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Abstract—A nondeterministic weighted finite automaton
(WFA) maps an input word to a numerical value. Applications
of weighted automata include formal verification of quantitative

properties, as well as text, speech, and image processing. Manfy o

these applications require the WFAs to be deterministic, or work
substantially better when the WFAs are deterministic. Unlike
NFAs, which can always be determinized, not all WFAs have
an equivalent deterministic weighted automaton (DWFA). In [1],
Mohri describes a determinization construction for a subclass of
WFA. He also describes a property of WFAs (thetwins property),
such that all WFAs that satisfy the twins property are deter-
minizable and the algorithm terminates on them. Unfortunately,
many natural WFAs cannot be determinized.

In this paper we study approximated determinization of WFAs.
We describe an algorithm that, given a WFA A and an approx-
imation factor ¢ > 1, constructs a DWFA A’ that t-determinizes
A. Formally, for all words w € ¥*, the value of w in A’ is
at least its value in A and at most ¢ times its value in A.
Our construction involves two new ideas: attributing states in

fWeizmann Institute, Israel
robby.lampert@weizmann.ac.il

settings. For example, in [5], i®hi introduced nondetermin-
istic automata on infinite words, and used them in order to
solve the decidability of S1S. Another example, which is the
subject of this paper, is a generalization of NFAs to a multi-
valued setting. While a classical NFA defines a subsetof
and hence maps each wordH to either0 or 1, a weighted
finite automaton(WFA, for short) maps each word 6* to a
value from some semiring [6], [1]. We focus on thlrepical
semiring (R=° U {co}, min, +, 00, 0). There, each transition
of the WFA has aweightin R=°, and the cost of a run is
the sum of the weights of the transitions taken along the run.
Applications of weighted automata over the tropical semgiri
include formal verification, where WFAs are used for the
verification of quantitative properties [7], [8], for reasng
about probabilistic systems [9], and for reasoning aboat th
competitive ratio of on-line algorithms [10], as well as ttex

the subset construction by both upper and lower residues, and speech, and image processing, where the weights of the WFA

collapsing attributed subsets whose residues can be tightened.

The larger the approximation factor is, the more attributed

subsets we can collapse. Thug-determinization is helpful not

only for WFAs that cannot be determinized, but also in cases
determinization is possible but results in automata that are
too big to handle. In addition, ¢-determinization is useful for

reasoning about the competitive ratio of online algorithms. We
also describe a property (thet-twins property) and use it in order

to characterize t-determinizable WFAs. Finally, we describe a
polynomial algorithm for deciding whether a given WFA has the

t-twins property.

Index Terms—Weighted automata; Determinization;

I. INTRODUCTION

are used in order to account for the variability of the data an
to rank alternative hypotheses [11], [12].

An NFA is nondeterministic, and may have several runs
on an input word. In the Boolean setting, a word is accepted
if some run accepts it. In the weighted setting, the cost that
a WFA A assigns to a wordv, denotedcost(A,w), is the
minimum of the costs of accepting runs an For example,
the WFA in Figure 1 has two accepting runs on the wabbl
The first run isqpq191¢1, and it has cost +1+ 1 = 3. The
second run isyyg2q2q2, and it has cos? + 2 + 2 = 6. Thus,
the cost thatA assigns taibb is min{3,6} = 3.

b1

Automata are the key to the modeling and solution of
various problems in computer science. By reducing problems
to questions about nondeterministic finite automata (Nfés,
short), we separate the algorithmic aspects of the problem,
yielding clean and optimal solutions. For example, discret
feasible planning is reduced to the nonemptiness problem
for NFAs [2], pattern finding in strings is reduced to the
membership problem for NFAs [3], and correctness of finite-
state systems with respect to safety properties is reduzed t
the containment problem for NFAs [4]. Research includes As argued in [7], [8], [1], some applications of the autormata
both efforts to find or improve automata-based frameworks ftheoretic approach require, or work substantially bettéren
various settings, as well as a study of classical autontetary the automata are deterministic. In the context of formal
problems, like the emptiness, membership, and containmestification, an implementation is correct with respectt® i
problems mentioned above. specification if the language of an automafothat models the

Over the years, researchers have extended the basic mad@lementation is contained in the language of an automaton
of NFA, giving rise to automata-based frameworks for ne& that models the specification. In the weighted setting, a

b,2
A non-determinizable WFA.

Fig. 1.



solution to the containment problem is known only wh&n accepting run, and each word accepted by the automaton has
is deterministic [8}, and the problem is in fact undecidableexactly one accepting run), satisfying the twins propesgy i
for WFAs [13]. Likewise, a translation of weighted automatéoth a necessary and a sufficient condition for determiniz-
to weighted p-calculus, which is essential for symbolic al-ability [1]. Moreover, checking whether a given unambigsiou
gorithms, involves determinization of the automata, and SWFA satisfies the twins property can be done in polynomial
does the use of weighted automata as specifiers of winnitige [17], [14]. We note that the problem of deciding whether
conditions in weighted games [7]. In the context of spee@h general WFA is determinizable is open. Also, a refined
recognition, weighted automata are used in order to repiharacterization of the settings in which Mohri’s algonith
sent components of a complex system, and the efficientgrminates in described in [18].

of combining the components crucially depends on the au-The need to work with DWFAs has called for improved
tomata beeing deterministic [1], [14]. Another advantade solutions to the determinization challenge. One approach,
deterministic weighted automata (DWFAs, for short), is th@ken in [7], is to extend weighted automata with registhes t
existence of minimization algorithms for them [1]. In factcan maintain unbounded values. While this makes all automata
while determinization (when possible) of WFA may involve aleterminizable, basic questions about the automata of [7]
poly-exponential blow-up in the number of states, in pcti are undecidable, and decidability is obtained by augmgntin
determinization is remarkably successful, and DWFAs are rnibie automaton with bound functions, which depends on the
bigger than their nondeterministic origins [15]. context in which the automaton is used. Another approach is

Unlike NFAs, which can always be determinized [16], nato have arepproximateddeterminization algorithm. Motivated
all WFAs can be determinized. Consider for example the WHa8y applications in speech recognition, [15] suggests aaméari
from Figure 1. In order to get convinced thdtdoes not have of Mohri’'s algorithm that allows the residues maintained
an equivalent DWFA, consider words of the fou#i*. It is not in the state space of the DWFA to be approximated by
hard to see that an equivalent DWFA should reach differesdme parameter. Thus, if during the subset construction we
states after readingy’ andat’, fori # j. Indeed, sinced may generate a state that ise-close to a state’ that has already
read bothc and d after reading a prefix imb*, and reading been generated (formally,ands’ are associated with the same
d forces the cost accumulated so far to be doubled, a DWEBAtS of states and the residues to whicmaps the states ifi
for the language must remember this unbounded accumulaged different by at most from those to which they are mapped
cost. in s’), then we give up the generation ofand use instead the

In [1], Mohri describes a determinization construction &or states’. Since the approximation mechanism in [15] is local,
subclass of WFA. Essentially, as in the subset construction there is no way to relateost(A, w) with cost(A’, w), for
NFA [16], each state in the equivalent DWFA is associatesl WFA A and its approximating DWFA4’. Indeed, the only
with a setS of states of the WFA. Intuitively, the weightsguarantee in the approximated-determinization constnictf
on the transitions of the DWFA are defined so that the cddi5] is that.A’ accepts exactly all the words acceptedhyand
of reading a wordw and getting to stateS of the DWFA no guarantee is given about the cost of the accepted words.
is equivalent to the minimal cost of reading in the WFA Nevertheless, the experimental results in [15] show that th
and getting to some state 1 In order to achieve this, eachapproximation has led to a significant size reduction while
stateq in S is mapped to aesidue— a value in R that hardly affecting the performance. In fact, for the applimat
describes the extra cost that has to be paid when the t@msitbf speech recognition, researchers have tried even rougher
from S originates from a transition from. The challenge in approximations, like ignoring the weights of the WFA, and
the determinization process is that these residues may kéegn re-introducing them via ad-hoc heuristics [19], [2A].
increasing, bringing in more and more states associatdud wdifferent approach to cope with the lack of a deteminization
the setS, and the algorithm may not terminate even for WFAsonstruction is to restrict attention to DWFAs that are embod
that are determinizable. ied in the structure of the WFA [10].

Mohri also describes a property of WFAs — theins The sequence of work above suggests that determinization
property, such that all WFAs that satisfy the twins propertyf weighted automata is of great theoretical and practical
are determinizable and the algorithm terminates on them.i#terest, and that the lack of a rigorous approximated eeter
WFA satisfies the twins property if for all pairg and ¢’ minization construction should be addressed. By “rigotous
of states, if there are two words,v € ¥* such that both we mean that there is a guaranteed relation between the cost
q and ¢’ are reachable from the set of initial states alongf words in the input WFA and the constructed DWFA. In
u, and bothg and ¢’ can loop alongw, then the cost of this paper we solve this problem: we describe a rigorous
looping alongv from ¢ is equal to the cost of looping alongapproximated-determinization construction, and stuslpiop-

v from ¢’. The twins property captures a significant subclagsties and applications. Given a WFA and a real-valued
of determinizable WFAs. In particular, for automata that angarametet > 1, we construct a DWFAA’ thatt-approximates
trim and unambiguous (all states participate in at least opg That is, for every wordy € ¥*, the DWFA A’ acceptsw iff

!

1in the weighted setting, a WFZ is contained in a WFAS iff for every A acceptaw, andcost(A, w) < CQSt(A w) < t.. C.OSt.('A’ w).
word w, the cost thatZ assigns tow is less than, or equal to, the caSt We refer to such a construction d@sdeterminization For
assigns tow. example, in Figure 2 we describe a DWFA tRBaapproximates



b,2 twins property is both a necessary and sufficient conditown f
t-determinizability. In addition, we present a polynontiate
algorithm for deciding whether an unambiguous WFA has the
t-twins property.

The mechanism we suggest involves the following new
ideas: Consider a WFAL. Recall that each stajein the subset
construction of4 is associated with a sét of states ofd. We
maintain for each state € S two residues: an upper-bound
residueu, and a lower-bound residug. The upper-bound
residue plays a role similar to the one played by the single

Fig. 3. A WFA that satisfies the 2-twins property. residue in Mohri's construction, and it upper bounds thet cos
that may be added to the cost of a run that proceeds from
without causing the cost of the run to exceethst(A, w). The

the non-determinizable WFA in Figure 1. lower-bound residue is a new feature and is the cost thalighou

A promising attempt to adjust Mohri’s construction to be added to the cost of a run that proceeds froim order to
determinization is to multiply the weights of some tramsis make sure that the cost of the run is at least (A, w). Thus,
of the given WFA by a factor of at most hoping to obtain a each statg € S is associated with a randg,, u,] rather than
WEFA that satisfies the twins property. Such an approach, howith a single residue. This range is used in the criterion for
ever, ignores the subtle connection between differenesyaf collapsing states. Since the cost assigned4byo a wordw
the WFA. To see the problem, consider the WFA appearirsfould be betweervst(A, w) andt-cost(A, w), the invariants
in Figure 3. While the WFA is 2-determinizable, we cannanaintained foru, and/, guarantee that every residual weight
multiply the weights of the transitions by a factor of at mosh the range[l,, u,] may be used when we proceed fram
2 so that the result satisfies the twins property [21]. Indeedithout violating the approximation. Consequently, ine#se
since both the first and second components can trayeb3e, algorithm is about to create a new statethat corresponds to
and both the second and third components can trayetsg¢®, S and the algorithm has already generated a gtassociated
no multiplication works. with S such that for every; € S the residual range af in p’

The WFA appearing in Figure 3 also demonstrates that ancontained in the residual range @fn p, then the algorithm
adjustment of Mohri’'s construction to-determinization by does not creatg’, and uses the stajeinstead.
multiplying the weights of some transitions in the constedc ~ Our results enablée-determinization of automata for which
DWFA by at mostt, and updating the residues maintainedeterminization is impossible or not known. Recall that in
in the states not to take into account “debts” that go belosome applications the user can settle for approximated-dete
the multiplied weight, are doomed to fail too. While thisminization. Our approximated determinization may be usefu
construction, in case it terminates, results in a DWFA thaten when the automata are determinizable. Indeed, we show
t-approximates the input WFA, there are simple examplésat for all ¢ > ¢’ there exists a WFAA such that a DWFA
of WFAs (in particular, the WFAs in Figures 1 and 3) thathatt-approximatesd is exponentially more succinct than one
are t-determinizable, yet the construction does not terminatieat +'-approximatesA. Finally, as we discuss in Section V,
on them. Indeed, a key point in the algorithm should bedeterminization has proven useful in an automata-thmoret
a mechanism for collapsing states associated with the saapproach for the competitive analysis ofline algorithms
subset of states of the WFA to a single state. In Mohri[d0], and our results here increase the domain of algorithms
algorithm, whert = 1, the mechanism of maintaining residueshat can be handled by the framework.
proves itself as a very good one, and indeed the algorithm
handles successfully all WFAs that satisfy the twins prgopert
A goodt-determinization algorithm should aim at similar high While standard automata map wordsinto either “accept”
standards, which requires the development of a new coligpsr “reject”, weighted automata may be viewed as partial func
mechanism. tions (defined only for accepted words) frofit to R=° (the

Our t-determinization construction involves such a newet of non-negative reals). Formallyweighted finite automa-
mechanism, and indeed, as we prove, our construction teriain (WFA, for short) is a 8-tupled = (X, Q, A, ¢, Qo, F 4, f),
nates when applied to WFAs with rational weights that satisfyhere is a finite input alphabet) is a finite set of states,
the t-twins property Essentially, the-twins property adds a A C Q x ¥ x Q is a transition relation¢ : A — R=% is a
parameter to Mohri's twins property and boundstlihe ratio weight function,Qy C @ is a set of initial statesl’ C @ is a
between the costs of traversing cycles that can be traversed of final states; : Q, — R=" is an initial-weight function,
reading the same word. Note that the two WFAs in Figuresahd f : F — R’ is a final-weight function. A transition
and 3 satisfy the@-twins property. As has been the case witd = (¢,a,p) € A (also written asA(g, a,p)) can be taken
the twins property, the-twins property captures a significantoy .4 when reading the input letter in the stateq, and it
subclass of-determinizable WFAs. In particular, as we showcauses4 to move to the state with costc(d). The transition
for automata that are trim and unambiguous, satisfyingttherelation A induces a transition functioh: Q x ¥ — 29 in the

II. PRELIMINARIES



expected way. Thus, for a staje= @ and a letters € 3, we It is, however, ambiguous, since it has two accepting runs on
haved(q,a) = {p : A(q,a,p)}. We extend) to sets of states, words of the formub*. In addition, it does not satisfy the twins
by letting 6(.S,a) = qus d(q,a), and recursively to words in property: the stateg;, ¢ are both reachable from the initial
¥*, by letting§(S,e) = S, andd(S,u-a) = 6(0(S,u),a), for state by the word:, are both reachable from themselves by
all uw € ¥* anda € . A WFA A may be nondeterministic in the wordb, yet the costs of the twé-cycles are different.

the sense that it may have many initial states, and that foeso
g € Q anda € X, it may haveA(q, a,p1) and A(q, a,p2),
with p; # po. If |Qo] = 1 and for every statg € @ and We describe an algorithm that given a WEA and an
letter a € ¥ we have|d(q,a)| < 1 then A is adeterministic approximation factor > 1, constructs a DWFAA’ that ¢-
weighted finite automaton (DWFA, for short). approximatesA. We say thatA’ is a t-detrminizationof A.

For a wordw = w;...w, € X* and states;, ¢ € @, Recallthat not all WFAs are determinizable. In general, mive
a partial run of A on w from ¢ to ¢ is a sequence t, not all WFAs aret-determinizable, and some WFAs are not
r=rori...Tn € QT, Wherery = ¢,7, = ¢/, and for all ¢-determinizable for alt > 1. In Section IV we discuss-

1 <1 < n, we haved; = (r;_1,w;,r;) € A. The cost of determinizability and the class of WFAs that our algorithm
the partial runr is ¢(r) = Y1, c¢(d;). Note that if A is ¢-determinizes. As discussed in Section |, approximateereet
nondeterministic, it may have several partial runswofrom ¢ minization may be applied also to determinizable automata,
to ¢’. Thepartial costof w from g to ¢’ in Ais 0(q,w,q’) = aiming at reducing the state space. Formally, we have the
min{c(r) : r is a partial run onw from g to ¢’ }. A run of following.

A on a wordw € ¥* is a partial runr = rory...7, € QF
of A on w, wherery, € Q. The runr is acceptingif
r, € F. The wordw is accepted byA if there is an

IIl. APPROXIMATED DETERMINIZATION

Theorem 1. For everyn > 1 and approximation factot > 1,
there exists a WFA4!, with O(n) states such that a DWFA

. . that t-approximatesA!, needs only two states whereas every
accepting run ofA on w. The (unweighted)language of G
Ping ( 9 Janguag DWFA thatt’-approximatesA’,, for all ¢ < t, needs at least

Ais L(A) = {w : wis accepted byd}. The cost of an on states
accepting run is the sum of the weights of the transitions '
that participate in the run added to the initial weight of the  Proof: Let A}, be an automaton that accepts all words in
first state and the final weight of the last statBormally, let L, = (a+b)*-a- (a+ b)"~! with a cost ofl, and all words

r = rori...m, be an accepting run off on w. The cost in {a,b}* \ L, with a cost oft.

of ris cost(A,r) = i(ro) + ¢(r) + f(r,). The cost ofw,

5,0
denotedcost(A,w), is the minimal cost over all accepting

runs of A on w. Thus, cost(A,w) = min{cost(A,r) : a,1 0 %0 C)
r is an accepting run ofd on w}. For completeness, i ¢ —_—

L(A) we setcost(A, w) = oo.

¥t
For two WFAs A and A’, and anapproximation factor HQ—@EO

t € R,t> 1, we say thatd’ t-approximatesA iff for all words .

= Fig. 4. The WFAA?,.
w € ¥*, we havecost(A, w) < cost(A',w) < t-cost(A,w). 9 ¢ "
We say that two weighted automata @&guivalentif they ac- It is easy to see that one carapproximateA! using a

cept the same set of words, with the same costs (equivalenB)WFA with two states that accepts all words {in, b} * with
they 1-approximate each other). a cost oft (the bottom component ofl},). Since A, satisfies

A WFA is trim if every _state appears in an accepting Uthe twins-property, then, by [1]4¢ is determinizable, and
on some word. A WFA isunambiguous(or single-rur) if hencet'-determinizable for every’ > 1. Assume by way

there exists exactly one accepting run for each accepted.wocgf contradiction that there is a DWFAU with less than2”

Consider a WFAA = (%,Q, A, ¢, Qo, i, f). Two states, states that’-approximatesA?, for somet’ < ¢. For a word

p and ¢, of A are twins if for all w,v € ¥* such that c fa. bV letc(w) be the gum ot = or & et
p.0 € 6(Qo.w). p € 3(p.0), andq € 3(g,o), it holds that e 14201 1eLElY) g

] =" weights of the transitions of the single run 4f on w.
0(p,v,p) = 0(q,v,9). The WFAA has thetwins propertyif  consiger a words € {a,b)+. Recall thatcost(A, w) < .

all pairsp, g € Q are wins. o _ Since. A’ t’-approximatesd, it follows thatcost(A’, w) < t'-t.
The WFA in Figure 1, for exampfeis trim, as all its states Since all the weights ind’ are non-negative then c(w) <

appear in some accepting run and no transition weights cost(A',w). Hence,c(w) < t' - t for all w € {a,b}*. Since

2n general, a WFA may be defined with respect to any SemirinA is finite, and thus involves only finitely many weights, this

(K,®,®,0,1). The cost of a run is then the semiring product of the initialMPlies that there is some cost< t' -t such thatc(w) < c
weight of the first state, the weights along the run, and thal fiveight of for all words w € {a,b}™ and there is at least one word

the last state. The cost of an accepted word is the semiring auan the + ; _ i
costs of all accepting runs on it. In this work, we focus onghétd automata ue {a, b} for which C(u) c. Note that, by our choice of

defined with respect to thein-sum semiring(R=% U {co} , min, +,00,0)  Us for all v € {a,b}* we have that(uv) = c(u).
(sometimes called theopical semiring), as defined above.

3For convenience, throughout this paper, we set the valuésedunctions 4Using similar but slightly more complex arguments one can show an
i and f to be constantly 0 and we omit them in the graphical descriptio exponential blow-up also in the case where negative weigtgsllowed.
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Letzx =21...2, andy = y; ...y, be two different words From the statey, there area-transitions to bothy; and gs.
in {a,b}™ such that4d’ reaches the same state after readimg Thus, the set of states in thesuccessor of the initial state
anduy. Since A’ has less thaR” states, such different and of D consists ofg; and ¢». Sincev,, = 1 while v,, = 2,
y exist. Letl <1 < n be such that:; # y;. Without loss of the transition inD gets the weight,, = 1, andg, gets the
generality, letz; = a andy; = b. Finally, letz = a*~!. Note residual weight oR—1 = 1, indicating that if the run continues
thatuzz € L,, whereasuyz ¢ L,,. Also, A’ reaches the samefrom ¢,, then 1 should be added to the cost accumulated in
stateq after readinguzz anduyz. Sincecost(A’,uxz) < t’, the transitions taken so far. Thetransition to the accepting
we havec(uxz) + f(q) < t'. Also, sincecost(A’,uyz) > t, state ofD gets the weight of 2, since no matter which origin
we have thatc(uyz) + f(¢) > t. Recall that by our choice of the b-transition tog; we consider, we get,, = 2 (residual
of u, we have that(u) = c(uxz) = c(uyz). If follows that weight O + weight 2 for the transition frong, and residual
t <c(u)+ f(q) < t', contradicting the assumption that- . weight 1 + weight 1 for the transition fronp,). Note that if

B the weight on the transition frome to ¢3 had been 0, then

Before we turn to describe owrdeterminization algorithm, the weight of the transition to the accepting stateéDiwould
let us recallMDet — Mohri’s determinization algorithm [1]. have changed to 1, since in this case, considering the origin
The algorithmMDet is based on the subset construction fag,, we would have gov,, =1+ 0= 1.
determinization of NFAs [16]. There, each stateof the If we try to applyMDet to the non-determinizable WFA in
deterministic automaton is associated with a set of statesFigure 1,MDetwould generate infinitely many states with the
A, and the intuition is that the single run of the determigistisubset{q;, ¢>}, as every time we take thietransition from
automaton reachesiff A has a run that reachesfor exactly this subset to itself, the residual weight @f increases by 1
all ¢ € s. This general intuition holds also faviDet, except and thus, a new state should be created.
that now the different states mmay have been reached using One may be tempted to try overcoming this situation by
runs with different costs, whereas the single runstbas a multiplying the weights on a subset of the transitions by a
single cost. The construction of the deterministic autematfactor bounded byt. Indeed, if we multiply the weight of
Anr makes sure that the cost of the single run is the minimgie b-transition fromg; to itself by 2, then the WFA we get
cost to some state in. In order to achieve this, the states ircan be determinized. However, as described in Sectionre the
A are attributed by additional information, and each stateare cases in which this attempt does not succeed. Apparently
is a set of pairgq, 2), whereg € Q is a state in the input WFA, the single residue maintained kyiDet is not sufficiently
andz € R=° is theresidual weightof ¢ in s. Intuitively, the informative to deal with this problem.
residual weight ofg in s is the difference between the cost Our algorithmtDet copes with this problem by associating
of the minimal run to some state in and the cost of the each state of the WFA with a range of residual weights rather
minimal run tog. This weight has to be taken into accounthan with a single residual weight. This enables the unificat
if ¢ is chosen to be the state from whichy, proceeds from of two states with the same subset even when their residual
s. In more detail, lets’ be the set of states reachable frem weights are not equal, as long as the unification does nat resu
by the lettera. There may be different weights on transitionin a weight that is out of the allowed range. The ranges are
from different states iy to their a-successors in’. In order simple, in the sense that they are defined by means of upper
to determine the weight of the single transition froms to and lower bounds.
s" in Ay, we calculate for every statg in s' a valuev, . Given aWFAA = (X, Q, A, ¢, Qo, F, 1, f), tDet constructs
This value is the sum of the residual weight of the states aDWFAA' = (X, P, A’ ¢, po, F', 7, f') as follows. The state
that is the origin of thes-transition toq’, and the weight of space ofA’ is P C 29*RxR_Thys, every statp € P is a
the a-transition fromgq to ¢’ (in case there are several suclset of triples(q, [,, u,). The set of thaunderlying statesf p,
origins, we consider the one that minimizes this sum). Thienotedstates(p), is the se{q : (¢, 14, uq) € p}. Each one of
weight ¢ in then set to the minimab, over all ¢’ € s/, and the underlying stateg, has its ownresidual range[l,, u,] in
the residual weight of each stajée s’ is set tov, — c. p, defined by itdower bound (,, andupper boundw,. When
p is not clear from the context, we ugg andu}.

The idea is that since the cosist(.A’, w) assigned byd’
to a wordw should be betweerst (A, w) andt - cost(A, w),
we should store for every underlying stat®f p the minimal
residual weight,, that should be added to the cost of the run
that proceeds frony in order to make sure that its cost is
at least the cost of the cheapest corresponding rud,iand
the maximal residual weight, that may be added to the cost
of the run that proceeds from without causing its cost to
exceedt times the cost of the cheapest corresponding run in
A. Accordingly, every residual weight within this range may
be used, without violating the approximation. Therefore, i
In Figures 5 and 6 we show an example for applyiQet case the algorithm is about to create a new sigtand there

Fig. 6. The resultD of Mohri’s determinization algorithm.



already exists a statesuch thatstates(r) = states(p’) = S,

and for everyq € S the residual range of in r, [Ij, uy], is

contained in the residual range gfin p/, [I2",u?'] (that is,
lf]" <y <wug < ug'), then the algorithm does not creaig

but usesr instead. In this case we say thatefinesp’.

generated and processed before states that are reaclahle fr
the initial state by longer words.

Example 2. The WFA in Figure 8 is the result of our
determinization algorithm, applied with = 2 on the non-
determinizable WFA in Figure 1.

b,2

procedure tDet(A,t)
1P:=0; F:=0, Q:=0;
24 :=t- mm{z(qo) 1 qo € Q()};
3 po = {{qo,i(q0) — 7', t - i(q0) — i) : g0 € Qo};
4 Enqueue(Q,po);
5 while Q # () do

{{q0,0,0)}

6 p:= Dequeue(Q); P:=PU{p}; Fig. 8. The 2-determinization of the WFA in Figure 1.
7 if states(p) N F # () then
8 F':= F U{p}; A simple analysis of the algorithmDet in Figure 7 yields
9 f'(p) = mingesratespynr{ly + f(@)}:° the following two lemmas:
10 forleach {a € 3 : (states(p), a) # 0} do Lemma 3. For every statep € P, we have tha(i) for every
11 ¢ =min{u, +t-¢c(d) :

(q,14,uq) € p it holds thatu, > 0; and (ii) there exists

— / .
<q? l(huq) € p andd - (q) a,q ) € A}’ <q, Z(I7uq> c P Such thath — O.

12 P =Upeststatesp)a 1 4

min{l, +c(d) —¢ :

(q,14,uq) € pandd = (q,a,q') € A},
minf{u, +t-c(d)—c :

(q,1q,uq) € pandd = (q,a,q') € A})};

Lemma 4. The weightc'(d’) of every transitiond’ € A’ is
non-negative.

Theorem 5. If the determinization algorithm terminates, then
the resulting DWFAA’ t-approximates the given WFA.

13 if there isr € Q U P such thatr refinesp’ then

14 d = (p,a,r); ¢ (d) = Proof: Recall that for a wordv € ¥*, and stateg, ¢’ €
15 A=A Ud" Q, the partial costof w from ¢ to ¢’ in A, 6(q,w,q’), is
16  else the cost of the cheapest partial run.dfon w from ¢ to ¢'.
17 & = (p,a,p); ¢(d) = ¢, In addition, letd(Qo, w,q) = ming cg,[i(g0) + 9(q0,w,q)_].
18 A’ = A’ Ud’; EnqueuéQ, p'); Also, for p € P, let ¢'(p,w) denote the cost of the unique

Fig. 7. Thet-determinization algorithm.

path labeled byw starting atp in A’. We show that for all
w € ¥*, the stated’(pg, w) € P satisfies the following.

states(&' (po, w)) = 6(Qo, w), 1)

In Figure 7 we describéDet in pseudo-code. The resulting

/
DWFA A’ is constructed on the fly, using a queue of starand for every(q, iy, uq) € 8'(po, w), we have
Q. That is, initially, the initial weight’ is calculatefl, and the 0(Qo,w,q) — [i' +6'(po, w)] <1y < ()
initial statep, is created and enqueued infh Then, whileQ g <t-0(Qo,w,q) — [i' + 60 (po,w)].

is not empty, at each stage, one state being dequeued from
Q, processed, and added fd Processing a stafe includes . . .
two steps. First, if there exists at least one accepting stht . We prove both ch_eums by an induction ¢m|. The ba_lse case
A that belongs tostates(p) then p is defined as accepting,'s When_w = ¢. In this case, it is clear from the algorithm (line
and its final weight is defined. Then, the algorithm calcuﬂatéq’) that indeedstates(po) = Qo = 5(Q9’€)' Smce_ for a s_tate
for every lettera € ¥ the statep’ = &' (p,a) and the weight ¢ € Qo. the only path from any state i, to ¢ while reading

of the a-transition fromp to p’. If there already exists a state” Is g itself, we have

r € P that refinesp’, thenr is defined as the target of the 0(Qo,e,q) — [i' + 6 (po,e)] =
a-transition fromp, andp’ is not created. In this case we say = i(q) + 0(q,e,q) — [i' + 0 (po, €)]
that thea-transition fromp to r is red. Otherwiseyp’ is created —ilg) =i [= 1]

- - — ‘g

and enqueued int@. In this case we say that thetransition

from p to p’ is green Note that because of the use of a queue,
the DWFA A’ is constructed in a BFS manner. Thus, states
that are reachable from the initial state by shorter words ar

IN

t-ilg) — i [=ug)
t-0(Qose,9) = [i' +0'(po, €)]-

The induction step for (1) is simple. Consider a ward=

5We could useu, andt - f(q) insteadl, and f(q), to be consistent about * ; ; ;
multiplying all weights byt, but we prefer to keep the cost as tight as possibleqa’ wherew € X anda € . By the induction hypothesis,

6Since A’ is deterministic, it has a single initial state. Accordinglye we have
refer toi’ as a single value rather than a function.

states (6" (po,u)) = 6(Qo, u). *)



Consider a statg € P. From the algorithm (line 12), we have where inequalities (5) and (8) hold due to the induction hy-

states(&'(p,a)) = d(states(p),a). (**)

Thus, we have
states(0'(po,w)) = states(8' (8 (po,u),a))
= §(states(d' (po,u)),a) (3)
= 6((5(@07’11,), a) = 6(@0,’[1}), (4)
where (3) holds due to (**) and (4) holds due to (*).

pothesis, and inequalities (6) and (7) hold due to the piisgib
that a state is replaced by a state that refines it.
By (1) and the definition of”, a wordw is accepted by4d
iff w is accepted byA’.
Let w be a word accepted by both and.A’. By applying (2)
onl, appearing in line 9 of the algorithm, we get
min  {0(Qo,w,q) + f(q)} — [ + 6’ (po, w)]

n
q€5(Qo,w)NF

The induction step for (2) is more involved. First, we show = (6" (po, w))

that for every(q', 1y, uq) € ¢'(po, w) we havely < ug.

For |w| = k > 0 andp’ = ¢’'(po,w), if p’ can be reached

< min  {t-0(Qo,w,q) + f(@)} — [i" + 0'(po, w)].

 q€8(Qo,w)NF

from py while reading a word shorter tham, then, by the Thus,

induction hypothesis, we are done. Otherwiseplet P be the

state from whichp’ is primarily reached, i.ep = &' (po, u) for

|u| = k—1, and the state’ is generated while processing the

statep with a lettera (line 12). Thus,(p,a,p’) € A’. Letd =

d({p,a,p’)). For a statey € states(p’), letq € states(p) be

a state for whichg, a, ¢') € A and for whiche = ¢((q, a, ¢'))

is such thatug +t - ¢ = min{ug, + ¢t - ¢(d) : (g4, uq) € p and

d=(q,a,q') € A}. Then, by Lemmas 3 and 4, we have
min{l, + ¢(d) — ¢ :
(q,14,uq) € pandd = (q,a,q’) € A}

lq/ =

< lgtec—(
< lHte—d
< wug+t-c—¢ (by the induction hypothesis)

min{u, +t-c(d) — ¢ :
(q,1g,uq) € pandd = (g,a,q') € A} = ugy.

cost(A,w) —i" — 6 (py, w)

< f'(6'(po, w))
<t-cost(A,w) —i — 0 (pg,w).

From the first inequality we get
cost(A,w) <i' +6'(po, w) + f'(¢' (po, w)) )
From the second inequality we get
i 6 (po, w) + (8 (po,w)) <t - cost(A,w).  (10)

Since the right hand of (9) and the left hand of (10) both equal
cost(A’',w), we have

cost(A,w) < cost(A',w) < t-cost(A,w).

IV. THE ¢t-TWINS PROPERTY

To complete the proof of (2), we show that for every In this section we define and study théwins propertyof

(¢, 1y ug) € 6'(po,w) we have

G(QOa w, q/) - [Z/ + el(povw)] S lq/
and
Ugq! S t- 9(@07w7 q/) - [Z/ + el(poﬂ w)]

Letw = wu-a, foru € ¥* anda € %, and letp = §'(po, u).
For ¢’ € 6(Qp,w) we have

9(@07/“)7 q/ ) - [Z/ + al(p()?w)] =
= min {0(Qo,u,q) +c((g:a,4'))}
q€5(Qo,u)

_[i/ + gl(p()?u) + C/(<pa avp/>)]

< min {l,+e((g.0.0)} = (p0.r) )
<ly, (6)
and
ug < min {ug+t-c((g.a,¢))} - (p,a,p)) (7)
q€5(Qo,u)
< qE(?(lci?IUl,u){t : G(Qo, U, q) - [Zl + 9/(}707 u)] (8)
+t-c({g,a,q'))}
—C/(<P»aap/>)

=t 0(Qo,w,q') — [i' +6'(po, w)],

WFA. Consider a WFAA = (X,Q,A,¢,Qo, F,i, ). Two
states,p and ¢, of A are ¢-twins if for all «,v € ¥* such
that p,q € §(Qo,u), p € d(p,v), andq € §(q,v), it holds
that 0(p,v,p) < t-60(q,v,q). The WFA A has thet-twins
property if all pairs p,q € @ are t-twins. Thus, thet-twins
property bounds by the ratio between the costs of traversing
cycles that can be traversed reading the same word. Note that
the twins property is simply the-twins property fort = 1.
Also note that if.A does not contain cycles of weightthen it
satisfies the-twins property, for someé. When.4 does contain
such cycles, it may not satisfy thetwins property, for allt.

We now prove that for WFAs with rational weights and for
a rational approximation factdy if the ¢-twins property holds
then ourt-determinization algorithm always terminates.

Theorem 6. Consider a WFAA in which the weights are in
Q=% and an approximation factar € Q,¢ > 1. If A satisfies
the ¢-twins property, thentDet(.A,t) terminates.

Proof: Let A = (X, Q, A, ¢, Qo, F, 4, f), and letn = |Q)|.
First, observe that if all the weights appearingdrare rational,
we can multiply them all by a common denominator, and thus
assume that all the weights id are natural numbers.
Assume by way of contradiction thatl satisfies thet-
twins property but thatDet(.A,¢) does not terminate. Thus,



tDet(A,t) generates infinitely many states in the process Ghitely many states, we have that there is a state S such
constructing the DWFAA’. Observe that every new stgté thatu, ; = 0 for every;j in some infinite subsequendé C J.

that is added tod’ (line 18 of the algorithm) has an incoming Consider now the subsequengé of states ofr defined by
green edge (linel7). Hence, by a simple induction on ther’ = {p; : j € J'}. Given a wordw € X*, let runs(w, p),
iteration in which a state is added ', we can show that and runs(w, q) be the sets of all partial runs of on w that
every state ind’ that is reachable from the initial stagg is reachp and ¢, respectively. Letr = max{c(r) — t - ¢(r’) :

also reachable by green edges only. Since every stat inw € X*, jw| < n? r € runs(w,p),r’ € runs(w,q)}. l.e.,

has at most one outgoing edge for every letter in the finiteis the maximal value that the expressiofr) — ¢ - ¢(r')
alphabet:, then, by Konig’s Lemma, there is an infinite pathattains whern andr’ range over all possible partial runs 4f

T = popi1 ... Of distinct states (i.e.j # k = p; # pr) (that respectively reach andg¢) on words of length at most

in A, that, by the above observation, uses only green edges. Observe that, by our choice af every statep; in 7’ is
Since A has only finitely many states, it follows that thergeachable from the initial state, by reading some wora)’

is a setS = {qo,...,qn} C @ such that the set of indicesusing only green edges. Hence, by the proof of Theorem 5,
Jo = {j € N : states(p;) = S} is infinite. For every state for everyj € J’ we haved(Qo, w’, p) —i' —0'(po, w?) = 1, ;,

q € S and every indey € J, letl, ; denote the lower residue andt - 6(Qq, w’, q) — i’ — 0’ (po, w?) = ug ;.

of ¢ in p;, and lety, ; denote the upper residue @in p;. We ; ; :
claim that there must be a stgiec S such that the sequence By subtracting the second equation from the first, and recall

. o : ing thatu, ; = 0, we get that(Qo, w’,p) —t-0(Qo, w’, q) =
of lower residuesil,,; : j € Jo} i unb_ounded from above. l,; for everyj € J'. SinceJ’ is an infinite subsequence
In order to prove the above claim, assume by way of” - . ST, N
contradiction that there is some constantc N such that O J, the lower residues gf in 7 tend towards infinity, and

. thus, the last equation implies that there is an inélex .J’
lg; < bforall ¢g € Sandalljc Jy. By Lemma 3, we

; such thatd(Qq, w".p) — t - 0(Qo, w*,q) > x. Let z be the
have thatu, ; > 0 for all g € S and allj € J,. Recall thatall ofwngn di ept)r (o p)(g(’ro r1Q) + be a partial run
the weights in4 are inN, and thus, all the lower and upper : ’ Lo

residues inA’ are inZ. Every infinite sequence of integer of A onw* that ends inp and costs)((o, w”, p). Similarly,

k [ A / H k

that is bounded from above (below) either tends towards %:r: drs(liun ’2 ng gg’sgg'@rzwae ? partial run of4 on w® that
(oo, respectively), or it has some integer that repeats infinite a4 0, W™ ).
often. We derive a series of infinite sequences of indicesObserve that by our choice &f we have that > n?, and
Jo 2 Ji... D Jomio (recall thatS = {qo,...,qn,}) as thus there are two indices < i < j < z such thatr; = r;
follows: for 0 < k < m, if the sequencel,, ; : j € Jop} andr; =r}. Consider the wordi = wf ... w} - wh, ... wk.
tends to—oo, then we let/o,; = Joi; and if there is, € Z It is easy to see that the rur(u,p) = ro... 7741 ...72,
that appears ifl,, ; : j € Jox} infinitely often, then we let obtained by removing the loop; ...r; from r(wk, p), is
Jok+1 = {j € Jox : lg.; = L }. Similarly, if the sequence a run of A on w that ends inp. Similarly, the partial
{ug,.j : j € Jag41} tends tooo, then we letfop o = Jogr1, MUN 7(u,q) = 5. ..r;r;H ...7., obtained by removing the
and otherwise, we lefor 42 = {j € Jokt1 : ug,,; = Ux}, for loop r;...77 from r(wk, q), is a partial run of A on u
ui € Z that appears infinitely often ifu,, ; : j € Jog41}- that ends ing. Let d, = c(r(w®,p)) — c(r(u,p)) and

Consider now the subsequeneé™*?, of states ofw, d, = c(r(w",q)) — c(r(u,q)) be the respective differences
defined by7?m*2 = {p;, : j € Jomi2}, and letj, be in the costs of the above partial runs amand w*. Observe
the minimal index inJs,,42. It is easy to see that, by ourthat d, is the cost of looping irv;...r; whereasd, is the
construction, for everyy, € S we have that either the lowercost of looping inr;...77. Since, by our assumptiond
(upper) residue ofy; is the same for all states in?"*2 satisfies the-twins property, we have that, < ¢ - d,, and
or it tends to—oo (oo, respectively). It follows that for all thus,c(r(w”, p)) — c(r(u,p)) <t - [c(r(w, q)) — c(r(u,q))].
large enoughj € Ja,,4+2 and for allg, € S, it holds that Rearranging the last inequality we get thdi(u,p)) — ¢ -
lowi < lgjo @ndug, ; > ug, j,. IN other words, there is an ¢(r(u, q)) > c(r(w®, p)) —t-c(r(wk, ¢)). Hence, by removing
(infinite) suffix of 72"+2 all of whose states are refined bya synchronized loop from(w*, p) andr(w”, q), the difference
piy- This is, however, impossible, a®et(A,t) (line 13 of between the cost of the remaining rungocand¢ times the
the algorithm) never adds td’ a state that is refined by acost of the remaining run tg does not decrease. It follows
previously added state, and obviously at the time thatvas that by repeatedly removing such synchronized loops from
added toA’ only finitely many states were already present in(w*,p) and r(w*,q) we can obtain a word of length at
A’. This proves our claim that there is a state S such that mostn? such that the partial runs(v,p) and (v, q) satisfy
the sequence of lower residués, ; : j € Jo} is unbounded. c(r(v,p))—t-c(r(v,q)) > c(r(w*, p)) —t-c(r(w”, q)). Recall
We can thus take an infinite subsequente .J, for which that we chose:(w*,p) andr(w*, q) such thate(r(w*, p)) =
the lower residues gf monotonically increase towards. We  6(Qo, w*, p) andc(r(w*, q)) = 0(Qo, w*, ¢), and that by our
complete the proof of the theorem by showing that the fadt thehoice ofk we have that(Qq, w*,p) —t - 0(Qo, w*, q) > .
the sequence of lower residugs ; : j € J} is monotonically Combining the last four (in)equalities we get thét (v, p)) —
increasing towards infinity implies that does not satisfy the ¢ - ¢(r(v,q)) > «, which is a contradiction since, by the
t-twins property. By Lemma 3 and the fact thdthas only definition of x and the fact thatv| < n?, we have that



c(r(v,p)) —t-c(r(v,q)) < x. m u-w’, and that sinced’ t-approximates4 it must accept both
By Theorems 5 and 6, the algorithnbet successfullyt- v and @ from s. Let »/(u - w’) be the run of A’ (from the
determinizes all WFAs with rational weights that satisfy thaitial state) onu - w’, and letr’(s,v) and r/(s,7) be the
t-twins property, for a rational > 1. Note that the assumption partial runs of A’ from s on v and o, respectively. We thus
about the weights being rational enabled us to use the wetve thatcost( A", u-w? -v) = ¢/ (r(u-w’)) + ' (r(s,v)) + 2’
order on the natural numbers in the proof of Theorem 6. Weadcost(A’, u-w? - ) = ¢/ (r(u-w?))+c'(r(s,)) +y', where
were not able to prove termination for the general tropicthe constants’ andy’ (which represent the sums of the initial
semiring, and we leave open the problem whettig¢t may and final costs) are independent jof
not terminate for WFAs that satisfy thetwins properties but  Now, since A’ t-approximatesA, the cost of accepting a
have irrational weights. word in A’ is at least the cost of accepting it i4, and at
We now prove that the-twins property captures a sig-mostt times that cost. Thus; (r(u-w’)) + ¢ (r(s,v)) + 2’ >
nificant subclass of-determinizable WFAs. In particular, asc(r(Qo, u,p)) + j - c(r(p, w,p)) + ¢(r(p,v)) + =, andc’ (r(u -
has been the case with determinization, tHevins property w?))+c'(r(s,9))+y < t-[c(r(Qo,u,q))+7j-c(r(q,w,q)) +
characterizes exactly the subclass of trim and unambiguatis(q,©)) + y]. By rearranging and combining the last two
t-determinizable WFAs. inequalities, we get that for every € J, we have thatj -
c(r(p,w,p)) <t-j-c(r(q,w,q)) + a, wherea is a constant
that is independent of. Since.J is infinite, the last inequality
holds for j as large as we want, and thusr(p, w,p)) <
t-c(r(q,w,q)). This, however, contradicts our choice mfg
andw for which ¢(r(p,w,p)) > t - c(r(q,w,q)), and we are
Proof: Let A = (%,Q, A, ¢, Qo, F,i, f). By Theorems 5 done. |
and 6, if A satisfies thet-twins property then it ist- o )
determinizable. It remains to show thatdfis trim, unambigu- D€ciding thet-twins Property
ous, and-determinizable then it satisfies théwins property. In [17], the authors presented an efficient polynomial al-
Assume by way of contradiction that is trim, unambigu- gorithm for deciding whether a given trim and unambiguous
ous, andt-determinizable, but does not satisfy thawins WFA has the twins property (i.e., thetwins property for
property. Hence, there are two stajeg € ), and two words ¢ = 1). As we now show, extending this algorithm to handle
u,w € ¥* such thatA can reach botlp and ¢ by reading the case > 1 is not difficult.
u, and it can loop fromp to itself, as well as fromy to Recall thatA = (X,Q,A,¢,Qo, F,i, f) does not satisfy
itself, while readingw. Furthermore, the cost of looping onthe ¢-twins property iff there are two statesq € @, and
p is more thant times the cost of looping og. Formally, two wordsu,w € ¥* such that4 can reach bothy and ¢ by
let r(Qo,u,p) and r(Qo,u,q) be partial runs ofA on « readingu, and it can loop fronp to itself, as well as from
that reach (from some initial stateg) and ¢ respectively, ¢ to itself, while readingw. Furthermore, the cost of looping
and let r(p,w,p) and r(q,w,q) be partial runs ofA on with w onp is more thart times the cost looping witlw on
w from p to itself and fromgq to itself, respectively. Then, ¢q. A key observation is that if the-twins property does not
c(r(p,w,p)) > t-c(r(q,w,q)). Since A is trim, there are hold then its violation can be witnessed using a warcf
words v, 9 € ¥* such that there is a partial rur{p,v) of A length at most.?.
from p to some accepting state, and a partial rgp v) of A The algorithm thus proceeds in two phases. In the first
from ¢ to some (maybe different) accepting state. Also, singihase, it identifies all the pairs of stajeg that can be reached
A is unambiguous, then for every > 0, the run obtained from the initial state using the same wotd Observe that
by following r(Qo, «, p) then looping;j times alongr(p, w,p) this is a question about the non-emptiness of the intersecti
and finally followingr(p,v), is the only accepting run ol of regular languages (without weights), which can be easily
on the wordu - w7 -v. Similarly, the run obtained by following solved in polynomial time. In the second phase, every such
r(Qo,u, q) then loopingj times alongr(q,w, q) and finally pair p,q is checked for the existence of violating loops, as
following r(q, %) is the only accepting run oft on the word follows: starting fromp, unwind A for n? steps into a DAG
w-w? - 5. It follows thatcost(A, u-w -v) = c¢(r(Qo,u,p)) + G,; similarly, starting fromg, unwind A for n? steps into
j - c(r(p,w,p)) + c(r(p,v)) + x, and cost(A,u - w’ - ©) = a DAG G,; finally, construct the product DAGZ, x G,
c(r(Qo,u,q)) + 7 - c(r(q,w,q)) + c(r(¢,?)) + y, where the as usual. l.e.G, x G, has a transition{(z,z'),a, (y,y'))
constantse andy (which represent the sums of the initial andff there is a transition(z,q,y) in G,, and a transition
final costs) are independent ¢f ((«',a,y") In G,. The weight of a transitio(z, '), a, (y, y))
Recall thatA is ¢-determinizable. Letd’ = (X, Q', A, ¢/, ist-c((z,a,y)) — c((z’,a,y’)). Observe that if4 is trim and
Qp, F',i', ') be a DWFA that-approximatesA. Since A’ is  unambiguous, then for every wotdthere is at most one path
finite, there is some stateof .4’, and an infinite sequence ofin G, x G, from (p, ¢) labeled by the letters ofv, and its
indicesJ C N, such thatA’ reachess after readingu - w’ cost is exactlyt times the cost of looping op with w minus
for everyj € J. Being deterministic, it follows that for every the cost of looping o with w. Thus, a paip, ¢ withesses a
j € J, the states is the only state reachable i after reading violation of thet-twins property iff there is a path of negative

Theorem 7. Consider a WFAA in which the weights are in
QZ=°, and an approximation factot € Q,¢ > 1. If A is trim
and unambiguous, thenl is t-determinizable iffA satisfies
the t-twins property.



costinG, x G, from (p, ¢) to itself. The later can be efficiently the requirement that the DWFA be obtained by pruning of
checked by searching for the minimal-cost path frgmg) transitions of the WFA.
back to itself (for example, using a topological sort).

Hence, we can conclude with the following: Acknowledgments We thank Shir Peled for helpful discus-

sions and the anonymous reviewers for their valuable @etail
Theorem 8. It can be decided in polynomial time whether &omments.
trim and unambiguous WFA satisfies th@vins property.
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