
Attention-based Coverage Metrics ?

Shoham Ben-David1??, Hana Chockler2, and Orna Kupferman3

1 David Cheriton School of Computer Science, University of Waterloo, Canada
2 Department of Informatics, King’s College, London, UK.

3 School of Computer Science and Engineering, Hebrew University, Jerusalem, Israel

Abstract. Over the last decade, extensive research has been conducted
on coverage metrics for model checking. The most common coverage
metrics are based on mutations, where one examines the effect of small
modifications of the system on the satisfaction of the specification. While
it is commonly accepted that mutation-based coverage provides adequate
means for assessing the exhaustiveness of the model-checking procedure,
the incorporation of coverage checks in industrial model checking tools
is still very partial. One reason for this is the typically overwhelming
number of non-covered mutations, which requires the user to somehow
filter those that are most likely to point to real errors or overlooked
behaviors.
We address this problem and propose to filter mutations according to
the attention the designer has paid to the mutated components in the
model. We formalize the attention intuition using a multi-valued set-
ting, where the truth values of the signals in the model describe their
level of importance. Non-covered mutations of signals of high importance
are then more alarming than non-covered mutations of signals with low
intention. Given that such “importance information” is usually not avail-
able in practice, we suggest two new coverage metrics that automatically
approximate it. The idea behind both metrics is the observation that de-
signers tend to modify the value of signals only when there is a reason
to do so. We demonstrate the advantages of both metrics and describe
algorithms for calculating them.

1 Introduction

Today’s rapid development of complex hardware designs requires reliable verifi-
cation methods. A major challenge in these methods is to make the verification
process as exhaustive as possible. Exhaustiveness is crucial in simulation-based
verification [5]. There, coverage metrics have been traditionally used in order
to monitor progress of the verification process, estimate whether more input
sequences are needed, and direct simulation towards unexplored areas of the
design [12, 22, 24]. During the last decade, there has been an extensive research

? This work is partially supported by the EC FP7 programme, PINCETTE 257647,
and by the ERC (FP7/2007-2013) grant agreement QUALITY 278410.

?? Shoham Ben-David is grateful to the Azrieli Foundation for the award of an Azrieli
Fellowship.

on coverage metrics for model checking. Such metrics are used for assessing the
exhaustiveness of the specification, and information obtained from them is used
in order to reveal behaviors of the system that are not referred to in the speci-
fication [19, 18, 10, 16, 21, 7].

The most common coverage metrics for model checking are based on mu-
tations, where one examines the effect of small modifications of the system on
the satisfaction of the specification. For example, state-based mutations flip the
value of some (control or output) signal, and logic-based mutations fix the value
of a signal to 0 or 1 [10, 21]. While there is an agreement that mutation-based
coverage provides adequate means for assessing the exhaustiveness of the model-
checking procedure, the incorporation of coverage checks in industrial-strength
model-checking tools is still very partial. One possible reason for this is the fact
that coverage checking requires model checking many mutations. As it turns out
though, the fact the mutations are only slightly different from the original sys-
tem enables a reuse of much of the information gathered during model checking
and leads to coverage algorithms that do not incur a significant computational
overhead on top of the model-checking procedure [9, 6, 7]. Another reason for
the slow integration of coverage checks in practice, is the overwhelming number
of non-covered mutations that current metrics involve [3], a problem reported
also in the context of test-case generation using model checking [15]. Typically,
a user gets a long list of mutations that are non-covered, and is expected to
analyze them and filter out the non-interesting ones. When a significant portion
of the non-covered mutations are false alarms, it may cause the user to disregard
coverage information altogether, potentially causing real problems to be ignored.

We address this problem and propose to filter mutations according to the
attention the designer has paid to the mutated components in the original model.
We first formalize the intuition of attention using a multi-valued setting. In this
setting, the truth values of the signals in the model are real numbers taken
from the range [−1, 1]. The higher the absolute value of a signal is, the “more
intentional” this value is. In particular, 1 stand for “very intentional true”, −1
for “very intentional false”, and 0 corresponds to “don’t care”. We consider
specifications described by means of formulas in linear temporal logic (LTL). The
semantics of LTL can be adjusted to the multi-valued setting, lifting the intention
interpretation from the output signals to the whole specification [1]. Recall that
in the traditional approach to coverage, we check coverage by flipping the value
of a signal in a state, and checking whether the specification is satisfied in the
new model. In the multi-valued setting, mutations reduce the absolute value of
the truth value of a signal, and we check the effect of this on the truth value of
the specification. Non-covered mutations of signals with high intention are then
more alarming than non-covered mutations of signals with low intention.

While the multi-valued setting offers a very precise ranking of mutations,
it requires the user to manually provide the intention information, which is a
serious drawback. Accordingly, we suggest two new coverage metrics that auto-
matically approximate the intention information. The idea behind both metrics
is the observation that designers tend to modify the value of signals only when

there is a reason to do so. Thus, the value of a signal that has just been as-
signed is “more intentional” than the value of a signal that maintains its value.
Before we turn to describe the new coverage metrics, let us point out that the
above “lazy assignment” assumption, which is the key to our two metrics, is
supported by power gating and clock gating considerations. Power consumption
is an important consideration in modern chip design, from portable servers to
large server farms. As the chips become more complex, the cost of powering a
server farm can easily outweigh the cost of the servers themselves, thus design
teams go to great lengths in order to reduce power consumption in their designs.
Existing power saving techniques can be divided into electrical, such as using
more efficient transistors, and logical, which attempt to introduce power-saving
changes into designs without changing their logic. Logical power saving tech-
niques attempt to reduce the number of changes in the values of signals, the
main source of power consumption in chips. The most widely researched logical
power saving techniques are clock gating, in which a clock is prevented from
making a “tick” if it is redundant (c.f., [2]), and power gating, in which whole
sections of the chip are powered off when not needed and then powered on again
[20, 13]. The goal of these techniques is to make sure that a change in the value
of a signal happens only when there is a good reason for it, that is, leaving the
value of a signal unchanged would result in a different logic than intended by
the designer.

Our first coverage metric is stuttering coverage, where mutations flip the value
of a signal along a sequence of states in which the signal is fixed (rather than
flipping the value in a single state). Consider, for example, the property “every
request is eventually granted” and a chip design where “grant” signals, once
raised, only fall when the current transaction terminates. In this design, “grant”
will stay up for several consecutive cycles. Applying the traditional mutation-
based coverage metrics results in all these states being identified as non-covered
with respect to the property and the “grant” signal. On the other hand, con-
sidering mutations that flip the value of a signal in the whole block at once will
filter out these blocks, resulting in fewer and more meaningful coverage results.

Our second metric is applied to netlist mutations. Such mutations set a signal
in the netlist to a constant value or make it “free” to change nondeterministically
in every cycle. Here, the goal is to define as interesting mutations of signals whose
values have received a lot of attention of the designer. We associate attention
with the frequency in which signals flip their value. Thus, our metric filters
mutations of signals that are not often flipped. We formalize “often” by means
of windows of a fixed length along the computation.

We discuss the advantages of both metrics and describe algorithms for calcu-
lating them. Our algorithms output a “pass” result if all mutations are covered.
If a non-covered block or signal (in the first and the second metrics, respec-
tively) is found, it is presented as a counterexample. Note that, in contrast to
existing algorithms for computing coverage, our algorithms do not output all
non-covered mutations at once. There are two advantages to this strategy. First,
it allows us to construct algorithms with the same complexity as model checking

(essentially, we reduce coverage computation to model checking a property of
almost the same size as the original one). Second, it mimics the real verification
process, where bugs are found and corrected one by one. Since fixing a coverage
hole results in a modification of either a property or a design, the rest of the
coverage holes might become irrelevant, and the verification process should be
re-executed.

2 Preliminaries

2.1 Linear temporal logic

We specify on-going behaviors of reactive systems using the linear temporal logic
LTL [23]. Formulas of LTL are constructed from a set AP of atomic proposition
using the usual Boolean operators and the temporal operators X (“next time”),
U (“until”), G (“always”), and F (“eventually”). We define the semantics of
LTL with respect to a computation π = σ0, σ1, σ2, . . ., where for every j ≥ 0,
we have that σj is a subset of AP , denoting the set of atomic propositions that
hold in the j’s position of π. We use π |= ψ to indicate that an LTL formula ψ
holds in the path π.

2.2 Circuits

We model reactive systems by sequential circuits. A sequential circuit (a circuit,
for short) is a tuple S = 〈I,O,C, θ, ρ, δ〉, where I is a set of input signals, O is a
set of output signals, and C is a set of control signals that induce the state space
2C . The sets I and C and the sets I and O are disjoint. Accordingly, θ ∈ 2C

is an initial state, ρ : 2C × 2I → 2C is a deterministic transition function, and
δ : 2C → 2O is an output function. Possibly O ∩ C 6= ∅, in which case for all
x ∈ O ∩ C and t ∈ 2C , we have x ∈ t iff x ∈ δ(t). Thus, δ(t) agrees with t on
signals in C. We partition the signals in O ∪ C into three classes as follows. A
signal x ∈ O \ C is a pure-output signal. A signal x ∈ C \ O is a pure-control
signal. A signal x ∈ C ∩O is a visible-control signal. While pure output signals
have no control on the transitions of the system, a specification of the system
can refer only to the values of the pure-output or the visible-control signals.

An input sequence i0 · i1 · i2 · · · ∈ (2I)ω induces a run s0, s1, s2, . . . of states
of S, where s0 = θ and sj+1 = ρ(sj , ij) for all j ≥ 0. Recall that only signals in
I ∪O are visible, thus LTL formulas that specify S are over the set AP = I ∪O
of atomic propositions, and a computation of S is a sequence σ0, σ1, σ2, . . . ∈
(2I∪O)ω, such that there is an input sequence i0 · i1 · i2 · · · ∈ (2I)ω, inducing the
run s0, s1, s2, . . ., and σj = ij ∪ δ(sj) for all j ≥ 0.

2.3 Mutations in circuits

Let S be a circuit that satisfies a specification ϕ. We consider two types of
mutations – state-based and logic-based – reflecting the possible ways in which
a small change (mutation) can be introduced into S (see also [10, 21]).

State-based mutations. For a circuit S = 〈I,O,C, θ, ρ, δ〉, a state t ∈ 2C ,
and a signal x ∈ C, we define the x-twin of t, denoted twinx (t), as the state t′

obtained from t by dualizing the value of x. Thus, x ∈ t′ iff x 6∈ t. A state-based
mutation of x in t replaces t by twinx (t). The resulting mutant circuit is denoted
by S̃t,x. The effect of this mutation for a pure-output signal x is changing the
value of x in t. Mutations that dualize control signals introduce more aggresive
changes. Indeed, dualizing a control signal x in a state s in S causes all transitions
leading to t to be directed to its t-twin. In particular, the state t is no longer
reachable in S̃t,x. Formally, given S, s, and a signal x ∈ O ∪ C, we define the

dual circuit S̃s,x = 〈I,O,C, θ̃, ρ̃, δ̃〉 as follows.

– If x is a pure-output signal, then θ̃ = θ, ρ̃ = ρ, and δ̃ is obtained from δ by
dualizing the value of x in s, thus x ∈ δ̃(s) iff x 6∈ δ(s).

– If x is a pure-control signal, then δ̃ = δ, and θ̃ and ρ̃ are obtained by replacing
all the occurrences of s in θ and in the range of ρ by twinx (s). Thus, if θ = s,
then θ̃ = twinx (s); otherwise, θ̃ = θ. Also, for all s′ ∈ 2C and i ∈ 2I , if
ρ(s′, i) = s, then ρ̃(s′, i) = twinx (s); otherwise, ρ̃(s′, i) = ρ(s′, i).

– If x is a visible-control signal, then we do both changes. Thus, δ̃ is obtained
from δ by dualizing the value of x in s, and θ̃ and ρ̃ are obtained by replacing
all the occurrences of s in θ and in the range of ρ by twinx (s).

For a specification ϕ such that S |= ϕ, a state t is x-covered by ϕ if S̃t,x does
not satisfy ϕ.

Note that it makes no sense to define coverage with respect to observable
input signals. This is because an open system has no control on the values of the
input signals, which just resolve the external nondeterminism of the system.

Logic-based mutations. These mutations describe changes resulting from
freeing a control signal of S or fixing it to 0 or 1. Freeing a control signal
is, from the design perspective, equivalent to turning this signal into an input
signal. Fixing a signal to 0 or to 1 is known as “stuck-at-0” and “stuck-at-1”
mutations, respectively, and these are the most commonly-used fault models in
fault simulation and automatic test pattern generation (ATPG). For a circuit
S = 〈I,O,C, θ, ρ, δ〉 and a control signal x ∈ C, the mutant circuits are defined
according to the type of the logic-based mutation applied to S as follows:

– The x-freed circuit Sx = 〈I ′, O,C ′, θ′, ρ′, δ′〉 is obtained from S by moving
x to the set of input signals (that is, I ′ = I ∪ {x}, and C ′ = C \ {x}),
and removing it from the definition of θ, from the range of ρ, and from the
domain of δ.

– The x-fixed-to-1 circuit Sx,1 = 〈I,O,C, θ′, ρ′, δ〉 is obtained from S by replac-
ing all the occurrences of x in θ and in the range of ρ by 1; i.e., θ′ = θ∪{x},
and for all s ∈ 2C and i ∈ 2I , we have ρ′(s, i) = ρ(s, i) ∪ {x}.

– The x-fixed-to-0 circuit Sx,0 is defined by replacing all the occurrences of x
in θ and in the range of ρ by 0.

A control signal x is nondet-covered if Sx does not satisfy ϕ, 1-covered if Sx,1
does not satisfy ϕ, and 0-covered if Sx,0 does not satisfy ϕ.

2.4 Mutations in netlists

Hardware designs are frequently represented as netlists. A netlist is a collection
of primitive combinational elements. And-Inverter graphs (AIGs) are often used
to store the netlist; i.e., the netlist consists of input gates, AND-gates, invert-
ers, and memory elements (registers). Formally, a netlist N is a directed graph
〈VN , EN , τN 〉, where VN is a finite set of vertices, EN ⊆ VN × VN is a set of
directed edges, and τN : VN → {AND, INV,REG, INPUT} maps a node to its
type. The in and out degree of the vertices respects the expected requirements
from the corresponding type.

When a design is modeled as a netlist, the smallest possible mutation is
changing the type of a single node. We use the definition from [7], where the
mutation changes the type of a single node in VN to an input. This new input
can be kept open, in which case its value is non-deterministically set at each
cycle, or it can be fixed to 0 or 1.

Netlists can be naturally represented as a special case of sequential circuits,
where the registers are viewed as control signals, that is, a state of the netlist
is defined by a combination of values of the registers. Changing the type of a
single node in a netlist can, therefore, be viewed as a logic-based mutation in
the corresponding circuit.

3 Attention-Based Coverage

Ranking of coverage results according to the level of alarm they should cause
could have been a much easier task if the designer of the verified system had pro-
vided information regarding his understanding of the importance of the different
components of the system. In this section we develop a multi-valued approach
for ranking of coverage results in case such an information is provided. We are
aware of the fact that current modeling formalisms do not require the user to pro-
vide such an information. We still find it interesting and useful, both as further
motivation to future modeling standards (especially given the tendency today
to move to multi-valued approaches), and as a starting point for methods that
approximate the multi-valued settings without information from the user, like
those we suggest in Sections 4 and 5.

3.1 Multi-valued circuits

For our model of intention based coverage, we assume that the assignments to the
pure-output variables are not Boolean. Rather, each output signal is assigned a
real value in the range [−1, 1], reflecting the level of importance that the designer
gives to this assignment. Formally, in a multi-valued circuit S = 〈I,O,C, θ, ρ, δ〉,
the output function is δ : 2C → [−1, 1]O, which is not Boolean. Note that
C ∩ O need not be empty, in which case we require, for all states s ∈ 2C and
visible-control signals x ∈ C ∩O, that either x ∈ s and δ(s)(x) ≥ 0 or x 6∈ s and
δ(s)(x) ≤ 0. Note that the values of signals in I are still Boolean. For uniformity,

we map them to {−1, 1}, in the expected way: a computation of the multi-valued
circuit S is a sequence σ0, σ1, σ2, . . . ∈ ([−1, 1]I∪O)ω, such that there is an input
sequence i0 · i1 · i2 · · · ∈ (2I)ω, inducing the run s0, s1, s2, . . ., and for all j ≥ 0,
the assignment σj describes the values of the input and output signals in the
j-th position in the run. Thus, for an input signal x ∈ I we have that σj(x) is 1 if
x ∈ ij and is −1 if x 6∈ ij , and for an output signal x ∈ O, we have σj(x) = δ(sj).

Intuitively, the higher the absolute value of a signal is, the “more intentional”
this value is. In particular, 1 stand for “very intentional true”, −1 for “very
intentional false”, and 0 corresponds to “don’t care”. The semantics of LTL can
be adjusted to the multi valued setting, lifting the intention interpretation from
the output signals to the whole specification. We use val(π, ϕ) to denote the value
(in [−1, 1]) of an LTL formula ϕ in a computation π = σ0, σ1, . . . ([−1, 1]I∪O)ω.
The value val(π, ϕ) is defined by induction on the structure of ϕ as follows (c.f.,
[1]).

– val(π, p) = σ0(p),
– val(π,¬ϕ1) = −val(π, ϕ1),
– val(π, ϕ1 ∧ ϕ2) = min{val(π, ϕ1), val(π, ϕ2)},
– val(π,Xϕ1) = val(π1, ϕ1),
– val(π, (ϕ1 Uϕ2)) = max{val(π, ϕ2),min{val(π, ϕ1), val(π1, (ϕ1 Uϕ2))}}.

Note that, by De-Morgan rules, we have that val(π, ϕ1 ∨ ϕ2) = max{val(π, ϕ1,
val(π, ϕ2)}, which matches our intuition. When ϕ is propositional, we sometimes
use val(s, ϕ) (rather than val(π, ϕ)), for the first state s of π.

Example 1. Consider the computation π in Figure 1 and the property ϕ =
G(p → Fq). The signal q is “strongly false” in states s0, s1, and s2, and is
“strongly true” in the state s3. Afterwards, the value of q reduces to 1

2 , indi-
cating a “weaker true”, possibly because the value is kept on only in order to
reduce power consumption or as a back-up for the case that the q that is true
in state s3 would fail.

Fig. 1. A multi-valued computation.

We compute the value of ϕ on π. By the multi-valued semantics, we have

val(π, ϕ) = min
0≤i≤5

{val(πi,¬p ∨ Fq)}.

Opening val(πi,¬p ∨ Fq), we get

val(π, ϕ) = min
0≤i≤5

{max
i≤j≤5

{val(sj ,¬p), val(sj , q), . . . , val(s5, q)}}.

In all indices i that correspond to states in which p is strongly false we get that
the maximum is 1 (since p is negated in sj , its −1 value contributes 1). When
i = 0, we have that val(s0, p) = 3

4 . But since val(s3, q) = 1, the maximal value
in max{val(s0,¬p), val(s1, q), val(s2, q), val(s3, q), val(s4, q), val(s5, q)} is still
1. Hence, the value of ϕ on π is 1.

Theorem 1. The model-checking problem for multi-valued LTL has the same
complexity as the model-checking problem for regular (Boolean) LTL.

Proof Sketch. Essentially, the states of the automata constructed from the LTL
specifications are now extended to be associated with functions from formulas
in the closure of the specification to values in [−1, 1], rather than with subsets
of the formulas in the closure [1]. ut

3.2 Multi-valued coverage

We now turn to the question of coverage in multi-valued circuits. Recall that in
a regular (Boolean) model we check coverage by flipping the value of a signal
in a state, and checking whether the specification is satisfied in the new model.
In the multi-valued setting, mutations reduce the importance of a truth value
of a signal, and check the effect of this on the truth value of the specification.
Consider the example in Figure 1 again. If we reduce the truth value of q is state
s3 we expect to get a different coverage result from the case where the truth
value of q is reduced in state s4, since the value in s3 is more important than
that in s4 to begin with.

We parameterize the coverage query by two values v1, v2 ∈ (0, 1]. The first
value, v1, describes the change in the truth value of the mutated signal. The
second value describes the threshold for reporting non-coverage. That is, if after
changing the truth value of the signal by v1, the change in the truth value of the
specification is less than v2, then the signal is non-covered.

We now turn to formalize this intuition. For a state s ∈ 2C and an output
signal x ∈ O with |δ(s)(x)| ≥ v1, we define the v1-mutated value of x in s
as the value obtained from δ(s)(x) by “bringing it closer to 0” by changing
it by at most v1. Note that since |δ(s)(x)| ≥ v1, we do not have to worry
about a signal switching its positivity in the definition below. Also note that
the assumption about |δ(s)(x)| being at least v1 matches the intuition behind
multi-valued coverage, as it makes little sense to compute the effect of mutating
signals that the designer does not care much about.

Formally,

valv1(s, x) =

{
δ(s)(x)− v1 if δ(s)(x) ≥ 0.
δ(s)(x) + v1 if δ(s)(x) < 0.

For a circuit S we define S̃s,x,v1
to be the circuit obtained from S by replac-

ing δ(s)(x) with valv1(s, x). It is not hard to prove that reducing the absolute
value of a signal by v1 can reduce the absolute value of the whole specifica-
tion by at most v1. Formally, for all circuit S, states s, signals x, values v1,

and specifications ϕ, we have that 0 ≤ val(S, ϕ) iff 0 ≤ val(S̃s,x,v1 , ϕ) and

|val(S, ϕ) − val(S̃s,x,v1 , ϕ)| ≤ v1. Hence, checking (v1, v2)-coverage, we take
v2 ≤ v1.

We say that x is (v1, v2)-covered in a state s by a formula ϕ in the model S
if |val(S, ϕ)− val(S̃s,x,v1 , ϕ)| ≥ v2.

Example 2. Consider again the computation π appearing in Figure 1. Suppose
we want to evaluate the coverage of the signal q in state s3 with respect to the
specification ϕ = G(p→ Fq) and the parameters (1

2 ,
1
4). The value of q in s3 is

reduced to 1
2 and we get that max{val(s0,¬p), val(s1, q), val(s2, q), val(s3, q),

val(s4, q), val(s5, q)} is now 1
2 , while the other values in the external minimum

remain 1, so the value of ϕ in the mutated computation is min{ 12 , 1, 1, 1, 1} = 1
2 .

Recall from Example 1 that val(π, ϕ) = 1. Thus |val(π, ϕ) − val(π̃s4,q, 12 , ϕ)| =

1− 1
2 ≥

1
4 . Accordingly, we get that q is (1

2 ,
1
4)-covered in s3 with respect to ϕ,

we do not report a hole here, which matches our intuition.
Let us now check the (1

2 ,
1
4)-coverage of q in s4. It is easy to see that val(π̃s4,q, 12 , ϕ)

is still 1. Thus, |val(π, ϕ)− val(π̃s4,q, 12 , ϕ)| = 0 < 1
4 . Accordingly, we report that

q is (1
2 ,

1
4)-non-covered in s4, which matches our intuition.

4 Stuttering Coverage

In a circuit, a mutation S̃s,q switches the value of a visible control signal q in
the state s of the circuit S (see Section 2.3). In many cases, such a mutation
is too subtle, resulting in a spurious ‘non-covered’ result. To see this, consider
the formula ϕ = G(p→ Fq), and the execution path π shown in Fig. 2. Clearly,
π |= ϕ. If we apply the standard mutation based coverage check, we shall flip the

Fig. 2. An execution path in which existing metrics declare that q is not covered by
G(p → Fq).

value of q in each of the states s3, s4 or s5, and find that none of them is covered.
It could be the case however, that q was left active simply because there was no
reason to deactivate it, and therefore the ‘non-covered’ result that we report is
a false alarm.

In this section we introduce stuttering coverage, which regards a block of
states that agree on the value of a propositional formula as one unit, and flips
their value together. In the case of Figure 2, the value of q will be flipped in all
the states s3, s4, and s5 together, causing ϕ to fail on the mutated path, and thus
we get that q is covered in all states. Consider now a slightly modified example,
where q holds in states s3 and s5, but not in s4. In this case, the stuttering

coverage metric will indicate that both s3 and s5 are not covered, which seems a
reasonable strategy, since the designer deliberately switched q off and on again.

Stuttering coverage is related to statement coverage metrics used in the con-
text of code coverage [4, 10]. There, a mutation modifies or skips an assignment
statement in the code. The effect of this in the corresponding circuit is a change
in the block of states that starts with the execution of the statement and ends
when the next assignment takes place. Unlike stuttering coverage, all blocks as
above are affected. In contrast, stuttering coverage flips the value of q in a sin-
gle block. Also, the boundaries of the block are determined by a propositional
formula that may depend not only in q. Below we present the formal definition
of stuttering coverage and suggest an algorithm to easily detect it.

4.1 Finding stuttering coverage holes

We examine mutations that flip the value of q in a sequence of states – a block.
In the example, we define blocks as maximal sequences of states along which
the mutated signal does not change its value. Here we generalize the setting to
consider blocks defined by a predicate on the state space. For a Boolean assertion
β over C, let ||β|| denote the set of states that satisfy β. We are going to include
in a block a sequence of states that are all satisfying β. That is, in stuttering
coverage, we switch the value of q in β-blocks instead of in a single state. Note
that typically there may be many β-blocks in a circuit, each suggesting a different
mutation, and our metric considers them all.

Let S = 〈I,O,C, θ, ρ, δ〉 be the circuit, q the signal to be flipped and β the
Boolean expression. We construct a mutant circuit S ′ = 〈I ′, O′, C ′, θ′, ρ′, δ〉 that
embodies all the mutations corresponding to a flip of q in a β-block. Essentially,
as suggested in [8], we do so by nondeterministically guessing when a β-block
starts. We now describe the details of the construction. We define I ′ = I ∪
{x} and O′ ∩ C ′ = O ∩ C ∪ {start, hold}. The new input signal x is used to
nondeterministically select a starting point for a β-block. The visible control
signals start and hold are used to find the borders of the β-block: The signal
start is initiated to false and is set to true by the transition function if x is true
and β is false. Once start is set to true it stays true forever. Thus start uses
the input x to “guess” that β is going to become active in the next state of the
computation. Since start may be wrong in its guess, we use the signal hold to
verify the guess and to indicate when β is no longer valid. The signal hold is
initiated to true, and stays active as long as start is false, or, if start is true, it
stays active until β is false.

Formally, θ′ = θ ∪ {hold} and ρ′(s, i) = ρ(s∩C, i∩ I)∪ γ, where γ is defined
as follows:

γ =

{start,hold} If (start 6∈ s, x ∈ i, and s 6∈ ||β||) or

(start ∈ s, hold ∈ s, and s ∈ ||β||).
{start} If hold 6∈ s or (hold ∈ s, start ∈ s and s 6∈ ||β||).
{hold} If start 6∈ s and (x 6∈ i or (x ∈ i and s ∈ ||β||)).
∅ Otherwise.

Note that a state s is in the selected β-block iff start, hold and β are all active
together in s. We denote such states by the predicate InBlock = start∧ hold∧β.
This construction however, cannot select a β-block if it begins in the initial state.
This is because start is initialized to false and thus can be active only starting
in the second state. This can be easily fixed by introducing a new initial state
θ̃ = {hold}, with a single outgoing transition leading to the original initial state,
and adding a leading X (next) before the formula. This way the formula will be
checked starting from the original initial state of the model, and a β-block can
be selected from the original initial state as well.

Note that in S ′ there are execution paths on which InBlock is never active:
this happens when the input signal x never holds, or when start becomes active
in wrong place and “misses” the beginning of a β-block.

In order to flip q in the selected β-block, we introduce a new observable signal
q′ = q⊕InBlock . Note that q′ holds the flipped value of q exactly on the selected
β-block, and is equal to q in all other states. We define ϕ′ = ϕ[q ← q′], replacing
every occurrence of q in ϕ with q′. Thus, ϕ′ ”reads” the flipped value of q exactly
on the selected β-block.

In order to search for a non-covered case, we look for a computation path
on which ϕ′ holds, but also InBlock is active at some point. Thus we search for
a computation path on which ϕ′ ∧ F (InBlock) holds. Such a computation path
demonstrates a non-covered case of the original circuit S.

The size of the S ′ is linear in the size of S and the Boolean expression β, size
of the new property ϕ′ is the same as the size of ϕ, and the algorithm performs
model checking once, hence proving the following claim.

Claim. Finding a stuttering coverage hole is not harder than detecting a non-
covered mutation as defined in Section 2.3, and is the same as model checking.

Remark 1. The logic LTL-X excludes the “next time” (X) operator from LTL
and is used for the specification of stutter-invariant properties [14]. Formulas
in LTL-X are particularly suitable for stuttering coverage. Indeed, while the
next-time operator can impose requirements on particular states in a computa-
tion (say, some valuation of signals should occur immediately after some event
happens), stutter-invariants properties impose requirements on blocks. Even in
the presence of the next-time operator, stuttering coverage has the advantage of
reducing the number of mutations that needs to be checked.

Remark 2. Since stuttering coverage introduces larger changes in the circuit than
the standard mutation-based coverage metrics described in Section 2.3, it may
seem that stuttering coverage is strictly stronger than the standard coverage
(in other words, if a state is stutter-covered, then it is covered according to
the standard mutation-based metric). This is true for most properties, and, in
particular, for properties used in the verification of real hardware designs, making
this metric especially attractive in practice. However, this implication does not
hold in general. One example is the properties using the X operator, as Remark 1
points out. Another example are properties that require that a particular signal
holds its value for a large block of cycles (or for the duration of the whole design),

as in p → Gp, which states that if a signal p holds in the initial state, then it
should hold in the whole design.

5 Frequency-Based Coverage

We now consider logic-based mutations, typically modeling netlists [9]. Such a
mutation takes a signal x and frees it or fixes it either to 0 or to 1. Here as well,
coverage is reported when the specification holds on the mutated model.

In this metric we define as important signals that change a lot, assuming that
a change in the signal’s value is a result of an intentional action by the designer,
whereas keeping the value constant whenever possible is the default behavior.
We thus want to detect a signal that changes its value frequently, and yet, when
mutated, does not influence the satisfaction of the specification.

We first have to formalize “frequently”. There are different definitions that
come to mind. We find the definition of k-window, specified below, to be most
appropriate. It is possible to extend the idea here to other definitions. Let S =
〈I,O,C, θ, ρ, δ〉 be the circuit modeling the netlist. For a control signal x, a
computation π, and an integer k ≥ 1, we say that x is k-frequently flipped in
π if in each window of length k in π (that is, each subsequence of length k of
assignments), the value of x is flipped at least once.

5.1 Finding frequency-based coverage holes

We are going to filter coverage results by frequency by defining a mutant circuit
S ′ that keeps a log of flips of x in the last k transitions. , and enables the coverage
check to restrict attention to computations in which x is flipped frequently. The
circuit S ′ also applies the required mutation on x. The frequency check is, of
course, with respect to the values of x before the mutation. Accordingly, S ′ keeps
record of the original value of x in a new signal x′. In order to detect a change
in the value of x′, we also add a signal prev-x′, recording the original value of x
in the previous state.

We define the mutant circuit S ′ = 〈I,O′, C ′, θ′, ρ′, δ〉 as follows. First, we
apply to x the desired mutation as specified in Section 2.3. We then add a set
of control signals V = {x′,prev-x′, q0, q1, ..., qk}. Thus, C ′ = C ∪ V . The signals
x′ and prev-x′ are described above. The signals q0, q1, ..., qk are used to count to
k (note that as such, one could easily replace them by only dlog ke signals. For
simplicity, we describe the construction here with linearly many signals). Only
qk needs to be visible, thus O′ = O ∪ {qk}.

The signal x′ records the behavior of x in S, namely, before the mutation was
applied to it. The signal prev-x′ records the value of x′ in the previous state.
Thus, we define x′ ∈ θ′ iff x ∈ θ and prev-x′ ∈ θ′ iff x 6∈ θ. For all s ∈ 2C

′

and i ∈ 2I , we set ρ′(s, i) = ρ(s ∩ C, i) ∪ {x′} if x ∈ ρ(s ∩ C, i), and ρ(s ∩ C, i)
otherwise. We set ρ′(s, i) = ρ′(s, i) ∪ prev-x′ iff x ∈ s. A change in the value of
x occurs in a state s ∈ 2C

′
if s |= x′ ⊕ prev-x′. That is, if x′ ∈ s and prev-x′ 6∈ s

or x′ 6∈ s and prev-x′ ∈ s.

In order to detect whether x is k-frequently flipped in the computations of S,
we record the behavior of x along k-windows. We do it using q0, ..., qk. For each
state s ∈ 2C

′
we add exactly one of q0, ..., qk as follows. We define θ′ = θ′ ∪{q0},

and for all s ∈ 2C
′
, i ∈ 2I and 0 ≤ j < k, we update ρ′ as follows.

ρ′(s, i) =

ρ′(s, i) ∪ {qk} if qk ∈ s,
ρ′(s, i) ∪ {q0} if s |= x′ ⊕ prev-x′ and qk 6∈ s,
ρ′(s, i) ∪ {qj+1} if s 6|= x′ ⊕ prev-x′ and qj ∈ s.

It is easy to see that if x is k-frequently flipped in a computation, then q0 would
appear infinitely often on π. Otherwise, eventually a state with qk would be
reached, and from that point onwards qk will appear in all states on π. Let ψ be
the formula to be verified, and let S ′ be the mutated model as defined above. In
order to check for coverage, we check for a computation satisfying ψ′ = ψ∧G¬qk,
asserting that ψ holds with the mutated behavior of x even though qk is never
reached. A path satisfying ψ′ exhibit an interesting non-covered mutation.

6 A Case Study

We experimented with our ideas on a model of a PCI bus, taken from the
NuSMV [11] example list. The model describes four master-slave units, com-
municating using the PCI bus protocol [17]. We briefly describe the protocol
below, omitting details that are not essential for understanding our examples.

When a PCI master unit needs to start a transaction over the bus, it first
asserts its request signal req, and keeps it asserted until permission is granted by
the bus arbiter, indicated by the signal gnt being asserted. When permission is
granted, the master can start a transaction by asserting its frame signal. We omit
the details of the actual transaction over the PCI bus. A transaction terminates
when frame is de-asserted, at which stage the bus is free for new transaction
requests.

We note that in the formal PCI bus protocol, all signal are active low, mean-
ing that they are considered active when their value is 0 and inactive when it
is 1. In the PCI model we used, signals are active high, thus our example looks
different than a typical PCI waveform.

The PCI model specifies more than 100 properties, which can roughly be
divided into three categories. We examine each of the categories in light of the
stuttering coverage method. The first are properties of the form

G((¬req ∧ issue next)→ Xreq)

asserting that one event should be immediately followed by another event. As
discussed in Remark 1, the advantage of stuttering coverage in formulas that
impose requirements in specific states (in our example, those immediately after
states with ¬req) is computational, and it does not change the coverage analysis.

The second type of properties have the form

G(req → (req U grant)),

stating that once a signal becomes active, it should remain active until some other
event occurs, similarly to the second type of properties discussed in Remark 2.
Recall that coverage information is checked for specifications that hold in the
system. Thus, checking the coverage of the signal req, we know that G(req →
(req U grant)) holds. When β = req, we flip the value of a full block of req. We
distinguish between two cases: (1) We flip a block in which req is active. Then,
the left hand side of the implication becomes false, and the formula continues to
hold, thus req is not covered, which meets our intuition – we want the design to
activate req only when required, thus the fact req is active high should be further
challenged by other components of the specification. (2) We flip a block in which
req is inactive. Here, the fact we flip the entire block puts the responsibility on
the coverage on the signal grant, enabling the user to detect redundant activation
of grant.

The third type of properties are eventual ones. For example,

ϕ = G((gnt ∧ ¬frame)→ F frame).

This specification states that if frame is inactive and gnt is given, then a trans-
action must start eventually. We checked stuttering coverage of the signal frame
for the above specification with β = frame. That is, we switch frame in blocks of
consecutive states where frame has value 1. As described in Section 4.1, this in-
volves the introduction of the signal block, which is asserted during the selected β
block, and the signal frame ′, which agrees with frame outside the selected block,
and is the negation of frame inside the block. We replaced the specification by

ϕ′ = ¬(G((gnt ∧ ¬frame ′)→ F (frame ′)) ∧ Fblock).

The specification ϕ′ failed, and Figure 3 presents the counterexample, which
is an example of a non-covered block. In this example, three transactions take

Fig. 3. A non-covered case for G((gnt ∧ ¬frame) → F (frame)).

place. In cycles 5, frame is asserted for a short transaction of 2 cycles. Then on
cycle 9, frame is asserted again for a longer transaction lasting until cycle 17.

Finally, a last transaction starts on cycle 20. The block of consecutive frames
selected for coverage check is the middle transaction, from cycle 9 to 17, as in-
dicated by signal ‘block’ being asserted. Note that the signal frame is indeed
not stutter-covered by ϕ. This is because many transactions take place on a
typical execution path. Accordingly, a gnt is followed by many blocks of con-
secutive frames, and eliminating one such block is not sufficient for causing ϕ
to change its value. In order to cover the behavior of frame, a more detailed
property should be introduced. Note further, however, that by using stuttering
coverage we dramatically reduce the number of non-covered cases: in traditional
“single state” coverage, each of the frames in cycles 9 to 17 would be declared
as non-covered.

7 Future Work

The algorithms we presented in this paper can be easily implemented on top of
existing model checking tools – we need only to generate properties for detect-
ing stuttering coverage and frequency-based coverage as described in Sections 4
and 5. As we already mentioned in the introduction, our algorithms generate one
non-covered mutation at each run, hence mimicking the typical patterns of work
of a verification engineer. Sometimes, however, we want to have a picture of how
well our properties cover the design before we set up to fix coverage holes. In
this context, a promising direction is to combine our definitions with the existing
algorithms for efficient computation of coverage at once, for example those de-
scribed in [7] and [6]. Based on our experience, the main obstacle in adoption of
these algorithms as a part of the mainstream verification process is the sheer size
of the output – the set of all non-covered mutations that need to be examined.
We believe that using stuttering and frequency-based coverage will reduce the
number of non-covered mutations by filtering the non-important mutations away,
and we plan to perform these experiments as a future work. Finally, while the
multi-value setting here comes mainly as a motivating framework to its approx-
imation by stuttering and frequency-based coverage, we strongly believe that in
the future we will see more and more quantitative specifications and systems,
giving rise to quantitative verification methods, and making the multi-valued
reasoning realistic in practice.

References

1. L. de Alfaro, M. Faella & M. Stoelinga (2004): Linear and Branching Metrics for
Quantitative Transition Systems. In: Proc. 31st ICALP, pp. 97–109.

2. E. Arbel, O. Rokhlenko & K. Yorav (2009): SAT-based synthesis of clock gating
functions using 3-valued abstraction. In: Proc. 9th FMCAD, pp. 198–204.

3. G. Auerbach, H. Chockler, S. Moran & V. Paruthi (2012): Functional vs. Structural
Verification – Case Study. DAC User Track.

4. B. Beizer (1990): Software Testing Techniques. Van Nostrand Reinhold. 2nd edi-
tion.

5. L. Bening & H. Foster (2000): Principles of verifiable RTL design – a functional
coding style supporting verification processes. Kluwer Academic Publishers.

6. H. Chockler, A. Ivrii, A. Matsliah, S. Moran & Z. Nevo (2011): Incremental formal
verification of hardware. In: Proc. 11th FMCAD, pp. 135–143.

7. H. Chockler, D. Kroening & M. Purandare (2012): Computing Mutation Coverage
in Interpolation-Based Model Checking. IEEE Trans. on CAD of Integrated Circuits
and Systems 31(5), pp. 765–778.

8. H. Chockler, O. Kupferman, R.P. Kurshan & M.Y. Vardi (2001): A Practical Ap-
proach to Coverage in Model Checking. In: Proc. 13th CAV, LNCS 2102, pp. 66–78.

9. H. Chockler, O. Kupferman & M.Y. Vardi (2001): Coverage Metrics for Temporal
Logic Model Checking. In: Proc. 7th TACAS, LNCS 2031, pp. 528–542.

10. H. Chockler, O. Kupferman & M.Y. Vardi (2006): Coverage Metrics for Formal
Verification. STTT 8(4-5), pp. 373–386.

11. A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri, R. Se-
bastiani & A. Tacchella (2002): NuSMV Version 2: An OpenSource Tool for Sym-
bolic Model Checking. In: Proc. 14th CAV, LNCS 2404.

12. D.L. Dill (1998): What’s between simulation and formal verification? In: Proc.
35st DAC, IEEE Computer Society, pp. 328–329.

13. C. Eisner, A. Nahir & K. Yorav (2009): Functional verification of power gated
designs by compositional reasoning. FMSD 35(1), pp. 40–55.

14. K. Etessami (1999): Stutter-Invariant Languages, ω-Automata, and Temporal
Logic. In: Proc. 11th CAV, LNCS 1633, pp. 236 – 248.

15. G. Fraser & F. Wotawa (2007): Mutant Minimization for Model-Checker Based
Test-Case Generation. In: TAIC PART – MUTATION, pp. 161–168.

16. D. Große, U. Kühne & R. Drechsler (2008): Analyzing Functional Coverage in
Bounded Model Checking. IEEE Trans. on CAD of Integrated Circuits and Systems
27(7), pp. 1305–1314.

17. PCI Special Interest Group (1998): PCI Local Bus Specification, 2.2 edition. Avail-
able at http://www.ics.uci.edu/ harris/ics216/pci/PCI 22.pdf.

18. Y. Hoskote, T. Kam, P.-H Ho & X. Zhao (1999): Coverage estimation for symbolic
model checking. In: Proc. 36st DAC, pp. 300–305.

19. S. Katz, D. Geist & O. Grumberg (1999): “Have I written enough properties ?”
A method of comparison between specification and implementation. In: Proc. 10th
CHARME, LNCS 1703, pp. 280–297.

20. M. Keating, D. Flynn, R. Aitken, A. Gibbons & K. Shi (2007): Low Power Method-
ology Manual. Springer.

21. O. Kupferman, W. Li & S.A. Seshia (2008): A Theory of Mutations with Appli-
cations to Vacuity, Coverage, and Fault Tolerance. In: Proc. 8th FMCAD, pp.
1–9.

22. D. Peled (2001): Software Reliability Methods. Springer.
23. A. Pnueli (1977): The temporal logic of programs. In: Proc. 18th FOCS, pp. 46–57.
24. S. Tasiran & K. Keutzer (2001): Coverage Metrics for Functional Validation of

Hardware Designs. IEEE Design and Test of Computers 18(4), pp. 36–45.

