An Abstraction-Refinement Framework for Multi-Agent Systems

Thomas Ball Orna Kupferman
Microsoft Research Hebrew University
Abstract where processes have internal and external variables.

A game-theoretic property arises naturally: can the sys-
Abstraction is a key technigue for reasoning about sys- tem resolve its internal choices so that the satisfaction of a
tems with very large or even infinite state spaces. When aproperty is guaranteed no matter how the environment re-
system is composed of reactive components, the interactiorsolves the external choices? For examplé?ifand P, are
between the components is modeled by a multi-player gameprocesses that assign values to the variablesid y, we
and verification corresponds to finding winners in the game. wish to verify properties like “it is possible faP; to make
We describe an abstraction-refinement framework for multi- 2 always bigger tham, no matter howP, behaves” or “it
player games, with respect to specifications in the alternat- is possible forP; to eventually prevenP, from makingy
ing p-calculus (AMC). Our framework is based on abstract positive”. Such aralternating satisfaction can be viewed
alternating transition systems (AATSs). Each agent in anas a winning condition in a two-player game between the
AATS has transitions that over-approximate its power and system and the environment [24].
transitions that under-approximate its power. We define the Alternating transition systemgATSs) model reactive
framework, define a 3-valued semantics for AMC formulas components and their interactions, providing a general
in an AATS, study the model-checking problem, define anframework for verification of systems composed from re-
abstraction preorder between AATSs, suggest a refinemengctive components [1Alternating temporal logic$ATLS)
procedure (in case model checking returns an indefinite an-|ogically characterize ATSs and have, in addition to the
swer), and study the completeness of the framework. Forusual universal and existential path quantifiers, a path quan-
the case of predicate abstraction, we show how reasoningtifier that is parameterized by a s@tof agent. The path
can be automated with a theorem prover. quantifier ranges over those paths that the agenfsdan
Abstractions of multi-player games have been studied inforce the system into no matter how the other agents behave.
the past. Our main contribution with respect to earlier work For example, the ATL formuldQ))O(z = y) means that
is that we study general (rather than only turn-based) ATSs, the agents iff2 can cooperate to makeandy equal in the
we add a refinement procedure on top of the model checkingnext state. Dually[2]O (z = y) means that the agentséh
procedure, and our abstraction preorder is parameterized cannot prevent the next valuesofindy from being equal.
by a set of agents. The game theoretic-approach, which is the essence of
ATS and ATL, has turned out to be very useful. In par-
ticular, games are used in compositional verification [9],
1 Introduction reasoning about security protocols [19], multi-agent plan-
.)] ning [28, 29], control and synthesis [24], and more. The
We consider how to verify systems composed fr@active complexity of game solving, however, is higher than that of
components. Each component isauen systepwhich in- model checking [1]. Thus, methods for coping with large
teracts with its environment and whose behavior dependsgtate spaces are even more crucial than in verification of
on the state of the system as well as the behavior of the en|gge(systems.
vironment. Modeling languages for open systems, such as 5 key technique for coping with very large or even in-

CSP [16] and I/O Automata [22], distinguish betwéBn finjte state spaces @bstraction Abstraction frameworks
ternal nondeterminism — choices made by the system, andip, the 3-valued semantics [3] are typically basednodal
externalnondeterminism — choices made by the environ- 5 nqition systeméMTS). Such systems have two types of
ment. Such a distinction exists naturally also in software, {,ansitions: may transitions, which over-approximate the
*Address: One Microsoft way, Redmond, WA 98052, USA, transitions of the concrete system, amdisttransitions,
Email: tball@microsoft.com

fAddress: School of Computer Science and Engineering, Jerusalem 1We adopt the terminology of game theory and refer to the underlying
91904, Israel. Email: orna@cs.huji.ac.il components aagents

which under-approximate the transitions of the concrete We define an abstraction preorder between AATSs. An
system. Accordingly, verification of universal and existen- alternating-simulationpreorder between ATSs is defined
tial properties is done with respect to may and must transi-in [2]. The preorder there is parameterized by a(3eif
tions, respectively. One can extend the abstraction frame-agents andS <, S’ reflects the fact that the agents¢n
work to anabstraction-refinemerftamework, in which an are more powerful it than inS’. That is, if an alternating
indefinite answer carries with it information that enables the p-calculus formulap that expresses the ability of the agents
refinement of the abstract system. In the case of 3-valuedin) to achieve some goal is satisfiedd, it also is satis-
semantics, the information comes from analyzing the sourcefied inS. In contrast, our order reflects the abstraction level
of the answer being unknown [25, 26]. of the agents iM2. Thus, ify has a definite value i&’,

We describe an abstraction-refinement framework for and this value may be either “true” or “false”, then it would
games, based on ATSs and ATL. Our abstraction frame-have a definite value also . Our order also is different
work for games is based on lifting the notions of may from the one in [8], which does not take a set of agents as a
and must transitions tabstract alternating transition sys- parameter.
tems(AATSs), where the may transitions over-approximate \We argue that our definition is the appropriate one in the
the power of the agents, and the must transitions under-context of abstraction. In particular, we show that our or-
approximate them. Accordingly, must transitions are help- der, when parameterized with a $&bf agents, is logically
ful for the verification of properties referring to the ability characterized by the fragment of the alternatingalculus
of the agents to achieve a go@| {) properties), and may in which all {{)) and[] quantifiers are parameterized by
transitions are helpful for the verification of properties re- setsQ)’ C Q of agent$.
ferring to their disability [| properties). Finally, for the special case of predicate abstraction of

Two earlier works in this direction are [15] and [8]. software, we show how a theorem prover can be used in or-
In [15], the authors describe an abstract interpretation of der to automatically generate the may and must transitions
game properties: the basic modalitigR))O and[Q2]O of of the AATS. This involves an extension of the traditional
ATL correspond to the predicate transforméf8re, and notions ofweakest preconditioto programs with internal
UPregq, which take as an argument a set of agents and re-nondeterminism and expressing the existence of may and
turn the controllable and uncontrollable predecessors of it. must transitions by means of first order logic formulas that
These predicates are extended in [15] to predicates that opyse the extended notions. We demonstrate our approach
erate on sets of abstract states, and are used in an abstragy verifying properties of a program composed of two pro-
model-checking procedure for taternating u-calculus cesses that concurrently assign variables to integers.

In [8], the authors suggest an abstraction framework for A nice theoretical contribution of our framework is that
turn-based games. In a turn-based game, a single agent prqe nifies three games: the model-checking game (cf. [27]),
ceeds in each position. Thus, turn-based games can modghe apstraction game (cf. [7]), and the game between the
systems with a limited type of concurrency —one in which gitferent agents. In particular, though the may and must
a single component proceeds in each transition. As noted inygnsitions of an AATS have the same structure, which is
[8], the extension of the turn-based setting described theregjmilar to the one of an ATS, the special case of an AATS
to general concurrent games is technically difficult. As we \yitn a single agent corresponds to an MTS with hyper-
explain below, the extension carries with it interesting the- 1,,st transitions. Thus, AATSs provide a good explanation,
oretical observations and _significantly ext_ends the type of yased on the game nature of model checking and abstrac-
systems for which abstraction can be aplied tion, of the asymmetry between must and may transitions.

In addition to defining AATSs, a 3-valued semantics for The appropriateness of the model is also reflected in the
the altgrnatmgi-calculu_s with respect to them, and a corre- fact that AATSs enjoy monotonicity [26] and completeness
sponding model-checking procedure, we make the follow- (6], From a practical point of view, handling general ATSs
ing contributions. In case the model-checking procedure proadens the scope of abstraction to systems with full con-
returns an indefinite answer, we accompany the answer bycyrrency. In particular, the success of the game-theoretic
a suggestion for aefinement Such an automatic refine- approach in the verification of security protocols and multi-

ment procec_zlure does not exist in previous works on abstrac‘ragent planning is in systems with full concurrency [19, 29],
games. As in the case of MTS, our procedure analyzes thenys the richer setting is the interesting one.

sources to the “unknown” answer [25, 26] Due to the lack of space, some details are omitted. A full

2|n addition, the abstraction in the turn-based setting are limited to VErSion can be found in the authors’ URLs.
agent-preservingbstractions, where concrete states that correspond to the
same abstract state agree on the agent that proceeds in them. Such a limi- 4Note that we allow the formulas to refer to both the abilities and dis-
tation does not exist in our general case. abilities of the agents df2. This is in contrast to the?-universal” frag-

3Note that the standard method of counterexample-based refinementment of [2], where the simulation relation refers to the truth-value lattice
cannot be applied in the 3-valued semantics. (rather than the information lattice), and only t¢) quantifier is allowed.

2 The Model Py

while true do

if sApthenz’ .=z -1z ; ¢ :=y—1]y;
In ordinary transition systems, each transition corresponds if .sApthenz’ ==z —1|a|z+1;
to a possible step of the system. dlternating transition if sAN—pthena’ :=2 —1|xz|x+1
systemgATSs, for short) [1], each transition corresponds to
a possible move in a game between the underlying compo{ FP»:

2.1 Alternating transition systems

nents of the system. We refer to the componentsgasts while true do

In each move of the game, every agent chooses a set of sug- if s Aptheny’ :=y|y+1;

cessor states. The game then proceeds to the state in the if .sA-pthenz’ :=x|z+1 ;¢ =y|ly+1
intersection of the sets chosen by all agents. Equivalently,

each agent puts a constraint on the choice of the successor Figure 1. The processes P; and Ps.

state, and the game proceeds to a state that satisfies the con-
straints imposed by all the agents.

Formally, an ATS is a 6-tupl§ = (I1, X, S, s, 7, 9), executes’ := z — 1| x| + 1, it can resolve the nonde-
wherell is a set of propositions, is a finite set of agents terministic choice in three possible ways and it can meke
is a set of states;,, is an initial staterr : S x II — {T,F} eitherr — 1, z, orx + 1.

maps each state and proposition to the truth value of the Note that in some cases bath and P, assign values to
proposition in the state, anid: S x & — 22° is atransition the variables (for example, whers A p thenP; assigns a
function that maps a state and an agent to a nonempty seyalue tox and P, assigns a value tg) and in some cases
of moves, where each move is a set of possible next statesonly P, or P, assigns value (for example, when—p, only
Whenever the system is in state each agent chooses P; assigns a value to, and the value of is unchanged).

a setS, € d(s,0). In this way, an agent ensures that The ATS that corresponds to the compositiorPpfwith
the next state of the system will be in its maogg. How- P; has state spacg x Z and has the following transitions:
ever, which state irb,, will be next depends on the moves

made by the other agents, because the successamabt e If s Ap, then

lie in the intersectior) S, of the moves made by all

cEX

the agents. We require that the transition function is non- 5((z,y), 1) = {{(z — Ly — Dh{(z -
blocking and that the agents together choose a unique next Lyt Az, y =D} A{(z,9)})
state: assumin® = {oy,...,0,}, for every states € S 6((z,y), P) = {{(z — 1L,y — 1),(z —
and every sefy, ..., S, of movesS; € i(s,o;), the inter- Ly), (z,y—1),(z,y)}}.
sectionS; N...N S, is a singleton.

For two states ands’, we say that’ is asuccessoof s e If =s A p, then

if whenever the systers is in states, the agents ift can
cooperate so that will be the next state. Thus, for each
o € %, there isS, € d(s,o) such that{s'} = [, o5 5o

6(y)apl) = {{(.I‘ - 1,3/)7(53 - 17y +

1)
Consider a state € S, an agenv € 3, and a setd ¢ 1)

o

L,

(%)KLy+ULKI+Lw4$+Ly+

—_—

d(s,o). If A contains a state’ such that the transition to 2y),P) = @ — 1,y),(xy), (@ +
s’ is disabled no matter how the other agents proceed, we ’ AR

. ! Ale—1Ly+1), (z,y+1), (z+1,y+1)}}.
can removes’ from A. Accordingly, we assume that the y)} { y+1), (@ y+1).(y+}
transitions of the ATS contains no redundancy, in the sense 4 |f 5 A —p, then
that all the states inl are successors of

_ , _ ((y),) = {{@ - Lyh{@y}h{+
Example 2.1 Consider two variables andy ranging over 1,y)}}
the integersZ. We use the predicateto indicate whether _
x andy agree on their sign (that is, they are both positive = (@),) = {{(z—Ly), (,9), (@+1,9)}}-

or both negative) and the predicatéo indicate whethes:
andy agree on their parity (that is, they are both odd or both
even). Figure 1 describes a program that assigns values to _5
x andy. For clarity, the next values aof andy are termed 1
-4
1

e If =5 A —p, then

($7y)’P1) = {{($,y),($,y + 1)’('7; +

y) (z+ Ly +1)}}

(
y
(z,9), P2) = {{(z,9)}, {(z,y + D} {(z +
yh{lz+1,y+1)}}.

z' andy’, respectively. The program is a synchronous com-
position of two processeB, and P,. The processes have
internal nondeterministic choices. For example, wi&n

(

For example, if the current values af and y are
(—6,2), thus—s andp, then P; can either decrease by
1 and force(2’,y') to be in{(-7,2), (-7,3)}, leavex un-
changed and forcg’, y') to be in{(—6, 2), (—6, 3)}, orin-
creaser by 1 and force(z’, y') to be in{(-5,2), (-5, 3)}.
ProcessP;, however, cannot influence the next value
of y and it therefore cannot influence which values in-
side the sets would be the next ones. ProcBsscan
either leavey unchanged and forcéz’,y’) to be in
{(-7,2),(—6,2),(—5,2)}, or increasey by 1 and force
(',y') to be in{(-7,3),(—6,3),(—5,3)}. As with Py,
processP; cannot influence the next value:ofind it there-

g false in the next state (they cannot avé)d Note that
[Q]00 = —{Q)O—0. The least and greatest fixed-point
operators:z.0(z) andrz.6(z) can be applied to monotonic
AMC formulas and enable the specification of global prop-
erties. For a full definition of the syntax and semantics of
AMC see [1].

Example 2.2 Consider the ATS from Example 2.1. The
state (1, —1) satisfies{(P1)O(z # y). Indeed, by in-
creasingz by 1 (or leaving it unchanged), the proceBs
can guarantee that, no matter h@y modifies the value

fore cannot influence which values inside these sets wouldof y, the next values of andy would be different. The

be the next ones. Ondg and P, have made their choices,
(',) is fixed. U

An ordinarylabeled transition systenor Kripke structure,
is the special case of an ATS where the Set {sys} of

state(1, —1) also satisfieg(P,))O(x # y). Indeed, by
decreasingy by 1 (or leaving it unchanged), the process
P, can guarantee that, no matter hawy modifies the
value of z, the next values ofr and y would be differ-
ent. Finally,(1,—1) also satisfieg({ P, P2}))Ovz.(x =

agents is a singleton set. In this special case, the sole agenj) A ({P1})Oz. Indeed, by decreasing by 1 and in-
sys can always determine the successor state: for all stategreasing, by 1, the two processes can collaborate and make

q € S, the transition (¢, sys) must contain a nonempty set
of moves, each of which is a singleton set.

x =y = 0, and thenP; can keepr = y = 0 forever.
We would like to be able to answer questions like “can

Often, we are interested in the cooperation of a subsetp, make sure that andy eventually always agree on their

Q C ¥ of the agents. Givelf?, we defined(q,?)
{T : foreachs € Q) there existsS, € d(¢q,0) andT
Nyco So}- For example, if ¥ {a,b,c},
6((]30’) {{Q1,Q2,QS}7{Q37Q4}} and 5(Q7b)
{{a1, 94,05} {92,903}, then (g, {a,b})

{{a1, 45}, {a2} . {aa}, {gs}}. Intuitively, whenever the
system is in state,, the agents i) can choose a set

T € §(q,2) such that, no matter what the other agents do,
the next state of the system is in In particular, when

parity?”, “Can P, makey eventually negative?”, “cai’;

and P collaborate so that eventually andy never have
the same sign?”, and so on. The way we do it is by reason-
ing about a finite state AATS that abstracts the interaction
between the two processes. Ll

3 Abstraction

all agents cooperate, they can decide the next state, thus,

5(q,X) is a set of singletons. Likewisé(q,) contains the
single set of all successors @f

2.2 Alternating u-calculus

The temporal logic AMC Alternating u-calculug is the
alternating extension of thg-calculus [18]. Formulas of
AMC are defined with respect to a finite détof proposi-
tions and a finite se of agents Formulas of AMC are
interpreted over states of an ATS. TH® and3O modal-
ities of theu-calculus are replaced in AMC by the modal-
ity (Q)O, for a set) of agents. The path quantifigf))
ranges over computations that the agentQ iten force the
system into. Thus, the AMC formul@Q)O#8 intuitively
means that the agents §i can cooperate to makgtrue

in the next state (they can “enforce” the next state to sat-

isfy 8). Formally,q = (Q)O80 iff there isT € §(q,Q)
such thaty’ = 6 for all ¢ € T. Itis often useful to ex-
press an AMC formula in a dual form. For this purpose,
we use the path quantifigf2], for a set? of agents. Then,
[22]O 6 means that the agents@incannot cooperate to make

For finite state systems, abstraction frameworks often are
based onmodal transition system@MTS) [20]. Tradi-
tional MTS have two types of transitionsnust (under-
approximating transitions) anghay (over-approximating
transitions). The idea is that universal properties of a con-
crete system can be proven by referring to the may transi-
tions of the abstract systems whereas existential properties
can be proven by referring to the must transitions. In the
case of multi-agent systems, we do not consider universal
and existential properties. Instead, we refer to properties
that the agents can force the system to satisfy and proper-
ties they cannot avoid. Accordingly, rather than using may
and must transitions in order to under- and over- approxi-
mate the transitions, we are going to use them in order to
under- and over- approximate the power of the agents.

50n the other hand, note that the path quantifiéns and[] are not
semantically dual with respect to the set of agents: if the agerfisdan
enforce a set of successor states, then the agents \{2 cannot avoid-.
Thereforeg = (Q)O+ impliesq = [\ Q]O1. The converse of this
statement, however, is not necessarily true.

3.1 Abstract ATS

An AATS is an ATSS' = (IL, X, S4, Sin, T, Omust Omay)
in which the labeling functiom : S4 x IT — {T,F, L} is
three-valued, and there are two types of transitiépgs: :
SAx X — 92%4 anddgy 1 Sa x X — 9254,

The elements of T, F, L} can be arranged in an “infor-
mation lattice” [17] in which.l. C T and L C F. Note
that for two valuesi, v € {T,F, L}, we havev; C v, iff
vy # L impliesv; = vs.

Consider an ATSS = (I, X3, S¢, ¢in, 7,). Let S, be a
set of abstract states and let S¢ — S4 be an abstraction
functior’. We extendp to subsets oS¢ in the expected
way, thusp(C) = |J.c p(c). We also use < a to indicate
thatp(c) = a.

An AATS &' = (IL X, 54, @in, ™', Omusts Omay) IS @N
abstraction ofS if for all concrete states € S.., we have
7'(p(c)) C w(c), and for all abstract states € S4 and
agentss € 3, the following hold:

® dpust(a,0) ={A C Sy : forallc € athereisC, €
6(65 O—)a andA = UcEa p(C(‘)}

® dpmayla,0) = {A C Sy :
d(c,o)andA = p(C.)}.

Intuitively, A € d,ust(a, o) if for eache € q, the agent
o can force the successor ofto correspond to a state in
A. Likewise, A € ¢4y (a, 0) if for somec € a, the agent
o can force the successor ofto correspond to a state in
A. Recall that in MTS, must transitions are used in order

thereisc € aandC, €

to prove existential properties or refute universal properties,
whereas may transitions are used in order to prove universal

properties or refute existential ones. In AATSs, must tran-
sitions are used in order to proyg)) properties and refute

[] properties, whereas may transitions are used in order to

prove[] properties and refuté)) properties.

As with the usual transitions of an ATS, we can refer
to the must andmay transitions of a set of agents in an
AATS. Thus,d st (¢, Q) underapproximates the power of
the agents irf2 when they cooperate, afg,q, (g,) over-
approximates their power.

Remark 3.1 An MTS can be viewed as a special case of an
AATS - one with a single agentys. Recall that then, the
ATS S is such that(c, sys) is a set of singletons. Accord-
ingly, in an abstraction of, we haveA € §,,.s:(a, sys)

iff for every ¢ € aq, there exists{c.} € d(c,sys) and

A = U.ear(c,). Also, {a'} € dmayl(a, sys) iff there is

¢ € aand{c'} € d(c, sys) such thas’ = p(c’). Thus, the
definition coincides with the standard definition for hyper-

must and may transitions [21]. The fact that we get hyper-

of model checking and abstraction “built in”: each of the
setsA € d.,ust(a, sys) corresponds to a choice the system

is making from each of the concrete states that correspond
to a. In order for an existential property to hold i) each

of the concrete states should have a successor that satisfies
the existential property, and thdis,.s: (a, sys) should have

a setA all of whose states satisfy the property. |

We define &3-valued semanticef AMC formulas with
respect to AATSs. The value of a formufain a statea
of an AATS A = (IL, X, S4, Gin, 7', Omust, Omay), denoted
[(A,a) E 0], is defined as follows. Due to the lack of space,
we do not include the semantics of fixed-point operdtors
The latter is similar to the one described for 3-valyed
calculus in [4], where the semantics we give below to the
{()y operator, replaces the one described there for the usual
modal operators gfi-calculus.

[(A,a) E p|] = 7(a,p).

T if[(4a) 0 =F.
[(Aa) E-0l=< F if[(Aa)E0=T.
1 otherwise.
T if[(Aa)=6,]=Tand
[(Aa) E 0] =T.
[(A, (l) l: 91 A 02] = F if [(A, a) ‘: 91] =For
[(A,a) = 62] =F.
1 otherwise.
T ifthereisA € §,,ust(a, Q)
suchthaf(A,a') =0] =T

foralla’ € A.

[(A,a) E ()00 =< F ifforall A€ §,qy(a,Q),
we havé(A,a') = 0] =F
for somea’ € A.
1 otherwise.

Abstracting an ATS may cause the truth value of some
formulas to become indefinite, but definite values are con-
sistent with the values in the concrete ATS. Formally, we
have the following:

Theorem 3.2 Consider an ATSS, an AATSA that is an
abstraction ofS, a statea of A, and an AMC formula&.
For all ¢ € a, we havd(S,c) = 0] J[(A,a) = 6].

Remark 3.3 The semantics of thé2)O operator corre-
sponds to our intuition, where in order to prove that the
agents inf) can force the concrete system to a set of states
that satisfyf, one should check that they can achieve this
task in the abstraction even if we under-approximate their
power and over-approximate the power of the complemen-
tary set of agents. Indeed, the semantics of(tR® O op-
erator is equivalent to one in which the agentsirpro-

must highlights that AATSs naturally have the game nature ceed with their must transitions and the agentsiif Q

6Note that sinceS is a general ATS, we do not have to limitto an

“Note that this makes the description of the semantics much cleaner

agent preserving function, as is the case with the restricted case of turn-as we do not have to view a formula as a mapping from environments (3-

based ATSs [8].

valued assignments to the free variables) to mapping&ao {T,F, L}.

proceed with their may transitions. FormallyA,a) E
(2O =T iff there IS A € 0t (a,) such that for all
A € Spay(a, X\), we have thaf(A,a’) = 0] = T for
alla’ € An A O

Example 3.4 Consider the Processe®, and P, de-
scribed in Example 2.1. We define an AATS,
according to the predicates. Thus, S; has two
states, which we denote by and —. Formally
S = {{sh,{P1, P2}, {s,—},$, 7, Omust: Omay }, Where
7'(s,8) = T, n'(—,s) = F, and the transitions are as fol-
lows.

.5must(Sa Pl) = {{5}}
.6may(sapl) = {{S}a {7}}
®Smust(—, P1) = {{s, - }} 0 must(— P2) = {{s, —}}
omay(— 1) = {{s}, {—}} @may(—, P2) = {{s}.{~}}

Let us explain thé,,,,.; transition of P, from s. By the
definition 0f§,,,,.5¢, we have tha{s} € ,,us: (s, Py) iff for
all (z,y) that satisfys, the proces$> can force(z’,y’) to
satisfys. This is true, as for alk andy that satisfys, the
setd st ((x,y), P1) contains the sef(x, y)}.

.5must(37 P2) = {{Sa _}}
*0may (s, P2) = {{s}}

of abstract states such that[(A4,a) E 6] = T and
[(A,a) = 0] = F, respectively. For Boolean and fixed-
point operators, the algorithm proceeds as known symbolic
multi-valued model-checking algorithms (c.f., [5]). For the
symbolic operatok(€2)), the algorithm proceeds according
to the following characterization:

o [(NOO|IT ={a:3A € dmust(a, Q) s.t. AC |01},
o [()OOE ={a:VA € dpay(a,), AN 0| # 0}.

As discussed in [8], an alternative algorithm reduces the
model checking of an AMC formuld in an AATS A to
model checking of an AMC formulé’ in an ATSS such
that the transition fronf and.A to ¢’ andS involves only a
linear blow up. Such a reduction is possible also in our case
(and is in fact simpler than the one described in [8], as our
reduction does not have to end up in a turn-based ATS and
does not need the technicality that the latter involves).

3.3 Completeness of abstraction

We now show that our abstraction framework is complete in
the sense discussed in [6, 7]. Thus, we can model check a

Note that the must transitions underapproximate the specificatiorf in an infinite ATS, by reasoning about finite
power of the processes and the may transitions overapproxabstractions of it. It is shown in [2] that two states of an
imate their power. For example, while the only must transi- ATS satisfy the same AMC formulas iff they aadternat-

tion of P, from s is to {s}, it is possible forP; to resolve
the nondeterminism in the staf@, 0), which satisfies, so
that the next state will bé-1,0), which does not satisfy.

ing bisimilar. An infinite ATS can, in general, have an infi-
nite number of alternating-bisimulation equivalence classes.
When, however, we are concerned with the ability of a finite

This is reflected in the may transitions, which overapprox- number of AMC formulas to distinguish between states of
imate the power of the processes, and also contains the sean ATS, the number of equivalence classes is finite. This

{—}. Likewise, while the only must transition &, from s

is to {s, —}, indicating P, cannot influence the next values,

finiteness is the key to our completeness result.
In case is a safety property (in particular, dfis in safe-

there are states (in fact, all states except for those in whichAMC — the syntactic fragment of AMC in which formulas

x = 0 ory = 0) that satisfys for which s is guaranteed
to stay true in the next state no matter héywresolves its
internal nondeterminism, thys} € 6,4y (s, P2).

are in positive normal form and only the greatest fixed-point
operator is allowed), things are simple, sduces a fi-
nite set of equivalence classes, each consisting of concrete

Even though our abstraction is based on a single pred-states that are indistinguishable by the subformula8. of
icate, we can verify some properties. For example, sinceFormally, we have the following:

[(Ss,s) E (P1)Os] = T, Theorem 3.2, implies that
¢ = (P1)Os for all concrete states that satisfys. In
fact, [(Ss, s) | vz.s A (P1))z] = T; thus once in & state,
P, can forces forever. U

3.2 AMC model checking

The standard symbolig-calculus model-checking algo-

Theorem 3.5 Consider an ATS, a statec of S, and a safe-
AMC formulad. There is a finite AATSl such thatA is an
abstraction ofS and[(A, p(c)) = 0] € {T,F}.

Once we allowd to include least fixed-points, things are
more complicated, as the alternating-bisimulation equiva-
lence classes described above are with respect to an AATS
augmented with a fairness condition [1]. Thus, complete-

rithm of [11] can be extended to a symbolic model-checking ness is achievable, but goes beyond the model we study
algorithm for AMC formulas with respect to ATSs. As we here.

show now, this can be done also with respect to AATSS,
yielding a symbolic model-checking algorithm with respect
In more details, the algorithm starts

to the abstraction.

4 Abstraction preorder

with the innermost subformulas of the specification and An alternating simulatiorpreorder between two AATSSs is

computes, for each subformuta the setsd|t and |0|

defined in [2]. The order is parameterized by a Qetf

agents and corresponds to the ability of the agents3 to

restrict the ATS to a smaller set of behaviors in the simu- and S’ = (I, %, 5", .

Consider two AATSSS = (IL, 3, S, Sin, T, Smusts Omay)
7', o 8! au). FOr a subset

n’ » Ymustr Y may

lated ATS. In this section we define an abstraction preorder() C ¥ of agents, a relatio®l C S x S’ is an{2-abstraction
that also is parameterized by a set of agents. Our orderyelation fromS to S’ if for all pairs (s, s’) € H, the follow-

however, corresponds to the agent$libeing less abstract
in the simulated ATS.

For a setS, consider two seta andA’ in 22°. We say
that A is more refined than\’ if for every setd’ € A/,
there isA € A such thatA C A’. Thus, each of the
sets inA’ can be restricted to a set ih. For example, if
S = {q1,92,93, 92} then{{a1},{q2}, {g3}}} is more re-
fined than{{q1, ¢2}, {g2, ¢3}}. Intuitively, if both A and
A’ describe the transitions of some agenfrom stategq,
theno is more refined with the transitions ik than with

these inA’, as it can force the ATS into smaller sets (and in 2 are less abstract ifiS, s) than in (S’, s).

possibly more sets) of next successors.

ing conditions hold:
(@) w(s) 2 7'(s).

(2) For allo € Q, we have thab,,,s:(s,o) is more H-
refined thany/ ... (s', o).

must
(3) For allo € Q, we have that;,,,
refined thard,,q, (s, o).

If H is anQ-abstraction fromS to S’ and(s,s’) € H,
we write (S, s) <q (S8, s), which indicates that the agents
That is,
the must transitions, which under-approximate the agents’

(s',0) is more H-

Every must transition is a may transition in the sense that power, are more refined ifi than inS’ (so inS, the under-
if the agent can force a set in a must transition, it can force approximation is “less under”). Dually, the may transitions,
a subset of it in a corresponding may transition. Formally, which over-approximate their power, are more refined'in

we have the following:

Lemma 4.1 For every staten and agents, we have that
dmay(a, o) is more refined than,,,s;(a, o).

We can now define a preordek, between AATSs. The
preorder is parameterized by a $ebf agents. Intuitively,
S =<q 9’ if the behavior of each of the agentsfnis less
abstract inS than inS’.

We first extend the definition of “more refined” to
sets over different, but related, domains.
setsS and S’, and a relationH C S x S’. For a set
A € 22° we useH(A) to denote the set of sets ob-
tained by replacing each memberof a set inA by all
elementss’ € S’ with H(s,s’). Thus, A’ € H(A) if
there isA € A andA’ = (J,4{s" : H(s,s')}. Now,
we say thatA is more refined thanA’ with respect to
H (more H-refined, for short) iff H(A) is more refined
than A’. Thus, each of the sets iA’ has a set inA
that corresponds to it. Likewise)’ is more H-refined
than A iff A’ is more refined tharff (A). Thus, each of
the sets inA has a set inA’ that corresponds to it. For
example, ifS = {q1, 92, g3, 94,95}, S" = {a1, a2, a3}, and
H = {(q1,a1), (g2, 01), (g3, a2), (94, a3), (g5, a3) },
then {{q1,92},{qa}} is more H-refined than
{{a1,a2}} and {{a1},{a2}} is more H-refined than
Har, a2, a3}, {a3, 94} }-

Lemma 4.2 Consider two setsS and S’, and a rglation
H C S x 8. Consider four set\;,A, € 22° and

ALAL € 22% |f A, is more H-refined thanA} and
A, is more H-refined thanA, then{A; N Ay : A, €
A; and Ay € Ao} is moreH -refined than{ Aj N A% : A €
Al and A, € AL}

than inS (so inS, the over-approximation is “less over”).
When(S, sin) <a (8, s,), we writeS <o S’. Note

that the definition of<(, refers to the individual agents in
Q. Thus, by Lemma 4.2, we have the following:

Lemma 4.3 Let H be anQ-abstraction fromS to S’. For
all (s,s’) € Hand)' C Q, the following holds:

(2) dmust(s,) is moreH-refined thany!, .., (s',).

must
(3) 870y (s, 2) is moreH-refined thany g, (s,).

Consider two WhenS =<, &’ for all agentss, we say thatS is less ab-

stract tharS’, denotedS < &’.

Remark 4.4 It may be thatS <q, S’, S Zq, S, S’ =q,
S, andS’ Aq, S. For example, suppose th&; assigns
values tox, P, assigns values tg, in S we maintain the
concrete value of and the parity of;, and inS’ we main-
tain the parity ofx and the concrete value af. Then,
S=p, 8 S%£p, 8,8 =Zp, S,andS’ £p, S. O

Remark 4.5 Recall that our definition refers to the abstrac-
tion level of the agents, and not the power of the agents with
respect to each other. To emphasize this fact further, con-
sider two programs, each being a composition of two pro-
cessesd’; and P,. In the first programp; can increase or
decrease by 1 the value of battandy, and P, does noth-

ing. In the second progran®; can increase or decrease by
1 the value ofr, and P, can increase or decrease by 1 the
value ofy. Clearly, P, is more powerful in the first pro-
gram, and the simulation order of [2] would show that. On
the other hand, the first program is not less abstract, with re-
spect to eitheP; or P,, than the second program. Accord-
ingly, if we examine two AATSs, abstracted, say, according
to a predicate referring to the parity @fandy, then there is

no abstraction relation between the two AATSs.]

By viewing a concrete ATS as an AATS whoseiy and indefinite (with respect to some subformula), and then re-
must transition relations are equivalent to the transition re- fines the AATS in a way that makes the satisfaction of this
lation of the ATS, we can use the abstraction preorder to subformula definite. We first show that our model of AATSs
relate a concrete system and its abstraction, with respect t@njoys monotonicity, thus the refined AATS gives a definite

all subsets of agents. Formally, we have the following:

Theorem 4.6 Consider an ATS = (I1, %, S¢, ¢in, 7, 0),
a set of abstract stateS,, and a functiorp : S¢ — Sa.
Letthe AATSS' = (I, X, S, Gin, T, Omust, Omay) bE the
abstraction ofS according top, and letH C S¢ x S4 be
such thatH (¢, a) iff p(c) = a. For all setsQ) of agents,H
is anQ-abstraction relation fron® to S’.

While theu-calculus logically characterizes the abstrac-
tion preorder on MTSs [13], AMC characterizes the ab-
straction preorder on AATSs. Formally, for a f@tof
agents, let AME be the fragment of AMC in which all
{()y and[] quantifiers are parameterized by a 8tC Q
of agents. Note that we do not require the formulas to be in
a positive normal form. Thus, AMCformulas refer both
to the strength and weakness of the agent8.oThis is in
contrast to the fragmerit-AMC of [2], where the simula-
tion relation refers to the truth-value lattice rather than the
information lattice, and accordingly-AMC formula are in
positive normal form and can refer only to the power of the
agents of.

Theorem 4.7 Let S = (I, X, S, Sin, T, Smust, Omay) and
S = (',%,8, 80, T, Orpust» Onay) D€ tWo AATSs. Con-
sider a sef2 of agents. For every two statesc S and
a’ € S’, we have thatS, a) <q (§',d) iff [(S,a) E 0] 3
[(S’,a")) = 6] for all AML®? formulase.

Note that, by Theorem 4.6, we have that Theorem 3.2 is

a special case of Theorem 4.7.

As with usual simulation relations and alternating-
simulation relations [23, 2], a maxim&l-abstraction rela-
tion H between two AATSs can be calculated as a fixed-
point of intermediate relations (the sequende, H, . ..
used in the proof of Theorem 4.7). Accordingly, we have
the following:

Theorem 4.8 Given two AATSS and S’ and a set() of

agents, deciding whethe&t < S’ can be done in polyno-
mial time.

5 Refinement

truth value to at least all formulas that have a definite truth
value in the AATS before the refinement.

5.1 Monotonicity

As argued in [26], refining an MTS by splitting a state into
two states may result in an MTS with fewer must transi-
tions. As a result, formulas that have a definite value in the
original MTS may have an indefinite value in the refined
MTS. The solution to this annoying fact is to have hyper-
must transitions. As we now show, splitting states of an
AATS S, that abstracts a concrete ATS results in an AATS
Ss such thatS; < S;. Thus, by Theorem 4.7, monotonicity
holds in our framework.

Theorem 5.1 Consider an ATSS = (II, X, S, ¢ip, 7, 0).
LetS; andS; be sets of abstract states and fgt: S — S
and ps : S — S be such that for alle,c’ € S, if
pa(c) = pa(c), thenp;(c) = p1(c¢'). LetS; and S, be the
AATSs induced by, and ps, respectively. Ther, < S;.

5.2 Refinement based on failure states

We can now turn to the problem of finding failure states and
using them for refining the AATS. For simplicity, we first
handlealternating modal logidAML), that is, AMC with-

out the fixed-point operator. We then discuss, in Section 5.3,
the treatment of fixed points.

For an abstract staie and a formulap, we say that
is afailure state with respect to if [(A,a) = ¢] = L
even though4 has definite value for subformulasgin the
relevant states. Formally,is a failure state with respect to
pif [(A,a) = ¢] = L, and in addition, eithep = p € I
orp = {(Q)O~h and[(A,d’) = 0] € {T,F}, for all the
successorsg’ of a.

Note that ifa is a failure state with respect {2)O6,
then for all A € §pust(a,), there isa’ € A with
[(A,a") = 0] = F, and there isA € 0,4y (a,) such that
foralla’ € A, we have thaf(A,a') =60] =T.

The drawback of the above definition is that it defines
a to be a failure state with respect fioeven if the indef-
inite value of@ in « is irrelevant to the indefinite value of
the specification in the initial state of the AATS. In order

In case the model-checking procedure returns an indefiniteto restrict attention teelevantfailure states, the procedure

answer, we accompany the answer by a suggestionrisr a
finement As in the case of MTS, our procedure analyzes
the sources to the “unknown” answer. Technically, as in
[25, 26], the refinement procedure first find&adure state

that searches for failure states proceeds in a top-down man-
ner. The procedurERFS (find relevant failure states) we
describe is similar to the one in [26], only that the treat-
ment of thevO modality there is generalized to o{(if2))O

— a state in which the evaluation of the specification becamemodality.

The procedur&RFSa, 1) gets as input an abstract state 5.3 Handling fixed-points
a and a formula) such thaf(A4,a) = 6] = L and return
an abstract stat€ and a subformula’ of ¢ such that’ is
a failure state with respect i, and the indefinite value of
1" in o’ is relevant to the value af in a being indefinite.

Consider a fixed-point formulé = p2.6(z). The model-
checking algorithm in Section 3.2 calculates the|gef as
the fixed point of the sequen¢e|S = 0, [¢| = 0([4[),

Formally,FRFS(a, 1) proceeds as follows. - [WIF = 0(lyl}), and it calculatesy|F as the fixed
point of the sequencl/|- = Sa, [Yr = —0([Y[E), -,
o If 4 = p, thenreturn(a, ¢). [WIEY = =0(19[k). If [T U g # Sa, then there is

a minimal indexi such thafy|T U [¢[E # Sa. Accord-

If v = =6, then returi-RFYa, 0).) .) .
Iy Sa,9) ingly, when we define to be a failure state with respect to

o If ¥ = 0, V 6, then leti be min{1,2} such that afi>.<e.d.-pointforrr'1ulab vyith variablezzwe p.ara'mete.rize the
[(A,a) = 6;] = L; returFRFSa, 6;). definition also with an integer— the iteration in which the
value of the variable becomes indefinite. The reasoning
o If ¢y = (Q)O¥, then if for all the successors of a, then is along the same lines described for AML formulas.
we have[(A,a) | 0] € {T,F}, return(a,). Oth- In fact, every refinement algorithm of MTSs that is based
erwise, leta’ be a successor affor which [(A, a) = on a symbolic model-checking procedure can be adjusted
0] = L; returnFRFSd’, 6). to AATSs. Indeed, as demonstrated above, such an adjust-

ment replaces the treatment of the modal operdfomwith
It is not hard to see that since the initial callRRFSis the one described in Section 5.2 f(R)O. We note, how-

with a pair(a, ¢) for which [(A4,a) = ¥] = L, the “let” ever, that while such a refinement procedure exists for the
statements in the procedure are guaranteed to be satisfiedemporal logic CTL [26], the refinement procedure for the
and it eventually returns a relevant failure state. u~-calculus is based on Zielonka’s enumerative algorithm for

Let a be a relevant failure state with respectdo We solving parity games, and thus it is not symbolic [14].
describe a separation @into two abstract states anda
such that the value af in both states is definite. Intuitively,
ar abstracts the set of concrete stateshat satisfyp, and
ar abstracts those states that do not satisfiformally, we In this section we focus on the special case where the ATS

6 Predicate Abstraction

have the following: models several concurrent processes, each given as a pro-
gram. Each program location is associated with a statement
e If o = p,thenconcr(a) ={c€a:peLlc)tand 5_ g |5, | .- |s,, which denotes an internal nondeter-
concr(a) ={c€a:p¢ L(c)}. minism: when the process execute®t choosed <i <n

and executes;.
When each abstract state is associated with a program
. location, and thus it also is associated with a statement, we
— concr(a) ={c € a: thereisC, € d(c,) Iculate the may and must transitions by a theorem
such thaf(A4,d') = 0] = T]forall o’ € p(C.)}. can calcula y . y
prover. For a statementand a predicate over the state
— concp(a) ={c€a: forall C. € §(c,Q), space, thaveakest preconditioRVP (s, ¢) is such that the
there isa’ € p(C.) with [(A4,d’) &= 0] = F]}. execution ofs from every state that satisfi@88P(s, e) re-
sults in a state that satisfiesand WP (s, e) is the weak-
Note thatconcr and concp form a partition of the con- est predicate for which the above holds [10]. For exam-
crete states in. We refinep to map the states iconcr(a) ple, for an assignment statement:= v, we have that
to a7 and map states iwncr(a) to ap. WP(z := v,e) = e[x/v] (that is,e with all occurrences
of z replaced bw). In the case of MTSs, weakest precon-
Theorem 5.2 lterating the abstraction-refinement process ditions can be used in order to automate the generation of
with respect to an abstraction of a finite ATS is guaranteed must and may transitions [12]. As we show now, the same

o If o = ()OO0, we define

to terminate with a definite answer. can be done in AATSs, given a definition of weakest precon-
dition that takes internal nondeterminism into an account.
The proof, detailed in the full version, shows thatin each ~ For a statement = s; | s3] - - - | s,, With internal nonde-

of the cases, the suggested separationcduses the value terminism, we have thatVP(s,e) = \/,.,.,, WP(s;,).

of v in ar andar to become definite. In addition, the Note that since the nondeterminism is internal, taking the
monotonicity of our framework implies that no truth value disjunctions of the different weakest preconditions reflects
of other formulas with respect to other states becomes in-the fact that satisfying one of them is sufficient in order
definite. to guarantee that the process can resolve the nondetermin-

istic choices and reach a state satisfyingFor example, [9] L. de Alfaro, T.A. Henzinger, and F.Y.C. Mang. Detecting

WP(z:=2+2|z:=2x—4,x=>5)iszt=3Ve=9.In errors before reaching them. Rroc. 12th CAYLNCS 1855,

other words, if the agent can choose between increasing pages 186-201, 2000.

by 2 or decreasing by 4, the weakest condition with which [10] E.W. Dijksta. A Discipline of Programming Prentice-Hall,

it can force the system into a state satisfying- 5 is that 1976.

r=30rx=9. [11] E.A. Emerson and C.-L. Lei. Efficient model checking in
For a concrete statg lets = s§ | 5§ |--- | s be the fragments of the propositionatcalculus. InProc. 1st LICS

statement that ageatcan choose at For a set- of abstract pages 267-278, 1986.

states,r € 5must(ajo') iff for all ¢ € a, we have that [12] P. Godefroid, M. Huth, and R. Jagadeesan. Abstraction-

implies\/, ;.. WP(s, 7). AlS0, T € 8,4 (a, o) iff there based model checking using modal transition systems. In

Proc. 12th CONCURLNCS 2154, pages 426-440, 2001.

[13] P. Godefroid and R. Jagadeesan. Automatic abstraction us-
ing generalized model checking. Rroc. 14th CAYLNCS
2404, pages 137-150, 2002.

[14] O. Grumberg, M. Lange, M. Leucker, and S. Shoham. Don't

know in thep-calculus. InProc. 6th CVMA] LNCS 3385,

pages 233-249, 2005.

T.A. Henzinger, R. Majumdar, F.Y.C. Mang, and J-F Raskin.

Abstract interpretation of game properties Froc. 7th SAS

is ¢ € a for whichcimplies\/, .. WP(s, 7).

Example 6.1 Consider again the ATS from Example 2.1.
We define an AATS , according to the predicatesindp.
Thus, the AATS has four states, which we denoteshys,
p, and—. In the full version, we describe tl&; ,, in detail.
Finding the transitions of; , is not an easy task, and we 15
used a theorem prover to generate them. For example, thé]
fact thgt{—} does not belong t6,,,, (s, P1) follows from LNCS 1824, pages 245-252, 2000,
the validity of the FOL formula-3z, y.s(x, y) A —p(z, y) A o)

[16] C.A.R. Hoare. Communicating Sequential Processes
[(=s(z — Ly) A =p(z — Ly)) V (=s(z,y) A —p(z,y)) V ice-

LoV A 1 0 Prentice-Hall, 1985.
(=s(z+1,y) A=pla +1,y)]- [17] S.C. Kleene.Introduction to MetamathematicdNorth Hol-
land, 1987.

In the full version, we show how useful properties Qf [18] D. Kozen. Results on the propositionakcalculus.Theoret-
the program from Example 2.1 can be proven by reasoning ical Computer Scienc®7:333—354, 1983.

aboutS; ,. We also relate the AATS, ;, with the AATS S, [19] S. Kremer and J.-F. Raskin. A game-based verification of

described in Example 3.4, and show tisat, < S. non-repudiation and fair exchange protocols.Phoc. 12th
CONCUR LNCS 2154, pages 551-565, 2001.
References [20] K.G. Larsen and G.B. Thomsen. A modal process logic. In

Proc. 3rd LICS Edinburgh, 1988.
[1] R. Alur, T.A. Henzinger, and O. Kupferman. Alternating- [21] K.G. Larsen and L. XinXin. Equation solving using modal

time temporal logicJACM, 49(5):672-713, 2002. transition systems. IRroc. 5th LICS pages 108-117, 1990.
[2] R. Alur, T.A. Henzinger, O. Kupferman, and M.Y. Vardi. Al- [22] N.A. Lynch. Distributed Algorithms Morgan Kaufmann,
ternating refinement relations. Rroc. 9th CONCURLNCS 1996.
1466, pages 163-178, 1998. [23] R. Milner. A Calculus of Communicating SystersICS 92,
[3] G. Bruns and P. Godefroid. Model checking partial state Springer Verlag, 1980.
spaces with 3-valued temporal logics. Pmoc 11th CAY [24] A.Pnueliand R. Rosner. On the synthesis of a reactive mod-
pages 274-287, 1999. ule. InProc. 16th POPl.pages 179-190, 1989.
[4] G. Bruns and P. Godefroid. Model checking with 3-valued [2%] S- Shoham and O. Grumberg. A game-based framework for

: CTL counterexamples and 3-valued abstraction-refinement.
temporal logics. InProc 31st ICALR LNCS 3142, pages
2818293 2804 pag In Proc. 15th CAYLNCS 2725, pages 275-287, 2003.

. . [26] S. Shoham and O. Grumberg. Monotonic abstraction-
[5] M. Ch(_achlk, B. Devere_ux, and S. Easterbrook. Implementing refinement for CTL. InProc. TACASLNCS 2988, pages
a multi-valued symbolic model checker. Proc. 7th TACAS 546-560. 2004.

LNCS 2031, pages 404-419, 2001. [27] C. Stirling. Games and modal-calculus. InProc. 13th

[6] D. Dams and K.S. Namjoshi. The existence of finite abstrac- STACSLNCS 1055, pages 298-312, 1996.
tions for branching time model checking.fmoc. 19th LICS [28] W. van der Hoek and M. Wooldridge. Tractable multi agent
pages 335-344, 2004. planning for epistemic goals. IRroc. 1st International

[7] D. Dams and K.S. Namjoshi. Automata as abstractions. In Conference on Autonomous Agents and Multiagent Systems
Proc. 6th VMCAJ LNCS 3385, pages 216—232, 2005. pages 1167 — 1174. ACM Press, 2002.

d[29] W. van der Hoek and M. Wooldridge. Cooperation, knowl-
edge, and time: Alternating-time temporal epistemic logic
and its applicationsStudia Logica75(1):125- 157, 2003.

[8] L. de Alfaro, P. Godefroid, and R. Jagadeesan. Three-value
abstractions of games: Uncertainty, but with precision. In
Proc. 19th LICSpages 170-179, 2004.

