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Abstract. Vacuity checking is traditionally performed after model checking has
terminated successfully. It ensures that all the elements of the specification have
played a role in its satisfaction by the design. Vacuity checking gets as input both
design and specification, and is based on an in-depth investigation of the relation
between them. Vacuity checking has been proven to be very useful in detecting
errors in the modeling of the design or the specification. The need to check the
quality of specifications is even more acute in property-based design, where the
specification is the only input, serving as a basis to the development of the system.
Current work on property assurance suggests various sanity checks, mostly based
on satisfiability, non-validity, and realizability, but lacks a general framework for
reasoning about the quality of specifications.
We describe a framework for inherent vacuity, which carries the theory of vacuity in
model checking to the setting of property-based design. Essentially, a specification
is inherently vacuous if it can be mutated into a simpler equivalent specification,
which we show to coincide with the fact the specification is satisfied vacuously in all
systems. We also study the complexity of detecting inherent vacuity, and conclude
that while inherent vacuity leads to specifications that better capture designer intent,
it is not more complex than simple property-assurance checks.

1 Introduction

In recent years, we see a growing awareness to the importance of assessing the quality of
(formal) specifications. In the context of model checking, a specification consists of a set
of formulas written in some temporal logic, and the quality of the specification is assessed
by analyzing the effect of applying mutations to the formulas. If the system satisfies the
mutated specification, we know that some elements of the specification do not play a role
in its satisfaction, thus the specification is satisfied in some vacuous way [3, 20]. Vacuity
is successfully used in order to improve specifications and detect design errors [18].

The need to assess the quality of specifications is even more acute in the context of
property-based design [24]. There, the design process starts with the development of the
specification as a set of temporal formulas, which then serves as a basis to the development
of the implementation. For example, in temporal synthesis [23], we go automatically from
the specification to a system that satisfies it. Indeed, one of the criticisms against synthesis
is that it does not eliminate the difficulty of design, but merely shifts the difficulty of
developing correct implementations to that of developing correct specifications [17].
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Property assurance is the activity of eliciting specifications that faithfully capture
designer intent [5, 27]. Obvious quality checks one may perform for a given specification
are non-validity and satisfiability [28]. More involved quality checks are studied in the
PROSYD project [24]. There, one considers a set of temporal formulas, partitioned into
assumptions and guarantees, and checks consistency of the assumptions and various types
of entailment of guarantees by assumptions. Recent work has focused on other aspects of
property assurance. For example, both [10, 22] study completeness analysis for property
sets. There, one analyzes a specification consisting of a set of temporal formulas and
measures the degree to which the specification determines the exact behavior of each of
its signals. There is a trade-off between the level of abstraction that a specification enjoys
and the level of detail in which it describes the system. The analysis in [10, 22] takes one
side of this trade-off, as it expects the specifications to determine the exact behavior of
the signals. 4

As discussed in [27], checking vacuity of the formulas in the context of property
assurance would be of great importance. While vacuity has been widely studied in the
context of model checking [2, 3, 6, 14, 20, 21], it is not clear how to define and check
vacuity of formulas without having a system that is meant to satisfy these formulas. A first
step for analyzing vacuity in a specification is taken in [9], which studies early detection
of vacuity and provides the inspiration to this work. There too, a specification consists
of a set of temporal formulas, and the goal is to reduce vacuity of the specification by
removing formulas that are implied by the specification, and by strengthening formulas to
ones that are still implied by the specification. While [9] introduced the intuitive concept
of “vacuity without design”, it does not attempt to define this concept. Rather, it offers
various sanity checks that can be applied to sets of properties, with the aim of simplifying
later vacuity checking with respect to a design. Our aim in this work is to formalize the
intuitive concept introduced in [9].

We describe a framework for inherent vacuity for sets of linear temporal properties.
The term “inherent” refers to the fact that we do not study vacuity of properties with
respect to a given system, but as a quality measure of the properties themselves. We focus
on both identifying the appropriate definition of inherent vacuity, as well as developing
algorithms for testing inherent vacuity.

Before we present our definition for inherent vacuity, let us recall one definition of
vacuity in LTL model checking [2]. There, given a system S and a specification ϕ that is
satisfied in S, we say that a subformula ψ of ϕ does not affect the satisfaction of ϕ in S
if S also satisfies the stronger specification ∀x.ϕ[ψ ← x], in which ψ is replaced by a
universally quantified proposition. Intuitively, this means that S satisfies ϕ even with the
most challenging assignments to ψ.5 The specifications ϕ is then vacuously satisfied in S
if it has a subformula that does not affect its satisfaction in S.

4 A related line of research is that of specification debugging [1], where, in the process of model
checking, counterexamples are automatically clustered together in order to make the manual
debugging of temporal properties easier. Another related line of research is that of coverage
metrics [8, 16]. There, the mutations are applied to the system, and if the mutated system satisfies
the specification, we know that some elements of the system are not covered by the specification.

5 Since ψ may have several occurrences in ϕ there need not be a single “most challenging assign-
ment” and it need not be true or false.



There are two natural approaches to lift the definition of vacuity in the context of
model checking to a definition of inherent vacuity. In order to see the idea behind the
first approach, consider specifications that are tautologies or contradictions. One need not
have a context in order to see that they fail any reasonable criterion, and indeed non-
validity and satisfiability checking are useful sanity checks [28]. The validity criterion is
a special case of a weaker criterion, in which a specification fails if we can mutate it and
get a simpler, equivalent specification. For tautologies, the mutation yields the specifica-
tion true. Our criteria use less aggressive mutations, and are inspired by the concept of
vacuity in model checking. We say that a specification ϕ is inherently vacuous if ϕ is
equivalent to ∀x.ϕ[ψ ← x], for some subformula ψ of ϕ. For example, the specification
G (busy → F grant) ∧ G (¬busy → F grant) is inherently vacuous, as it is equivalent
to the specification ∀x.G (x → F grant) ∧ G (¬x → F grant), which is equivalent to
G F grant. This approach leads to a PSPACE decision procedure for inherent vacuity for
LTL specifications, by reducing it to the satisfiability problem for LTL.

As described above, our first approach for defining inherent vacuity is based on the
definition of vacuity in model checking, and it adopts the idea of applying mutations to
the specification. With no system to check the mutated specification with respect to, our
first approach requires the mutated specification to be equivalent to the original one. Our
second approach for defining inherent vacuity, also based on the definition of vacuity in
model checking, quantifies the missing context (that is, the system) universally. Thus, ac-
cording to the second approach, a specification ϕ is inherently vacuous if ϕ is satisfied
vacuously in all systems that satisfy it. Note that in contrast to the first definition, the
definition does not require the same subformula not to affect the satisfaction of the speci-
fication in all systems. Keeping in mind the trade-off between abstraction and vacuity, one
may welcome specifications that are vacuously satisfied according to the second approach
yet have no single subformula that does not affect the satisfaction in all systems. We show,
however, that the second approach coincides with the first one. Thus, a specification ϕ is
satisfied vacuously in all systems that satisfy it iff ϕ is equivalent to some mutation of it.

The above two approaches, and the encouraging fact they coincide, set the base to
our framework for inherent vacuity. Experience with vacuity in model checking has led
to the conclusion that there is no single definition of vacuity that is superior to all others,
and various definitions are used in practice [3, 20, 11, 6, 2, 21, 15, 4, 7, 31]. Our framework
refines the definition of inherent vacuity to account not only for the different definitions
of vacuity in model checking, but also for the different settings in which property-based
design is used (closed vs. open systems), the goal of the designer (tightening the specifi-
cation or only cleaning it), and the polarity of the vacuity (strengthening vs. weakening
of the formula). Thus, we do not offer a single definition of inherent vacuity, but, rather,
offer a general framework in which the user can choose the parameters that best suit the
application. We view the main practical contribution of the paper in the setting of open
systems and temporal synthesis. As discussed above, the problem of eliciting specifica-
tions that faithfully capture the designer intent is of great importance in this setting. Still,
the only sanity check that is now used for a specification of an open system is its real-
izability, which is analogous to satisfiability in the setting of closed systems, and checks
that there is at least one open system that satisfies the specification [23].

We show that in all variations, the two approaches to defining inherent vacuity co-
incide. We study the problem of deciding whether an LTL formula is inherently vacuous



according to the various criteria and settings. We show that the problem is related to the
basic problem in the corresponding setting. Thus, for the setting of closed system, the
problem can be solved in PSPACE, just like the satisfiability problem [29], while for the
setting of open systems, the problem can be solved in 2EXPTIME, just like the realiz-
ability problem [26]. Thus, detection of inherent vacuity is not harder than the most basic
quality checks for specifications. We provide many examples for inherent vacuity and
argue for the likelihood of encountering inherent vacuity in real life specifications.

2 Inherent Vacuity

In this section we define inherent vacuity for LTL formulas and study basic properties of
the definition.

We first review the definition of LTL vacuity in model checking. We assume the reader
is familiar with the syntax and the semantics of LTL. The semantic approach to LTL vacuity
in model checking [2] considers LTL formulas augmented with universal quantification
over atomic propositions. Recall that an LTL formula over a set AP of atomic propositions
is interpreted over computations of the form π = π0, π1, π2, . . ., with πi ⊆ AP . The
computation then satisfies a formula of the form ∀x.ϕ, where ϕ is an LTL formula and
x is an atomic proposition, if ϕ is satisfied in all the computations that agree with π
on all the atomic propositions except (maybe) x. Thus, π |= ∀x.ϕ iff π′ |= ϕ for all
π′ = π′0, π

′
1, π

′
2, . . . such that π′i ∩ (AP \ {x}) = πi ∩ (AP \ {x}) for all i ≥ 0. As with

LTL, a Kripke structure K satisfies ∀x.ϕ if all computations of K satisfy ∀x.ϕ. For two
LTL formulas ϕ and ϕ′, we say that ϕ and ϕ′ are equivalent, denoted ϕ ≡ ϕ′, if for every
Kripke structure K, we have that K |= ϕ iff K |= ϕ′.

Given a Kripke structureK and a formula ϕ satisfied inK, we say that a subformula ψ
of ϕ does not affect the satisfaction of ϕ inK ifK also satisfies the formula ∀x.ϕ[ψ ← x],
in which ψ is replaced by a universally quantified fresh proposition [2]. Intuitively, this
means that K satisfies ϕ even with the most challenging assignments to ψ. We refer to
the formula ∀x.ϕ[ψ ← x] as the ψ-strengthening of ϕ. Finally, a formula ϕ is vacuously
satisfied in K if ϕ has a subformula that does not affect its satisfaction in K.

In the context of inherent vacuity, the Kripke structure K is not given. We are only
given the formula ϕ, and we seek some quality criteria that would indicate the likelihood
of ϕ to be satisfied vacuously. Below we describe two natural approaches to defining
inherent vacuity, and show that they are, in fact, equivalent.

The first approach to defining inherent vacuity is based on mutating the formula. The
idea is that if a syntactic manipulation on the formula, which typically changes the seman-
tics of the formula, yields an equivalent formula, then something is inherently vacuous in
the given formula.

Definition 1. We say that an LTL formula ϕ is inherently vacuous by mutation if there
exists a subformula ψ of ϕ such that ϕ ≡ ∀x.ϕ[ψ ← x]. That is, ϕ is equivalent to its
ψ-strengthening. We then say that ϕ is inherently vacuous by mutation with witness ψ.

Example 1. The formula ϕ = F (grant ∨ fail)∨X fail is inherently vacuous by mutation,
as it is equivalent to its X fail -strengthening ∀x.F (grant ∨ fail)∨x. To see this, note that
both ϕ and its X fail -strengthening are equivalent to F (grant ∨ fail).



The formula ϕ = (¬busy ∧ (busy U ack)) ∨ (busy ∧ ack) is inherently vacuous by
mutation, as it is equivalent to its busy-strengthening ∀x.ϕ[busy ← x]. To see this, note
that both ϕ and its busy-strengthening are equivalent to the formula ack .

Remark 1. The purpose of our examples is to show patterns for inherently vacuous specs.
Thus, while we do not expect designers to write the specifications in the examples, where
the vacuity is obvious, such patterns do appear in real life specifications. Indeed, there,
the specifications are more involved, and it is hard to keep track of all relations among the
propositions induced by a specification. We discuss this issue in detail in Section 4.

As we show later in Theorem 2, defining inherent vacuity by means of mutations
enables us to reduce the problem of deciding whether a given specification is inherently
vacuous to the satisfiability problem for LTL.

It is not hard to see that Definition 1 is equivalent to a definition in which a formula
is inherently vacuous if there exists a subformula ψ of ϕ such that ψ does not affect the
satisfaction of ϕ in all Kripke structures that satisfy it. Formally, for every system K such
that K |= ϕ, also K |= ∀x.ϕ[ψ ← x].

One may find Definition 1 too restrictive, as it focuses on a single subformula of the
specification. The second approach to defining inherent vacuity addresses this point, by
starting with the definition of vacuity and quantifying the missing context (that is, the
system) universally, without restricting attention to a single subformula. Formally, we
have the following.

Definition 2. We say that an LTL formula ϕ is inherently vacuous by model if for every
Kripke structure K, if K |= ϕ, then K satisfies ϕ vacuously.

There is a trade-off between the level of abstraction that a specification enjoys and the
level of detail in which it describes the system. Thus, one may tolerate formulas that are
vacuously satisfied yet have no single subformula to blame, and find this second approach
too unrestricted. As we show now, however, in the setting of nondeterministic Kripke
structures, the two approaches we defined coincide. Formally, we have the following.

Theorem 1. An LTL specification ϕ is inherently vacuous by mutation iff ϕ is inherently
vacuous by model.

Proof: For the first direction, assume that ϕ is inherently vacuous by mutation. Then
there is a subformula ψ of ϕ such that ϕ ≡ ∀x.ϕ[ψ ← x]. Accordingly, for every Kripke
structure K, if K |= ϕ, then K |= ∀x.ϕ[ψ ← x], and so K satisfies ϕ vacuously. Thus, ϕ
is inherently vacuous by model.

For the second direction, assume that ϕ is inherently vacuous by model, and assume
by way of contradiction that ϕ is not inherently vacuous by mutation. Then there exists no
single subformula ψ of ϕ such that ϕ ≡ ∀x.ϕ[ψ ← x]. Consider the alternative definition
to vacuity by mutation. Then there is no single subformula ψ of ϕ such that ψ does not
affect the satisfaction of ϕ in every Kripke structure K that satisfies it.

Let k be the number of subformulas that ϕ has. By the assumption, for every candidate
subformula ψi of ϕ, with 1 ≤ i ≤ k, there is a Kripke structure Ki that satisfies ϕ (and
hence, as ϕ is inherently vacuous by model, satisfies ϕ vacuously), but Ki 6|= ∀x.ϕ[ψi ←
x]. Let K = K1 ∪ K2 ∪ · · · ∪ Kk be the disjoint union of K1,K2, . . . ,Kk. Note that the



set of initial states of K is the union of the sets of initial states in all structures. By the
semantics of LTL, the Kripke structure K satisfies ϕ. Since ϕ is inherently vacuous by
model, K satisfies ϕ vacuously. Let ψi be a subformula that does not affect ϕ in K. By
the semantics of LTL, the subformula ψi does not affect ϕ also in Ki, and we reached a
contradiction.

Remark 2. A deterministic Kripke structure is a Kripke structure with a single initial state
in which each state has exactly one successor. If we restrict attention to deterministic
Kripke structures, then Definitions 1 and 2 do not coincide. That is, there exist formulas
that are inherently vacuous by model but are not inherently vacuous by mutation. For ex-
ample, consider the formula ϕ = p∨ q. Every deterministic Kripke structure that satisfies
ϕ has its (single) initial state labeled either by p or by q or by both, and thus it satisfies
ϕ vacuously. On the other hand, ϕ is not equivalent to any strengthening of it. Since de-
terministic Kripke structures are not an interesting model for a system (as they induce a
single computation rather than a set of computations), we continue with the nondetermin-
istic setting.

So, the definitions that follow from the two different approaches coincide, and we
use the term inherent vacuity to refer to either of them. We now study the complexity of
detection of inherent vacuity.

Theorem 2. Given an LTL formula ϕ and a subformula ψ of ϕ, deciding whether ϕ is
inherently vacuous with witness ψ is PSPACE-complete.

Proof: We start with the upper bound. Consider an LTL formula ϕ. For every subfor-
mula ψ, it holds that ∀x.ϕ[ψ ← x] implies ϕ. Therefore, checking whether ϕ is inher-
ently vacuous with witness ψ amounts to checking whether ϕ implies ∀x.ϕ[ψ ← x].
This is done by checking the satisfiability of ϕ ∧ ∃x.¬ϕ[ψ ← x], which is satisfiable iff
ϕ ∧ ¬ϕ[ψ ← x] is satisfiable. The latter is an LTL formula, whose satisfiability can be
checked in PSPACE. For the lower bound, it is easy to see that ϕ is inherently vacuous
with witness ϕ iff ϕ ≡ false, thus PSPACE-hardness follows from the PSPACE-hardness
of LTL satisfiability.

Now, since a formula ϕ is inherently vacuous iff it is inherently vacuous with witness
ψ for some subformula ψ of ϕ, the upper bound in Theorem 2 implies the following.

Corollary 1. The problem of deciding whether an LTL formula is inherently vacuous can
be solved in polynomial space.

We note that the lower bound for the problem of deciding inherent vacuity is open.
The difficulties in proving a PSPACE lower bound are similar to the ones encountered in
studying the complexity of vacuity detection in model checking (a PSPACE upper bound
is known, yet a lower bound is open [2]).

3 A Framework for Inherent Vacuity

In Section 2 we defined inherent vacuity. Experience with vacuity in model checking has
led to the conclusion that there is no single definition of vacuity that is superior to all



others, and various definitions are used in practice. In this section we refine the definition
of inherent vacuity to account not only for the different definitions of vacuity in model
checking, but also for the different settings in which property-based design is used. The
refinement is based on adding parameters that refer to the type of vacuity, the context in
which the specification is used, the goal of the designer, and the polarity of the mutation.
It turns out that the equivalence of the two approaches to the definition of inherent vacuity
is maintained in all settings. Thus, our lifting of vacuity in model checking to inherent
vacuity is robust, in the sense that it works for the many contexts in which vacuity may
be checked. We elaborate on the parameters below, and we first describe them for the
approach that defines inherent vacuity by mutation. As in Section 2, this approach is the
basis to decision procedures for inherent vacuity.

3.1 The Parameters of the Framework

Vacuity Type Recall that a formula ϕ is inherently vacuous by mutation if ϕ is equivalent
to a ψ-strengthening of it, for some subformula ψ of ϕ. The definition of ψ-strengthening
is induced from work on vacuity in model checking. Recall that several definitions of
vacuity in model checking are studied in the literature: Definitions treating each occur-
rence of a subformula separately [3, 20] and their extensions (to the modal µ-calculus
[11] and to PSL/SVA [6] ), definitions treating all occurrences of the same subformula to-
gether [2, 14], definitions considering various distinct subformulas [15], definitions con-
sidering model checker proofs [21], definitions focusing on a certain type of reasons for
vacuity (antecedent [4] and environment [7]), a definition considering vacuity grounds [30,
31], and more. In Section 2, we followed the definition of vacuity in [2]. The first param-
eter in our framework enables the consideration of other definitions. For example, the
semantic-based definition in [2] can be refined according to different semantics of univer-
sal quantification of atomic propositions (structure vs. tree; for details see [2]). As another
example, in the syntactic-based definition to vacuity in [3, 20], one mutates a single occur-
rence of a subformula, rather than all occurrences. Formally, given an occurrence σ of a
subformula of the formula ϕ, the σ-strengthening of ϕ is the formula ϕ[σ ← ⊥], obtained
by replacing the occurrence σ by false if σ is under an even number of negation and by
true if σ is under an odd number of negation. Other definitions allow mutations of a subset
of the occurrences, a subset of subformulas, or a subset of the atomic propositions [15].

Example 2. Consider the formula ϕ = grant ∨ (up U grant). Clearly, ϕ is equivalent
to up U grant . Indeed, ϕ is equivalent to ϕ[σ ← ⊥] for σ being the first occurrence of
the subformula grant . Therefore, the σ-strengthening of ϕ is equivalent to ϕ. Note that
if we had considered the semantic-based definition as we did in the previous section, the
formula would not have been declared inherently vacuous, since it is not equivalent to
∀x.ϕ[ψ ← x] for any subformula ψ of ϕ.

Consider the formula ϕ = (¬busy ∧ ack) ∨ (busy ∧ ack). It is easy to see that ϕ
is equivalent to ∀x.ϕ[busy ← x]. Thus, f is inherently vacuous when considering the
semantic-based definition for vacuity. On the other hand, ϕ is not equivalent to ϕ[ψ ← ⊥]
for any occurrence of a subformula ψ of ϕ. Thus, ϕ is not inherently vacuous when
considering the syntactic-based definition of vacuity.

Equivalence Type Again recall that a formula ϕ is inherently vacuous by mutation if ϕ
is equivalent to a ψ-strengthening of it, for some subformula ψ of ϕ. The definition of



equivalence has to do with the context in which ϕ is to be used. In the context of closed
systems, the semantics of ϕ is defined with respect to Kripke structures, thus ϕ ≡ ϕ′ if for
all Kripke structures K, we have that K |= ϕ iff K |= ϕ′. In the context of open systems,
the semantics of ϕ is defined according to transducers, and the atomic propositions in ϕ
are partitioned into input and output signals. Before we turn to show that this requires a
different notion of equivalence, let us define transducers formally.

A transducer is a tuple T = 〈I,O, S, η0, η, L〉, where I is a set of input signals, O is
a set of output signals, S is a set of states, η0 : 2I → 2S \∅ is an initial transition function,
η : S × 2I → 2S \ ∅ is a transition function, and L : S → 2O is a labeling function.
Note that T is responsive, in the sense that η0 and η provide at least one initial state
and successor state, respectively, for each input letter. A run of T on an input sequence
i0 · i1 · i2 · · · ∈ (2I)ω is a sequence s0, s1, s2, . . . of states such that s0 ∈ η0(i0) and
sj+1 ∈ η(sj , ij+1) for all j ≥ 0. A computation w ∈ (2I∪O)ω is generated by T if w =
(i0∪o0), (i1∪o1), (i2∪o2) . . . is such that there is a run s0, s1, s2, . . . of T on i0 ·i1 ·i2 · · ·
for which oj = L(sj) for all j ≥ 0. Note that we consider nondeterministic transducers. A
transducer T realizes an LTL formula ϕ, denoted T |= ϕ, if all computations of T satisfy
ϕ. We say that an LTL formula ϕ is realizable if there is a transducer that realizes ϕ. The
synthesis problem is to construct, given an LTL formula ϕ, a transducer that realizes ϕ.

Note that a nondeterministic transducer may have several runs on an input sequence.
In a deterministic transducer, for all i ∈ 2I and s ∈ S, we have |η0(i)| = 1 and
|η0(s, i)| = 1. Thus, a deterministic transducer has a single run on each input sequence.
Unlike Kripke structures, which can be viewed as transducers with I = ∅, here the de-
terministic model is of interest, and it induces a set of computations – one for each input
sequence.

As discussed in [13], equivalence with respect to transducers is weaker than equiva-
lence with respect to Kripke structures. Formally, given two LTL formulas ϕ and ϕ′ both
over signals I and O, we say that ϕ and ϕ′ are equivalent in the context of open systems
(o-equivalent, for short), denoted ϕ ≡o ϕ′, if for every transducer T with input I and
output O, we have that T |= ϕ iff T |= ϕ′. For the sake of uniformity, we now use ≡c to
denote equivalence in the context of closed systems (c-equivalence, for short; what used
to be ≡ in Section 2). It is not hard to see that for every two LTL formulas ϕ and ϕ′, we
have that ϕ ≡c ϕ′ implies ϕ ≡o ϕ′. By [13], implication on the other direction does
not hold. For example, a specification ϕ that restricts the input in some satisfiable way is
unrealizable, and hence ϕ ≡o false, yet ϕ ≡/c false as ϕ is satisfiable.

Example 3. Consider the formula ϕ = [G (busy → F (grant ∧ ¬busy))] ∨ G F grant ,
where busy is an input signal and grant is an output signal. The formula is inherently vac-
uous in the context of open systems, but is not inherently vacuous in the context of closed
systems (considering the semantic-based definition of vacuity in both). To see this, con-
sider the subformula ψ = G (busy → F (grant ∧ ¬busy)) in ϕ. Since ψ imposes restric-
tions on the input signal, it is unrealizable. Hence, ϕ is o-equivalent to its ψ-strengthening,
which is equivalent to G F grant . On the other hand, ϕ is not c-equivalent to any strength-
ening of it.

Tightening Type The third parameter refers to the goal of the designer. In early stages
of the design, the designer may be interested in detecting cases where the formula can be
mutated to a formula that is strictly stronger, yet is still satisfiable (or, in the context of



open systems, still realizable). The third parameter indicates whether the mutated formula
has to be equivalent to the original formula or only has to maintain its satisfiability or
realizability. Note that tightening of the specification to a specification that is strictly
stronger and yet maintains its satisfiability or realizability is useful mainly in the context
of synthesis, where it suggests that the specification for the system should be tightened.
We demonstrate this in the two examples below. As Example 4 shows, there are formulas
that can be mutated in a way that preserves realizability, yet cannot be mutated to an
equivalent formula. Thus, inherent vacuity for such formulas is detected only with the
third parameter indicating that we are looking for a mutation that maintains realizability.

Example 4. Consider the formula ϕ = (busy ∨ ack) → X grant where busy is an input
signal and where ack and grant are output signals. There exists no sub-formula ψ of ϕ
such that its ψ-strengthening is equivalent to ϕ. On the other hand, the ack -strengthening
of ϕ, which is equivalent to ϕ′ = busy → X grant , is realizable.

Example 5. Consider an open system with input req and outputs grant1 and grant2,
and the formula ϕ = G (req → X (grant1 ∨ grant2)) ∧ G (req → F grant2). The σ-
strengthening of ϕ, for σ being the first occurrence of grant2 is still realizable. Thus, the
formula is inherently vacuous when the tightening type is “realizability preservation” (and
the vacuity type is mutation of a single occurrence). The designer may want to tighten the
unbounded delay in the second conjunct as not to overlap the first conjunct.

Consider the formula ϕ′ = G (req → F (grant1∨grant2)). The grant2-strengthening
of ϕ is G (req → F grant1), which is still realizable. Thus, ϕ′ is inherently vacuous ac-
cording to the same criteria as above. Note that the same holds for the grant1-strengthening
of ϕ. In this case, however, it is not clear that the grant2-strengthening or the grant1-
strengthening of ϕ are the desired formulas, as they both ignore a particular type of grant.
The information from the check is still useful, as the specifier may conclude that the for-
mula he has to use is G (req → [F grant1 ∧ F grant2]), which is the conjunction of the
two strengthenings.

Polarity Type In the context of model checking, a formula is checked for vacuity only
after it has been verified to hold on the system. The vacuity check then examines whether a
mutation that strengthens the formula still holds on the system Clearly, it makes no sense
to model check a weaker formula, as it is guaranteed to be satisfied.6 In the context of
property-based design, however, we may consider mutations that strengthen the formula
as well as mutations that weaken it. Indeed, in the extreme case a mutation that weakens
the formula is the formula true, as all models satisfy it, and clearly a formula that is
equivalent to true (yet is syntactically different) is inherently vacuous.

The fourth parameter in our framework refers to the polarity of the mutation, and in-
dicates whether we compare the formula with its ψ-strengthening or ψ-weakening. The
ψ-weakening of a formula ϕ is defined in a manner dual to its ψ-strengthening. For ex-
ample, dualizing the definition of vacuity in [2], the ψ-weakening of ϕ is ∃x.ϕ[ψ ← x],
in which all the occurrences of ψ are replaced by an existentially quantified proposition.
Likewise, dualizing the definition of vacuity in [20], the σ-weakening of ϕ, for an occur-
rence σ of some subformula, is ϕ[σ ← >], which is obtained from ϕ by replacing the
occurrence σ by true if σ is of positive polarity and by false if σ is of negative polarity.

6 Nevertheless, [15] shows how one can benefit from checking the vacuity of negations of formulas
that pass.



Example 6. Consider the formula ϕ = (F grant) ∧ (X grant). Clearly, the formula ϕ is
equivalent to its second conjunct, namely, X grant , which is the F grant-weakening of ϕ.
On the other hand, there is no subformula of ϕ or an occurrence of a subformula ψ such
that ϕ is equivalent to its ψ-strengthening.

Consider the formula ϕ = (F grant)∨ (X grant). Since ϕ is equivalent to its X grant-
strengthening, namely, F grant , we have that ϕ is inherently vacuous in a definition that
considers strengthening. On the other hand, there exists no subformula of ϕ or an occur-
rence of a subformula ψ such that ϕ is equivalent to its ψ-weakening.

This shows there exist formulas that are inherently vacuous according to weakening
but not according to strengthening and vice versa.

Example 7. In [9], the authors consider specifications of the form ϕ =
∧

i∈I ϕi and
study how to detect redundant conjuncts. Formally, ϕj is redundant if ϕ is equivalent
to

∧
i∈I\{j} ϕi. Note that this is a special case of our inherent vacuity when considering

weakening of the mutation (and the syntactic-based definition of vacuity).
For example, the formula ϕ = (wait U busy) ∧ F (wait ∨ busy) is inherently vac-

uous according to this criterion. Indeed, ϕ is equivalent to (wait U busy), which is its
σ-weakening, for σ = F (wait ∨ busy).

3.2 Working with the Different Parameters

In order to describe the different parameters, we use the term ϕ is inherently vacuous
(by mutation) of type (V, E, T, P), where V ∈ {sV, mV} denotes the vacuity type (single or
multiple occurrences), E ∈ {cE, oE} denotes the equivalence type (closed or open systems),
T ∈ {eT, pT} denotes the tightening type (to an equivalent one or to one that preserves
satisfaction), and P ∈ {sP, wP} denotes the type of polarity (strengthening or weakening).
For example,

– ϕ is inherently vacuous of type (mV, oE, eT, sP) if ϕ ≡o ∀x.ϕ[ψ ← x], for some
subformula ψ of ϕ.

– ϕ is inherently vacuous of type (sV, cE, eT, wP) if ϕ ≡c ϕ[σ ← >], for some occurrence
σ of a subformula of ϕ.

– ϕ is inherently vacuous of type (mV, oE, pT, sP) if ∀x.ϕ[ψ ← x] is realizable for some
subformula ψ of ϕ.

Note that inherent vacuity discussed in Section 2 is of type (mV, cE, eT, sP). Note also that
the parameters are orthogonal to each other. An exception is the tightening type and its
polarity: if T is pT, then P must be sP.

For uniformity, we use the V, E, and T parameters also in other notations. In particular,
a V-subformula of ϕ is a subformula if V = mV and is an occurrence of a subformula if
V = sV. Likewise, a E-system is a Kripke structure when E = cE and is a transducer when
E = oE. Finally, a formula that is E-satisfiable is satisfiable when E = cE and is realizable
when E = oE.

Example 8. Mutating a single occurrence of a subformula may not detect inherent vacuity
that originates from the relations between different parts of the formula. For example, the
formula ϕ = (wait∧busy)∨(wait∧¬busy) is inherently vacuous of types (mV, cE, eT, sP)
and (mV, cE, eT, wP) but is not inherently vacuous of type (sV, cE, eT, sP) or (sV, cE, eT, wP).



Indeed, the busy-strengthening of ϕ and the busy-weakening of it, which are equivalent
to the formula wait , are equivalent to ϕ. However, there is no single occurrence σ of a
subformula ψ such that ϕ[σ ← ⊥] or ϕ[σ ← >] is equivalent to wait .

On the other hand, mutating all occurrences may not detect local problems that are
covered by other parts of the formula. For example, the formula ϕ = (G high)∨ (high →
F G high) is inherently vacuous of type (sV, cE, eT, sP) but is not inherently vacuous of
type (mV, cE, eT, sP). Indeed, ϕ is equivalent to its σ-strengthening, for σ being the first
occurrence of G high . However, there is no subformula ψ of ϕ such that ϕ is equivalent
to its ψ-strengthening.

Theorem 3 below summarizes the relations among the various types of inherent vacu-
ity. The first implication follows from the implications of o-equivalence by c-equivalence
[13]. The second implication follows from the fact we restrict attention to E-satisfiable
formulas. Finally, all the incomparability results are demonstrated in the examples.

Theorem 3. Let V ∈ {sV,mV}, E ∈ {cE, oE}, T ∈ {eT, pT}, and P ∈ {sP, wP}.

1. Inherent vacuity of type (V, cE, T, P) implies inherent vacuity of type (V, oE, T, P). Im-
plication in the other direction does not hold.

2. For E-satisfiable formulas, inherent vacuity of type (V, E, eT, sP) implies inherent vacu-
ity of type (V, E, pT, sP). Implication in the other direction does not hold.

3. Inherent vacuity of type (mV, E, T, P) is incomparable with inherent vacuity of type
(sV, E, T, P).

4. Inherent vacuity of type (V, E, eT, sP) is incomparable with inherent vacuity of type
(V, E, eT, wP).

We now turn to discuss the complexity of detecting inherent vacuity in the different
settings. The following theorem shows that the problem of deciding whether a given LTL
formula is inherently vacuous of various types we have defined, is not more difficult than
the corresponding E-satisfiability problem for LTL.

Theorem 4. Let V ∈ {sV,mV}, E ∈ {cE, oE}, T ∈ {eT, pT}, and P ∈ {sP, wP}. Given an LTL
formula ϕ and a V-subformula ψ of ϕ, deciding whether ϕ is inherently vacuous of type
(V, E, T, P) with witness ψ is PSPACE-complete for E = cE (except when V = mV and
T = pT, in which case it is in EXPSPACE-complete) and is 2EXPTIME-complete for
E = oE.

Proof: For the upper bound, all cases with T = eT are reducible to checking the E-
equivalence of ϕ and its mutation. When V = mV, the mutation may involve universal or
existential quantification of atomic propositions. Still, only one direction of the implica-
tion between ϕ and the mutation should be checked (the other direction always holds),
and fortunately, it is the direction that can be reduced to LTL E-implication. The upper
bounds then follow from the PSPACE and 2EXPTIME complexities for LTL closed and
open implication, respectively [29, 17].

When T = pT, we have to check whether the ψ-strengthening of ϕ is E-satisfiable.
When V = sV, the ψ-strengthening is an LTL formula, and again the upper bound follows
from the known PSPACE and 2EXPTIME complexities for LTL E-implication. When V =
mV, the ψ-strengthening involves universal quantification of atomic propositions. When



E = cE, the problem reduces to the satisfiability problem of LTL augmented with universal
quantification over atomic propositions, this leads to an EXPSPACE complexity [32].
When E = oE, we can check in 2EXPTIME the realizability of ¬ϕ[ψ ← x] in a dual
setting. By the determinacy of realizability, the latter is realizable iff ∀x.ϕ[ψ ← x] is
unrealizable.

For the lower bound, taking ψ to be ϕ reduces E-satisfiability to inherent vacuity, thus
the lower bound holds from the known PSPACE-hardness and 2EXPTIME-hardness for
LTL satisfiability and realizability, respectively [29, 26]. An exception is inherent vacuity
of type (mV, cE, pT, sP), to which we reduce satisfiability of LTL augmented with universal
quantification over atomic propositions, which is known to be EXPSPACE-hard [32].

Corollary 2. Let V ∈ {sV,mV}, T ∈ {eT, pT}, and P ∈ {sP, wP}. The problem of deciding
whether an LTL formula is inherently vacuous of type (V, cE, T, P) can be solved in polyno-
mial space (except for type (mV, cE, pT, sP), which requires exponential space). The prob-
lem of deciding whether an LTL formula is inherently vacuous of types (V, oE, T, P) can be
solved in doubly exponential time.

Note that Theorem 2 and Corollary 1 are a special case of Theorem 4 and Corollary 2.
Corollary 2 shows that detection of inherent vacuity, while being more informative

than detection of satisfiability or realizability, which are used in property-based design
[28], is not harder than these basic problems.7

Having refined the notion of inherent vacuity by mutations, we now turn to refine
the alternative approach of inherent vacuity by model. Note that since the definition of
inherent vacuity by model refers to vacuous satisfaction of ϕ in a model that satisfies ϕ, it
is not interesting to consider weakening of formulas. Thus, when we compare the notions
of inherent vacuity by mutation and by model, the fourth parameter has to be sP.

Definition 3. Consider an LTL formula ϕ. For V ∈ {sV,mV}, E ∈ {cE, oE}, and T ∈ {eT, pT},
we say that

– ϕ is inherently vacuous by model of type (V, E, eT, sP) if ϕ is satisfied vacuously in all
E-systems that satisfy ϕ.

– ϕ is inherently vacuous by model of type (V, E, pT, sP) if ϕ is satisfied vacuously in
some E-system that satisfies ϕ.

Note that for type (mV, cE, eT, sP), the definition coincides with Definition 2.

The following theorem, extending Theorem 1, states that the two approaches for in-
herent vacuity coincide all over the framework.

Theorem 5. For all V ∈ {sV,mV}, E ∈ {cE, oE}, and T ∈ {eT, pT}, an LTL formula ϕ is
inherently vacuous by mutation of type (V, E, T, sP) iff ϕ is inherently vacuous by model
of type (V, E, T, sP).

7 The exception of (mV, cE, pT, sP) follows from the universal quantification of atomic propositions
that vacuity type mV involves. It suggests that designers that suspect their specification for closed
systems should be tightened may prefer to work with vacuity type sV.



Proof: Theorem 1 provides the proof for type (mV, cE, eT, sP). The proof for the other
types with T = e are similar. In fact, in the setting of open systems and transducers, the
equivalence is valid even when we consider deterministic transducers. To see this, note
that the “only if” direction in the proof of Theorem 1 is based on defining the union of k
Kripke structures as a single Kripke structure. While this cannot be done with determin-
istic Kripke structures, it can be done with deterministic transducers. Indeed, by adding
dlog ke input signals that do not appear in the formula, we can define a deterministic ini-
tial transition function for the union, in which the added input signals choose a transducer
from the union. The rest of the proof is the same as in the case of nondeterministic Kripke
structures.

It is left to describe the details for the case T = p, which is different.
Assume that ϕ is inherently vacuous by mutation of type (V, E, pT, sP). Let ψ be such

that the ψ-strengthening of ϕ is E-satisfiable, and let S be the E-system that satisfies it.
By definition, ψ does not affect the satisfaction of ϕ in S , thus S satisfies ϕ vacuously,
and ϕ is inherently vacuous by model of type (V, E, pT, sP).

For the other direction, if ϕ is inherently vacuous by model of type (V, E, pT, sP), then
there exists a V-subformula ψ that does not affect its satisfaction in some E-system. Then
the ψ-strengthening of ϕ is E-satisfiable, thus ϕ is inherently vacuous by mutation of type
(V, E, pT, sP).

4 Discussion

We proposed a framework for inherent vacuity — vacuity of specifications without a
reference model. We argue that, as has been the case with vacuity in model checking,
inherent vacuity is common, and detection of inherent vacuity may significantly improve
the specifications and the designer’s understanding of it.

In [9], the authors experimented with a real-life block as described in [24]. Its specifi-
cation consists of 50 formulas. It is shown in [9] that inherent vacuity exists already with
the basic definition of redundant conjuncts. Indeed, in a set consisting of 17 formulas, 9
were found to be redundant. Another common source of inherent vacuity, not captured by
the definition in [9], is the fact that subformulas that appear in different conjunctions may
be related, without the specifier being aware of such a relation. In particular, a formula for
the full specification may be written by a group of specifiers, each specifying a different
aspect of the design. For example, consider the specification ϕ = ϕ1 ∧ ϕ2 ∧ ϑ where
ϕ1 is G (ξ1 → F ψ) , ϕ2 is G (ξ2 → F ψ), and ϑ is G (ξ1 ∨ ξ2). Such a specification is
classical in the sense that ξ1 and ξ2 represent some modes of operation, and ϑ states that
the system is always in one of the modes. The formula ϕ is inherently vacuous as it is
equivalent to G (ξ1 ∨ ξ2) ∧ G F ψ. Yet, as different specifiers may have specified ϕ1 and
ϕ2, such a vacuity may not be noticed.

The above phenomenon, of subformulas that are related to each other without the
specifier being aware of it, follows from the fact that specifiers often pack complicated
properties into a single temporal formula. Moreover, today standard temporal logics (e.g.
SVA [33], PSL [25, 12],) provide a mechanism for doing so, by allowing one to name a
formula and then relate to it in other formulas. As the referenced subformulas may have
many signals in common, inherent vacuity in the obtained formula is likely to occur.



Another reason for finding inherent vacuity is mistakes, either typos or small logical
errors done by novice in temporal logic. For example, a typo in the formula (p → (ϕ ∧ ψ))
∧(¬p → (ϕ ∧ ϑ)) can result in the formula (p → (ϕ ∧ ψ)) ∧ (p → (ϕ ∧ ϑ)), which is
inherently vacuous by mutation replacing the second occurrence of ϕ by true. As an-
other example, trying to write the temporal-logic formula for the English specification
“If signal error is asserted, it will remain asserted forever” a novice might write ϕ =
G (error → (error U error)) which is a tautology, and inherently vacuous by the muta-
tion ∀x.ϕ(error ← x). Similarly, consider the English specification “If signal grant is not
asserted the cycle after a request, then it cannot be asserted two cycles after the request.”
A wrong attempt to formalize it may be G¬(req → X (¬grant → X (grant))). The latter
formula is inherently vacuous by the mutation replacing the second occurrence of grant
by false. Similar examples abound.

We note that inherent vacuity does not always imply that the specification should be
changed to its simpler mutation, and sometimes the contribution of detecting inherent
vacuity is a better understanding of the specification, possibly leading to a change in the
specification that is different from replacing it by the mutated specification. To see this,
let us consider again the specification ϕ = G (ξ1 → F ψ) ∧G (ξ2 → F ψ) ∧G (ξ1 ∨ ξ2)
discussed above. While ϕ is equivalent to G (ξ1 ∨ ξ2)∧G F ψ, the specifier may prefer to
leave the original formula, in case the formula needs to be refined further in later stages
of the design (and different refinements may be needed for the different models ξi), or in
case the assumption that only these two modes are possible is removed. Still, it is useful
information for the designer to know that, as is, ψ happens infinitely often, regardless of
the mode. Note, however, that in synthesis one would always prefer the simpler mutated
specification as it will induce a smaller system in less time.
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