
Submitted to:
GANDALF 2013

Profile Trees for Büchi Word Automata, with Application to
Determinization

Seth Fogarty
Computer Science Department

Trinity University

Orna Kupferman
School of Computer Science and Engineering

Hebrew University of Jerusalem

Moshe Y. Vardi
Department of Computer Science

Rice University

Thomas Wilke
Institut für Informatik

Christian-Albrechts-Universität zu Kiel

The determinization of Büchi automata is a celebrated problem, with applications in synthesis, prob-
abilistic verification, and multi-agent systems. Since the 1960s, there has been a steady progress
of constructions: by McNaughton, Safra, Piterman, Schewe, and others. Despite the proliferation
of constructions, they are all essentially ad-hoc constructions, with little theory behind them other
than proofs of correctness. Since Safra, all optimal constructions employ trees as states of the de-
terministic automaton, and transitions between states are defined operationally over these trees. The
operational nature of these constructions complicates understanding, implementing, and reasoning
about them, and should be contrasted with complementation, where a solid theory in terms of au-
tomata run DAGs underlies modern constructions.

In 2010, we described a profile-based approach to Büchi complementation, where a profile is
simply the history of visits to accepting states. We developed a structural theory of profiles and used
it to describe a complementation construction that is deterministic in the limit. Here we extend the
theory of profiles to prove that every run DAG contains a profile tree with at most a finite number
of infinite branches. We then show that this property provides a theoretical grounding for a new
determinization construction where macrostates are doubly preordered sets of states. In contrast to
extant determinization constructions, transitions in the new construction are described declaratively
rather than operationally.

1 Introduction

Büchi automata were introduced in the context of decision problems for second-order arithmetic [3].
These automata constitute a natural generalization of automata over finite words to languages of infinite
words. Whereas a run of an automaton on finite words is accepting if the run ends in an accepting state,
a run of a Büchi automaton is accepting if it visits an accepting state infinitely often.

Determinization of nondeterministic automata is a fundamental problem in automata theory, going
back to [19]. Determinization of Büchi automata is employed in many applications, including synthesis
of reactive systems [18], verification of probabilistic systems [4, 26], and reasoning about multi-agent
systems [2]. Nondeterministic automata over finite words can be determinized with a simple, although
exponential, subset construction [19], where a state in the determinized automaton is a set of states
of the input automaton. Nondeterministic Büchi automata, on the other hand, are not closed under
determinization, as deterministic Büchi automata are strictly less expressive than their nondeterministic
counterparts [13]. Thus, a determinization construction for Büchi automata must result in automata with
a more powerful acceptance condition, such as Muller [15], Rabin [20], or parity conditions [9, 17].

The first determinization construction for Büchi automata was presented by McNaughton, with a
doubly-exponential blowup [15]. In 1988, Safra introduced a singly exponential construction [20],

2 Profile Trees for Büchi Word Automata, with Application to Determinization

matching the lower bound of nO(n) [14]. Safra’s construction encodes a state of the determinized au-
tomaton as a labeled tree, now called a Safra tree, of sets of states of the input Büchi automaton. Subse-
quently, Safra’s construction was improved by Piterman, who simplified the use of tree-node labels [17],
and by Schewe, who moved the acceptance conditions from states to edges [22]. In a separate line of
work, Muller and Schupp proposed in 1995 a different singly exponential determinization construction,
based on Muller-Schupp trees [16], which was subsequently simplified by Kähler and Wilke [9].

Despite the proliferation of Büchi determinization constructions, even in their improved and simpli-
fied forms all constructions are essentially ad-hoc, with little theory behind them other than correctness
proofs. These constructions rely on the encoding of determinized-automaton states as finite trees. They
are operational in nature, with transitions between determinized-automaton states defined “horticultur-
ally,” as a sequence of operations that grow trees and then prune them in various ways. The opera-
tional nature of these constructions complicates understanding, implementing, and reasoning about them
[1, 23], and should be contrasted with complementation, where an elegant theory in terms of automata
run DAGs underlies modern constructions [8, 11, 21]. In fact, the difficulty of determinization has mo-
tivated attempts to find determinization-free decision procedures [12] and works on determinization of
fragments of LTL [10].

In a recent work [6], we introduced the notion of profiles for nodes in the run DAG. We began by
labeling accepting nodes of the DAG by 1 and non-accepting nodes by 0, essentially recording visits
to accepting states. The profile of a node is the lexicographically maximal sequence of labels along
paths of the run DAG that lead to that node. Once profiles of nodes and a lexicographic order over
profiles were defined, we removed from the run DAG edges that do not contribute to profiles. In the
pruned run DAG, we focused on lexicographically maximal runs. This enabled us to define a novel,
profile-based Büchi complementation construction that yields deterministic-in-the-limit automata: one
in which every accepting run of the complementing automaton is eventually deterministic [6] A state
in the complementary automaton is a set of states of the input nondeterministic automaton, augmented
with the preorder induced by profiles. Thus, this construction can be viewed as an augmented subset
construction.

In this paper, we develop the theory of profiles further, and consider the equivalence classes of nodes
induced by profiles, in which two nodes are in the same class if they have the same profile. We show
that profiles turn the run DAG into a profile tree: a binary tree of bounded width over the equivalence
classes. The profile tree affords us a novel singly exponential Büchi determinization construction. In
this profile-based determinization construction, a state of the determinized automaton is a set of states of
the input automaton, augmented with two preorders induced by profiles. Note that while a Safra tree is
finite and encodes a single level of the run DAG, our profile tree is infinite and encodes the entire run DAG,
capturing the accepting or rejecting nature of all paths. Thus, while a state in a traditional determinization
construction corresponds to a Safra tree, a state in our deterministic automaton corresponds to a single
level in the profile tree.

Unlike previous Büchi determinization constructions, transitions between states of the determinized
automaton are defined declaratively rather than operationally. We believe that the declarative character
of the new construction will open new lines of research on Büchi determinization. For Büchi comple-
mentation, the theory of run DAGs [11] led not only to tighter constructions [8, 21], but also to a rich
body of work on heuristics and optimizations [5, 7]. We foresee analogous developments in research on
Büchi determinization.

S. Fogarty, O. Kupferman, M.Y. Vardi, & Th. Wilke 3

2 Preliminaries

This section introduces the notations and definitions employed in our analysis.

2.1 Relations on Sets

Given a set R, a binary relation≤ over R is a preorder if≤ is reflexive and transitive. If for every r1,r2 ∈R
either r1≤ r2 or r2≤ r1, then≤ is a linear preorder. If a preorder≤ is antisymmetric, that is if r1≤ r2 and
r2 ≤ r1 implies r1 = r2, then it is a partial order. A linear partial order is a total order. Consider a partial
order ≤. If for every r ∈ R, the set {r′ | r′ ≤ r} of smaller elements is totally ordered by ≤, then we say
that ≤ is a tree order. The equivalence class of r ∈ R under ≤, written [r], is {r′ | r′ ≤ r and r ≤ r′}. The
equivalence classes under a linear preorder form a totally ordered partition of R. Given a set R and linear
preorder ≤ over R, define the minimal elements of R as min≤(R) = {r1 ∈ R | r1 ≤ r2 for all r2 ∈ R}.
Note that min≤(R) is either empty or an equivalence class under ≤. Given a non-empty set R and a total
order ≤, we instead define min≤ as the function that maps R to its unique minimal element.

Given two finite sets R and R′ where |R| ≤ |R′|, a linear preorder ≤ over R, and a total order <′ over
R′, define the 〈≤,<′〉-minjection from R to R′ to be the function mj that maps all the elements in the k-th
equivalence class of R to the k-th element of R′. The number of equivalence classes is at most |R|, and
thus at most |R′|. If ≤ is also a total order, than the 〈≤,<′〉-minjection is also an injection.

Example 2.1. Let R = Q and R′ = IN be the sets of rational numbers and integers, respectively. Define
the linear preorder≤1 over Q by x≤1 x′ iff bxc ≤ bx′c, and the total order <2 over IN by x <2 x′ if x < x′.
Then, the 〈≤1,<2〉-minjection from Q to IN maps a rational number x to bxc.

2.2 ω-Automata

A nondeterministic ω-automaton is a tuple A= 〈Σ,Q,Qin,ρ,α〉, where Σ is a finite alphabet, Q is a finite
set of states, Qin ⊆ Q is a set of initial states, ρ : Q×Σ→ 2Q is a nondeterministic transition relation,
and α is an acceptance condition defined below. An automaton is deterministic if |Qin| = 1 and, for
every q ∈ Q and σ ∈ Σ, we have |ρ(q,σ)| = 1. For a function δ : Q×Σ→ 2Q, we lift δ to sets R of
states in the usual fashion: δ (R,σ) =

⋃
r∈R δ (r,σ). Further, we define the inverse of δ , written δ−1, to

be δ−1(r,σ) = {q | r ∈ δ (q,σ)}.
A run of an ω-automaton A on a word w = σ0σ1 · · · ∈ Σω is an infinite sequence of states q0,q1, . . .∈

Qω such that q0 ∈ Qin and, for every i ≥ 0, we have that qi+1 ∈ ρ(qi,σi). Correspondingly, a finite run
of A to q on w = σ0 · · ·σn−1 ∈ Σ∗ is a finite sequence of states p0, . . . , pn such that p0 ∈ Qin, pn = q, and
for every 0≤ i < n we have pi+1 ∈ ρ(pi,σi).

The acceptance condition α determines if a run is accepting. If a run is not accepting, we say it
is rejecting. A word w ∈ Σω is accepted by A if there exists an accepting run of A on w. The words
accepted by A form the language of A, denoted by L(A). For a Büchi automaton, the acceptance
condition is a set of states F ⊆ Q, and a run q0,q1, . . . is accepting iff qi ∈ F for infinitely many i’s. For
convenience, we assume Qin ∩F = /0. For a Rabin automaton, the acceptance condition is a sequence
〈G0,B0〉, . . . ,〈Gk,Bk〉 of pairs of sets of states. Intuitively, the sets G are “good” conditions, and the sets
B are “bad” conditions. A run qo,q1, . . . is accepting iff there exists 0≤ j≤ k so that qi ∈G j for infinitely
many i’s, while qi ∈ B j for only finitely many i’s. Our focus in this paper is on nondeterministic Büchi
automata on words (NBW) and deterministic Rabin automata on words (DRW).

4 Profile Trees for Büchi Word Automata, with Application to Determinization

2.3 Safra’s Determinization Construction

This section presents Safra’s determinization construction, using the exposition in [17]. Safra’s construc-
tion takes an NBW and constructs an equivalent DRW. Intuitively, a state in this construction is a tree of
subsets. Every node in the tree is labeled by the states it follows. The label of a node is a strict superset
of the union of labels of its descendants, and the labels of siblings are disjoint. Children of a node are
ordered by “age”. Let A= 〈Σ,Q,Qin,ρ,F〉 be an NBW, n = |Q|, and V = {0, . . . ,n−1}.

Definition 2.2. [17] A Safra tree over A is a tuple t = 〈N,r, p,ψ, l,G,B〉 where:
• N ⊆V is a set of nodes.
• r ∈ N is the root node.
• p : (N \ r)→ N is the parent function over N \{r}.
• ψ is a partial order defining ’older than’ over siblings.
• l : N→ 2Q is a labeling function from nodes to non-empty sets of states. The label of every node

is a proper superset of the union of the labels of its sons. The labels of two siblings are disjoint.
• G,B⊆V are two disjoint subsets of V .

The only way to move from one Safra tree to the next is through a sequence of “horticultural”
operations, growing the tree and then pruning it to ensure that the above invariants hold.

Definition 2.3. Define the DRW DS(A) = 〈Σ,QS,ρS, t0,α〉 where:
• QS is the set of Safra trees over A.
• t0 = 〈{0},0, /0, /0, l0, /0,{1, . . . ,n−1}〉 where l0(0) = Qin

• For t = 〈N,r, p,ψ, l,G,B〉 ∈ QS and σ ∈ Σ, the tree t ′ = ρS(t,σ) is the result of the following
sequence of operations. We temporarily use a set V ′ of names disjoint from V . Initially, let
t ′ = 〈N′,r′, p′,ψ ′, l′,G′,B′〉 where N′ = N, r′ = r, p′ = p, ψ ′ = ψ , l′ is undefined, and G′ = B′ = /0.

(1) For every v ∈ N′, let l′(v) = ρ(l(v),σ).
(2) For every v ∈ N′ such that l′(v)∩F 6= /0, create a new node v′ ∈V ′ where: p(v′) = v; l′(v′) =

l′(v)∩F ; and for every w′ ∈V ′ where p(w′) = v add (w′,v′) to ψ .
(3) For every v ∈ N′ and q ∈ l′(v), if there is a w ∈ N′ such that (w,v) ∈ ψ and q ∈ l′(w), then

remove q from l′(v) and, for every descendant v′ of v, remove q from l′(v′).
(4) Remove all nodes with empty labels.
(5) For every v ∈ N′, if l′(v) =

⋃
{l′(v′) | p′(v′) = v} remove all children of v, add v to G.

(6) Add all unused nodes from V to B.
(7) Change the nodes in V ′ to unused nodes in V .

• α = {〈G0,B0〉, . . . ,〈Gn−1,Bn−1〉}, where:
– Gi = {〈N,r, p,ψ, l,G,B〉 ∈ QS | i ∈ G}
– Bi = {〈N,r, p,ψ, l,G,B〉 ∈ QS | i ∈ B}

Theorem 2.4. [20] For an NBW A with n states, L(DS(A))=L(A) and DS(A) has nO(n) states.

3 From Run DAGs to Profile Trees

In this section, we present a framework for simultaneously reasoning about all runs of a Büchi automaton
on a word. We use a DAG to encode all possible runs, and give each node in this DAG a profile based
on its history. The lexicographic order over profiles induces a preorder �i over the nodes on level i of
the run DAG. Using �i, we prune the edges of the run DAG, and derive a binary tree of bounded width.
Throughout this paper we fix an NBW A= 〈Σ,Q,Qin,ρ,F〉 and an infinite word w = σ0σ1 · · · .

S. Fogarty, O. Kupferman, M.Y. Vardi, & Th. Wilke 5

3.1 Run DAGs and Profiles

The runs of A on w can be arranged in an infinite DAG G = 〈V,E〉, where

• V ⊆ Q× IN is such that 〈q, i〉 ∈V iff there is a finite run of A to q on σ0 · · ·σi−1.

• E ⊆
⋃

i≥0(Q×{i})×(Q×{i+1}) is such that E(〈q, i〉,〈q′, i+1〉) iff 〈q, i〉 ∈V and q′ ∈ ρ(q,σi).

The DAG G, called the run DAG of A on w, embodies all possible runs of A on w. We are primarily
concerned with initial paths in G: paths that start in Qin×{0}. A node 〈q, i〉 is an F-node if q ∈ F , and
a path in G is accepting if it is both initial and contains infinitely many F-nodes. An accepting path in G
corresponds to an accepting run of A on w. If G contains an accepting path, we say that G is accepting;
otherwise it is rejecting. Let G′ be a sub-DAG of G. For i≥ 0, we refer to the nodes in Q×{i} as level i
of G′. Note that a node on level i+1 has edges only from nodes on level i. We say that G′ has bounded
width of degree c if every level in G′ has at most c nodes. By construction, G has bounded width of
degree |Q|.

Consider the run DAG G= 〈V,E〉 of A on w. Let f : V →{0,1} be such that f (〈q, i〉) = 1 if q∈ F and
f (〈q, i〉) = 0 otherwise. Thus, f labels F-nodes by 1 and all other nodes by 0. The profile of a path in G
is the sequence of labels of nodes in the path. The profile of a node is then the lexicographically maximal
profile of all initial paths to that node. The profile of a finite path b = v0,v1, . . . ,vn in G, written hb, is
f (v0) f (v1) · · · f (vn), and the profile of an infinite path b = v0,v1, . . . is hb = f (v0) f (v1) · · · . Finally, the
profile of a node v, written hv, is the lexicographically maximal element of {hb | b is an initial path to v}.

The lexicographic order of profiles induces a linear preorder over nodes. We define a sequence of
linear preorders�i over the nodes on level i of G as follows. For nodes u and v on level i, let u≺i v if hu <
hv, and u≈i v if hu = hv. We group nodes by their equivalence classes under �i. Since the final element
of a node’s profile is 1 iff the node is an F-node, all nodes in an equivalence class agree on membership
in F . Call an equivalence class an F-class when all members are F-nodes, and a non-F-class when none
of its members are F-nodes. When a state can be reached by two finite runs, a node will have multiple
incoming edges in G. We now remove from G all edges that do not contribute to profiles. Formally, define
the pruned run DAG G′ = 〈V,E ′〉 where E ′ = {〈u,v〉 ∈ E | for every u′ ∈V , if 〈u′,v〉 ∈ E then u′ �|u| u}.
Note that the set of nodes in G and G′ are the same, and that an edge is removed from E ′ only when there
is another edge to its destination.

Lemma 3.1 states that, as we have removed only edges that do not contribute to profiles, nodes derive
their profiles from their parents in G′.

Lemma 3.1. [6] For two nodes u and u′ in V , if 〈u,u′〉 ∈ E ′, then hu′ = hu0 or hu′ = hu1.

While nodes with different profiles can share a child in G, Lemma 3.2 precludes this in G′.

Lemma 3.2. Consider nodes u and v on level i of G′ and nodes u′ and v′ on level i+1 of G′. If 〈u,u′〉 ∈E ′,
〈v,v′〉 ∈ E ′, and u′ ≈i+1 v′, then u≈i v.

Proof: Since u′ ≈i+1 v′, we have hu′ = hv′ . If u′ is an F-node, then v′ is an F-node and the last letter in
both hu′ and hv′ is 1. By Lemma 3.1 we have hu1 = hu′ = hv′ = hv1. If u′ and v′ are non-F-nodes, then
we have hu0 = hu′ = hv′ = hv0. In either case, hu = hv and u≈i v.

Finally, we have that G′ captures the accepting or rejecting nature of G. This result was employed to
provide deterministic-in-the-limit complementation in [6]

Theorem 3.3. [6] The pruned run DAG G′ of an NBW A on a word w is accepting iff A accepts w.

6 Profile Trees for Büchi Word Automata, with Application to Determinization

3.2 The Profile Tree

Using profiles, we define the profile tree T, a binary tree of bounded width that captures the accepting or
rejecting nature of the pruned run DAG G′. The nodes of T are the equivalence classes {[u] | u ∈ G′} of
G′. To remove confusion, we refer to the nodes of T as classes and use and U and V for classes in T ,
while reserving u and v for nodes in G or G′. The edges in T are induced by these in G′ as expected: for
an edge 〈u,v〉 ∈ E ′, the class [v] is the child of [u] in T . A class V is a descendant of a class U if there is
a, possibly empty, path from U to V .

Theorem 3.4. The profile tree T of an n-state NBW A on an infinite word w is a binary tree whose width
is bounded by n.

Proof: That T has bounded width follows from the fact that a class on level i contains at least one node
on level i of G, and G is of bounded width of degree n. To prove every class has one parent, for a class V
let U = {u | there is v ∈V such that 〈u,v〉 ∈ E ′}. Lemma 3.2 implies that U is an equivalence class, and
is the sole parent of V . To show that T has a root, note that as Qin ∩F = /0, all nodes on the first level
of G have profile 0, and every class descends from this class of nodes with profile 0. Finally, as noted
Lemma 3.1 entails that a class U can have at most two children: the class with profile hU 1, and the class
with profile hU 0. Thus T is binary.

A branch of T is a finite or infinite initial path in T . Since T is a tree, two branches share a prefix
until they split. An infinite branch is accepting if it contains infinitely many F-classes, and rejecting
otherwise. An infinite rejecting branch must reach a suffix consisting only of non-F-classes. A class
U is called finite if it has finitely many descendants, and a finite class U dies out on level k if it has a
descendant on level k−1, but none on level k. Say T is accepting if it contains an accepting branch, and
rejecting if all branches are rejecting.

As all members of a class share a profile, we define the profile hU of a class U to be hu for some node
u ∈U . We extend the function f to classes, so that f (U) = 1 if U is an F-class, and f (U) = 0 otherwise.
We can then define the profile of an infinite branch b = U0,U1, . . . to be hb = f (U0) f (U1) · · · . For two
classes U and V on level i, we say that U ≺i V if hU < hV . For two infinite branches b and b′, we say that
b≺ b′ if hb < hb′ . Note that ≺i is a total order over the classes on level i, and that ≺ is a total order over
the set of infinite branches.

As proven above, a class U has at most two children: the class of F-nodes with profile hU 1, and the
class of non-F-nodes with profile hU 0. We call the first class the F-child of U , and the second class the
non-F-child of U . While G′ can have infinitely many infinite branches, bounding the width of the profile
tree also bounds the number of infinite branches it may have.

Corollary 3.5. The profile tree T of an NBW A on an infinite word w has a finite number of infinite
branches.

Example 3.6. Consider for example the NBW in Figure 1(a), and the tree of equivalence classes that cor-
responds to a run of it in the word abω in Figure 1(b). The only infinite branch, {〈q,0〉},{〈p,1〉},{〈p,2〉}, . . .,
is accepting. The set of labels and the global labeling gl are explained below, in Section 4.1.

We conclude this section with Theorem 3.7, which enables us to reduce the search for an accepting
path in G′ to a search for an accepting branch in T .

Theorem 3.7. The profile tree T of an NBW A on an infinite word w is accepting iff A accepts w.

S. Fogarty, O. Kupferman, M.Y. Vardi, & Th. Wilke 7

qstart p

a

a

b

a,b

(a) An automaton

〈q,0〉
h = 0
labels= {}
gl = 0

〈q,1〉
h = 00

labels= {0}
gl = 0

〈p,1〉
h = 01
labels= {}
gl = 1

〈q,2〉
h = 010

labels= {0,1}
gl = 0

〈p,2〉
h = 011
labels= {}
gl = 2

〈q,3〉
h = 0110

labels= {0,1,2}
gl = 0

〈p,3〉

h = 0111
labels= {}
gl = 3

(b) T for automaton (a) on abω .

Figure 1: An automaton and tree of classes. Each class is a singleton set, brackets are omitted for brevity.
F-classes are circled twice. Each class is labeled with its profile h, as well as the set labels and the
global label gl as defined in Section 4.1.

Proof: If w ∈ L(A), then by Theorem 3.3 we have that G′ contains an accepting path u0,u1, This
path gives rise to an accepting branch [u0], [u1], . . . in T . In the other direction, if T has an accepting
branch U0,U1, . . ., consider the infinite subgraph of G′ consisting only of the nodes in Ui, for i > 0. For
every i > 0 there exists ui ∈ Ui and ui+1 ∈ Ui+1 so that E ′(ui,ui+1). Because no node is orphaned in
G′, Lemma 3.2 implies that every node in Ui+1 has a parent in Ui, thus this subgraph is connected. As
each node has degree of as most n, König’s Lemma implies that there is an initial path u0,u1, . . . through
this subgraph. Further, at every level i where Ui is an F-class, we have that ui ∈ F , and thus this path is
accepting and w ∈ L(A).

4 Labeling

In this section we present a method of deterministically labeling the classes in T with integers, so we
can determine if T is accepting by examining the labels. Each label m represents the proposition that the
lexicographically minimal infinite branch through the first class labeled with m is accepting. On each
level we give the label m to the lexicographically minimal descendant, on any branch, of this first class
labeled with m. We initially allow the use of global information about T and an unbounded number of
labels. We then show how to determine the labeling using bounded information about each level of T ,
and how to use a fixed set of labels.

8 Profile Trees for Büchi Word Automata, with Application to Determinization

4.1 Labeling T

We first present a labeling that uses an unbounded number of labels and global information about T . We
call this labeling the global labeling, and denote it with gl. For a class U on level i of T , and a class V
on level j, we say that V is before U if j < i or j = i and V ≺i U . For each label m, we refer to the first
class labeled m as first(m). That is, U = first(m) if U is labeled m and, for all classes V before U ,
the label of V is not m. We define the labeling function gl inductively over the nodes of T . For the initial
class U0 = {〈q,0〉 | q ∈ Qin} with profile 0, let gl(U0) = 0.

Each label m follows the lexicographically minimal child of first(m) on every level. When a class
with label m has two children, we are not certain which, if either, is part of an infinite branch. We are thus
conservative, and follow the non-F-child. If the non-F-child dies out, we revise our guess and move to a
descendant of the F-child. For a label m and level i, let the lexicographically minimal descendant of m on
level i, written lmd(m, i), be min�({V |V is a descendant of first(m) on level i}). That is, lmd(m, i) is
the class with the minimal profile among all the descendants of first(m) on level i. For a class U on
level i, define labels(U) = {m |U = lmd(m, i)} as the set of valid labels for U . If U has more than one
valid label, we give it the smallest label, which corresponds to the earliest ancestor. If labels(U) is
empty, U is given an unused label one greater than the maximum label occurring earlier in T .

Definition 4.1. gl(U) =

{
min(labels(U)) if labels(U) 6= /0,
max({gl(V) |V is before U})+1 if labels(U) = /0.

Lemma 4.2 demonstrates that every class on a level gets a unique label, and that despite moving
between nephews the labeling adheres to branches in the tree. The proof is reserved for Appendix A.

Lemma 4.2. For classes U and V on level i of T , it holds that:
(1) If U 6=V then gl(U) 6= gl(V).
(2) U is a descendant of first(gl(U)).
(3) If U is a descendant of first(gl(V)), then V �i U. Consequently, if U ≺i V , then U is not a

descendant of first(gl(V)).
(4) first(gl(U)) is the root or an F-class with a sibling.
(5) If U 6= first(gl(U)), then there is a class on level i−1 that has label gl(U).
(6) If gl(U)< gl(V) then first(gl(U)) is before first(gl(V)).

As stated above, the label m represents the proposition that the lexicographically minimal infinite
branch going through first(m) is accepting. Every time we pass through an F-child, this is evidence
towards this proposition. When a class with label m has two children, we conservatively follow the non-
F-child. If the non-F-child dies out, we revise our guess and move to a descendant of the F-child. Thus
revising our guess indicates that at an earlier point the branch did visit an F-child, and also provides
evidence towards this proposition. Formally, we say that a label m is successful on level i if there is a
class U on level i−1 and a class U ′ on level i such that gl(U) = gl(U ′) = m, and either U ′ is the F-child
of U , or U ′ is not a child of U at all.

Example 4.3. In Figure 1(b), the only infinite branch {〈q,0〉},{〈p,1〉}, . . . is accepting. At level 0 this
branch is labeled with 0. At each level i > 0, we conservatively assume that the infinite branch beginning
〈q,0〉 goes through {〈q, i〉}, and thus label {〈q, i〉} by 0. As {〈q, i〉} is proven finite on level i+ 1, we
revise our assumption and continue to follow the path through {〈p, i〉}. Since {〈p, i〉} is an F-class, the
label 0 is successful on every level i+ 1. Although the infinite branch is not labeled 0 after the first
level, the label 0 asymptotically approaches the infinite branch, checking along the way that the branch
is lexicographically minimal among the infinite branches through the root.

S. Fogarty, O. Kupferman, M.Y. Vardi, & Th. Wilke 9

Theorem 4.4 demonstrates that the global labeling captures the accepting or rejecting nature of T .
Intuitively, at each level the class U with label m is on the lexicographically minimal branch from
first(m). If U is on the lexicographically minimal infinite branch from first(m), the label m is
waiting for the branch to next reach an F-class. If U is not on the lexicographically minimal infinite
branch from first(m), then U is finite and m is waiting for U to die out.

Theorem 4.4. A profile tree T is accepting iff there is a label m that is successful infinitely often.

Proof: In one first direction, assume there is a label m that is successful infinitely often. The label m
can be successful only when it occurs, and thus m occurs infinitely often, first(m) has infinitely many
descendants, and there is at least one infinite branch through first(m). Let b = U0,U1, . . . be the lexi-
cographically minimal infinite branch that goes through first(m). We demonstrate that b cannot have a
suffix consisting solely of non-F-classes, and therefore is an accepting branch. By way of contradiction,
assume there is an index j so that for every k > j, the class Uk is a non-F-class. By Lemma 4.2.(4),
first(m) is an F-class or the root and thus occurs before level j.

Let U = {V |V ≺ j U j, V is a descendant of first(m)} be the set of descendants of first(m), on
level j, that are lexicographically smaller than U j. Since b is the lexicographically minimal infinite
branch through first(m), every class in U must be finite. Let j′ ≥ j be the level at which the last class
in U dies out. At this point, U j′ is the lexicographically minimal descendant of first(m). If gl(U j′) 6=m,
then there is no class on level j′ with label m, and, by Lemma 4.2.(5), m would not occur after level j′.
Since m occurs infinitely often, it must be that gl(U j′) = m. On every level k > j′, the class Uk is a non-
F-child, and thus Uk is the lexicographically minimal descendant of U j′ on level k and so gl(Uk) = m.
This entails m cannot be not successful after level j′, and we have reached a contradiction. Therefore,
there is no such rejecting suffix of b, and b must be an accepting branch.

In the other direction, if there is an infinite accepting branch, then let b = U0,U1, . . . be the lexi-
cographically minimal infinite accepting branch. Let B′ be the set of infinite branches that are lexico-
graphically smaller than b. Every branch in B′ must be rejecting, or b would not be the minimal infinite
accepting branch. Let j be the first index after which the last branch in B′ splits from b. Note that either
j = 0, or U j−1 is part of an infinite rejecting branch U0, . . . ,U j−1,Vj,Vj+1, . . . smaller than b. In both
cases, we show that U j is the first class for a new label m that occurs on every level k > j of T .

If j = 0, then let m= 0. As m is the smallest label, and there is a descendant of U j on every level of T ,
it holds that m will occur on every level. In the second case, where j > 0, then Vj must be the non-F-child
of U j−1, and so U j is the F-child. Thus, U j is given a new label m where U j = first(m). For every
label m′ < m and level k > j, since for every descendant U ′ of U j it holds that Vk �k U ′, it cannot be that
lmd(m′,k) is a descendant of U j. Thus, on every level k > j, the lexicographically minimal descendant
of U j will be labeled m, and m occurs on every level of T .

We show that m is successful infinitely often by defining an infinite sequence of levels, j0, j1, j2, . . .
so that m is successful on ji for all i > 0. As a base case, let j0 = j. Inductively, at level ji, let U ′ be the
class on level ji labeled with m. We have two cases. If U ′ 6=U ji , then as all infinite branches smaller than
b have already split from b, U ′ must be finite in T . Let ji+1 be the level at which U ′ dies out. At level
ji+1, m will return to a descendant of U j0 , and m will be successful. In the second case, U ′ =U ji . Take
the first k > ji so that Uk is an F-class. As b is an accepting branch, such a k must exist. As every class
between U j and Uk is a non-F-class, gl(Uk−1) = m. If Uk is the only child of Uk−1 then let ji+1 = k: since
gl(Uk) = m and Uk is not the non-F-child of Uk−1, it holds that m is successful on level k. Otherwise let
U ′k be the non-F-child of Uk−1, so that gl(U ′k) = m. Again, U ′k is finite. Let ji+1 be the level at which U ′k
dies out. At level ji+1, the label m will return to a descendant of Uk, and m will be successful.

10 Profile Trees for Büchi Word Automata, with Application to Determinization

4.2 Determining Lexicographically Minimal Descendants

Recall that the definition of the labeling gl involves the computation of lmd(m, i), the class with the
minimal profile among all the descendants of first(m) on level i. Finding lmd(m, i) requires knowing
the descendants of first(m) on level i. We show how to store this information with a partial order,
denoted ti , over classes that tracks which classes are minimal cousins of other classes. Using this partial
order, we can determine the class lmd(m, i + 1) for every label m that occurs on level i, using only
information about levels i and i+1 of T . Lemma 4.2.(5) implies that we can safely restrict ourselves to
labels that occur on level i.
Definition 4.5. For two classes U and V on level i of T , say that U is a minimal cousin of V , written
U tiV , iff V is a descendant of first(gl(U)). Say U ⋖iV when U tiV and U 6=V .

For a label m and level i, we can determine lmd(m, i+1) given only the classes on levels i and i+1
and the partial order ⋖i . Let U be a class U on level i. Because labels can move between branches,
the minimal descendant of first(gl(U)) on level i+1 may be a nephew of U , not necessarily a direct
descendant. Define the ti -nephew of U as nephi(U) = min�i+1({V ′ |V is the parent of V ′ and U tiV}).
Lemma 4.6. For a class U on level i of T , it holds that lmd(gl(U), i+1) = nephi(U).

Proof: We prove that {V ′ |V is the parent of V ′ and U tiV} contains every descendant of first(gl(U))
on level i+1, and thus that its minimal element is lmd(gl(U), i+1). Let V ′ be a class on level i+1, with
parent V on level i. If U tiV , then V is a descendant of first(gl(U)) and V ′ is likewise a descendant
of first(gl(U)). Conversely, as gl(U) exists on level i, if V ′ is a descendant of first(gl(U)), then its
parent V must also be a descendant of first(gl(U)) and U tiV .

By using nephi, we can in turn define the set of valid labels for a class U ′ on level i+ 1. Formally,
define the ti -uncles of U ′ as unci(U ′) = {U |U ′ = nephi(U)}. Lemma 4.7 demonstrates how unci

corresponds to labels.
Lemma 4.7. Consider a class U ′ on level i+1. The following hold:

(1) labels(U ′)∩{gl(V) |V on level i}= {gl(U) |U ∈ unci(U ′)}.
(2) labels(U ′) = /0 iff unci(U ′) = /0.

Proof:
(1) Let U be a class on level i. By definition, gl(U) ∈ labels(U ′) iff U ′ = lmd(gl(U), i+ 1). By

Lemma 4.6, it holds that lmd(gl(U), i+ 1) = nephi(U). By the definition of unci, we have that
U ′ = nephi(U) iff U ∈ unci(U ′). Thus every label in labels(U ′) that occurs on level i labels
some node in unci(U ′).

(2) If unci(U ′) 6= /0, then part (1) implies labels(U ′) 6= /0. In other direction, let m= min(labels(U ′)).
By Lemma 4.2.(5), there is a U on level i so that gl(U) = m, and by part (1) U ∈ unci(U ′).

Finally, we demonstrate how to compute ti+1 only using information about the level i of T and
the labeling for level i+ 1. As the labeling depends only on ti , this removes the final piece of global
information used in defining gl.
Lemma 4.8. Let U ′ and V ′ be two classes on level i+1 of T , where U ′ 6=V ′. Let V be the parent of V ′.
We have that U ′ti+1V ′ iff there exists a class U on level i so that gl(U) = gl(U ′) and U tiV .

Proof: If there is no class U on level i so that gl(U) = gl(U ′), then U ′ = first(gl(U ′)). Since V ′ is not
a descendant of U ′, it cannot be that U ′ti+1V ′. If such a class U exists, then U tiV iff V is a descendant
of first(gl(U)), which is true iff V ′ is a descendant of first(gl(U ′)): the definition of U ′ti+1V ′.

S. Fogarty, O. Kupferman, M.Y. Vardi, & Th. Wilke 11

4.3 Reusing Labels

As defined, the labeling function gl uses an unbounded number of labels. However, as there are at most
|Q| classes on a level, there are at most |Q| labels in use on a level. We can thus use a fixed set of
labels by reusing dead labels. For convenience, we use 2|Q| labels, so that we never need reuse a label
that was in use on the previous level. We demonstrate how to use |Q|− 1 labels in Appendix B. There
are two barriers to reusing labelings. First, we can no longer take the numerically minimal element of
labels(U) as the label of U . Instead, we calculate which label is the oldest through�. Second, we must
ensure that a label that is good infinitely often is not reused infinitely often. To do this, we introduce a
Rabin condition to reset each label before we reuse it.

We inductively define a sequence of labelings, li, each from the ith level of T to {0, . . . ,2|Q|}. As
a base case, there is only one equivalence class U on level 0 of T, and define l0(U) = 0. Inductively,
given the set of classes Ui on level i, the function li, and the set of classes Ui+1 on level i + 1, we
define li+1 as follows. Define the set of unused labels FL(li) to be {m | m is not in the range of li}. As
T has bounded width |Q|, we have that |Q| ≤ |FL(li)|. Let mji+1 be the 〈�i+1,<〉-minjection from
{U ′ on level i+1 | unci(U ′) = /0} to FL(li). Finally, define the labeling li+1 as

li+1(U ′) =

{
li(min�i(unci(U ′))) if unci(U ′) 6= /0,
mji+1(U

′) if unci(U ′) = /0.

Because we are reusing labels, we need to ensure that a label that is good infinitely often is not reused
infinitely often. Say that a label m is bad in li if m 6∈ FL(li−1), but m ∈ FL(li). We say that a label m is
good in li if there is a class U on level i−1 and a class U ′ on level i such that li−1(U) = li(U ′) = m and
U ′ is either the F-child of U or is not a child of U at all.

Theorem 4.9 demonstrates that the Rabin condition of a label being good infinitely often, but bad
only finitely often, is a necessary and sufficient condition to T being accepting. The proof, given in
Appendix A, associates each label m in gl with the label li(first(m)).

Theorem 4.9. A profile tree T is accepting iff there is a label m where {i | m is bad in li} is finite, and
{i | m is good in li} is infinite.

5 A New Determinization Construction for Büchi Automata

In this section we present a determinization construction for A based on the profile tree T . For clarity,
we call the states of our deterministic automaton macrostates.

Definition 5.1. Macrostates over A are six-tuples 〈S,�, l,t,G,B〉 where:
• S⊆ Q is a set of states.
• � is a linear preorder over S.
• l : S→{0, . . . ,2|Q|} is a labeling.
• t⊆� is another preorder over S.
• G,B are sets of good and bad labels used for the Rabin condition.

For two states q and r in Q, we say that q≈ r if q� r and r � q. We constrain the labeling l so that
it characterizes the equivalence classes of S under �, and the preorder t to be a partial order over the
equivalence classes of �. Let Q be the set of macrostates.

12 Profile Trees for Büchi Word Automata, with Application to Determinization

qstart p

a

a

b

a,b

(a) An automaton B

〈{q}0〉, /0, G = /0, B = /0q0 =

〈{q}0 ≺ {p}1〉, q⋖ p, G = /0, B = /0q1 =

〈{q}0 ≺ {p}2〉, q⋖ p, G = {0}, B = {1}q2 =

〈{q}0 ≺ {p}1〉, q⋖ p, G = {0}, B = {2}q3 =

(b) The first four macrostates in the run of DR(B) on abω .

Figure 2: An automaton and four macrostates. For each macrostate 〈S,�, l,t,G,B〉, we first display the
equivalence classes of S under � in angle brackets, superscripted with the labels of l. We then display
the t relation, and finally the sets G and B.

Before defining transitions between macrostates, we reproduce the pruning of edges from G′ by re-
stricting the transition function ρ with respect to S and �. For a state q ∈ S and σ ∈ Σ, let ρS,�(q,σ) =
{q′ ∈ ρ(q,σ) | for every r ∈ ρ−1(q′,σ)∩S, r � q}. Thus, when a state has multiple incoming σ -transitions
from S, the function ρS,� keeps only the transitions from states maximal under the � relation. For ev-
ery state q′ ∈ ρ(S,σ), the set ρ−1

S,� (q
′,σ)∩ S is an equivalence class under �. We note that ρ(S,σ) =

ρS,�(S,σ).

Example 5.2. Figure 2 displays the first four macrostates in a run of this determinization construction.
Consider the state q1 = 〈{q, p},�, l,t, /0, /0〉 where q ≺ p, qt p, l(q) = 0, and l(p) = 1. We have
ρ(q,a) = {p,q}. However, p ∈ ρ(p,a) and q ≺ p. Thus we discard the transition from q to p, and
ρS,�(q,a) = {q}. In contrast, ρS,�(p,a) = ρ(p,a) = {p}, because while p ∈ ρ(q,a), it holds that q≺ p.

For σ ∈ Σ, we define the σ -successor of 〈S,�, l,t,G,B〉 to be 〈S′,�′, l′,t′,G′,B′〉 as follows. First,
S′= ρ(S,σ). Second, define�′ as follows. For states q′,r′ ∈ S′, let q∈ ρ−1

S,� (q
′,σ)∩S and r∈ ρ−1

S,� (r
′,σ)∩

S. As the parents of q′ and r′ under ρS,� are equivalence classes the choice of q and r is arbitrary.
• If q≺ r, then q′ ≺′ r′.
• If q≈ r and q′ ∈ F iff r′ ∈ F , then q′ ≈′ r′.
• If q≈ r, q′ 6∈ F , and r′ ∈ F , then q′ ≺′ r′.

Example 5.3. As a running example we detail the transition from q1 = 〈{q, p},�, l,t, /0, /0〉 to
q2 = 〈S′,�′, l′,t′,G′,B′〉 on b. We have S′ = ρ({q, p},b) = {q, p}. To determine �′, we note that p ∈ S
is the parent of both q ∈ S′ and p ∈ S′. Since q 6∈ F , and p ∈ F , we have q≺′ p.

Third, we define the labeling l′ as follows. As in the profile tree T , on each level we give the label
m to the minimal descendants, under the � relation, of the first equivalence class to be labeled m. For a
state q ∈ S, define the nephews of q to be neph(q,σ) = min�′(ρS,�({r ∈ S | qtr},σ)). Conversely, for a
state r′ ∈ S′ we define the uncles of r′ to be be unc(r′,σ) = min�({q | r′ ∈ neph(q,σ)}).

Each state r′ ∈ S′ inherits the oldest label from its uncles. If r′ has no uncles, it gets a fresh label. Let
FL(l) = {m | m not in the range of l} be the free labels in l, and let mj be the 〈�′,<〉-minjection from
{r′ ∈ S′ | unc(r′,σ) = /0} to FL(l), where < is the standard order on {0, . . . ,2|Q|}. Let

l′(r′) =

{
l(q), for some q ∈ unc(r′,σ) if unc(r′,σ) 6= /0,
mj(r′) if unc(r′,σ) = /0.

S. Fogarty, O. Kupferman, M.Y. Vardi, & Th. Wilke 13

Example 5.4. The nephews of q ∈ S is the �′-minimal subset of the set ρS,�({r ∈ S | qtr},σ). Since
qtq and qt p, we have that neph(q,b) = min�′({q, p}) = {q}. Similarly, for p ∈ S we have pt p and
neph(p,b) = min�′({p,q}) = {q}. Thus for q∈ S′, we have unc(q,b) = min�({p,q}) = {q} and we set
l′(q) = l(q) = 0. For p ∈ S′, we have unc(p,b) = /0 and we set l′(p) to the first unused label: l′(p) = 2.

Fourth, define the preorder t′ as follows. For states q′,r′ ∈ S′, define q′t′ r′ iff q′ ≈′ r′ or there exists
q,r ∈ S so that: r′ ∈ ρS,�(r,σ); q∈ unc(q′,σ); and qtr. The labeling l′ depends on recalling which states
descend from the first equivalence class with a given label, and t′ tracks these descendants.

Finally, for a label m let Sm = {r ∈ S | l(r) = m} and S′m = {r′ ∈ S′ | l′(r′) = m} be the states in S,
resp S′, labeled with m. Recall that a label m is good either when the branch it is following visits F-states,
or the branch dies and it moves to another branch. Thus say m is good when: Sm 6= /0; S′m 6= /0; and either
S′m ⊆ F or ρS,�(Sm,σ)∩S′m = /0. G′ is then {m | m is good}. Conversely, a label is bad when it occurs in
S, but not in S′. Thus the set of bad labels is B′ = {m | Sm 6= /0, S′m = /0}.

Example 5.5. As p ∈ ρS,�(p,b); q ∈ unc(q,b); and q⋖ p, we have q⋖′ p. Since l(q) = 0 and l′(q) = 0, but
q 6∈ ρS,�(q,b), we have 0 ∈ G′, and as nothing is labeled 1 in l′, we have 1 ∈ B′.

Lemma 5.6, proven in Appendix A states that 〈S′,�′, l′,t′,G′,B′〉 is a valid macrostate.
Lemma 5.6. For a macrostate q ∈Q and σ ∈ Σ, the σ -successor of q is a macrostate.
Definition 5.7. Define the DRW automaton DR(A) to be 〈Σ,Q,Qin,ρQ,α〉, where:
• Qin = {〈Qin,�0, l0, t0 , /0, /0〉}, where:

– �0 = t0 = Qin×Qin

– l0(q) = 0 for all q ∈ Qin

• For q ∈Q and σ ∈ Σ, let ρQ(q,σ) = {q′}, where q′ is the σ -successor of q
• α = 〈G0,B0〉, . . . ,〈G2|Q|,B2|Q|〉, where for a label m ∈ {0, . . . ,2|Q|}:

– Gm = {〈S,�, l,t,G,B〉 | m ∈ G}
– Bm = {〈S,�, l,t,G,B〉 | m ∈ B}

Theorem 5.8, proven in Appendix A, asserts the correctness of the construction and says that its
blowup is comparable with known determinization constructions.
Theorem 5.8. For an NBW A with n states, L(DR(A)) = L(A) and DR(A) has nO(n) states.

There are two simple improvements to the new construction, detailed in Appendix B. First, we do not
need 2|Q| labels: it is sufficient to use |Q|−1 labels. Second, Piterman’s technique of dynamic renaming
can reduce the Rabin condition to a parity condition.

6 Discussion

In this paper we extended the notion of profiles from [6] and developed a theory of profile trees. This
theory affords a novel determinization construction, where determinized-automaton states are sets of
input-automaton states augmented with two preorders. In the future, a more thorough analysis could
likely improve the upper bound on the size of our construction. We hope to see heuristic optimization
techniques developed for this construction, just as heuristic optimization techniques were developed for
Safra’s construction [24].

More significantly, profile trees afford us the first theoretical underpinnings for determinization.
Decades of research on Büchi determinization have resulted in a plethora of constructions, but a paucity
of mathematical structures underlying their correctness. This is the first new major line of research in
Büchi determinization since 1995, and we expect it to lead to further research in this important area.

14 Profile Trees for Büchi Word Automata, with Application to Determinization

One important question is to understand better the connection between profile trees and Safra’s con-
struction. A key step in the transition between Safra trees is to remove states if they appear in more than
one node. This seems analogous to the pruning of edges from G′. The second preorder in our construc-
tion, namely the relation ti , seems to encodes the order information embedded in Safra trees. Perhaps
our approach could lead to declarative definition of constructions based on Safra and Muller-Schupp
trees. In any case, it is our hope that profile trees will encourage the development of new methods to
analyze and optimize determinization constructions.

References
[1] C.S. Althoff, W. Thomas, and N. Wallmeier. Observations on determinization of Büchi automata. In ICALP,

2005.
[2] R. Alur, T. A. Henzinger, and O. Kupferman. Alternating-time temporal logic. J. ACM, 2002.
[3] J.R. Büchi. On a decision method in restricted second order arithmetic. In ICLMPS, 1962.
[4] C. Courcoubetis and M. Yannakakis. The complexity of probabilistic verification. J. ACM, 1995.
[5] L. Doyen and J.-F. Raskin. Improved algorithms for the automata-based approach to model-checking. In

TACAS, 2007.
[6] S. Fogarty, O. Kupferman, M.Y. Vardi, and Th. Wilke. Unifying Büchi complementation constructions. In

CSL, 2011.
[7] S. Fogarty and M.Y. Vardi. Efficient Büchi universality checking. In TACAS, 2010.
[8] E. Friedgut, O. Kupferman, and M.Y. Vardi. Büchi complementation made tighter. IJFCS, 2006.
[9] D. Kähler and Th. Wilke. Complementation, disambiguation, and determinization of Büchi automata unified.

In ICALP, 2008.
[10] J. Kretı́nský and J. Esparza. Deterministic automata for the (f, g)-fragment of LTL. In CAV, 2012.
[11] O. Kupferman and M.Y. Vardi. Weak alternating automata are not that weak. TOCL, 2001.
[12] O. Kupferman and M.Y. Vardi. Safraless decision procedures. In FOCS, 2005.
[13] L.H. Landweber. Decision problems for ω–automata. MST, 1969.
[14] C. Löding. Optimal bounds for the transformation of omega-automata. In FSTTCS, 1999.
[15] R. McNaughton. Testing and generating infinite sequences by a finite automaton. ICONT, 1966.
[16] D.E. Muller and P.E. Schupp. Simulating alternating tree automata by nondeterministic automata: New

results and new proofs of theorems of Rabin, McNaughton and Safra. TCS, 1995.
[17] N. Piterman. From nondeterministic Büchi and Streett automata to deterministic parity automata. In LICS,

2006.
[18] A. Pnueli and R. Rosner. On the synthesis of a reactive module. In POPL, 1989.
[19] M.O. Rabin and D. Scott. Finite automata and their decision problems. IBM JRD, 1959.
[20] S. Safra. On the complexity of ω-automata. In FOCS, 1988.
[21] S. Schewe. Büchi complementation made tight. In STACS, 2009.
[22] S. Schewe. Tighter bounds for the determinisation of Büchi automata. In FOSSACS, 2009.
[23] S. Tasiran, R. Hojati, and R.K. Brayton. Language containment using non-deterministic omega-automata. In

CHARME, 1995.
[24] M.-H. Tsai, S. Fogarty, M. Y. Vardi, and Y.-K. Tsay. State of Büchi complementation. In CIAA, 2010.
[25] M.Y. Vardi. Expected properties of set partitions. Research report, The Weizmann Institute of Science, 1980.
[26] M.Y. Vardi. Automatic verification of probabilistic concurrent finite-state programs. In FOCS, 1985.

S. Fogarty, O. Kupferman, M.Y. Vardi, & Th. Wilke 15

A Proofs

A.1 Lemma 4.2

Lemma 4.2. For classes U and V on level i of T , it holds that:
(1) If U 6=V then gl(U) 6= gl(V).
(2) U is a descendant of first(gl(U)).
(3) If U is a descendant of first(gl(V)), then V �i U. Consequently, if U ≺i V , then U is not a

descendant of first(gl(V)).
(4) first(gl(U)) is the root or an F-class with a sibling.
(5) If U 6= first(gl(U)), then there is a class on level i−1 that has label gl(U).
(6) If gl(U)< gl(V) then first(gl(U)) is before first(gl(V)).

Proof: Parts (1) through (3) follow immediately from the fact that U = lmd(gl(U), i). Part (4) follows
from the fact that, for every class V on level i with non-F-child V ′, we have V ′ = lmd(gl(U), i+1). Part
(6) follows from the definition of labels: a new label is always larger than any earlier label. Finally, we
prove part (5).

Assume U ′, on level i, is such that gl(U ′) = m and U ′ 6= first(m). By Part (2), there must be a
descendant of first(m) on level i− 1. Let U = lmd(m, i−1). To prove gl(U) = m, we show m =
min(labels(U)). Consider m′ < m such that U is a descendant of first(m′), and thus U ′ is also
descendant of first(m′). By Part (6), first(m′) occurs before first(m). Since U is a descendant of
both first(m) and first(m′), it must be that first(m) is a descendant of first(m′).

Since m′ < m, if U ′ = lmd(m′, i) then gl(U ′) would be m′. There must then exist a V ′ ≺i U ′ that is a
descendant of first(m′), but not a descendant of first(m). By the definition of lexicographic order,
V ′ is lexicographically smaller than every descendant, on level i, of first(m). Let V be the parent of
V ′. We have that V is a descendant of m′ that is lexicographically smaller than every descendant, on level
i−1, of first(m). In specific, V ≺i−1 U , and thus U 6= lmd(m′, i). Thus m= min(labels(U)) = gl(U).

A.2 Theorem 4.9

To show a correlation between the labeling in Section 4 and the labeling here, we define a mapping,
f ,from the labels of l to {0, . . . ,2|Q|}. For a label m, where first(m) occurs on level i, let f (m) = SF: f is

overloaded:
we should
change this
for the full
version, but
I think the
overload
is accept-
able for an
appendix.

SF: f is
overloaded:
we should
change this
for the full
version, but
I think the
overload
is accept-
able for an
appendix.

li(first(m)).

Lemma A.1. For classes U on level i and U ′ on level i+1, if gl(U) = gl(U ′), then li(U) = li+1(U ′) =
f (gl(U)).

Proof: Let k be the number of levels between U and first(gl(U)). We prove this lemma by induction
over k. As a base case, if k = 0, then U = first(gl(U)) and by definition f (gl(U)) = li(U). Inductively,
assume k > 0, and assume this lemma holds for every V at most k−1 steps removed from first(gl(V)).
Since k > 0, then U 6= first(gl(U)). Let V be the node on level i−1 such that gl(V) = gl(U). By the
inductive hypothesis, li−1(V) = li(U). Further, since first(gl(V)) = first(gl(U)), we have li(U) =
f (gl(U)). We now show that U = min�i(unci(U ′)).

As gl(U) = gl(U ′), we have that gl(U) ∈ labels(U ′). By Lemma 4.7, this implies U ∈ unci(U ′).
To prove that U = min�i(unci(U ′)), let V ∈ unci(U ′) be another class on level i. By Lemma 4.7, this
implies gl(V) ∈ labels(U ′), and thus gl(U) < gl(V). As U ′ is a descendant of both first(gl(U))
and first(gl(V)), one is a descendant of the other. Since gl(U)< gl(V), by Lemma 4.2.(6) it must be

16 Profile Trees for Büchi Word Automata, with Application to Determinization

that first(gl(V)) is a descendant of first(gl(U)). Thus V is a descendant of first(gl(U)), and by
Lemma 4.2.(3) we have U �V . Therefore U = min�i(unci(U ′)), and li+1(U ′) = li(U).

Corollary A.2. For every class U on level i, it holds that li(U) = f (gl(U)).

Theorem 4.9. A profile tree T is accepting iff there is a label m where {i | m is bad in li} is finite, and
{i | m is good in li} is infinite.

Proof: We prove a relation with Theorem 4.4. For the first direction, let m be a label that is successful
infinitely often. We prove that f (m) is bad in only finitely many li, and is good in infinitely many l j. Let
U on level j be first(m). First, as m occurs on every level k > j, Lemma A.1 implies f (m) occurs on
k, and thus f (m) is not bad in lk. Second, let k > j be a level on which m is successful. This implies
there exist classes U on level k− 1 and U ′ on level k, so that gl(U) = gl(U ′) = m and U ′ is not the
non-F-child of U . Lemma A.1 implies that lk−1(U) = lk(U ′) = f (m), and thus that f (m) is good in lk.
We thus conclude f (m) is good in infinitely many lk.

For the other direction, let m′ be a label that is bad in li for finitely many i, and is good in li for
infinitely many i. Since m′ is bad only finitely often, there is some level after which m′ is not bad. Let j
be the first level after which m′ ceases being bad on which m′ occurs. This implies m′ occurs on every
level k > j. Let U on level j be such that l j(U) = m′. Since m′ does not occur on j− 1, it must be
that unc j(U) = /0: otherwise l j(U) would be l j(min� j(unc j(U ′))). Thus by Lemma 4.7 we have that
labels(U) = /0, and there is a label m in l so that U = first(m), and f (m) = m′. By assumption, there
are infinitely many k > j so that m′ succeeds in lk. On each of these k’s, there is a class U on level k−1
and U ′ on level k so that lk−1(U) = m′, lk(U ′) = m′, and U ′ is not the non-F-child of U . By Corollary
A.2, m = gl(U) is good on level k, and m is good infinitely often.

A.3 Connecting T to DR(A).

In this Appendix we prove the machinery of DR(A) matches the inductive definitions of labeling over T .
We first prove the the transitions of DR(A) are valid.

Lemma 5.6. For a macrostate q ∈Q and σ ∈ Σ, the σ -successor of q is a macrostate.

Proof: As 〈S,�, l,t,G,B〉 is a macrostate, we have� is a linear preorder, t ⊆�, and for every q,r,s, t ∈
S: q ≈ r iff l(q) = l(r); q ≈ r iff qtr and rtq; and if q ≈ r, s ≈ t, and qts, then rt t. We must prove
this also holds for t′, �′, and l′ over states in S′. Below, let q′,r′,s′, t ′ be states in S′, and q,r,s, t ∈ S be
such that q′ ∈ ρS,�(q,σ), r′ ∈ ρS,�(r,σ), s′ ∈ ρS,�(s,σ), and t ′ ∈ ρS,�(t,σ).

To demonstrate that �′ is a linear preorder, we show it is reflexive, relates every two elements, and is
transitive. That �′ is reflexive follows from the definition. To show that �′ relates every two elements,
note that as � is a linear preorder, either q ≺ r, r ≺ q, or q ≈ r. By the definition of �′, either q′ ≺′ r′,
q′ ≈′ r′, or r′ ≺′ q. To show that �′ is transitive, assume q′ �′ r′ �′ s′. By definition of �′ we then have
q� r and r � s. Since � is transitive, we have q� s. In order for q′ 6�′ s′, it would need to be that q≈ s,
q′ ∈ F , and s′ 6∈ F . If q≈ s, then q≈ r and r ≈ s. Thus if r′ ∈ F , we would have s′ � r′, a contradiction.
If r′ 6∈ F , we would have r′ � q′, a contradiction. Thus it cannot be the case that q≈ s, q′ ∈ F , and s′ 6∈ F ,
and either q′ ≈′ s′, or q′ ≺′ s′, and �′ is transitive and a linear preorder.

Next, we prove the labeling must give unique labels to the equivalence classes of S′ under �’: that
q′ ≈′ r′ iff l′(q′) = l′(r′). By the above properties, if q ≈ r, then neph(q,σ) = neph(r,σ). Further,
neph(q,σ) is an equivalence class under �′ or is empty. In one direction, let q′ ≈′ r′ and let m =
l′(q′). That q′ ≈ r′ implies for every q ∈ unc(q′,σ) that q′ ≈′ r′, and thus unc(q′,σ) = unc(r′,σ). If

S. Fogarty, O. Kupferman, M.Y. Vardi, & Th. Wilke 17

unc(q′,σ) = /0, then unc(r′,σ) = /0. As a minjection maps equivalent elements to the same value, we
have l(q′) = mj(q′) = mj(r′) = l(r′). Alternately, if unc(q′,σ) 6= /0 then m = l(q) for q ∈ unc(q′,σ), and
q ∈ unc(r′,σ), and l(r′) = m.

Finally, we must demonstrate two things about t′: that t′ ⊆�′, and that t′ is a partial order over the
equivalence classes of �′. Assume q′t′ r′. If q′ ≈′ r′, then q′ �′ r′. Otherwise there exists a q2 ∈ unc(q′)
so that l(q2) = l(q′) and q2tr. This implies both r′,q′ ∈ neph(q2,σ). Since l(q′) = l(q2), it must be that
q2 ∈ unc(q′,σ) and thus q′ ∈ neph(q2,σ). Thus q′ �′ r′, and t′ ⊆�′. This implies q′ ≈′ r′ iff q′t′ r′ and
r′t′ q′ It remains to show if q′ ≈′ r′, s′ ≈ t ′, and q′t′ s′, then r′t′ t ′. If q′ ≈′ s′, then r′ ≈′ t ′ and r′t′ t ′.
Otherwise there exists a q2 so that l(q2) = l(q′) and q2ts. Since r′ ≈′ q′, it holds that l(r′) = l(q2).
Since s′ ≈′ t ′, it holds that s ≈ t and q2t t. Thus r′t′ t ′, and we have satisfied all requirements for
〈S′,�′, l′,t′,G,B〉 to be a macrostate.

Lemma A.3 asserts that the set of states S and the preorder � correspond to the nodes on a level i
of G′ and the preorder �i. Further, the edges in G′ correspond to transitions in ρS,�. The proof relates
σ -successors of macrostates and �i.

Lemma A.3. Let G be the run DAG of A on w and let qi = 〈S,�, l,t,G,B〉 be the i-th macrostate in the
run of DR(A) on w:

(1) S = {q | 〈q, i〉 ∈ G}.
(2) For q,r ∈ S, it holds that q� r iff 〈q, i〉 �i 〈r, i〉.
(3) For q ∈ S and q′ ∈ Q, it holds that q′ ∈ ρS,�(q,σi) iff 〈〈q, i〉,〈q′, i+1〉〉 ∈ E ′.

Proof:
We proceed by induction over i, at each step proving (1) and (2) for i+ 1, and proving (3) for i. As a
base case, for i = 0, we have S = Qinand �= Qin×Qin. As Qin ∩F = /0, for every u,v on level 0 of
G′ hu = 0 = hv and u �0 v. Inductively, assume that (1) and (2) holds for qi = 〈S,�, l,t,G,B〉, and let
qi+1 = 〈S′,�′, l′,t′,G,B〉 be the σ -successor of qi. We show that (3) holds for qi, and (1) (2) holds for
qi+1.

(1) As S′= ρ(S,σi), by the inductive hypothesis and the definition of V we have S′= {q′ | 〈q′, i+1〉 ∈ G}.
(2) By definition, q′ ∈ ρS,�(q,σi) iff q′ ∈ ρ(q,σi) and for every r ∈ S, if q′ ∈ ρ(r,σi) then r� q. By the

definition of G and the inductive hypothesis, this holds iff 〈〈q, i〉,〈q′, i+1〉〉 ∈ E and for every 〈r, i〉,
if 〈〈r, i〉,〈q′, i+1〉〉 ∈ E, then 〈r, i〉 �i 〈q, i〉. This it the definition of 〈〈q, i〉,〈q′, i+1〉〉 ∈ E ′, and thus
(3) holds for qi.

(3) For q′,r′ ∈ S′, let q,r be such that q′ ∈ ρS,�(q,σi) and r′ ∈ ρS,�(r,σi). By the inductive hypothesis,
this implies 〈〈q, i〉,〈q′, i+1〉〉 ∈ E ′ and 〈〈r, i〉,〈r′, i+1〉〉 ∈ E ′. By the definition of �′, it holds that
q′ �′ r′ iff (a) q≺ r, (b) q≈ r and q′ ∈ F iff r′ ∈ F , or (c) q≈ r, q′ 6∈ F , and r′ ∈ F . Recall that f
is the function assigning 1 to F-nodes, and 0 to non-F-nodes. By the inductive hypothesis, then,
q′ � r′ iff (a) 〈q, i〉 ≺i 〈r, i〉, (b) 〈q, i〉 ≈i 〈r, i〉 and f (〈q′, i+1〉) = f (〈r′, i+1〉), or (c) 〈q, i〉 ≈ 〈r, i〉,
f (〈q′, i+1〉) = 0 and f (〈r′, i+1〉) = 0. By Lemma 3.1, these are precisely the situations in which
〈q′, i+1〉 �i+1 〈r′, i+1〉.

Lemma A.4 demonstrate the correlation the labeling l′ and the labeling li of the tree of equivalence
classes. Lemma A.5 shows that, so defined, the preorder t describes the minimal cousin relation of
Definition 4.5. We simultaneously prove Lemmas A.4 and A.5 by induction.

Lemma A.4. Let G be the run DAG of A on w and qi = 〈S,�, l,t,G,B〉 be the ith macrostate in the run
of DR(A) on w. For q ∈ S, it holds that l(q) = li([〈q, i〉]).

18 Profile Trees for Büchi Word Automata, with Application to Determinization

Lemma A.5. Let G be the run DAG of A on w and qi = 〈S,�, l,t,G,B〉 be the ith macrostate in the run
of DR(A) on w. For q,r ∈ S it holds that qtr iff [〈q, i〉]ti [〈r, i〉]

Proof: We prove these by induction over i. As a base case, for i = 0, we have S = Qin, t = Qin×Qin,
and l(q) = 0 for every q ∈ S. By definition, the 0th level of G′ is {〈q,0〉 | q ∈ Q∈}. As Qin∩F = /0, for
every u,v on level 0 of G′ hu = 0 = hv and u�0 v. Since there is only one equivalence class U , we have
U t0U , and l(U) = 0.

Inductively, assume this holds for qi = 〈S,�, l,t,G,B〉, and let qi+1 = 〈S′,�′, l′,t′,G,B〉 be the σ -
successor of qi. Note by Lemma 5.6 that l′ gives unique labels to the equivalence classes of �′, and t′ is
a partial order over the equivalence classes of �′.

Proof of Prop. A.4 For q′ ∈ S′, we prove l′(q′) = li+1([〈q′, i+1〉]) as follows. First, by definition for
q ∈ S and r′ ∈ S′, r′ ∈ neph(q,σ) if there exists r ∈ S so that qtr and r′ ∈ ρS,�(r,σi). By Lemma
A.3.(3), the inductive hypothesis, and the definition of T , this holds if there is a V so that [〈r′, i+1〉]
is a child of V and [〈q, i〉]tiV : the definition of [〈r′, i+1〉] ∈ nephi([〈q, i〉]). Thus nephi([〈q, i〉]) =
{[〈r′, i+1〉] | r′ ∈ neph(q,σ)}. By Lemma A.3.(2) this implies for every r′ ∈ S′, unci([〈r′, i+1〉]) =
{[〈q, i〉] | q ∈ unc(r′,σ)}. We have two cases. If unc(q′,σ) 6= /0, then unci([〈q′, i+1〉]) 6= /0, and l′(q′) =
l(q) for q∈ unc(q′,σ). By the inductive hypothesis and Lemma A.3.(2) this implies [〈q, i〉] = min�i(unci([〈q′, i+1〉]))
and li+1([〈q′, i+1〉]) = li([〈q, i〉]) = l(q). Alternately, if unc(q′,σ) = /0, then unci([〈q′, i+1〉]) = /0. The
inductive hypothesis implies that FL(li), the set of unused labels in li, is identical to FL(l), the set of un-
used labels in l. Thus the 〈�i+1,<〉-minjection from the classes on level i+1 of T to FL(li) corresponds
to the 〈�′,<〉-minjection from S′ to FL(l), and mj(q′) = mji+1([〈q, i+1〉]).

Proof of Prop. A.5 There are two cases in which q′t′ r′. First, if q′ ≈′ r′, then by Lemma A.3.(2)
[〈q′, i+1〉] = [〈r′, i+1〉] and, as ti+1 is reflexive, [〈q′, i+1〉]ti+1 [〈r′, i+1〉]. Otherwise q′ 6≈′ r′ and q′t′ r′

iff there exists r,q2 ∈ S so that q2 ∈ unc(q′), r′ ∈ ρS,�(r,σi), and q2tr. By Lemma A.3.(2) and (3) this
entails q′t′ r′ iff there exists U and V so that V is the parent of [〈r′, i+1〉], li(U) = li+1([〈q′, i+1〉]), and
U tiV . By Lemmas 4.8 and A.1, this is precisely the condition under which [〈q′, i+1〉]ti+1 [〈r′, i+1〉].

Lemma A.6 shows that the presence of a label in G corresponds to the success success of a label in
li.

Lemma A.6. Let G be the run DAG of A on w and qi = 〈S,�, l,t,G,B〉 be the ith macrostate in the run
of DR(A) on w. For every label m, it holds that m ∈ G iff m is good in li and m ∈ B iff m is bad in li.

Proof: Let qi = 〈S,�, l,t,G,B〉 and qi+1 = 〈S′,�′, l′,t′,G,B〉. Recall that, with respect to i, R =
{r ∈ S | l(r) = m} and R′ = {r′ ∈ S′ | l′(r′) = m}. By Lemma 5.6, we have that R is an equivalence class
under � and R′ is an equivalence class under �′. By definition, m dies in li when m is in the range of li,
but not in the range of li+1. By Lemma A.4 this is true iff R 6= /0, but R′ = /0: the definition of m dies in
〈qi,qi+1〉.

Similarly, m succeeds in li+1 if there are classes U on level i− 1 and U ′ on level i so that li(U) =
li+1(U ′) = m, and U ′ is not the non-F-child of U . By Lemmas A.3.(1) and A.4, a U and U ′ exist so that
li(U) = li+1(U ′) = m, iff U = {〈r, i〉 | r ∈ R} and U ′ = {〈r′, i+1〉 | r′ ∈ R′}. This entails that m succeeds
in li+1 iff R 6= /0 and R′ 6= /0, and either U ′ is an F-class, or U ′ is not a child of U . If U ′ is an F-class then
R′ ⊆ F . If U ′ is not a child of U , then by the definition of T and Lemma A.3.(3) there is no r ∈ R, r′ ∈ R′

where r′ ∈ ρS,�(r,σi). This entails {ρS,�(r,σ) | r ∈ R}∩R′ = /0. We conclude that m succeeds in li+1 iff m
succeeds in 〈qi,qi+1〉.

S. Fogarty, O. Kupferman, M.Y. Vardi, & Th. Wilke 19

Finally, we must bound the number of preorders t to bound the size of the automaton.

Lemma A.7. For a level i, the preorder ti is a tree order over the classes on level i of T .

Proof: Let U be the set of classes on level i of T . By definition, ti is a tree order if for every V ∈ U,
the {U |U ≤V} is totally ordered by ti . Consider two classes U tiV and W tiV . By definition, V
is a descendant of both first(gl(U)) and first(gl(W)). Since T is a tree, one of first(gl(U)) or
first(gl(W)) is a descendant of the other. Without loss of generality, assume first(gl(U)) is a descen-
dant of first(gl(W)). Since U is a descendant of first(gl(U)), it is a descendant of first(gl(W))
too, and W tiU .

Theorem 5.8. For an NBW A with n states, L(DR(A)) = L(A) and DR(A) has nO(n) states.

Proof: That L(DR(A)) = L(A) follows from Theorem 4.9 and Lemma A.6. To bound the number of
macrostates 〈S,�, l,t,G,B〉, we observe that the number of subsets S and linear orders � is nO(n) [25].
The number of labelings is likewise nO(n). By Lemma A.7 and Lemma A.5, t is a tree-order over the
equivalence classes of S under �. By Cayley’s formula, the number of tree orders is bounded by nn−2.
Thus the number of macrostates is bounded by nO(n).

B Smaller Constructions

We here present two variants of Definition 5.7, both of which only use a variation of macrostates
where labels are restricted to {0, . . . , |Q|−1}. The first is a Rabin-edge automaton, in which the ac-
ceptance condition is a set 〈G0,B0〉, . . . ,〈Gk,Bk〉 of pairs of sets of transitions: thus G j,B j ⊆ Q2 for
0 ≤ j ≤ k. A run is accepting iff there exists 0 ≤ j ≤ k so that 〈qi,qi+1〉 ∈ G j for infinitely many i’s,
while 〈qi,qi+1〉 ∈ B j for only finitely many i’s. The second is a parity-edge automaton, the acceptance
condition is a parity function γ : Q2 → {0, . . . ,k}, and a run is accepting if the smallest element of
{ j | j = γ(qi,qi+1) for infinitely many i’s} is even. Define the set of tight macrostates to be four-tuples
〈S,�, l,t〉, where S, �, and t are defined as for normal macrostates, and where l : S→ {0, . . . , |Q|−1}
is a tighter labeling. Let Qt be the set of tight macrostates.

B.1 Tight Rabin Variant:

Given a tight macrostate q ∈ Qt and σ ∈ Σ, define the Rabin σ -successor of q to be q′ = 〈S′,�′, l′,t′〉
where S′, �′, and t′ are defined as in Section 5, and l′ is defined as follows:

(1) For q ∈ S, let neph(q,σ) = min�′({r′ | exists r ∈ S, qtr, r′ ∈ ρS,�(r,σ)}), as in Section 5.
(2) For r′ ∈ S′, let unc(r′,σ) = min�({q | r′ ∈ neph(q,σ)}), as in Section 5.
(3) FL(l) = {m | m not in the range of l} ∪ {l(q) | for every r′ ∈ S′,q 6∈ unc(r′,σ)}.
(4) mj is the 〈�′,<〉-minjection from {r′ ∈ S′ | unc(r′,σ = /0} to FL(l).

(5) For r′ ∈ S′, let l′(r′) =

{
l(q), q ∈ unc(r′,σ) if unc(r′,σ) 6= /0,
mj(r′) if unc(r′,σ) = /0.

For σ ∈ Σ and label m ∈ {0, . . . , |Q|−1}, given a tight macrostate q = 〈S,�, l,t〉 ∈Qt and its Rabin
σ -successor q′= 〈S′,�′, l′,t′〉 let R= 〈r ∈ S | l(r) = m〉 and R′= 〈r′ ∈ S′ | l′(r′) = m〉. Say that m Rabin-
dies in 〈q,q′〉 when R 6= /0 and m ∈ FL(l). Say that m Rabin-succeeds in 〈q,q′〉 when it does not die in
〈q,q′〉, R 6= /0, R′ 6= /0, and either R′ ⊆ F or ρS,�(R,σ)∩R′ = /0.

Definition B.1. Define the DREW automata DT (A) to be 〈Σ,Qt ,Qin,ρQ,α〉 where:

20 Profile Trees for Büchi Word Automata, with Application to Determinization

• Qin is as defined in Definition 5.7
• For q ∈Qt and σ ∈ Σ, ρQ(q,σ) = {q′} where q′ is the Rabin σ -successor of q.
• α = 〈G0,B0〉, . . . ,〈G|Q|−1,B2|Q|−1〉 where for a label m ∈ {0, . . . ,2|Q|}:

– Gm = {〈q,q′〉 | m Rabin-succeeds in 〈q,q′〉}.
– Bm = {〈q,q′〉 | m Rabin-dies in 〈q,q′〉}

Theorem B.2. For an NBW A, L(DT (A)) = L(A).

Proof: For every word w, we show that the run q0,q1, . . . of DR(A) on w is accepting iff the run
qp

0 ,q
p
1 , . . . of DP(A) on w is accepting. For convenience, let qi = 〈Si,�i, li, ti 〉. We first note that for

every i, it holds that qp
i == 〈Si,�i, l

p
i , ti 〉: that that is to say qi and qp

i match on Si,�i, and ti . For S and
�, this is easy to see: the definitions of S′ and �’ are identical in σ -successors and Rabin-σ -successors.
For t, this follows from the fact that t′ is defined solely with respect to ρS,� and unc, which do not change
from σ -successors to Rabin-σ -successors. We pause to note that, for every i and q ∈ Si, q′ ∈ Si+1, we
have that li+1(q′) = li(q), iff q ∈ unc(q′,σi), which holds iff both lp

i+1(q
′) = lp

i (q) and lp
i (q) 6∈∈ FL(lp

i).
In one direction, assume there is a label m that dies in finitely many 〈qi,qi+1〉, and succeeds in

infinitely many 〈qi,qi+1〉. We pause to note that, for every i and q ∈ Si, q′ ∈ Si+1, we have that li+1(q′) =
li(q), iff q ∈ unc(q′,σi), which holds iff both lp

i+1(q
′) = lp

i (q) and lp
i (q) 6∈∈ FL(lp

i). Let j be the first
index so that m occurs in q j, but for every k > j, m does not die in 〈qk,qk+1〉. Let q ∈ S j be such that
l j(q) =m, and let m′= lp

j (q). For k > j, define Rk = {r ∈ Sk | lk(r) = m}, and Rp
k = {r ∈ Sk | lp

k (r) = m′}.
Since m does not die in 〈qk,qk+1〉, Rk and Rk+1 are both non-empty, and by our above observations m′

does not Rabin-die in 〈qp
k ,q

p
k+1〉. Further, Rp

k = Rk, and Rp
k+1 = Rk+1. This implies that if m succeeds

in 〈qk,qk+1〉, then m′ Rabin-succeeds 〈qp
k ,q

p
k+1〉. Thus m′ Rabin-dies in finitely many 〈qp

i ,q
p
i+1〉, and

Rabin-succeeds in infinitely many 〈qp
i ,q

p
i+1〉, and DT (A) accepts w.

In the other direction if DT (A) accepts w, this implies is a label m that Rabin-dies in finitely many
〈qp

i ,q
p
i+1〉, and Rabin-succeeds in infinitely many 〈qp

i ,q
p
i+1〉. Let j be the first index so that m occurs in

qp
j , but for every k > j, m does not Rabin-die in 〈qp

k ,q
p
k+1〉. Let q ∈ S j be such that lp

j (q) = m, and let
m′ = l j(q). For k > j, define Rp

k = {r ∈ Sk | lp
k (r) = m}, and Rk = {r ∈ Sk | lk(r) = m′}, Since m does

not Rabin-die in 〈qp
k ,q

p
k+1〉, m 6∈ Flp

k
and Rk, Rk+1 are both non-empty. By our above observations m′

does not die in 〈qk,qk+1〉. Further, Rp
k = Rk, and Rp

k+1 = Rk+1. This implies that if m Rabin-succeeds
in 〈qp

k ,q
p
k+1〉, then m′ succeeds 〈qk,qk+1〉. Thus m′ dies in finitely many 〈qi,qi+1〉, and succeeds in

infinitely many 〈qi,qi+1〉, and DR(A) accepts w.

B.2 Parity Variant

The parity variation simply shifts labels down, instead of giving arbitrary free labels to new nodes. This
means labels in the automaton are no longer consistent with with the labels li over T . To simplify this,
we use an intermediate labeling that keeps labels consistent between two levels, but can use the labels
{|Q|, . . .2|Q|}. Given a tight macrostate q ∈ Qt and σ ∈ Σ, define the parity σ -successor of q to be
q′ = 〈S′,�′, l′,t′〉 where S′, �′, and t′ are defined as in Section 5, and l′ is defined as follows:

(1) For q ∈ S, let neph(q,σ) = min�′({r′ | exists r ∈ S, qtr, r′ ∈ ρS,�(r,σ)})
(2) For r′ ∈ S′, let unc(r′,σ) = min�({q | r′ ∈ neph(q,σ)})
(3) mj is the 〈�′,<〉-minjection from {r′ ∈ S′ | unc(r′,σ = /0} to {|Q|, . . . ,2|Q|}
(4) For r′ ∈ S′, define the intermediate labeling

lint(r′) =

{
l(q), q ∈ unc(r′,σ) if unc(r′,σ) 6= /0,
mj(r′) if unc(r′,σ) = /0.

S. Fogarty, O. Kupferman, M.Y. Vardi, & Th. Wilke 21

(5) For r′ ∈ S′, define the final labeling l′(r′) = |{lint(q′) | lint(q′)< lint(r′)}|

For σ ∈ Σ and label m ∈ {0, . . . , |Q|−1}, given a tight macrostate q = 〈S,�, l,t〉 ∈Qt and its parity
σ -successor q′= 〈S′,�′, l′,t′〉 let lint be the intermediate labeling defined above. Let R= 〈r ∈ S | l(r) = m〉
and R′ = 〈r′ ∈ S′ | lint(r′) = m〉. Note that R′ is defined with respect to the intermediate labeling. Say that
a label m parity-dies in 〈q,q′〉 if m ∈ R, but m 6∈ R′. Say that m parity-succeeds in 〈q,q′〉 when R 6= /0,
R′ 6= /0, and either R′ ⊆ F or ρS,�(R,σ)∩R′ = /0. Define the priority function γ : Qt×Qt →{1, . . . ,2|Q|}
so that γ(〈qq′〉) is min({2m+2 | m parity-succeeds in 〈q,q′〉}∪{2m+1 | m parity-dies in 〈q,q′〉}).
Definition B.3. Define the DPEW automata DP(A) to be 〈Σ,Qt ,Qin,ρQ,γ〉 where:
• Qin is as defined Definition 5.7
• For q ∈Q and σ ∈ Σ, ρQ(q,σ) = {q′} where q′ is the parity σ -successor of q.

Theorem B.4. For an NBW A, L(DP(A)) = L(A).

Proof: As above, for every word w, we show that the run q0,q1, . . . of DR(A) on w is accepting iff
the run qp

0 ,q
p
1 , . . . of DP(A) on w is accepting. For convenience, let qi = 〈Si,�i, li, ti 〉. Again, it holds

that for every i qp
i == 〈Si,�i, l

p
i , ti 〉: qi and qp

i match on Si, �i, and ti . For every i, let lint
i be the

intermediate labeling defined above. However, it is no longer that case that the labels of a branch will be
consistent from qp

i to qp
i+1. Instead, we must look for consistency in the intermediate labeling. for every

i and q ∈ Si, q′ ∈ Si+1, we have that li+1(q′) = li(q) iff lint
i+1(q

′) = lp
i (q). If lp

i+1(q
′) 6= lint

i+1(q
′), this implies

there was a label n < lp
i (q) that occurs in the range of lp

i , but not in the range of lint
i+1.

In one direction, assume there is a label m that dies in finitely many 〈qi,qi+1〉, and succeeds in
infinitely many 〈qi,qi+1〉. Let j be the first index so that m occurs in q j, but for every k > j, m does not
die in 〈qk,qk+1〉. For every j′ > j, let q′j ∈ § j′ be such that l j′(q j′) = m. Note that the values of lp

j′(q j′)

can only decrease: new labels are only introduced above |Q|, and lp
j (q j) < |Q|. Thus at some point the

labels of q j′ cease decreasing, and reach a stable point. Let k be this point, and let m′ = lp
k (qk). For a

level k′ > k, define Rk′ = {r ∈ Sk′ | lk′(r) = m}, and Rp
k′ = {r ∈ Sk′ | lint

k′ (r) = m′}. Since the labels of qk′

have stopped decreasing, we have that Rp
k′ = Rk′ . For every k′ > k, it holds that m′ does not parity-die in

〈qp
k′ ,q

p
k′+1〉. Further, every label n < m′ must occur on every level k′ > k: otherwise lp

k′(qk′) would not
equal lint

k′ (qk′). Thus for every k′ > k, there is no label n < m′ that parity-dies in 〈qp
k′ ,q

p
k′+1〉. Therefore

γ(qp
k′ ,q

p
k′+1)≥ 2m′+1. Now consider a level k′ > k where m succeeds in 〈qk′ ,qk′+1〉. By the note above,

Rp
k′ = Rk′ , and m′ parity-succeeds in 〈qp

k′ ,q
p
k′+1〉, and γ(qp

k′ ,q
p
k′+1) = 2m′+ 2. We have thus shown that

the smallest priority occurring infinitely often in 2m′+2, and thus w is accepted by DP(A).
In the other direction if DP(A) accepts w, this implies is a label m and level j so that for every k > j, it

holds γ(qp
k ,q

p
k+1)≥ 2m+2, and for infinitely many k > j it holds γ(qp

k ,q
p
k+1) = 2m+2. As noted above,

this implies for every k > j and n≤m, n does not parity-die in 〈qp
k ,q

p
k+1〉, and for infinitely many k > j, m

parity-succeeds in 〈qp
k ,q

p
k+1〉. Thus we conclude that for every k > j and q∈ Sk, lp

k (q) =m iff lint
k (q) =m.

Let q ∈ S j be such that lp
j (q) = m, and let m′ = l j(q). For every k > j, let Rp

k = {r ∈ Sk | lp
k (r) = m},

and let Rk = {r ∈ Sk | lk(r) = m′}. Again, we have that Rp
k = Rk, thus for every k > j, m′ does not die in

〈qk,qk+1〉, and and for infinitely many k > j we have m′ succeeds in 〈qk,qk+1〉. Thus w is accepted by
and DR(A).

	Introduction
	Preliminaries
	Relations on Sets
	-Automata
	Safra's Determinization Construction

	From Run dags to Profile Trees
	Run dags and Profiles
	The Profile Tree

	Labeling
	Labeling T
	Determining Lexicographically Minimal Descendants
	Reusing Labels

	A New Determinization Construction for Büchi Automata
	Discussion
	Proofs
	Lemma 4.2
	Theorem 4.9
	Connecting T to DR(A).

	Smaller Constructions
	Tight Rabin Variant:
	Parity Variant

