V (ϕ2), if [[〈f1, f2〉, ϕ2]] = v2 and every strategy f ′2 for Player 2, we have that
[[〈f1, f2〉, ϕ2]] ≤ v2, then [[〈f1, f2〉, ϕ1]] ≥ v1.

Lemma 8.4 Consider a strategy f1 for Player 1. Let v2 be the maximal value
such that there is a strategy f2 for Player 2 such that [[〈f1, f2〉, ϕ2]] = v2. Then,
f1 is a v1-NRS solution iff f1 is a winning strategy for Player or in the zero-sum
game 〈G, 〈ϕ1, [v1, 1]〉 ∨ 〈ϕ2, [0, v2)〉〉.

Proof: Assume first that f1 is a v1-NRS solution, and consider a strategy f ′2 for
Player 2. If the profile 〈f1, f ′2〉 is a 1-fixed NE, then as f1 is a v1-NRS solution,
we have that [[〈f1, f2〉, ϕ1]] ≥ v1. If the profile 〈f1, f ′2〉 is not a 1-fixed NE, it
implies that Player 2 has an incentive to deviate, and so [[〈f1, f2〉, ϕ2]] < v2. It
follows that for every strategy f ′2 for Player 2, we have that [[〈f1, f2〉, ϕ1]] ≥ v1
or [[〈f1, f2〉, ϕ2]] < v2. Hence, f1 is a winning strategy for Player or in the
zero-sum game 〈G, 〈ϕ1, [v1, 1]〉 ∨ 〈ϕ2, [0, v2)〉〉.

Assume now that f1 is a winning strategy for Player or in the zero-sum
game 〈G, 〈ϕ1, [v1, 1]〉 ∨ 〈ϕ2, [0, v2)〉〉. Then, for every strategy f ′2, we have that
[[〈f1, f2〉, ϕ1]] ≥ v1 or [[〈f1, f2〉, ϕ2]] < v2. If [[〈f1, f2〉, ϕ2]] < v2, then the profile
〈f1, f ′2〉 is not a 1-fixed NE, as Player 2 can deviate to f2. Hence, every profile
π = 〈f1, f ′2〉 in which [[〈f1, f2〉, ϕ1]] < v1 is not a 1-fixed NE. Thus, f1 is a v1-NRS
solution.

Note that Lemmas 7.4 and 7.5 can be viewed as a special case of Lemma 8.4,
with F that includes only the Boolean operators. Then, the only possible sat-
isfaction values of ϕ1 and ϕ2 are 0 and 1.

Theorem 8.5 For a value v1 ∈ V (ϕ1), we have that v1-NRS for LTL[F ] ob-
jectives can be solved in time polynomial in |G| and doubly-exponential in |ϕ1|
and |ϕ2|.

Proof: We search for a v1-NRS solution by going over all values v2 ∈ V (ϕ2)
and intersecting two NBTs. The first is an NBT A1, identical to the intersection
NBT described in the proof of Theorem 8.3, which accepts a strategy f1 for
Player 1 iff there is a strategy f2 for Player 2 such that [[〈f1, f2〉, ϕ1]] ≥ v1
and [[〈f1, f2〉, ϕ2]] = v2, and for all strategies f2 for Player 2, we have that
[[〈f1, f2〉, ϕ2]] ≤ v2. The second, is an NBT A2 that accepts a strategy f1
for Player 1 iff it is a winning strategy for Player or in the zero-sum game
〈G, 〈ϕ1, [v1, 1]〉 ∨ 〈ϕ2, [0, v2)〉〉. Equivalently, if for all strategies f2 for Player 2,
we have that [[〈f1, f2〉, ϕ1]] ≥ v1 or [[〈f1, f2〉, ϕ2]] < v2. By Lemma 8.4, the
intersection accepts a strategy f1 for Player 1 iff it is a v1-NRS solution. If
there is a value v2 ∈ V (ϕ2) for which the intersection is not empty, we construct
from it the desired strategy for Player 1.
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