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Abstract. The � -calculus is an expressive specification language in which modal logic is extended with
fixpoint operators, subsuming many dynamic, temporal, and description logics. Formulas of � -calculus
are classified according to their alternation depth, which is the maximal length of a chain of nested
alternating least and greatest fixpoint operators. Alternation depth is the major factor in the complexity
of � -calculus model-checking algorithms. A refined classification of � -calculus formulas distinguishes
between formulas in which the outermost fixpoint operator in the nested chain is a least fixpoint operator
( ��� formulas, where � is the alternation depth) and formulas where it is a greatest fixpoint operator ( ���
formulas). The alternation-free � -calculus (AFMC) consists of � -calculus formulas with no alternation
between least and greatest fixpoint operators. Thus, AFMC is a natural closure of � � � � � , which is
contained in both � � and � � . In this work we show that � �"! � �$# AFMC. In other words, if we can
express a property % both as a least fixpoint nested inside a greatest fixpoint and as a greatest fixpoint
nested inside a least fixpoint, then we can express % also with no alternation between greatest and least
fixpoints. Our result refers to � -calculus over arbitrary Kripke structures. A similar result, for directed� -calculus formulas interpreted over trees with a fixed finite branching degree, follows from results
by Arnold and Niwinski. Their proofs there cannot be easily extended to Kripke structures, and our
extension involves symmetric nondeterministic Büchi tree automata, and new constructions for them.

1 Introduction

The & -calculus is an expressive specification language in which formulas are built from Boolean operators,
existential ( ' ) and universal ( ( ) next-time modalities, and least ( & ) and greatest ( ) ) fixpoint operators
[Koz83]. The discovery and use of symbolic model-checking methods [McM93] for verification of large
systems has made the & -calculus important also from a practical point of view: symbolic model-checking
tools proceed by computing fixpoint expressions over the model’s set of states. For example, to find the set
of states from which a state satisfying some predicate * is reachable, the model checker starts with the set +
of states in which * holds, and repeatedly add to + the set ',+ of states that have a successor in + . Formally,
the model checker calculates the set of states that satisfy the & -calculus formula &.-0/ *213'4- .

Formulas of & -calculus are classified according to their alternation depth, which is the maximal length
of a chain of nested alternating least and greatest fixpoint operators. From a practical point of view, the
classification is important, as the alternation depth is the major factor in the complexity of & -calculus
model-checking algorithms: the original algorithm for model checking a structure of size 5 with respect
to a formula of length 6 and alternation depth 7 requires time 8:9;5<6>=@? [EL86], and more sophisticated
algorithms can do the job in time roughly 8:9;5<6>=BA�CDBE�F � [Jur00]. From a theoretical point of view, the clas-
sification naturally raises questions about the expressive power of the classes. In particular, the question
whether the expressiveness hierarchy for the & -calculus collapses (i.e., whether there is some 7HGJI suchK
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that all & -calculus formulas can be translated to formulas of alternation depth 7 ) has been answered to
the negative [Bra98]. The alternation-depth hierarchy of & -calculus and the model-checking problem for
the various classes in the hierarchy are strongly related to the index hierarchy in parity games and to the
problem of deciding such games [Jur00].

A more refined classification of & -calculus formulas distinguishes between formulas in which the out-
ermost fixpoint operator in the nested chain is a least fixpoint operator ( ��� formulas, where � is the alter-
nation depth) and formulas where it is a greatest fixpoint operator ( ��� formulas). For example, the formula
&.-0/ *�1<' - is a � � formula, as it has alternating depth 1 and its outermost fixpoint operator is & . Similarly,
the formula ) -0/ &�� / (	� 9 *�
 - =>1���
 is a � � formula1. By duality of the least and greatest fixpoint operators,
the classes ��� and ��� are complementary, in the sense that a formula � is in ��� iff the formula ��� (in
positive normal form, where negation is applied to atomic propositions only) is in ��� .

Some fragments of & -calculus are of special interest in computer science: Modal Logic (ML) consists
of & -calculus formulas with no fixpoint operators (that is, ML ����������� ). It is actually more correct to say
that & -calculus is the extension of ML with fixpoint operators. Extending ML with fixpoint operators still
retain some of its basic semantic properties, in particular the property of being invariant under bisimulation
[Ben91]. The alternation-free & -calculus (AFMC) consists of & -calculus formulas with no alternation be-
tween least and greatest fixpoint operators. Thus, AFMC is a natural closure of � � ��� � , which is contained
in both � � and � � . AFMC subsumes the branching temporal logic CTL and the dynamic logic PDL [FL79].
Formulas of AFMC can be symbolically evaluated in time linear in the structure [CS91,KVW00]. While
designers may prefer to use higher-level logics to specify properties, model-checking tools often proceed
by evaluating the corresponding AFMC formulas [BRS99]. Finally, it is hard to produce an understandable
formula with more than one alternation. Thus, � � ��� � subsumes almost all formulas one may wish to
specify in practice. Formally, � � ��� � subsumes the branching temporal logic CTL � , and in fact, until
[Bra98], the strictness of the expressiveness hierarchy of & -calculus was known only for ��� and ��� with
��� � [AN90]. Also, the symbolic evaluation of linear properties is reduced to calculating a � � formula
[VW86,EL85].

For several hierarchies in computer science, even strict ones, it is possible to show local coalescence,
where membership in some class of the hierarchy and in its complementary class implies membership
in a lower class. For example, RE ! co-RE � Rec describes coalescence at the bottom of the arithmetical
hierarchy [Rog67]. On the other hand, the analogous coalescence for the polynomial hierarchy is not known;
it is a major open question whether NP ! co-NP � P [GJ79]. In [KV01], we showed that the bottom levels
of the & -calculus expressiveness hierarchy coalesce: � � !�� ��"$#&% . In other words, if we can express a
property ' both as a least fixpoint and as a greatest fixpoint, then we can express ' without fixpoints. The
proof uses the fact that & -calculus formulas in � � !(� � correspond to languages that are both safety and
co-safety. Consequently, for every property '�)*� � !+� � , we can construct two nondeterministic looping
tree automata , and ,	- such that , and ,	- accept exactly all the trees that satisfy ' and its complement,
respectively (the fact that , and ,�- are looping means that they have trivial acceptance conditions – every
infinite run is accepting). We showed in [KV01] how , and ,.- can be combined to a cycle-free automaton
and then translate to an ML formula expressing ' .

In this paper we show coalescence in higher classes of the hierarchy, namely � � !/� �0" AFMC.2 In
other words, if we can specify a property ' both as a least fixpoint nested inside a greatest fixpoint and as
a greatest fixpoint nested inside a least fixpoint, then we can express ' also with no alternation between
greatest and least fixpoints. Unfortunately, the technique of [KV01] is too weak to be helpful here. Indeed,
formulas in � � cannot be expressed by looping automata. As we explain below, the known automata-
theoretic characterizations of � � and � � , and their relation to AFMC, cannot help us either.

1 An exact definition of the classes ��� and � � refers to the scope of the fixpoint operators. As we discuss in Section 4,
several different definitions are studied in the literature, and we follow here the definition of [Niw86].

2 The analogous complexity-theoretic result would be ��1� ! �01�3254�687 , where �91� and �:1� form the second level of
the polynomial hierarchy and 4 687 is the polynomial closure of NP [GJ79].



One such known characterization [Niw86,AN92] refers to the expressive power of the & -calculus over
trees with fixed finite branching degrees. Over such trees, the existential next-time modality of the & -
calculus can be parameterized with directions. A modality parameterized with direction 7 means that the
corresponding existential requirement should be satisfied in the 7 -th child of the current state. For example,
for a binary tree in which each node has a left child and a right child, the formula '�� * means that the left
child of the root satisfies * , and the formula &.-0/ * 1 '�� - means that some node in the rightmost path of
the tree satisfies * . The ability of directed & -calculus to distinguish between the various children of a node
makes it convenient to translate formulas to tree automata and vice versa. In particular, it is known that
directed- � � is as expressive as nondeterministic Büchi tree automata [AN90,Kai95]. Our interest in this
paper is in the expressive power of the & -calculus over arbitrary Kripke structures, possibly with an infinite
branching degree, which means that we cannot restrict attention to trees of fixed branching degrees.

An automata-theoretic framework for & -calculus without directions is suggested in [JW95], by means of
& -automata, which are essentially symmetric alternating tree automata in a certain normal form. A related
approach, in which alternation is more explicit, is presented in [Wil99]. Alternation allows the automaton
to send several requirements to the same child. Symmetry means that the automaton does not distinguish
between the different children of a node, and it sends copies to child nodes only in either a universal or
an existential manner. It also means that the automaton can handle trees with a variable and even infinite
branching degree. Formulas of & -calculus in �0� and ��� can be linearly translated to symmetric alternating
parity/co-parity automata of index � . While it is possible to translate & -calculus formulas to symmetric
alternating automata, it is not immediately clear how such a translation can help in a translating of � � !:� �
into the AFMC. By [AN92,KV99], formulas that are members of both directed- � � and directed- � � can
be translated to directed-AFMC. The proofs in [AN92,KV99] shows that given a formula � )5� � !(� � ,
we can construct two nondeterministic Büchi tree automata , and ,	- , for � and � � , and then combine
the automata to a weak alternating automaton equivalent to � . The combination of , and ,	- , however,
crucially depends on the fact that the automata are nondeterministic (rather than alternating) and the fact
that the automata can refer to particular directions in the tree.

The key to the results in [KV01] and here is a development of a theory of symmetric nondeterministic
tree automata. In [KV01], we defined symmetric nondeterministic looping automata, and showed how to
construct such automata for formulas in � � . In order to handle � � and � � , we define here symmetric non-
deterministic Büchi automata, and translate � � formulas to such automata. From a technical point of view,
symmetric nondeterministic tree automata are essentially symmetric alternating automata with transitions in
disjunctive normal form. Our main contribution is the development of various constructions for symmetric
nondeterministic tree automata and their application to the study of the expressive power of the & -calculus.
Since removal of alternation in Büchi automata should take into an account the acceptance condition of the
automaton and keep track of the states visited in each path of the run tree, the symmetry of the automaton
poses real technical challenges. We then extend the construction in [KV99] to symmetric automata and
combine the symmetric nondeterministic Büchi tree automata for � and � � to a symmetric weak alternat-
ing automaton for � . Again, symmetry poses real technical challenges. (In fact, while the construction in
[KV99] for the directed case is quadratic, here we end up with quadratically many states but exponentially
many transitions.) Once we have a weak symmetric alternating automaton for � , it is possible to generate
from it an equivalent AFMC formula [KV98].

2 Preliminaries

For a set
���

IN of directions, a
�

-tree is a nonempty set � ���
	 , where for every �
� 7 )�� with �/) �
	
and 7 ) � , we have � )�� . The elements of � are called nodes, and the empty word � is the root of � .
For every �&)�� , the nodes ��� 7 , for 7 ) � , are the children of � . A node with no children is a leaf .
The degree of a node � is the number of children � has. Note that the degree of � is bounded by � � � . For



technical convenience, we assume that the set
�

is finite3. A
�

-tree is leafless if it has no leafs. Note that
a leafless tree is infinite. A path � of a tree � is a set � � � such that ��)�� and for every � )�� , either
� is a leaf or exactly one child of � is in � . For two nodes � � and � � of � , we say that � � � � � iff � � is a
prefix of � � ; i.e., there exists �0) ��	 such that � � ��� � � � . We say that � � � � � iff � � � � � and � �

���� � .
A frontier of a leafless tree is a set ����� of nodes such that for every path � � � , we have � � !��
�8�	I .
For example, the set �$�	��

� I�
�
�� I�
 I�� I I�� is a frontier of the ��
�� I�� -tree ��
�� I�� 	 . For two frontiers � � and
� � , we say that � � ��� � iff for every node � � )�� � , there exists a node � � )�� � such that � � � � � . We
say that � � � � � iff for every node � � )�� � , there exists a node � � )�� � such that � � � � � . Note that
while � � � � � implies that � � �	� � and � �

���� � , the other direction does not necessarily hold. Given
an alphabet � , a � -labeled

�
-tree is a pair � ������� where � is a

�
-tree and �! �#" � maps each node

of � to a letter in � . We extend � to paths in a straightforward way. For a � -labeled
�

-tree � �$�%�&� and a
set ' � � , we say that � is an ' -frontier iff � is a frontier and for every node �/)(� , we have �:9 �.= ))' .
We denote by *,+.-�-%/ 9 � � �:= the set of all � -labeled

�
-trees, and denote by *,+.-�-0/ 9 ��= the set of all � -labeled�

-trees, for some
�

. For a set 1 � *,+.-�-0/ 9 �:= , we denote by 2�3�465 9,12= the set of � -labeled trees that are
not in 1 ; thus 2.3�475 9,12= �8*,+.-�-%/ 9 ��=:9;1 .

Automata on infinite trees (tree automata, for short) run on leafless � -labeled trees. Alternating tree
automata generalize nondeterministic tree automata and were first introduced in [MS87]. Symmetric al-
ternating tree automata [JW95,Wil99] are capable of reading trees with variable branching degrees. When
a symmetric automaton reads a node of the input tree it sends copies to all successors of that node or to
some successor. Formally, for a given set < , let = F 9,< = be the set of positive Boolean formulas over < .
For a set > � < and a formula ?5)	=�F 9,< = , we say that > satisfies ? iff assigning @BA�CED to elements
in > and assigning FHGJILK�D to elements in <M9�> satisfies ? . A symmetric alterating B̈uchi tree automaton
(symmetric ABT, for short) is a tuple N �O���P�.QR�.SB�.T ���VU�� where � is the input alphabet, Q is a finite
set of states, SW XQZY5�["\=�F 9]� (X� '^�_Y�Q,= is a transition function, T �5)�Q is an initial state, and
U � Q is a Büchi acceptance condition. Intuitively, an atom � (X�.T�� in S 9HT`�Va>= denotes a universal require-
ment to send a copy of the automaton in state T to all the children of the current node. An atom � 'b��T��
denotes an existential requirement to send a copy of the automaton in state T to some child of the current
node. When, for instance, the automaton is in state T , reads a node � with c children � � I�� / / /�� � ��c , and
S 9HT`���:9 �.=�=�� 9 (6�.T � = 
 9 'b��T � = 1 9 'b��T0dB= 
 9 'b�.T0e = , it can either send c copies in state T � to the nodes
�
� I�� / / /�� �
��c and send a copy in state T � to some node in ��� I�� / / /�� ����c or send one copy in state T�d to
some node in � � I�� / / /�� � ��c and send one copy in state T�e to some node in � � I�� / / /�� � ��c . So, while non-
deterministic tree automata send exactly one copy to each child, symmetric alternating automata can send
several copies to the same child. On the other hand, symmetric alternating automata cannot distinguish be-
tween the different successors and can send copies to child nodes only in either a universal or an existential
manner. Formally, a run of N on an input � -labeled

�
-tree � ������� , for some set

�
of directions, is an

9 � 	 YfQ = -labeled IN-tree � �Jg��ihj� such that �3) �Jg and h 9 � = � 9 �k�.T � = , and for all - )��Jg with h 9;- = � 9 �l��T =
and S 9HT`�%�:9 �.=�=��m? , there is a (possibly empty) set + � � (X� '^�RYnQ , such that + satisfies ? , and for all
9HoB��p =0) + , the following hold: (1) If o � ( , then for each 7 ) � , there is q*) IN such that - ��q ) �Jg
and h 9;- ��q =:��9 ��� 7r��p = . (2) If o � ' , then for some 7*) � , there is q*) IN such that - ��q*) �sg and
h 9;-
�%q = �J9 � � 7r��p = . Note that if ?0��@BA�CED , then - need not have children. This is the reason why �tg may
have leaves. Also, since there exists no set + as required for ? �uFHGvI,K�D , we cannot have a run that takes a
transition with ?0�8FHGJILK�D . For a run � �Jg��ihj� and an infinite path � � �ig , we define � 6lw>9,� = to be the set of
states that are visited infinitely often in � , thus T�)�� 6lw 9,�>= if and only if there are infinitely many -�)��
for which h 9;- = ) �uY��BTj� . A run � �Jg��ihj� is accepting if all its infinite paths satisfy the B̈uchi acceptance
condition; thus � 6lw 9,�>=�!)U ��ux . A tree � ������� is accepted by N iff there exists an accepting run of N on

3 As we detail in the proof of Theorem 6, due to the bounded-tree-model property for � -calculus, this technical as-
sumption does not prevent us from proving our main result also for general structures with an infinite branching
degree.



� �$�%�&� , in which case � ������� belongs to � 9,N�= . A tree � �$�%�&� is accepted by , iff there exists an accepting
run of N on � ������� , in which case � ������� belongs to the language, � 9,N�= , of N .

The transition function of an ABT N induces a graph ��� �!� Qb����� where � 9HT`�.T�- = if there is a5)*�
such that 9 (X�.T�- = or 9 'R�.T - = appears in S 9HT`�Va>= . An ABT is a weak alternating tree automaton (AWT, for
short) if for each strongly connected component � � Q of ��� , either � � U or � ! U � x [MSS86].
Note that every infinite path of a run of an AWT ultimately gets “trapped” within some strongly connected
component � of ��� . The path then satisfies the acceptance condition if and only if � � U .

The symmetry condition can also be applied to nondeterministic tree automata. In a symmetric non-
deterministic Büchi tree automaton (symmetric NBT, for short) , �O���_�.QR�.SB�.T ���VU�� , the state space is
Q&� ��� for some set + of micro-states, and the transition function S� jQ Y � " � � �
	 � � maps a state and a
letter to sets of pairs ��� ����� of subsets of + . The set � � + is the universal set and it describes the micro-
states that should be members in all the child states. The set � � + is the existential set and it describes
micro-states each of which has to be a member in at least one child state. Formally, given c<G I , a c -tuple
� + � � / / /�� +�
�� is induced by S 9HT`�Va>= if there is ��� �.�^� in S 9HT`�.a"= such that for all I�� � � c we have � � +�� ,
and for all p ) � there is I/� �0� c such that p/) +�� . Intuitively, when the automaton reads a node �
labeled a that has c children, and it proceeds from the state T , it has to take two choices. First, the automaton
chooses a pair ��� �.�^��) S 9HT`�Va>= . Then, it chooses a way to deliver � among the c children. Thus, we can
describe the two choices of the automaton by a pair ��� ��� � � � / / /��.��
��V� , where ��� ��� ��� � � 
 �����	)�S 9HT`�.a"= .Note that ��� may be empty. We denote by S�
 9HT`�Va>= the set of such pairs. A run of , on an input tree
� �$�%�&� is a Q -labeled tree � ���ihj� , such that h 9 � =3� T � , and for every � ) � with h 9 �.=3� T , there exists
� T � � / / /0��T�
��	)�S�
 9HT`�%��9 �.=�= such that for all I������8c , we have h 9 �
� � = �uT � . Note that each node of the
input tree corresponds to exactly one node in the run tree. A run � �$�Vhj� is accepting if all its paths satisfy
the Büchi acceptance condition. Thus, for all paths � , we have � 6lw 9,�>= ! U �Mx , where T )�� 6lw 9,�>= if
and only if there are infinitely many ��) � for which h 9 �.= �8T . Equivalently, � ���ihj� is accepting iff � ���ihj�
contains infinitely many U -frontiers � � � � � � / / / . For a state T�)�Q , let ,�� be , with initial state T .
We say that a symmetric NBT is monotonic if for every two states T and * such that T � * , we have that
� 9 ,�� = � � 9 , � = , and *+))U implies T�))U . In other words, the smaller the state is, the easier it is to accept
from it. Note that symmetric nondeterministic tree automata are essentially symmetric alternating automata
with transitions in disjunctive normal form (DNF); if we write the transition functions in DNF, then each
disjunct is a conjunction of universal and existential requirements, corresponding to a pair ��� �.�^� .

3 From symmetric NBT and co-NBT to symmetric AWT

Let , � ���P���_��Qb��T ��� # �VU�� and ,�- � ���P���_�.Q�- �.T -� � # -H�VU�-L� be two NBT, and let � Q � � � Q�- ��� 5 . In
[Rab70], Rabin studies the joint behavior of a run of , with a run of ,�- . Recall that an accepting run of ,
contains infinitely many U -frontiers �.� � � � � / / / , and an accepting run of ,	- contains infinitely many
U�- -frontiers �	-� � ��- � � / / / . It follows that for every labeled tree � ������� )�� 9 ,,=�!�� 9 ,	- = and accepting
runs � ���ihj� and � �$�Vh - � of , and , - on � �$�%��� , the joint behavior of � �$�Vhj� and � ���ih - � contains infinitely
many frontiers � �b� � , with � � � � � F � , such that � �$�Vhj� reaches an U -frontier and � �$�Vh - � reaches an
U�- -frontier between � � and � � F � . Rabin shows that the existence of 5 such frontiers, in the joint behavior
of some runs of , and ,	- , is sufficient to imply that the intersection � 9 ,,=�!�� 9 ,.- = is not empty. We now
extend Rabin’s result to symmetric automata.

Assume that , and ,�- above are symmetric NBT. We say that a sequence ����� / / /��.�! of frontiers
of � is a trap for , and ,	- iff � � �M� �j� and there exists a tree � �$�%�&� and (not necessarily accepting)
runs � ���ihj� and � �$�Vh - � of , and ,	- on � ������� , such that for every 
�� ���	5#" I , we have that � ���ihj�
contains an U -frontier �	� such that � ���$��� � � � F � , and � �$�Vh - � contains an U - -frontier � -� such that
�9� �%��-� � � � F � . We say that � ���ihj� and � �$�Vh - � witness the trap for , and ,	- .
Theorem 1. Consider two symmetric nondeterministic Büchi tree automata , and , - . If there exists a trap
for , and ,	- , then � 9 ,,= !�� 9 ,�- = is not empty.



Proof. The proof follows the same line of reasoning as in [Rab70]. For a state T/) Q , let , � be , with

initial state T , and similarly for T -�)8Q�- and ,�- ��� . We define a sequence of relations over Q Y Q - . Let� � � Q Y�Q	- . Then, � T`�.T�- �:) � � F � iff � T`��T -L�:) � � and there is a nonempty � -labeled
�

-tree � ������� ,
a frontier � � � , and runs � �$�Vhj� and � ���ih - � of , � and ,�- ��� on � �$�%��� , such that there is an U -frontier
� � � and an U�- -frontier ��- � � , such that for all � )�� , we have �Lh 9 �.=%�ih - 9 �.=V� ) � � . It is easy to
see that

� ��� �
� � �

� � / / / . Also, if
� � � � � F � , then

� � � � � F 
 for all c G8
 . In particular, since
� Q �sY�� Q	- � � 5 , it must be that

�  � �  F 
 for all c G 
 . As in [Rab70], it can now be shown that
� 9 ,,=�!�� 9 ,	- = �� x iff

�  �9HT ���.T -� = , and the result follows.

Theorem 1 is the key to the construction described in Theorem 2 below.

Theorem 2. Let , and , - be two symmetric monotonic NBT with � 9 , - = ��2�3�475 9 � 9 ,,=�= . There exists a
symmetric AWT N such that � 9,N2= � � 9 ,,= .
Proof. Let ,&�u���_�.QR�.T ��� # �.U�� and ,	-��u���P�.Q�-H�.T -� � # -H�VU�-L� , and let � Q � � � Q�- � � 5 . Also, let + and + -
be the micro-states of , and ,	- , respectively, thus Q �&� � and Q	-��&��� � . We define the symmetric AWT
N �u���P��� �;* ���.SB��� � as follows.

– � �MQ!Y Q	-;Y���
�� / / /�� � 5 " I�� and * �(�O� T ���.T -� �V
`� . Intuitively, a copy of N that visits the state
� T`�.T -H� �]� as it reads the node � of the input tree corresponds to runs h and h - of , and ,	- that visit
the states T and T�- , respectively, as they read the node � of the input tree. Let � � - ��� - � � / / /�� -
	 ��	 be
the path from � to � . Consider the joint behavior of h and h - on � . We can represent this behavior by a
sequence 
�� � ��� ����� - � �%����� � ��� - � �%� / / /��B����	 ��	 ��� - 	 ��	 � of pairs in QmYnQ - where �����uh 9;-��B= and � -� �uh - 9;-�� = .
We say that a pair ���%��� - � )(Q�YRQ - is an U -pair iff � ))U and is an U - -pair iff � - ))U - . We can partition
the sequence 
�� to blocks ������� � � / / /���� � such that we close block ��� and open block ��� F � whenever we
reach the first U - -pair that is preceded by an U -pair in ��� . In other words, whenever we open a block,
we first look for an U -pair, ignoring U.- -pairness. Once an U -pair is detected, we look for an U3- -pair,
ignoring U -pairness. Once an U�- -pair is detected, we close the current block and we open a new block.
Note that a block may contain a single pair that is both an U -pair and an U - -pair. The third element of a
state keeps track of the visits to blocks. When we visit � T`��T -H� �i� , the index of the last block in 
�� is � �� � ,and this block already contains an U -pair iff � is odd. We refer to � as the status of the state � T`��T`� �]� . For
a status � ) ��
�� / / /�� � 5 " I�� , let ��� � Q�Y)Q Y � �V� be the set of states with status � .

– In order to define the transition function S , we first define a function �J-���*  ��	" ��
�� / / /�� � 5 " I�� that
updates the status of states. For that, we first define the function �s-���*-  ��	" ��
�� / / /�� � 5n� as follows.

�J-���* - 9.� T`�.T - � �i��= �
 ! � If ( � is even and T �)�U ) or ( � is odd and T - �))U�- )
��" I If ( � is even and T:)�U and T - �))U�- ) or ( � is odd and T -�))U�- )
��" � If � is even and T�))U and T -�)�U�- .

Now, �s-���* 9.� T`�.T�- � �]��= �$#&%('t�)�s-���* - 9.� T`��T - � �]��=%� � 5 " I�� .
Intuitively, �s-���* updates the status of states by recording and tracking of blocks. Recall that the status �
indicates in which block we are and whether an U -pair in the current block has already been detected.
The conditions for not changing � or for increasing it to �*" I and ��"�� follow directly from the definition
of the status. For example, the new status stays � if the current � is even and � T`��T -L� is not an U -block,
or if � is odd and � T`�.T -L� is not an U�- -block. When � reaches or exceeds � 5 "�I , we no longer increase
it, even if T -�))U�- .
The automaton N proceeds as follows. Essentially, for every run � ���ih - � of , - , the automaton N guesses
a run � ���ihj� of , such that for every path � of � , the run � ���ihj� visits U along � at least as many times
as � �$�Vh -L� visits U�- along � . Thus, when we record blocks along � , we do not want to get stuck in an
even status. Since � 9 ,,= !�� 9 ,�- = ��x , then, by Theorem 1, no run � ���ihj� can witness with � ���ih -L� a trap
for , and , - . Consequently, recording of visits to U and U - along � can be completed once N detects
that 
�� contains 5 blocks as above.



Recall that Q&� ��� and Q	-������ � . For a set � � + , a partition of � is a set �B� � � / / /��.���H� with �9� � �
such that � � � ��� � � � � � , and for all I �&� �� q � 6 , we have � ��! � �0��x . Let 5���+ 9H� = be the set
of partitions of � . Consider a set �3- � + - and a partition � -�)W5���+ 9H��- = . For a set � � + , we say
that a partition � of � �(��- agrees with � - if for all p - � and p - � in ��- , we have that p - � and p - � are in the
same set in � iff they are in the same set in ��- . Let ����+.-�- 9H� ��� - = be the set of partitions of � ��� - that
agree with � - . For example, if � �#��p � � and � -��#�Bp � �%p�d�� , then the two possible partitions of �3- are� -� �	����p � �%p�d���� and � -� �	����p � �j�0��p�d���� . Then, ����+�-.- 9H� �	� -� = contains the two partitions ����p � �%p � ��p�d����
and ����p � �j�0��p � �%p�d���� , and ����+.-�- 9H� �	� -� = contains the three partitions ����p � �%p � �j�0��p�d���� , ����p � �%p�d��j�0��p � ��� ,
and ���Bp � �j�0��p � �j�0��p�d���� .
Now, let * ��� T`�.T�- � �]� be a state in � such that # 9HT`�Va>= �	�`��� � �.� � �%� / / /��B����
t����
v��� and # - 9HT -H�Va>= ��k����-� ��� -� �%� / / /0�B����-
 � �.� -
 � ��� . We distinguish between two cases.
 If � � � 5 " I or T �))U , then

S 9 *E�Va>= � �
��� � � � 
 � �� ������������� �� ���

��! 
��� � � 


 
" ����#��%$&$���� ��' � � � �`3 9 q�� q - ���J�*�s-���* 9 * =�=)(*#� where

�j3 9 qj�Hq - ���s��+ = � ( ��� ����� -� � ��+H��
 �, � " ' ��� � � 9,< !�� �B=%� � -� � � 9,< !�� -� � =%��+H� /
That is, for every choice of ,	- for a I���q -3� 6 - and for the way the existential requirements
in � -� � are partitioned, there is a choice of , for a I�� q � 6 and for the way the existential
requirements in � � are partitioned and combined with these in � -� � to a partition of � � �P� -� � , such
that the universal requirements in � � and ��-� � are sent to all directions, and existential requirements
that are in the same set in the joint partition of � � �(� -� � are sent to the same direction. Note that
the sets � � and ��-� � are sent along with the existential requirements. This guarantees that the states
that are sent in the existential mode correspond to the states that , and ,�- visit, and not to subsets
of such states.
 If � � � 5 " I and T3))U , then S 9 *E�.a"= � @BA�CED .

Note that 5���+ 9H� - = is exponential in � � - � , and the number of possible � )-����+.-�- 9H� �	��- = is exponential
in � ����- . Thus, the size of S is exponential in the sizes of # and # - .

– � ��Q YnQ	- Y � �  � is odd � . Thus, � makes sure that infinite paths of the run visits infinitely many
states in which the status is odd, thus states in which we are in the second phase of blocks. moshe2:

Each set ��� is a strongly connected component, thus the automaton N is indeed an AWT. Note that, by
the definition of � , a run is accepting iff no path of it gets trapped in a set of the form � � , for an even � ,
namely a set in which N is waiting for a visit of , in a state in U . The number of states of N is 8:9;5 � = .
We prove that � 9 ,,=�� � 9,N�= . We first prove that � 9 ,,= � � 9,N�= . Consider a

�
-tree � ������� . With every

run � ���ihj� of , on � �$�%�&� we can associate a run � �/. ��0 � of N on � �$�%�&� . Intuitively, the run � ���ihj� directs
� �1.;�20 � in the nondeterminism in S (that is, the choices of I �Wq � 6 and � )3����+�-.- 9H� ���	� -;= ). Formally,
recall that a run of N on a

�
-tree � �$�%��� is a 9 �uY �,= -labeled tree � �1. ��0 � , where a node -*) �/. with029;- = � � �l�;*s� corresponds to a copy of N that reads the node �$)�� and visits the state * . We define

� �1.;�20 � as follows.

– ��)��/. and 029 � = � 9 �`��� T ����T -� �.
`��= .
– Consider a node - ) �/. with 029;- =+� 9 �l�B� T`�.T - � �]��= . By the definition of � �2.;�20 � so far, we have
h 9 �.= �$� for T � � . Consider first the case that � � T . Let � � ��I�� / / /�� � � cv� be the children of � in � , and
let ���;�B� � � � / / /��.��
��V� ) # 
 9HT`���:9 �.=�= describe the choice , makes when it proceeds from the node � .
Thus, for each I�� �0� c , we have h 9 � ��� = � � ����� . Let q0� �s-���* 9.� T`�.T -H� �]��= . Consider the set

> � 4576 �98 5;: �< 8 = = = 8 : �>@?�?�AB �> � � � ' C � � ���
� 9 I������ ��� - � q
��=%� 9 I������ � � � � � - � � -� �Hq
��=%� / / / 9 cJ����� � � - � q
��=%� 9 cJ����� � ��
j� � - � � -
 �Hq
��=�� /



By the definition of S , the set > satisfies S 9.� T`�.T - � �]�%���:9 �.=�= 4. Let +�� � # -
 9HT - �%��9 �.=�= � , and let ����-�� �.� -�� � � / / /.��-�� 
 � ,
for I*� � � + , be the � -th pair in # -
 9HT -H���:9 �.=�= . For all I*� � � + and I*� � � c , we have
� - �@9��jc09 � ":I =�" � " I =%� - �@9��jc 9 � " I =�"�� =�� � �1. , with 029;- �@9��jc 9 � " I =�"�� ":I =�= � 9 � � ������� ����-�� � qk��=
and 029;- � 9���c 9 � "3IB=�"�� =�= � 9 � � �������(� ����� ��- � � ��- � � � qk��= . Note that the invariant that for all - )��1.
with 029;- =3� 9 �l��� T`��T - � �]��= , we have h 9 �.= � � for T � � , is maintained. If fact, we know that all the
nodes -�) �/. that correspond to copies of N that satisfy an existential requirement have T � � , and
node -+)��1. that correspond to copies of N that satisfy a universal requirement have T3� � iff the run
h sends no existential requirement to the corresponding direction.

Consider now the case where T&� � . Since , is monotonic, there is an accepting run � � � �ih �� � of , � on the
subtree of � with root � . We can proceed exactly as above, with � � � �ih �� � instead of � �$�Vhj� .

Consider a tree � �$�%�&� ) � 9 ,,= . Let � ���ihj� be an accepting run of , on � �$�%��� , and let � � . �20 � be
the run of N on � ������� induced by � ���ihj� (and the “subtree runs”, like � � � �Vh �� � above). It can be shown
that � �1.;��0&� is a legal accepting run. Indeed, since � ���ihj� and the subtree runs contains infinitely many U -
frontiers, and since (by the definition of monotonic automaton) we do not lose visits to U when we switch
to subset runs), no infinite paths of � � .;��0&� can get trapped in a set ��� for an even � .

It is left to prove that � 9,N�= � � 9 ,,= . For that, we prove that � 9,N�= ! � 9 ,	- = � x . Since � 9 ,,= �
2.3�475 9 � 9 ,	- =�= , it follows that every tree that is accepted by N is also accepted by , . Consider a tree
� �$�%�&� . With each run � �1. ��0 � of N on � �$�%��� and run � ���ih - � of ,	- on � �$�%��� , we associate a run � ���ihj�
of , on � ������� . Intuitively, � ���ihj� makes the choices that � � . �20 � has made in its copies that correspond
to the run � ���ih - � . Formally, � ���ihj� is such that h 9 � =�� T � , and for all � ) � with h 9 �.=��mT , we proceed
as follows. Let � � � I�� / / /�� � �`cr� be the children of � in � , and let h - 9 �.=3� T - . The run � ���ih -L� selects a
pair ����- ��� � -� � / / /��.� -
 �V�9) # -
 9HT -H���:9 �.=�= that ,	- proceeds with when it reads the node � . Formally, for all
I�� ���Wc , we have h - 9 � � � = � � - �P� -� .5 By the definition of h 9 �.= so far, the run � �2. �20 � contains a node
-+)��1. with 029;- = �m� �l��� T`�.T - � �]�V� for some status � . If S 9.� T`��T -H� �]�%�%��9 �.=�= ��@�A�C:D , we define the reminder
of � ���ihj� arbitrarily. Otherwise, let I � q -�� 6 - and � -�)m5���+ 9H� -� � = be such that ����-H��� � -� � / / /��.� -
 �V�
corresponds to q - and � - . By the definition of S , there are I � q � 6 and � ) ����+.-�- 9H�)���	� - = such that�j3 9 qj�Hq - ���s���s-���* 9.� T`�.T - � �]��= is satisfied and 0 proceeds according to q and � . Thus, if �B� �� � / / /��.� 
� � is the
partition of � � that corresponds to � , then �1. contains at least c nodes - ��o�� , for I(� ��� c , such that029;-���o�� = ��� � � �
����� � �_� �� � ��-8�P� -� ���s-���* 9.� T`�.T - � �]��=V�V� . For all I � �0� c , we define h 9 � � � = � � � �_� �� .
Note that the invariant about the runs � ���ihj� and � �1. ��0 � is maintained. Note also that if � �� �n� -� � x ,
then the existence of a node - ��o � as above is guaranteed from universal part of S , and if � �� �n� -� �� x ,
its existence is guaranteed from the existential part (in which case it is crucial that we sent the universal
requirements along with the existential ones).

We can now prove that � 9,N�= ! � 9 ,�- =	��x . Assume, by way of contradiction, that there exists a tree
� �$�%�&� such that � �$�%�&� is accepted by both N and , - . Let � �/.;��0&� and � ���ih - � be the accepting runs of N
and ,	- on � ������� , respectively, and let � ���ihj� be the run of , on � ������� induced by � �/.;�20 � and � ���ih - � .
We claim that then, � ���ihj� and � �$�Vh -L� witness a trap for , and ,	- . Since, however, � 9 ,,= ! � 9 �	- =��mx ,
it follows from Theorem 1, that no such trap exists, and we reach a contradiction. To see that � ���ihj� and
� �$�Vh - � indeed witness a trap, define ��� �Z� �j� , and define, for 
�� ��� 5#" I , the set � � F � to contain
exactly all nodes � for which there exists - )��/. such that either 0�9;- =�� � �l�B� 9,h 9 �.=%�Vh - 9 �.=%� � � " IB�V� and
h - 9 �.=�) U�- or 029;- = �M� �l��� 9,h 9 �.=%�ih - 9 �.=%� � �]�V� and h 9 �.=�) U and h - 9 �.=�) U�- . That is, for every path � of
� , the set � � F � consists of the nodes in which the � ’th block is closed in 
�� . By the definition of S , for all

4 Note that
�����
	���	
�
� ��� �����
�����

is a formula in ��� ������� �"!$#&%"�
, whereas ')( ��*+�-,.,-,/� 01!2#3%

, but the extension of
the satisfaction relation to this setting is straightforward: an atom

���4�
5��
is satisfied in ' if there is

*$6879680
with�:7;�:5<�>= ' , and an atom

�?���
5<�
is satisfied in ' if for all

*@6A726A0
, we have

�:7;�B5<�>= ' .
5 For a monotonic NBT, we assume that runs satisfy the requirements in transition function in an optimal way; thus

when C chooses to proceed with
�BD � �E�
F �� �/,/,/,/��F �G ��� =IH �G �:	 � � ���
�����

, it is indeed the case that J � �
��K�7�� 2 D � � F �L .
If J ���
��K.7��>M8DN� � F"�L , we can replace J � with a run for which the equation holds.




/� ��� 5 " I , the run � ���ihj� contains an U -frontier �	� such that � �	� �	� � � � F � and the run � �$�Vh - �
contains an U�- -frontier �	-� such that � � �%�	-� � �9� F � . Hence, ����� / / /0���! is a trap for , and ,	- .

4 From ��������� to the alternation-free � -calculus

The & -calculus is a propositional modal logic augmented with least and greatest fixpoint operators [Koz83].
Specifically, we consider a & -calculus where formulas are constructed from Boolean propositions with
Boolean connectives, the temporal operators 	 (“exists next”) and ( (“for all next”), as well as least ( & )
and greatest ( ) ) fixpoint operators. We assume that & -calculus formulas are written in positive normal form
(negation only applied to atomic propositions constants and variables). Formally, given a set ' � of atomic
proposition constants and a set ' �&� of atomic proposition variables, a & -calculus formula is either:

– @�A�C:D , F GJI,K�D , * or �0* for all *())' � .
– - for all - ))' �&� ;
– 
 
 � , 
 1 � , '�
 , or (�
 , where 
 and � are & -calculus formulas;
– &.-0/

 9;- = or ) - /�
�9;- = , where - ))' �&� and 
�9;- = is a & -calculus formula containing - as a free variable.

We classify formulas to classes �	� and �0� according to the nesting of fixpoint operators in them. Several
versions to such a classification can be found in the literature [EL86,Niw86,Bra98]. We describe here the
version defined in [Niw86]:

– A formula is in ����� ��� if it contains no fixpoint operators.
– A formula is in ��� F � if it is one of the following ? � , ? � 
 ? -� , ? � 1 ? -� , '&? � , ( ? � , &.-0/

�� F � 9;- = , 
�� F � 9,>2= � -��
�-� F � 
 , where ? � and ? -� are �����+�:� formulas, 
�� F � and 
�-� F � are ��� F � formulas, > � ' �&� , -/)n> ,

and no free variable of 
 -� F � is in > . In other words, to form ��� F � , we take �����+�0� and close under
Boolean and modal operations, &.- /�
�9;- = for 
�)/��� F � , and substitution of a free variable of 
 )/��� F �
by a formula 
�-�)/��� F � provided that no free variable of 
�- is captured by 
 .

– A formula is in �:� F � if it is one of the following ? � , ? � 
 ? -� , ? ��1$?�-� , ' ? � , ( ? � , ) - / � � F � 9;- = , � � F � 9,>2= � -��� -� F � 
 , where ? � and ? -� are �������0� formulas, � � F � and � -� F � are �0� F � formulas, > � ' �&� , -/)n> ,
and no free variable of � -� F � is in > .

Note that the “substitution step” suggests that the formula � � ) -0/ 9 '�9;-�
H9;&�� / * 13' � =�= is in both � � and
� � . To see that � is in � � (it is easy to see that � )5� � ), note that &�� / * 1 ' � is in � � , and hence also
in � � . In addition, the formula ) -0/ ':9;-3
 �.= , for �*)�' �&� , is in � � , and hence also in � � . The formula
&�� / * 1 ' � has no free variables. Then, we can substitute � by it, get � , and stay in � � . Note that for for
classifications that do not allow such a substitution, the formula � is not in � � . Note also that � is neither
in � � nor � � .

Finally, we say that a formula is in �:� if it is one of the following ? � , ? � 
 ? -� , ? � 1 ? -� , ' ? � , ( ? � ,
? 9,>�= � -�� ? -� 
 , where ? � and ? -� are �����(�0� formulas, > � ' �&� , -�) > , and no variable of ? -� is in > .
In other words, to form �:� , we take ����� �:� and close under Boolean and modal operations, and under
substitution that does not increase the alternation depth. Note that ��� is ML and � � is AFMC.

Essentially, ��� contains all Boolean and modal combinations of formulas in which there are at most ��"�I
alternations of & and ) , with the external fixpoint being a & . Similarly, ��� contains all Boolean and modal
combinations of formulas in which there are at most � alternations of & and ) , with the external fixpoint
being a ) . A & -calculus formula is alternation free if, for all atomic propositional variables - , there are no
occurrences of ) ( & ) on any syntactic path from an occurrence of &.- ( ) - , respectively) to an occurrence
of - . For example, the formula & �>/ 9 *�13&.-0/ 9 � 1(� < - =�= is alternation free (and is in � � ) and the formula
) �>/ &.-0/ 9�9 * 
��.= 1(� < - = is not alternation free (and is in � � ). The alternation-free & -calculus is a subset
of & -calculus containing only alternation-free formulas. The alternation-free & -calculus is a strict syntactic
fragment of � � !(� � . We now use Theorem 2 in order to show that � � !/� � is not more expressive than
the alternation free & -calculus. Thus, every formula in � � !+� � has an equivalent formula in AFMC.



For the alternation-free & -calculus, an automata-theoretic characterization in terms of symmetric alter-
nating weak automata is well known (a similar result is proven in [AN92] for directed trees):

Theorem 3. [KV98] A set 1 � *,+.-�-%/ 9 ��= can be expressed in AFMC iff 1 can be recognized by a symmet-
ric weak alternating automaton.

In [Kai95], Kaivola considered & -calculus formulas in which the ' modality is parameterized with
directions and translates � � formulas to NBT. In order to apply Theorem 2, we should translate � � formulas
to symmetric monotonic NBT. For that, we first use a known translation of � � formulas to symmetric ABT
(Theorem 4; a similar translation for the directed case is described in [Niw86,Tak86]), and then remove
alternation, with symmetry preserved (Theorem 5).

Theorem 4. [KVW00] Given a � � formula � , there is a symmetric alternating Büchi tree automaton N��
that accepts exactly all trees that satisfy � .

Miyano and Hayashi described a translation of alternating Büchi word automata to equivalent nondeter-
ministic Büchi word automata [MH84]. Mostowski extended the translation to tree automata [Mos84], and
we extend it further to symmetric tree automata. Since the nondeterministic automaton needs to keep track
of the states visited in each path of the run tree of the alternating automaton, the symmetry of the automaton
poses real technical challenges.

Theorem 5. Let N be a symmetric alternating Büchi tree automaton. There is a symmetric monotonic
nondeterministic Büchi tree automaton N�- , with exponentially many states, such that � 9,N:- = � � 9,N�= .
Proof. Let N �����P��+ ��p ��
s��S���� � . Then N�- �u���P��Qb���k�Hp �7
t� �j���j�.S -H����-L� , where

– Q � � � 	�� � ' � � . For a state T ) Q , let T�� I 
 ����pR �Hp�� IB��)�Tj� and T�� ��
 ���Bp  l�Hp�� �j��)�Tj� . Intuitively,
the automaton N�- guesses a run of N . At a given node � of a run of N�- , it keeps in its memory the set of
all the states of N that visit � in the guessed run. As it reads the next input letter, it guesses the way in
which an accepting run of N proceeds from all of these states. This guess induces the states that the run
of N - visit in the children of � . In order to make sure that every infinite path visits states in � infinitely
often, the states are tagged by I or � . States tagged by I correspond to copies that have already visit � ,
and states tagged by � correspond to copies that owe a visit to � . When all the copies visit � (that is,
all the states are tagged by I ), we change the tag of all states to � .

– Given + - � + , a�) � , and a pair ��� �.�^� of subsets of + , we say that ��� �.�^� covers + - and a if the set
� ( p  kp ) ��� � � '�p  `p )(�R� satisfies ��� � � � � S 9 p -H�Va>= .Now, S -E jQ�Y/��" �	�

	
� is defined, for all T�)(Q and a )/� , as follows.
 If T�� ��
 ��ux , then S - 9HT`�Va>= contains all pairs ��� ����� such that there is ��� � �.� � � that covers T�� I 
 and

a , and there is ��� � ��� � � that covers T�� ��
 and a , and the following hold.
 ���8�`�Hp�� I��; kp�) � � � 9 � � ! � =�� � �k�Hp�� �j�; `p�)�� � 9 � � .
 � �	�`�Hp�� I��; kp ))� � � 9H� � ! � =�� �(�k�Hp�� �j�; `p )(� � 9 � � .
 If T�� ��
 � x , then S - 9HT`�Va>= contains all pairs ���;���^� such that there is ��� � �.� � � that covers T�� I 
 and a
and the following hold.
 ���8�`�Hp�� I��; kp�) � � ! � � �(�k�Hp�� �j�; `p ) � � 9 � =�� .
 � �	�`�Hp�� I��; kp ))� � ! � � �(�k�Hp�� �j�; `p�)(� � 9 � =�� .– ��-	� �BT� ;T�� ��
�� xk� . Note that a sequence of states of N , which corresponds to the behavior of a

copy of N , changes the tag of its states from � to I when the copy visits a state in � . Also, once all the
sequences change the tag of their states to I , the attribution is changed back to � . Thus, � - guarantees
that all sequences visit � infinitely often.

It is easy to see that N is monotonic. Indeed, if T � T�- , then T�� I 
 � T - � I 
 and T�� ��
 � T - � � 
 . Thus, if a pair
���;���^� covers T�- � I 
 and a , then ���;���^� also covers T�� I 
 and a , and similarly for T�- � ��
 and T�� � 
 . Hence, given
an accepting run of ' ��� , we can make it an accepting run of N � by changing the labels of the root from
9 �`�.T - = to 9 �`��T = . In addition, if T - � ��
 is empty, so is T�� � 
 .



Remark 1. A related approach for translating & -calculus formulas into symmetric automata is taken in
[JW95] (see also [AN01]). First, & -calculus formulas are transformed into a disjunctive form. The removal
of conjunctions described there is similar to the removal of universal branches in alternating tree automata
(and indeed it involves the same determinization construction that is present in the automata-theoretic ap-
proach [MS87]). It is then shown that disjunctive & -calculus formulas correspond to & -automata. Our focus
here is on the translation of � � formulas to symmetric monotonic nondeterministic Büchi tree automata.
It is possible to recast our proof in an extension of the framework of & -automata [Wal03], but we find our
notion of symmetric nondeterministic automata more transparent.

Theorem 6. � � !+� ��" '6U # � .

Proof. Since AFMC is a syntactic fragment of � � ! � � , one direction is trivial. Let ' be a property ex-
pressible in � � ! � � . Given ? )5� � expressing ' , we can construct, by Theorems 4 and 5, a symmetric
monotonic NBT ,�� that accepts exactly all trees that satisfy ? . Also, ' ) � � implies that there is � ) � �
that is equivalent to � ? , so we can also construct a symmetric monotonic NBT , � that accepts exactly all
trees that do not satisfy ? . Clearly, � 9 , �"=	�Z2�3�475 9 � 9 ,�� =�= . Hence, by Theorem 2, there is a symmetric
alternating weak automaton N�� that is equivalent to ,�� . By Theorem 3, the automaton N�� can be translated
to a formula 
 in AFMC such that a tree satisfies 
 iff it is accepted by ,�� iff it is not accepted by , � . We
claim that 
 is logically equivalent to ? over arbitrary structures (in particular, structures with an infinite
branching degree). To see this, assume, by way of contradiction, that 
 is not logically equivalent to ? .
Then, either ?�
/� 
 or 
(
�� is satisfiable in some general structure. But then, either ?�
/� 
 or 
(
�� is
satisfiable by a tree model [SE84] of a finite branching degree, contradicting the fact that a tree satisfies 

iff it is accepted by ,�� iff it is not accepted by , � .

Remark 2. Since it is also known that the & -calculus has the finite-model property [KP84], it follows that
Theorem 6 can also be relativized to finite Kripke structures.

5 Concluding Remarks

We showed that � � ! � �+" AFMC. In other words, if we can specify a property � both as a least fix-
point nested inside a greatest fixpoint and as a greatest fixpoint nested inside a least fixpoint, we should
be able to specify � also with no alternation between greatest and least fixpoints. This offers an elegant
characterization of alternation freedom. The key to our results is a development of a theory of symmetric
nondeterministic Büchi tree automata. A technical outcome of this theory is that the blow-up of our con-
struction, i.e., going from formulas in � � !+� � to equivalent formulas in AFMC is doubly exponential. It
would be interesting to try to improve this complexity or to prove its optimality.

Combining our result here with the result in [KV01] ( � � ! � � " ML) suggests the possibility of a
general coalescence result for the & -calculus hierarchy. Recall the definition of ��� as the closure of ��� !��0�
under Boolean and modal operations and under alternation-preserving substitutions. Then we have that
��� !��0� " ����� � for � �	I�� � . It is tempting to conjecture that this holds for all ��� 
 , in analogy for such
coalescence for the quantifier alternation hierarchy of first-order logic (cf. [Add62]). As is shown, however,
in [AS03], this is not the case for �	� � .
Acknowledgements: We are grateful to J.W. Addison for valuable discussions regarding the first-order
quantifier-alternation hierarchy and to I. Walukiewicz for discussions regarding & -automata.
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[Niw86] D. Niwiński. On fixed point clones. In Proc. 13th ICALP, LNCS 226, pages 464–473. 1986.
[Rab70] M.O. Rabin. Weakly definable relations and special automata. In Proc. Symp. Math. Logic and Foundations

of Set Theory, pages 1–23, 1970.
[Rog67] H. Rogers, Theory of recursive functions and effective computability. McGraw-Hill, 1967.
[SE84] R.S. Street and E.A. Emerson. An elementary decision procedure for the � -calculus. In Proc. 11th ICALP,

LNCS 172, pages 465–472, 1984.
[Tak86] M. Takahashi. The greatest fixed-points and rational � -tree languages. TCS 44, pp. 259–274, 1986.
[VW86] M.Y. Vardi and P. Wolper. An automata-theoretic approach to automatic program verification. In Proc. 1st

LICS, pages 332–344, 1986.
[Wal03] I. Walukiewicz. Private communication, 2003.
[Wil99] T. Wilke. CTL � is exponentially more succinct than CTL. In Proc. 19th FST& TCS, LNCS 1738, pages

110–121, 1999.


