
Perspective Games with Notifications1

Orna Kupferman2

School of Engineering and Computer Science, Hebrew University, Jerusalem, Israel3

orna@cs.huji.ac.il4

Noam Shenwald5

School of Engineering and Computer Science, Hebrew University, Jerusalem, Israel6

noam.shenwald@mail.huji.ac.il7

Abstract8

A reactive system has to satisfy its specification in all environments. Accordingly, design of correct9

reactive systems corresponds to the synthesis of winning strategies in games that model the interaction10

between the system and its environment. The game is played on a graph whose vertices are partitioned11

among the players. Starting from an initial vertex, the players jointly generate a computation, with12

each player deciding the successor vertex whenever the generated computation reaches a vertex13

she owns. The objective of the system player is to force the generated computation to satisfy a14

given specification. The traditional way of modelling uncertainty in such games is observation-based.15

There, uncertainty is longitudinal: the players partially observe all vertices in the history. Recently,16

researchers introduced perspective games, where uncertainty is transverse: players fully observe the17

vertices they own and have no information about the behavior of the computation between visits18

in such vertices. We introduce and study perspective games with notifications: uncertainty is still19

transverse, yet a player may be notified about events that happen between visits in vertices she20

owns. We distinguish between structural notifications, for example about visits in some vertices, and21

behavioral notifications, for example about the computation exhibiting a certain behavior. We study22

the theoretic properties of perspective games with notifications, and the problem of deciding whether23

a player has a winning perspective strategy. Such a strategy depends only on the visible history,24

which consists of both visits in vertices the player owns and notifications during visits in other25

vertices. We show that the problem is EXPTIME-complete for objectives given by a deterministic or26

universal parity automaton over an alphabet that labels the vertices of the game, and notifications27

given by a deterministic satellite, and is 2EXPTIME-complete for LTL objectives. In all cases, the28

complexity in the size of the graph and the satellite is polynomial – exponentially easier than games29

with observation-based partial visibility. We also analyze the complexity of the problem for richer30

types of satellites.31
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1 Introduction35

A reactive system has to satisfy its specification in all environments. Accordingly, design of36

correct reactive systems corresponds to the synthesis of a winning strategy for the system37

in a game that model the interaction between the system and its environment. The game38

is played on a graph whose vertices correspond to configurations along the interaction. We39

study here settings in which each configuration is controlled by either the system or its40

environment. Thus, the set of vertices is partitioned between the players, and the game is41

turn-based: starting from an initial vertex, the players jointly generate a play, namely a path42

in the graph, with each player deciding the successor vertex when the play reaches a vertex43

she controls. Each vertex is labeled by an assignment to a set AP of atomic propositions –44

these with respect to which the system is defined. The objective of the system is given by a45

language L ⊆ (2AP )ω, and it wins if the computation induced by the generated play, namely46
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the word that labels its vertices, is in L [14, 4].47

A strategy for a player directs her how to continue a play that reaches her vertices.48

We consider deterministic strategies, which choose a successor vertex. In games with full49

visibility, strategies may depend on the full history of the play. In games with partial visibility,50

strategies depend only on visible components of the history [16]. A well studied model of51

partial visibility is observation based [9, 6, 5, 2]. There, a player does not see the vertices52

of the game and can only observe the assignments to a subset of the atomic propositions.53

Accordingly, strategies cannot distinguish between different plays in which the observable54

atomic propositions behave in the same manner. Recently, [8] introduced perspective games.55

There, the visibility of each player is restricted to her vertices. Accordingly, a perspective56

strategy for a player cannot distinguish among histories that differ in visits to vertices owned57

by other players. As detailed in [8], the perspective model corresponds to switched systems58

and component-based software systems [1, 11, 12, 13].59

Note that visibility and lack of visibility in the observation-based model are longitudinal60

– players observe all vertices, but partially. On the other hand, in the perspective model,61

players have full visibility on the parts of the system they control, and no visibility (in62

particular, even no information on the number of transitions taken) on the parts they do not63

control. Thus, visibility and lack of visibility are transverse – some vertices the players do64

not see at all, and some they fully see. For a comparison of perspective games with related65

visibility models (in particular, games with partial visibility in an asynchronous setting [15],66

switched systems [7], and control-flow composition in software and web service systems [12]),67

see [8].68

In many settings, players indeed cannot observe the evolution of the computation in parts69

of the system they do not control, yet they may have information about events that happen70

during these parts. For example, if the system is synchronous with a global clock, then all71

players know the length of the invisible parts of the computation. Likewise, visits in some72

vertices of the other players may be observable, for example in a communication network73

in which all companies observe routers that belong to an authority and can detect visits to74

routers that leave a stamp. Finally, behaviors may be visible too, like an airplane that flies75

high, or a robot that enters a zone that causes an alarm to be activated. In this paper we76

introduce and study perspective games with notifications, which model such settings.77

Formally, perspective games with notifications include, in addition to the game graph and78

the winning condition, an information satellite: a finite state machine that is executed in79

parallel with the game and may notify the players about events it monitors. We distinguish80

between structural satellites, which monitor the generated play, and behavioral satellites,81

which monitor the generated computation. Examples to structural satellites include ones that82

notify the players about visits in designated sets of states, transitions among regions in the83

system, say calls and returns in software systems, traversal of loops, etc. A typical behavioral84

satellite is associated with a regular language R ⊆ (2AP )∗. The satellite may notify the85

players whenever the computation induced by the play is in R (termed a single-track satellite),86

or whenever a suffix of the computation is in R (termed a multi-track satellite). The language87

R may vary from simple propositional assertion over AP , to rich finite on-going behaviors.88

Note that even very simple satellites may be very useful. For example, when R = (2AP )∗,89

the satellite acts as a clock, notifying the players about the length of the invisible parts of90

the computation.91

We start by studying some theoretical aspects of perspective games with notifications.92

We consider two-player games with a winning condition L ⊆ (2AP )ω such that Player 193

aims for a play whose computation is in L, and Player 2 aims for a play whose computation94
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is not in L. Unsurprisingly, the basic features of the game are inherited from the model95

without notifications. In particular, perspective games with notifications are not determined.96

Thus, there are games in which Player 1 does not have a perspective strategy that forces97

the generated computation to satisfy L nor Player 2 has a perspective strategy that forces98

the generated computation not to satisfy L. Also, the restriction to a perspective strategy99

(as opposed to one that fully observes the computation) makes a difference only for one of100

the players. Thus, if Player 1 has a strategy to win against all perspective strategies of101

Player 2, she also has a perspective strategy to win against all strategies of Player 2.102

The prime problem when reasoning about games is to decide whether a player has a103

winning strategy. Here the differences between perspective games and other models of104

partial visibility become significant: handling of observation-based partial visibility typically105

involves some subset-construction-like transformation of the game graph into a game graph106

of exponential size with full visibility. Accordingly, deciding of observation-based partial-107

visibility games is EXPTIME-complete in the graph [2, 6, 5, 3]. In perspective games, one108

can avoid this exponential blow-up in the size of the graph and trade it with an exponential109

blow-up in the (typically much smaller) winning condition [8].110

Our main technical contribution is an extension of these good news to perspective games111

with notifications, and a study of the complexity in terms of the satellite. The solution in [8]112

is based on the definition of a tree automaton for winning strategies. The extension to a113

model with notifications is not easy, as the type of strategies is different. Let V1 denote the114

set of vertices that Player 1 controls. With no notifications, a strategy for Player 1 is a115

function f : V ∗1 → V , mapping each visible history to a successor vertex. With notifications,116

the visible histories of Player 1 consist not only of vertices in V1 but refer also to a set I of117

notifications that Player 1 may receive from the satellite. Moreover, histories that end in a118

notification in I correspond to vertices in the game in which Player 1 do not have control.119

Accordingly, the outcome of the strategy in them is not important, yet they should still120

be taken into account. We are still able to define a tree automaton for winning strategies.121

Essentially, the tree automaton follows both the satellite and the automaton for the winning122

condition, where a tree that encodes a strategy includes branches not only for vertices in123

V1 but also branches for notifications in I. We analyze the complexity of our algorithm for124

winning conditions given by deterministic or universal co-Büchi or parity automata, as well125

as by LTL formulas, and show that the problem is EXPTIME-complete for all above types126

of automata and is 2EXPTIME-complete for LTL. In all cases, the complexity in terms of127

the graph and the satellite is polynomial.128

While EXPTIME-hardness follows immediately from the setting with no notifications129

[8], we analyse the complexity also in terms of the satellite. Recall that given a finite130

language R ⊆ (2AP )∗, a satellite may be single-track, notifying about computations in R, or131

multi-track, notifying about computations in (2AP )∗ ·R. We examine four cases, depending132

on whether the satellite is single- or multi-track and whether R is given by a deterministic133

or nondeterministic automaton. For deterministic single-track satellites, the complexity of134

deciding whether Player 1 wins is polynomial. In the other three cases, a naive construction135

of a satellite requires determinization and involves an exponential blow-up. Note that this136

applies also to the case where R is given by a deterministic automaton yet the satellite is137

multi-track, and thus has to follow all suffixes. We show that this blow up is unavoidable.138

Thus, deciding whether Player 1 wins is EXPTIME-hard even when the winning condition,139

which is the source for the exponential complexity in the setting with no notifications, is140

fixed. On the positive side, we show that many interesting cases need a fixed-size satellite, or141

a satellite whose state space can be merged with that of the game.142
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2 Preliminaries143

2.1 Perspective games144

A game graph is a tuple G = 〈AP, V1, V2, v0, E, τ〉, where AP is a finite set of atomic145

propositions, V1 and V2 are disjoint sets of vertices, owned by Player 1 and Player 2,146

respectively, and we let V = V1 ∪ V2. Then, v0 ∈ V1 is an initial vertex, which we assume to147

be owned by Player 1, and E ⊆ V × V is a total edge relation, thus for every v ∈ V there148

is u ∈ V such that 〈v, u〉 ∈ E. The function τ : V → 2AP maps each vertex to a set of atomic149

propositions that hold in it. The size |G| of G is |E|, namely the number of edges in it.150

In a beginning of a play in the game, a token is placed on v0. Then, in each turn, the151

player that owns the vertex that hosts the token chooses a successor vertex and move there the152

token. A play ρ = v0, v1,... in G, is an infinite path in G that starts in v0; thus for all i ≥ 0 we153

have that 〈vi, vi+1〉 ∈ E. The play ρ induces a computation τ(ρ) = τ(v0), τ(v1), ... ∈ (2AP )ω.154

A game is a pair G = 〈G,L〉, where G is a game graph, and L ⊆ (2AP )ω is a behavioral155

winning condition, namely an ω-regular language over the atomic propositions, given by an156

LTL formula or an automaton. Intuitively, Player 1 aims for a play whose computation is157

in L, while Player 2 aims for a play whose computation is in comp(L) = (2AP )ω\L.158

Let Prefs(G) be the set of nonempty prefixes of plays in G. For a sequence ρ = v0, . . . , vn159

of vertices, let Last(ρ) = vn. For j ∈ {1, 2}, let Prefsj(G) = {ρ ∈ Prefs(G) : Last(ρ) ∈ Vj}. In160

games with full visibility, the players have a full view of the generated play. Accordingly,161

a strategy for Player j maps Prefsj(G) to vertices in V in a way that respects E. In162

perspective games [8], Player j can view only visits to Vj . Accordingly, strategies are163

defined as follows. For a prefix ρ = v0, . . . , vi ∈ Prefs(G), and j ∈ {1, 2}, the perspective164

of player j on ρ, denoted Perspj(ρ), is the restriction of ρ to vertices in Vj . We denote165

the perspectives of player j on prefixes in Prefsj(G) by PPrefsj(G), namely PPrefsj(G) =166

{Perspj(ρ) : ρ ∈ Prefsj(G)}. Note that PPrefsj(G) ⊆ Vj
∗. A perspective strategy for player167

j, is then a function fj : PPrefsj(G) → V such that for all ρ ∈ PPrefsj(G), we have that168

〈Last(ρ), fj(ρ)〉 ∈ E. That is, a perspective strategy for player j maps her perspective of169

prefixes of plays that end in a vertex v ∈ Vj to a successor of v.170

The outcome of P-strategies f1 and f2 for Player 1 and Player 2, respectively, is171

the play obtained when the players follow their P-strategies. Formally, Outcome(f1, f2) =172

v0, v1, ... is such that for all i ≥ 0 and j ∈ {1, 2}, if vi ∈ Vj , then vi+1 = fj(Perspj(v0, . . . , vi)).173

We use F and P to indicate the visibility type of strategies, namely whether they are174

full (F ) or perspective (P ). Consider a game G = 〈G,L〉. For α, β ∈ {F, P}, we say175

that Player 1 (α, β)-wins G if there is an α-strategy f1 for Player 1 such that for every176

β-strategy f2 for Player 2, we have that τ(Outcome(f1, f2)) ∈ L. Similarly, Player 2177

(α, β)-wins G if there is an α-strategy f2 for Player 2 such that for every β-strategy f1 for178

Player 1, we have that τ(Outcome(f1, f2)) /∈ L.179

2.2 Automata180

Given a set D of directions, a D-tree is a set T ⊆ D∗ such that if x · c ∈ T , where x ∈ D∗181

and c ∈ D, then also x ∈ T . The elements of T are called nodes, and the empty word ε is182

the root of T . For every x ∈ T , the nodes x · c, for c ∈ D, are the successors of x. A path π183

of a tree T is a set π ⊆ T such that ε ∈ π and for every x ∈ π, either x is a leaf or there184

exists a unique c ∈ D such that x · c ∈ π. Given an alphabet Σ, a Σ-labeled D-tree is a pair185

〈T, τ〉 where T is a tree and τ : T → Σ maps each node of T to a letter in Σ.186

For a set X, let B+(X) be the set of positive Boolean formulas over X (i.e., Boolean187
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formulas built from elements in X using ∧ and ∨), where we also allow the formulas true and188

false. For a set Y ⊆ X and a formula θ ∈ B+(X), we say that Y satisfies θ iff assigning true189

to elements in Y and assigning false to elements in X \ Y makes θ true. An alternating tree190

automaton is A = 〈Σ, D,Q, qin, δ, α〉, where Σ is the input alphabet, D is a set of directions,191

Q is a finite set of states, δ : Q×Σ→ B+(D×Q) is a transition function, qin ∈ Q is an initial192

state, and α is an acceptance condition. We consider here the Büchi, co-Büchi, and parity193

acceptance conditions. For a state q ∈ Q, we use Aq to denote the automaton obtained from194

A by setting the initial state to be q. The size of A, denoted |A|, is the sum of lengths of195

formulas that appear in δ.196

The alternating automaton A runs on Σ-labeled D-trees. A run of A over a Σ-labeled197

D-tree 〈T, τ〉 is a (T × Q)-labeled IN-tree 〈Tr, r〉. Each node of Tr corresponds to a node198

of T . A node in Tr, labeled by (x, q), describes a copy of the automaton that reads the199

node x of T and visits the state q. Note that many nodes of Tr can correspond to the200

same node of T . The labels of a node and its successors have to satisfy the transition201

function. Formally, 〈Tr, r〉 satisfies the following: (1) ε ∈ Tr and r(ε) = 〈ε, qin〉. (2)202

Let y ∈ Tr with r(y) = 〈x, q〉 and δ(q, τ(x)) = θ. Then there is a (possibly empty)203

set S = {(c0, q0), (c1, q1), . . . , (cn−1, qn−1)} ⊆ D × Q, such that S satisfies θ, and for all204

0 ≤ i ≤ n− 1, we have y · i ∈ Tr and r(y · i) = 〈x · ci, qi〉.205

A run 〈Tr, r〉 is accepting if all its infinite paths satisfy the acceptance condition. Given206

a run 〈Tr, r〉 and an infinite path π ⊆ Tr, let inf(π) ⊆ Q be such that q ∈ inf(π) if and207

only if there are infinitely many y ∈ π for which r(y) ∈ T × {q}. That is, inf(π) contains208

exactly all the states that appear infinitely often in π. In Büchi and co-Büchi automata, the209

acceptance condition is α ⊆ Q. A path π satisfies a Büchi condition α iff inf(π) ∩ α 6= ∅,210

and satisfies a co-Büchi condition α iff inf(π) ∩ α = ∅. In parity automata, the acceptance211

condition α : Q → {1, . . . , k} maps each vertex to a color. A path π satisfies a parity212

condition α iff the minimal color that is visited infinitely often in π is even. Formally,213

min{i : inf(π)∩ α−1(i) 6= ∅} is even. An automaton accepts a tree iff there exists a run that214

accepts it. We denote by L(A) the set of all Σ-labeled trees that A accepts.215

The alternating automaton A is nondeterministic if for all the formulas that appear in216

δ, if (c1, q1) and (c2, q2) are conjunctively related, then c1 6= c2. (i.e., if the transition is217

rewritten in disjunctive normal form, there is at most one element of {c}×Q, for each c ∈ D,218

in each disjunct). The automaton A is universal if all the formulas that appear in δ are219

conjunctions of atoms in D ×Q, and A is deterministic if it is both nondeterministic and220

universal. The automaton A is a word automaton if |D| = 1. Then, we can omit D from the221

specification of the automaton and denote the transition function of A as δ : Q×Σ→ B+(Q).222

If the word automaton is nondeterministic or universal, then δ : Q× Σ→ 2Q, and we often223

extend δ to sets of states and to finite words: for S ⊆ Q, we have that δ(S, ε) = S and for a224

word w ∈ Σ∗ and a letter σ ∈ Σ, we have δ(S,w · σ) = δ(δ(S,w), σ). When α ⊆ Q, we are225

ometimes interested in reachability via a nonempty path that visits α. For this, we define226

δα : 2Q × Σ+ → 2Q as follows. First, δα(S, σ) = δ(S, σ) ∩ α. Then, for a word w ∈ Σ+, we227

define δα(S,w · σ) = δ(δα(S,w), σ) ∪ (δ(S,w · σ) ∩ α). Thus, either α is visited in the prefix228

of the run that reads w after leaving S, or the last state of the run is in α. It is not hard to229

prove by an induction on the length of w that for all states q ∈ Q, we have that q ∈ δα(S,w)230

iff there is a run from S on w that reaches q and visits α after leaving S. We sometimes refer231

also to word automata on finite words. There, α ⊆ Q and a (finite) run is accepting if its232

last state is in α.233

We denote each of the different types of automata by three-letter acronyms in {D,N,U,A}×234

{F,B,C, P} × {W,T}, where the first letter describes the branching mode of the automaton235

FST&TCS 2020
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(deterministic, nondeterministic, universal, or alternating), the second letter describes the236

acceptance condition (finite, Büchi, co-Büchi, or parity), and the third letter describes the237

object over which the automaton runs (words or trees). For example, UCT stands for a238

universal co-Büchi tree automaton.239

3 Perspective Games with Notifications240

Consider a game graph G = 〈AP, V1, V2, v0, E, τ〉. An information satellite for G (satellite,241

for short) is finite-state machine I = 〈O, I, S, s0,M, i1, i2〉, where O and I are observation242

and information alphabets, S is a finite set of states, s0 ∈ S is an initial state,M : S×O → S243

is a deterministic transition function, and i1, i2 : S → I ∪ {ε} are information functions for244

Players 1 and 2, respectively, where ε 6∈ I is a special letter, standing for “no information".245

We distinguish between structural satellites, where O = V , and behavioral satellites, where246

O = 2AP . Intuitively, the satellite is executed during the play, updating its state according247

to the current vertex or its label, possibly notifying the players with information in I.248

I Example 1. Assume there is an atomic proposition alarm ∈ AP . Both players can249

hear whenever an alarm is activated, but they do not know for how many rounds it250

is on. A satellite that informs the players about the activation of the alarm is I =251

〈2{alarm}, {activated}, S, s0,M, i1, i2〉, with S = {s0, s1, s2}, M(si,¬alarm) = s0, for all252

i ∈ {0, 1, 2}, M(s0, alarm) = s1, and M(s1, alarm) = M(s2, alarm) = s2. Thus, the satellite253

moves to s1 whenever a ¬alarm · alarm pattern is read, and then moves to and stays in s2254

as long as the alarm is on. When the alarm is deactivated, the satellite moves to s0. Also,255

i1(s1) = i2(s1) = activated, and i1(s0) = i1(s2) = i2(s0) = i2(s2) = ε. Thus, when the256

satellite is in s1, it notifies both players about the activation of the alarm. J257

A perspective game with notifications is a tuple G = 〈G, I, L〉 where G and L are as in258

perspective games with no notifications, and I = 〈O, I, S, s0,M, i1, i2〉 is a satellite. As259

in usual perspective games, Player 1 aims for a play whose computation is in L, while260

Player 2 aims for a play whose computation is in comp(L). Now, however, the perspectives261

of the players contain, in addition to visits in their sets of vertices, also information from the262

satellite. Below we formalize this intuition.263

We define the function ζ : V → O that maps each vertex of G to the appropriate264

observation alphabet letter of I. Thus, for every v ∈ V , we have that ζ(v) = v if I265

is structural, and ζ(v) = τ(v) if I is behavioral. An attributed path in G is a sequence266

η ∈ (V × S)∗ obtained by attributing a path ρ = v0, v1, v2, . . . , vn ∈ V ∗ in G by the state267

in S that I visits when a play proceeds along ρ. Formally, η = 〈v0, s0〉, 〈v1, s1〉, . . . , 〈vn, sn〉268

is such that for all 1 ≤ i ≤ n, we have that si = M(si−1, ζ(vi)). Note that first the play269

proceeds from vi−1 to vi, and then the satellite reads ζ(vi) and proceeds accordingly. We use270

Last(η) to refer to vn. Let PrefsI(G) ⊆ (V × S)∗ be the set of nonempty attributed prefixes271

of plays in G. For j ∈ {1, 2}, let PrefsIj (G) = {η ∈ PrefsI(G) : Last(η) ∈ Vj}. For a prefix272

η ∈ PrefsI(G), the rich perspective of Player j on η, denoted PerspIj (η), is the restriction of η273

to vertices in Vj and notifications of I that occur in vertices not in Vj . Formally, the function274

infoj : (V ×S)→ Vj ∪ I describes the information added to Player j in each round. For all275

〈v, s〉 ∈ V ×S, if v ∈ Vj , then infoj(〈v, s〉) = v; if v 6∈ Vj , then infoj(〈v, s〉) = ij(s). Note that276

in the latter case, it may be that ij(s) = ε. Thus, if η = 〈v0, s0〉, 〈v1, s1〉, . . . , 〈vn, sn〉, then277

PerspIj (η) = infoj(〈v0, s0〉) · infoj(〈v1, s1〉) · · · infoj(〈vn, sn〉). Note that ε does not contribute278

letters to PerspIj (η), and so the length of PerspIj (η) is the number of the vertices in Vj in η279

plus the number of vertices not in Vj in which the satellite provides to Player j information280

in I.281
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I Example 2. Consider the alarm activation satellite described in Example 1, and consider a282

game graph G. Let v↑2 and v↓2 be vertices of Player 2 with alarm ∈ τ(v↑2) and alarm /∈ τ(v↓2).283

Then, the rich perspective of Player 1 on the path v↓2 , v
↓
2 , v
↓
2 , v
↑
2 , v
↑
2 , v
↓
2 , v
↑
2 , v
↑
2 , v
↑
2 , v
↓
2 is •, •,284

reflecting the two activations of the alarm during its traversal. Now, if v↑1 ∈ V1, and alarm ∈285

τ(v↑1), then the rich perspective of Player 1 on v↓2 , v
↓
2 , v
↑
1 , v
↓
2 , v
↑
2 , v
↑
2 , v
↑
1 , v
↓
2 , v
↑
1 , v
↑
2 , v
↑
2 , v
↑
2 , v
↓
2 , v
↑
1286

is v↑1 , •, v
↑
1 , v
↑
1 , v
↑
1 . J287

We denote the perspective of Player j on prefixes in PrefsIj (G) by PPrefsIj (G); thus288

PPrefsIj (G) = {PerspIj (η) : η ∈ PrefsIj (G)}. A perspective strategy for Player j (P-strategy289

for short) is then a function fj : PPrefsIj (G)→ V such that for all ρ ∈ PPrefsIj (G), we have290

that 〈Last(η), fj(η)〉 ∈ E. That is, a perspective strategy for Player j maps her perspective291

prefixes of plays that end in a vertex v ∈ Vj to a successor of v. The definitions of the292

outcome of F or P-strategies and F or P-winning are similar to the definitions in perspective293

games with no notifications, with PerspIj instead of Perspj .294

I Example 3. Consider the game graph G appearing in Figure 1. For simplicity, we assume295

that the atomic propositions in AP are mutually exclussive, and thus each vertex is labeled296

by a letter in Σ = {p, q,#, $}. Let I1 be a structural satellite that notifies Player 1297

whenever a visit in wq occurs, and let I2 be a behavioral satellite that notifies Player 1298

whenever the computation induced so far ends in $ · p. Also, let ϕ1 describe computations299

that every q · q subword is followed by a subword in Σ · q, and every q · p is followed by300

Σ · p. Formally, ϕ1 = G(((q ∧ Xq) → XXXq) ∧ ((q ∧ Xp) → XXXp)). Likewise, let301

ϕ2 = G((($ ∧Xp)→ XXXp) ∧ ((q ∧Xp)→ XXXq)).302

As we elaborate in Appendix A.1, Player 1 cannot (P, F )-win 〈G, I2, ϕ1〉, yet she does303

(P, F )-win 〈G, I1, ϕ1〉. Also, Player 1 cannot (P, F )-win 〈G, I1, ϕ2〉, yet she does (P, F )-win304

〈G, I2, ϕ2〉. J305

Figure 1 The game graph G over AP = {p, q, #, $}. The vertices of Player 1 are circles, and
those of Player 2 are squares. The initial vertex is v#

Example 3 shows that, as is the case in perspective games with no notifications [8],306

P-strategies with no notifications are weaker than P-strategies with notifications, which are307

weaker than F-strategies. It also shows (see full proof in Appendix B.2) that perspective308

games with notifications are not determined. That is, there are perspective games with309

notifications where both Player 1 and Player 2 do not have P-winning strategies.310

The following theorem states that the visibility type of Player 2 does not matter.311

Essentially (see Appendix B.1), it follows from the fact that if a perspective strategy of312

Player 1 loses against an F-strategy f2 of Player 2, then it also loses to a P-strategy of313

Player 2 that is induced from f2.314

I Theorem 4. For every perspective game with notifications G, Player 1 (F, F )-wins G iff315

Player 1 (F, P )-wins G, and Player 1 (P, F )-wins G iff Player 1 (P, P )-wins G.316
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Since the visibility type of Player 2 does not matter, we can omit it from our notation and317

talk about Player 1 P-winning a game. Also, specifying satellites, we remove the function318

i2 from their description.319

4 Deciding Perspective Games with Notifications320

Consider a game G = 〈G, I, L〉, for a game graph G = 〈AP, V1, V2, v0, E, τ〉 and a satellite321

I = 〈O, I, S, s0,M, i1〉. For a regular expression R over the alphabet V , an R-path from v322

is a finite path v1, . . . , vk ∈ L(R) in G such that v1 = v. For a subset X ⊆ V , an Xω-path323

from v is an infinite path v1, v2, ... ∈ Xω in G with v1 = v. Note, for example, that when324

Player 1 moves the token to a vertex v ∈ V2, the token may traverse a (V +
2 · V1)-path ρ325

from v, in which case it returns to V1 in Last(ρ), or it my traverse a V ω2 -path from v, in326

which case it never returns to a vertex in V1. For a regular expression R over the alphabet327

V × S, an R-path from 〈v, s〉 is an attributed path 〈v1, s1〉, . . . , 〈vk, sk〉 ∈ L(R) in G with328

v1 = v and s1 = s. For such a path ρ, we denote its projections on V and S by ρ|
V
and ρ|

S
,329

respectively.330

Consider the satellite I. For σ ∈ I ∪ {ε}, we denote by Sσ the set of states in I in which331

Player 1 is notified σ. That is, Sσ = {s ∈ S : i1(s) = σ}. Then, SI =
⋃
σ∈I Sσ is the set of332

states in which Player 1 is notified some information. Equivalently, SI = S \ Sε.333

We focus on games in which the winning condition L is given by a UCW. For simplicity,334

we denote them by G = 〈G, I,U〉, for a UCW U . Let U = 〈2AP , Q, q0, δ, α〉 In order for335

Player 1 to P-win G, her objective in the beginning of the game is to force a token that is336

placed in v0 into computations that U accepts from q0 with the satellite being in state s0.337

We can describe this objective by the triple 〈v0, q0, s0〉. As the play progresses, the objective338

of Player 1 is updated. Moreover, as U is universal, the objective may contain several such339

triples. Below we formalize this intuition.340

Consider a UCW U = 〈2AP , Q, q0, δ, α〉, a state q ∈ Q, and a state s ∈ S. Suppose that341

the token is placed in some vertex v ∈ V1, the objective of Player 1 is to force the token342

into computations in L(Uq), and the satellite is in state s after seeing ζ(v). Assume further343

that Player 1 chooses to move the token to a successor v′ of v and that s′ = M(s, ζ(v′)).344

We distinguish between two cases.345

1. v′ ∈ V1. Then, the new objective of Player 1 is to force the token in v′ into computations346

in L(Uq′), for all states q′ ∈ δ(q, τ(v)), with the satellite being in state s′.347

2. v′ ∈ V2. Then, there are three cases:348

a. There is a V2
ω-path ρ from v′ with τ(ρ) /∈ L(Uq′) for some q′ ∈ δ(q, τ(v)). We then say349

that v′ is a trap for 〈v, q〉. Indeed, Player 2 can stay in vertices in V2 and force the350

token into a computation not in L(Uq′). Note that once Player 1 chooses a vertex351

that is a trap for 〈v, q〉, Player 2 has a strategy to win the game.352

b. v′ is not a trap for 〈v, q〉, yet there is no (V2
+ · V1)-path from v′. That is, all paths353

from v′ stay in vertices in V2 and are in L(Uq′) for all q′ ∈ δ(q, τ(v)). We then say354

that v′ is safe for 〈v, q〉. Indeed, Player 2 stays in vertices in V2 and all the possible355

plays induce a computation in L(Uq). Note that once Player 1 chooses a safe vertex356

for 〈v, q〉, her objective is fulfilled regardless of the stragety of Player 2.357

c. v′ is neither a trap nor safe for 〈v, q〉, in which case:358

i. For every (V2 × Sε)+ · (V1 × S)-path ρ · 〈v′′, s′′〉 from 〈v′, s′〉 Player 1 should359

force a token that is placed in v′′ into computations in L(Uq′), for all states360

q′ ∈ δ(q, τ(v · ρ|
V

)), with the satellite being in state s′′. Note that for all 〈v̂, ŝ〉 along361
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ρ, we have info1(〈v̂, ŝ〉) = ε, and so the visit in v′′ is the first event that Player 1362

observes after placing the token in v′.363

ii. For every (V2 × Sε)∗ · (V2×SI)-path ρ · 〈v′′, s′′〉 from 〈v′, s′〉, Player 1 should force364

a token that is placed in v′′ with the satellite being in state s′′ into computations365

in L(Uq′), for all states q′ ∈ δ(q, τ(v · ρ|
V

)). Note that for all 〈v̂, ŝ〉 along ρ, we366

have info1(〈v̂, ŝ〉) = ε, and so i1(s′′) is the first event that Player 1 observes367

after placing the token in v′. Also note that ρ might be empty, in particular when368

Player 1 moves the token to a vertex in V2 that invokes a notification of I. In369

this case, 〈v′, s′〉 = 〈v′′, s′′〉.370

The above analysis induces the definition of updated objectives: Consider a triple 〈v, q, s〉 ∈371

V1 × Q × S, standing for an objective of Player 1 to force a token placed on v to be372

accepted by Uq with the satellite being in state s. For a successor v′ of v, we define the373

set Sv′

v,q,s ⊆ (V × Q × S × {⊥,>}) ∪ {false} of objectives that Player 1 has to satisfy374

in order to fulfil her 〈v, q, s〉 objective after choosing to move the token to v′. Also, for a375

triple 〈v, q, s〉 ∈ V2 × Q × S, we define the set Sv,q,s ⊆ V × Q × S × {⊥,>} of objectives376

that Player 1 has to satisfy in order to fulfil her 〈v, q, s〉 objective for every successor that377

Player 2 might choose for v. In both cases, the {⊥,>} flag in the objectives is used for378

tracking visits in α: an updated objective 〈v′′, q′, s′′, c〉 ∈ Sv′

v,q,s has c = > if Player 2 can379

force a visit in α when U runs from q to q′ along a word that labels a path from v via v′ to380

v′′.381

Formally, for a triple 〈v, q, s〉 ∈ V × Q × S we define the set of updated objectives as382

follows. Let s′ = M(s, ζ(v′)).383

1. If v ∈ V1 and E(v, v′), we distinguish between three cases.384

a. If v′ is a trap for 〈v, q〉, then Sv′

v,q,s = {false}.385

b. If v′ is safe for 〈v, q〉, then Sv′

v,q,s = ∅.386

c. Otherwise, a tuple 〈v′′, q′, s′′, c〉 is in Sv′

v,q,s iff one of the following holds.387

i. v′ ∈ V1, v′′ = v′, q′ ∈ δ(q, τ(v)), and s′′ = s′. Then, c = > iff q′ ∈ α.388

ii. v′ ∈ V2, and there is an (V2 × Sε)+ · (V1 × S)-path ρ · 〈v′′, s′′〉 from 〈v′, s′〉 such that389

q′ ∈ δ(q, τ(v ·ρ|
V

)). Then, c = > iff there is an (V2×Sε)+ · (V1×S)-path ρ · 〈v′′, s′′〉390

from 〈v′, s′〉 such that q′ ∈ δα(q, τ(v · ρ|
V

)).391

iii. v′ ∈ V2, and there is an (V2 × Sε)∗ · (V2 × SI)-path ρ · 〈v′′, s′′〉 from 〈v′, s′〉 such392

that q′ ∈ δ(q, τ(v · ρ|
V

)). Then, c = > iff there is an (V2 × Sε)∗ · (V2 × SI)-path393

ρ · 〈v′′, s′′〉 from 〈v′, s′〉 such that q′ ∈ δα(q, τ(v · ρ|
V

)).394

2. If v ∈ V2, a tuple 〈v′′, q′, s′′, c〉 is in Sv,q,s iff one of the following holds.395

a. There is an (V2×Sε)+ ·(V1×S)-path ρ·〈v′′, s′′〉 from 〈v, s〉 such that q′ ∈ δ(q, τ(v ·ρ|
V

)).396

Then, c = > iff there is an (V2 × Sε)+ · (V1 × S)-path ρ · 〈v′′, s′′〉 from 〈v, s〉 such that397

q′ ∈ δα(q, τ(v · ρ|
V

)).398

b. There is an (V2×Sε)∗ ·(V2×SI)-path ρ·〈v′′, s′′〉 from 〈v, s〉 such that q′ ∈ δ(q, τ(v ·ρ|
V

)).399

Then, c = > iff there is an (V2 × Sε)∗ · (V2 × SI)-path ρ · 〈v′′, s′′〉 from 〈v, s〉 such that400

q′ ∈ δα(q, τ(v · ρ|
V

)).401

The notion of updated objectives is the key to our algorithm for deciding P-winning in402

perspective games with notifications. Recall that a perspective strategy for Player 1 is a403

function f1 : PPrefs1(G)→ V such that for all ρ ∈ PPrefs1(G), we have that 〈Last(ρ), f1(ρ)〉 ∈404

E, where PPrefs1(G) contains words in V1 ∪ I that end with a vertex in V1. Accordingly, we405

describe a strategy for Player 1 by a (V ∪ {;})-labeled (V1 ∪ I)-tree, where the letter ;406

label nodes x 6∈ PPrefs1(G), namely nodes x ∈ (V1 ∪ I)∗ · I. Formally, a (V ∪ {;})-labeled407

(V1 ∪ I)-tree 〈(V1 ∪ I)∗, η〉 is a P-strategy of Player 1 if for all ρ ∈ (V1 ∪ I)∗ and v ∈ V1,408
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we have that η(ρ · v) = v′, where v′ ∈ V is such that E(v, v′), and for all σ ∈ I we have409

that η(ρ · σ) = ;, indicating Player 1 does not move the token when she receives the σ410

notification, and just keeps this notification in mind.411

I Theorem 5. Let G = 〈G, I,U〉 be a game with notifications, where G is a game graph,412

I = 〈O, I, S, s0,M, i1〉 is a satellite, and U is a UCW. We can construct a UCT AG over413

(V ∪ {;})-labeled (V1 ∪ I)-trees such that AG accepts a (V ∪ {;})-labeled (V1 ∪ I)-tree414

〈(V1 ∪ I)∗, η〉 iff 〈(V1 ∪ I)∗, η〉 is a winning P-strategy for Player 1. The size of AG is415

polynomial in |G|, |I|, and |U|.416

Proof. Let U = 〈2AP , Q, q0, δ, α〉. We define AG = 〈V ∪ {;}, V1 ∪ I,Q′, q′0, δ′, α′〉, where:417

1. Q′ = V ×Q× S × {⊥,>}. Intuitively, when AG is in state 〈v, q, s, c〉 it accepts strategies418

that force a token placed on v into a computation accepted by Uq with the satellite being419

in state s. The flag c is used for tracking visits in α.420

2. q′0 = 〈v0, q0, s0,⊥〉.421

3. The transitions are defined, for all states 〈v, q, s, c〉 ∈ V1 ×Q× S × {⊥,>}, as follows.422

a. If v ∈ V1, then δ′(〈v, q, s, c〉,;) = false, and for every v′ ∈ V we have the following423

transitions.424

i. If Sv′

v,q,s = {false} or ¬E(v, v′), then δ′(〈v, q, s, c〉, v′) = false.425

ii. If Sv′

v,q,s = ∅, then δ′(〈v, q, s, c〉, v′) = true.426

iii. Otherwise, δ′(〈v, q, s, c〉, v′) =427 ∧
{〈v′′,q′,s′′,c′〉∈Sv′

v,q,s:v′′∈V1}(v
′′, 〈v′′, q′, s′′, c′〉)∧

∧
{〈v′′,q′,s′′,c′〉∈Sv′

v,q,s:v′′∈V2}(i1(s′′), 〈v′′, q′, s′′, c′〉).428

b. If v ∈ V2, then for all v′ ∈ V , we have that δ′(〈v, q, s, c〉, v′) = false. Also, δ′(〈v, q, s, c〉,;) =429 ∧
{〈v′′,q′,s′′,c′〉∈Sv,q,s:v′′∈V1}(v

′′, 〈v′′, q′, s′′, c′〉)∧
∧
{〈v′′,q′,s′′,c′〉∈Sv,q,s:v′′∈V2}(i1(s′′), 〈v′′, q′, s′′, c′〉).430

Thus, for every updated objective 〈v′′, q′, s′′, c′〉, the automaton AG sends a copy in state431

〈v′′, q′, s′′, c′〉 to direction v′′ if v′′ ∈ V1, and to direction i1(s′′), if v′′ ∈ V2. Note that432

several updated requirements may be sent to the same direction. In particular, in addition433

to multiple copies sent to the same direction due to universal branches in U , a direction434

σ ∈ I may “host” updated objectives associated with different vertices in V2. Intuitively,435

such vertices are indistinguishable by Player 1.436

4. α′ = V × Q × S × {>}. Recall that a > flag indicates that Player 2 may reach the437

Q-element in an updated objective traversing a path that visits α. Accordingly, the438

co-Büchi requirement to visit α only finitely many times amounts to a requirement to439

visit states with > only finitely many times.440

J441

Theorem 5 gives us an upper bound on the problem of deciding whether Player 1 P-wins442

a perspective game with notifications.443

I Theorem 6. Deciding whether Player 1 P-wins a perspective game with notifications444

G = 〈G, I,U〉, for a UCW U , is EXPTIME-complete, and can be solved in time polynomial445

in |G| and |I|, and exponential in |U|.446

Proof. Let G = 〈G, I,U〉 and I = 〈O, I, S, s0,M, i1〉. By Theorem 5, we can construct a447

UCT AG over (V ∪ {;})-labeled (V1 ∪ I)-trees such that L(AG) is not empty iff there is a448

winning P-strategy for Player 1 in G. The size of AG is polynomial in |G|, |I| and |U|.449

We construct an NBT A′G over (V ∪ {;})-labeled (V1 ∪ I)-trees such that L(A′G) is not450

empty iff there is a winning P-strategy for Player 1 in G. The size of A′G is polynomial in451
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|G| and |I|, and is exponential in |U|. As we elaborate in Appendix B.3, the transformation452

from AG to A′G uses the fact that AG is deterministic in the V and S components, in order453

to generate, following the construction of [10], an NBT that it is polynomial in |G| and |I|454

and exponential only in |U|. Since the nonemptiness problem for an NBT can be solved in455

quadratic time, the specified complexity follows.456

Since perspective games with notifications are a special case of perspective game (tech-457

nically, with a satellite that only outputs ε), EXPTIME-hardness of the former implies an458

EXPTIME lower bound for our setting. J459

Since an LTL ψ formula can be translated to a UCW Uψ with an exponential blow up460

(for example, by translating ¬ψ to an NBW [17], and then dualizing the NBW), Theorem 6461

implies a 2EXPTIME upper bound for perspective games with notifications in which the462

winning condition is given by an LTL formula. Also, as has been the case in [8], it is possible463

to refine the {⊥,>} flag in the updated objectives to maintain the minimal parity color that464

is visited, and adjust the construction to games in which the winning condition is given by a465

UPW. The complexity stays exponential in the automaton. Formally, we have the following.466

I Theorem 7. Deciding whether Player 1 P-wins a perspective game with notifications467

G = 〈G, I,U〉, for a UPW U , is EXPTIME-complete, and can be solved in time polynomial468

in |G| and |I|, and exponential in |U|.469

Proof. The updated objectives defined for the case where the winning condition is given by470

a UCW contain a flag that records visits in the co-Büchi condition. When U is a UPW with471

k colors, we define the flag such that it records the minimal color visited instead. That is,472

Sv
′

v,q,s, Sv,q,s ⊆ (V ×Q× S × {1, ..., k}) ∪ {false}, is such that for every updated objective473

〈v′′, q′, s′′, c〉 ∈ Sv′

v,q,s ∪ Sv,q,s, Player 2 can force a path from v (via v′) to v′′ in which the474

minimal color visited in the run of U along it from q to q′ is c. We then use a construction that475

is similar to the one in the proof of Theorem 5 to construct a UPT AG over (V ∪{�})-labeled476

(V1 ∪ I)-trees such that L(AG) is not empty iff there is a winning P-strategy for Player 1477

in G. The size of AG is polynomial in |G|, |I| and |U|.478

By [10], APT emptiness can be reduced to UCT emptiness with a polynomial blow up.479

From there, determinizm in the V -component implies the required complexity. J480

5 Examples of Information Satellites481

Consider a game graph G = 〈AP, V1, V2, v0, E, τ〉. Recall that a structural satellite for G482

is a satellite I = 〈O, I, S, s0,M, i1〉 with O = V . Thus, the satellite can view the state in483

which the play is, and can decide about outputs to Player 1 based on this visibility. Then,484

a behavioral satellite for G has O = 2AP . Thus, the satellite can only observe the labels of485

vertices, and its outputs to Player 1 are based only on these labels. In this section we486

describe some natural structural and behavioral satellites.487

5.1 Structural Information Satellites488

A visible subset of vertices As discussed in Section 1, in some settings there is a subset489

of vertices I1 ⊆ V2 such that Player 1 is notified whenever the play visits a vertex in I1.490

Then, the satellite is 〈V, I1, V, v0,M, i1〉, where for all v, u ∈ V , we have that M(v, u) = u,491

i1(v) = v if v ∈ I1, and i1(v) = ε, otherwise. Thus, the state of the satellite follows the vertex492

of the game, and it produces an output during visits in I1. Note that Player 1 is notified493

not only about visits in I1, but also about the specific vertex that is visited. Alternatively, we494
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could define the satellite with output in only, i1(v) = in if v ∈ I1, and i1(v) = ε, otherwise.495

Here, Player 1 is notified that some vertex in I1 has been visited, with no information496

about which vertex it is.497

Observation-based uncertainty Assume that there is a subset of the atomic pro-498

positions AP1 ⊆ AP , such that Player 1 observes the assignments to AP1 in Player 2’s499

vertices. A corresponding satellite is 〈V, 2AP1 , V, v0,M, i1〉, where for all v, u ∈ V , we have500

that M(v, u) = u, i1(v) = τ(v) ∩ AP1 if v ∈ V2, and i1(v) = ε, otherwise. Note that this501

case combines the transverse visibility of perspective games with the longitudinal visibility502

in observation-based games. Indeed, when the token is in Player 2’s vertices, Player 1’s503

visibility is information based. In particular, Player 1 does know the number of states504

visited. It is not hard to see that when AP1 = AP , then, as the winning condition is505

behavioral, the setting coincides with games with full visibility. Also, note that even though506

the notifications of the satellite are in 2AP1 , we could not define it as a behavioral information507

satellite.508

Visible switches among regions Assume that the vertices in V2 is partitioned509

into disjoint regions V 1
2 , . . . , V

k
2 . For example, the regions may correspond to modules or510

procedures. In Appendix A.2, we describe satellites that notify Player 1 upon entry to the511

different regions. Here too, the satellite may declare the exact region or just notify about a512

switch. In the appendix we also describe an interesting variant of the above – a satellite that513

notifies Player 1 whenever Player 2 loops in a vertex.514

5.2 Behavioral Information Satellites515

Visible regular properties Assume there is a property, given by a regular language516

R over 2AP , such that Player 1 is notified whenever the computation generated since the517

beginning of the play is in R. For example, if AP = {p, q}, the property may be true∗·p·(¬q)∗,518

thus we want to notify Player 1 whenever a vertex satisfying p has been visited with no519

visit in a vertex satisfying q following this visit. Then, if AR = 〈2AP , S, s0,M, F 〉 is a DFW520

that recognizes R, an appropriate satellite is I = 〈2AP , {•}, S,M(s0τ(v0)),M, i1〉, where for521

every s ∈ S, we have that i1(s) = • if s ∈ F , and i1(s) = ε, otherwise. Note that the initial522

state of the satellite is the state of AR after reading the label of v0. Indeed, notifications523

inform Player 1 about the membership of the computation up to (and including) the vertex524

where the token visits. A useful special case of regular properties are these of the form525

true∗ · R, for a regular language R over 2AP . Thus, Player 1 is notified whenever the526

computation generated since the beginning of the play has a suffix in R. As we discuss in527

Section 6, handling of the two types of notifications is of different complexity.528

As we detail in Appendix A.3, the above can be generalized to multiple regular languages529

R1, . . . , Rk over 2AP , where for every 1 ≤ i ≤ k, Player 1 is notified whenever the530

computation generated since the beginning of the play is in Ri.531

Then, if for every 1 ≤ i ≤ k, the DFW Ai = 〈2AP , Si, s0
i ,Mi, Fi〉 recognize Ri, then an532

appropriate satellite is I = 〈2AP , 2{•1,...,•k}, S, s0,M, i1〉 is such that S = S1 × S2 × · · · × Sk,533

s0 = 〈M1(s0
1, τ(v0)), . . . ,Mk(s0

k, τ(v0))〉, the transitions are as in a usual product of automata,534

and for every 〈s1, s2, . . . , sk〉 ∈ S and 1 ≤ i ≤ k, we have that •i ∈ i1(〈s1, s2, . . . , sk〉) iff535

si ∈ Fi.536

A clock A step-counter notifies Player 1 how many vertices of Player 2 are537

visited between visits in her own vertices. This is done by a behavioral satellite for the538

regular language R = (2AP )∗. Indeed, then, Player 1 is notified in every step.539
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6 Complexity for the Different Satellites540

Recall that the complexity of deciding a game depends on the size of the satellite. Formally,541

for a satellite I = 〈O, I, S, s0,M, i1, i2〉, the state space of the NBT whose nonemptiness we542

check in Theorem 6 is a product of S with other parameters. In this section we study the543

size of different satellites, and the way it affects the complexity.544

We start with structural satellites. It is easy to see that the structural satellites described545

in Section 5.1 are such that S = V or S = V × C, for some constant set C. Moreover, since546

the satellite follows the play (formally, in all states of the UCT constructed in Theorem 5, the547

V -component agrees with the V -component of S. Accordingly, we do need the V -component548

in the state space and can maintain C only. In other words, the state space of AG can be549

redefined as V × Q × C × {⊥,>}, and the complexity of the decision problem is reduced550

accordingly.551

We continue to simple behavioral satellites. One is the clock from Section 5.2, which552

involves a satellite with a single state, leading to AG with state space V × Q × {⊥,>},553

and a simpler definition of updated objectives. Another easy special case are propositional554

satellites, which notify Player 1 whenever the play visits a vertex v such that τ(v) |= θ,555

for an assertion θ over AP . Indeed, for such notifications we need a two-state satellite.556

We note that in both cases, EXPTIME-hardness of the game is valid. While the case of557

propositional satellites this follows by an easy reduction from the case of perspective games558

with no notifications, for the case of clocks such a reduction is impossible. Nevertheless, the559

reduction in the lower bound proof in [8] suits are needs, since the game constructed in there560

alternates between V1 and V2. Such a game has full visibility, and thus it also has a clock561

inherinlty.562

Our focus in this section is general behavioral satellites. Consider a regular language563

R. We distinguish between the case where the satellite notifies Player 1 whenever the564

computation since the beginning of the game is in R (termed single-track satellites, as they565

follow a single computation), and the case where the satellite notifies Player 1 whenever a566

suffix of the computation is in R, or equivalently, whenever the computation is in true∗ ·R567

(termed multi-track satellites, as they follow all suffixes of the computation). Analyzing568

the complexity of games with behavioral satellites, we assume a game is given by a tuple569

G = 〈G,AR,U , t〉, where G and U are the game graph and winning condition, AR is the pattern570

automata, namley the automata describing a regular property R, and t ∈ {single,multi},571

is a flag indicating whether the satellite is single- or multi-track.572

I Theorem 8. Deciding whether Player 1 P-wins in a game G = 〈G,AR,U , t〉 can be573

solved in time polynomial in |G|, exponential in |U|, and574

polynomial in |AR| when t = single and AR is a DFW.575

exponential in |AR| when t = multi or AR is an NFW. Moreover, the problem is576

EXPTIME-complete already for a fixed-size U .577

Proof. The upper bounds follow from Theorem 6, and the fact we can generate from AR a578

satellite with no blow-up when t = single and AR is a DFW, and a satellite exponential579

in AR when t = multi or AR is an NFW. Note that when t = multi, we first add to AR a580

true∗ self-loop leading to the initial state, which makes it nondeterministic.581

We continue to the EXPTIME lower bound, and start with the case t = single and AR is582

an NFW. We describe a reduction from linear-space alternating Turing machines (ATM). The583

details of the reduction can be found in Appendix B.4.2. Given an ATMM and a word w ∈ Γ∗,584

we construct a game G = 〈G,AR,U , single〉 such that Player 1 P-wins G iff M accepts w.585

The size of U is fixed, and G and AR are of size linear in s(n) where n = |w|. Essentially,586
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Player 1 generates a legal accepting computation in the computation tree of M on w. Thus587

Player 1 chooses successors in existential configurations, and Player 2 chooses successors588

in universal ones. The challenging part of the reduction is to guarantee that the sequence589

of configurations generated is a legal computation, and to do it with a fixed size winning590

condition. We encode a configuration of M by a string #γ1γ2 · · · (q, γi) · · · γs(n). When U591

is polynomial, it is easy to relate letters in the same address in successive configurations,592

making sure that the transition function of M is respected. When U is of a fixed size, it is593

not clear how to do it, as such letters are s(n)-letters apart. The key idea is to use AR in594

order to do the required counting: We let Player 2 choose an address k ∈ {1, . . . , s(n)} and595

challenge Player 1 by raising a flag whenever the address is k. The winning condition U596

checks that the transition function of M is respected whenever the flag is raised, which forces597

Player 1 to respect the transitions function of M in address k. Moreover, since Player 1598

does not know k, she has to always respect the transition function. The above mechanism is599

not sufficient, as Player 2 may try to fail Player 1 by raising the flag maliciously, that is,600

not sticking to one address k. This is where the notifications enter the picture: the language601

R detects malicious flag raises and notifies Player 1 about them. For this, AR has to count602

to s(n), but this is allowed, and enables U to skip the counting. In addition, U restricts the603

check of Player 1 only to ones in which the flag is raised properly.604

Then, when t = multi and AR is a DFW (or NFW), the reduction is similar and is based605

on the fact that the only nondeterminism in AR above is in guessing malicious flag raises,606

namely raises that are not s(n) letters apart. Such a behavior can be specified by a regular607

expression true∗ ·R for R that can be described by a DFW of size polynomial in s(n). J608
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A Examples648

A.1 A detailed version of Example 3649

Consider the game graph G appearing in Figure 1. Note that whenever the token reaches650

v$, there are four possible sub-computations it may generate before returning to v#; these651

are $ · p ·#, $ · q ·#, $ · q · p ·# and $ · q · q ·#. Let G1 = 〈G,ϕ1〉 be a perspective game652

with ϕ1 = G(((q ∧Xq)→ XXXq)∧ ((q ∧Xp)→ XXXp)). It is easy to see that Player 1653

cannot (P, F )-win G1, because she is unable to distinguish between the different possible654

sub-computations, and thus every P-strategy of hers chooses the same successor of v# for all655

four cases. Now consider the perspective game with notifications G′1 = 〈G, I1, ϕ1〉 where I1 is656

a structural satellite that notifies Player 1 whenever a visit in wq occurs. The information657

from the satellite restricts the possibilities; when Player 1 gets a notification, she knows658

that the last sub-computation is $ · q · q · #. When she does not get a notification, she659

knows that the last sub-computation could be any option from the rest of them. Obviously,660

Player 1 (P, F )-wins G′1, because Player 1 can distinguish between the sub-computations661

$ · q · q ·# and $ · q · p ·#, and she can choose the successor of v# after every visit in it662

accordingly.663

Let G2 = 〈G,ϕ2〉 be a perspective game with ϕ2 = G((($∧Xp)→ XXXp)∧ ((q∧Xp)→664

XXXq)). Player 1 cannot (P, F )-win G2, for the same reason she cannot (P, F )-win665

G1. Now consider the perspective game with notifications G′2 = 〈G, I2, ϕ2〉 where I2 is a666

behavioral satellite that notifies Player 1 whenever the computation induced so far is a word667

in the regular language (p+ q + # + $)∗ · $ · p. Now, when Player 1 get a notification, it668

indicates that the last sub-computation is $ ·p ·#, and when she doesn’t get a notification, she669

knows that the last sub-computation could be any option from the rest of them. Obviously,670

Player 1 (P, F )-wins G′2, because Player 1 can distinguish between the sub-computations671

$ ·p ·# and $ ·q ·p ·#, and she can choose the successor of v# after every visit in it accordingly.672

673

Note that Player 1 cannot P-win the games 〈G, I1, ϕ2〉 and 〈G, I2, ϕ1〉, since I1 adds674

the same information for both $ · p ·# and $ · q · p ·# sub-computations, and I2 adds the675

same information for both $ · q · q ·# and $ · q · p ·# sub-computations, so in both games any676

P-strategy of Player 1 chooses the same successor of v# for both cases.677

A.2 Structural satellites for visible switches among regions678

Assume that the vertices in V2 is partitioned into disjoint regions V 1
2 , . . . , V

k
2 . For example,679

the regions may correspond to modules or procedures. If Player 1 is notified upon entry to680
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Figure 2 The game graph G over AP = {p, q, #, $}. The vertices of Player 1 are circles, and
those of Player 2 are squares. The initial vertex is v#

the different regions, then the corresponding satellite is 〈V, {1, . . . , k}, S, 〈v0, ◦〉,M, i1〉, where681

S = (V1×{◦})∪(V2×{◦, •}). Thus, the state space of the satellite has one copy of the vertices682

in V1 and two copies of the vertices in Player 2. Then, M and i1 are as follows. For a vertex683

v ∈ V2, let reg(v) be the region of v; thus v ∈ V reg(v)
2 . Then, for all v, u ∈ V and j ∈ {◦, •},684

we have that M(〈v, j〉, u) = 〈u, ◦〉 if u ∈ V1 or reg(v) = reg(u), and M(〈v, j〉, u) = 〈u, •〉 if685

reg(v) 6= reg(u). Also, for every 〈v, j〉 ∈ S we have that i1(〈v, j〉) = reg(v) if j = •, and686

i1(〈v, j〉) = ε, otherwise. As in the case of a visible subset of vertices, the satellite can notify687

Player 1 only about a switch in a region, without specifying which region it is. Then, the688

satellite has only output •, and i1(〈v, j〉) = • if j = •, and i1(〈v, j〉) = ε, otherwise. Note689

that in both case, Player 1 is not notified about the number of rounds that Player 2 is690

spending in each region, and only about switches among them.691

An interesting variant of the above is a satellite that notifies Player 1 whenever692

Player 2 loops in a vertex. Note that this is a special case of the above, where each693

vertex of V2 has its own region, with a dual {◦, •} notification. Namely, we let Player 1694

know when there is no change in the region. Then, the satellite is 〈V, {•}, S, 〈v0, ◦〉,M, i1〉,695

where i1 is as above, yet for every v, u ∈ V and j ∈ {◦, •}, we have that M(〈v, j〉, u) = 〈u, ◦〉696

if u ∈ V1 or v 6= u, and M(〈v, j〉, u) = 〈u, •〉, otherwise.697

A.3 Behavioral satellites for multiple regular languages698

Let R1, . . . , Rk be regular languages over 2AP , where for every 1 ≤ i ≤ k, we want Player 1699

to be notified whenever the computation generated since the beginning of the play is in Ri.700

Then, if for every 1 ≤ i ≤ k, the DFW Ai = 〈2AP , Si, s0
i ,Mi, Fi〉 recognize Ri, then an701

appropriate satellite is I = 〈2AP , 2{•1,...,•k}, S, s0,M, i1〉 is such that S = S1 × S2 × · · · × Sk,702

s0 = 〈M1(s0
1, τ(v0)), . . . ,Mk(s0

k, τ(v0))〉, the transitions are as in a usual product of automata,703

and for every 〈s1, s2, . . . , sk〉 ∈ S and 1 ≤ i ≤ k, we have that •i ∈ i1(〈s1, s2, . . . , sk〉) iff704

si ∈ Fi.705

B Proofs706

B.1 Proof of Theorem 4707

Let G = 〈G, I, L〉. First, consider an F or P strategy f1 of Player 1, and assume that708

τ(Outcome(f1, f2)) ∈ L for every F-strategy f2 of Player 2. Clearly, τ(Outcome(f1, f2)) ∈ L709

for every P-strategy f2 of Player 2.710



O. Kupferman and N. Shenwald XX:17

For the other direction, consider an F or P strategy f1 of Player 1, and assume that711

τ(Outcome(f1, f2)) /∈ L for some F-strategy f2 of Player 2. Let ρ = Outcome(f1, f2). We712

define an P-strategy f ′2 for Player 2 such that for every prefix ρ′ of ρ with Last(ρ′) ∈ V2713

we have f ′2(PerspI2(ρ′)) = f2(ρ′). Note that for every two distinct prefixes ρ′, ρ′′ of ρ with714

Last(ρ′), Last(ρ′′) ∈ V2, the lengths of PerspI2(ρ′) and PerspI2(ρ′′) are different, thus f ′2 is well715

defined. Now, as Outcome(f1, f
′
2) = Outcome(f1, f2), we have that τ(Outcome(f1, f

′
2)) /∈ L,716

and we are done.717

B.2 Perspective games with notifications are not determined718

Consider the perspective game with notifications 〈G, I1, ϕ2〉 described in Example 3. As719

argued above, Player 1 does not P-win the game. In addition, as Player 1 does F-win720

〈G, I1, ϕ2〉, we have that Player 2 does not P-win 〈G, I1,¬ϕ2〉.721

B.3 The transition to an NBT in the proof of Theorem 6722

For k ≥ 1, let [k] = {1, ..., k}. The construction in [10] transforms the UCT AG = 〈V ∪723

{;}, V1 ∪ I,Q′, q′0, δ′, α′〉 to an NBT with states W = 2Q′×[k] × 2Q′×[k], where k is such that724

|Q′| · k bounds the size an NRT that is equivalent to AG , which is exponential in |Q′|. Also,725

for every state 〈P,O〉 ∈W , we have that O ⊆ P , and if 〈q, i〉 and 〈q′, i′〉 are in P with q = q′,726

then i = i′. Therefore, the states in W can be written as 2Q′ × 2Q′ ×F , where F is the set of727

functions f : Q′ → [k]. Recall that the states of the UCT AG are Q′ = V ×Q× S × {⊥,>},728

and that AG is deterministic in the V and S components. Hence, the translation of AG to an729

NRT is polynomial in |G| and |I|, and exponential in |U |, and thus k is only polynomial in730

|G| and |I|. Also, for every 〈P,O〉 ∈W , if 〈v, q, s, c, i〉 and 〈v′, q′, s′, c′, i′〉 are in P , then since731

AG is deterministic in the V and S component, we have that v = v′ and s = s′. Therefore,732

the states in W can be written as V × S × 2Q×{⊥,>} × 2Q×{⊥,>} ×F , where F is the set of733

functions f : Q× {⊥,>} → [k]. Hence, |W | is polynomial in |G| and |I|, and exponential in734

|U|.735

B.4 Lower Bounds736

The reductions in Sections B.4.1 and B.4.2 are from the membership problem for linear-space737

alternating Turing machines (ATM), defined below.738

An ATM is a tuple M = 〈Qe, Qu,Γ,∆, qinit, qacc, qrej〉, where Γ is the alphabet, Qe and739

Qu are finite sets of existential and universal states, and we let Q = Qe∪Qu. Then, qinit, qacc,740

and qrej are the initial, accepting, and rejecting states, respectively, and we assume that741

qinit ∈ Qe. Finally, ∆ ⊆ (Q×Γ)×((Q×Γ×{L,R})×(Q×Γ×{L,R})) is a transition relation742

that in our case has a binary branching degree. When an existential or a universal state of M743

branches into two states, we distinguish between the left and right branches. Accordingly, we744

use ((q, γ), 〈(ql, γl, dl), (qr, γr, dr)〉) to indicate that when M is in state q ∈ Qe ∪Qu reading745

input symbol γ, it branches to the left with (ql, γl, dl) and to the right with (qr, γr, dr). Note746

that directions left and right here have nothing to do with the movement direction of the747

head. These are determined by dl and dr.748

A configuration of M on w = w1, . . . , wn describes its state, the content of the working749

tape, and the location of the reading head. Assume s : N→ N is a linear function such that750

the number of cells used by the working tape in every configuration of M on its run on w751

is bounded by s(n). We encode a configuration of M by a string #γ1γ2 · · · (q, γi) · · · γs(n).752

That is, a configuration starts with #, and all its other letters are in Γ, except for one letter753
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in Q× Γ. Then, M is in state q, the content of the j-th tape cell is γj , and the reading head754

points at cell i. We say that the configuration is existential if q ∈ Qe and that it is universal755

if q ∈ Qu. The initial configuration of M on w, is then #(qinit, w1) · ... · wn · ␣s(n)−n, for756

the special letter ␣ ∈ Γ. We also assume that the initial configuration is existential. If the757

current state is qacc or qrej , then the configuration is final and has no successors. Otherwise,758

the successors of a configuration #γ1γ2...(q, γi), . . . , γs(n) are determined by ∆.759

For a configuration c of M , let succl(c) and succr(c) be the successors of c when applying760

to it the left and right choices in ∆, respectively. Given an input w, a computation tree of M761

on w is a tree in which each node corresponds to a configuration of M . The root of the tree762

corresponds to the initial configuration. A node that corresponds to a universal configuration763

c has two successors, corresponding to succl(c) and succr(c). A node that corresponds to an764

existential configuration c has a single successor, corresponding to either succl(c) or succr(c).765

The tree is an accepting computation tree if all its branches reach an accepting configuration.766

We can now encode a branch of the computation tree of M by a sequence of configurations.767

In the membership problem, we get as input an ATM M and a word w ∈ Γ∗, and we768

decide whether M accepts w. The membership problem is EXPTIME-hard already for769

M of a fixed size, and when ∆ alternates between existential and universal states, thus770

∆ ⊆ (Qe × Γ×Qu × Γ× {L,R}) ∪ (Qu × Γ×Qe × Γ× {L,R}). So for simplicity, in both771

proofs we assume that M behaves this way.772

B.4.1 Lower bound for a clock773

We show a reduction from the membership problem for a linear-space alternating Turing774

machine (ATM). Given an ATM M = 〈Qe, Qu,Γ,∆, qinit, qacc, qrej〉 and a word w ∈ Γ∗,775

we construct a game with a clock G = 〈G,U〉 such that M accepts w iff Player 1 has a776

winning P-strategy in G. We first describe the game graph G; The vertices of Player 1777

are going to maintain information about the last transition (in particular, the current state778

of M), but no information about the tape content. The vertices of Player 2 are going to779

maintain information about the last transition and the letter under the reading head. In780

each Player 1 turn, she chooses a transition in ∆ that corresponds to the current state and781

letter, and moves to a Player 2 vertex accordingly. Since the current letter is not encoded782

in Player 1’s vertices, then Player 1 might lie, but then the DFW would make sure that783

she looses the game. Also, the Player 2 vertex that Player 1 chooses to move to must784

correspond to the current letter. Again, if Player 1 lies about it, then the DFW makes sure785

she looses the game. In a Player 2 turn, she chooses a transition according to the current786

state and letter - both encoded in her vertices, and moves to a corresponding Player 1787

vertex. Recall that the transitions in M alternate between existential and universal states.788

Accordingly, there is exactly one Player 2 vertex between two Player 1 vertices in the789

play. This fact enables Player 1 to maintain the tape configuration although she sees only790

her vertices, and makes G a game with full visibility, and thus it is also has a clock.791

We continue to the winning condition U . Intuitively, U makes sure that Player 1 does792

not lie about the current letter, both when choosing her transitions, and when passing the793

control to Player 2. Since there are exponentially many possible tape content. Instead,794

U maintains only the letter in some specific position 0 ≤ k ≤ s(|w|)− 1 on the tape. The795

position k is chosen by Player 2 during a preamble we add to the game. Player 1 does796

not see the preamble, and thus she does not know k. Accordingly, in order to avoid loosing,797

Player 1 should not lie about any of the tape cells and thus should faithfully simulate the798

computation of M on w. Hence, Player 1 has a winning P-strategy iff M accepts w.799
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B.4.2 Proof of the lower bounds in Theorem 8800

We describe a reduction from linear-space alternating Turing machines (ATM). Given an801

ATM M and a word w with n = |w|, we construct a game G = 〈G,AR,U , single〉, such that802

U is fixed-size, G and AR are of size linear in s(n), and Player 1 P-wins G iff M accepts w.803

We first explain the main ideas of the reduction, and then describe the formal definitions of804

G, AR, and U . Note that the winning condition U is on finite words. Also, it is an NFW805

and the upper bound is for UFW or DFW, but since it is of a fixed size, also a deterministic806

version of it is of a fixed size.807

Essentially, Player 1 generates a legal accepting computation in the computation tree808

of M on w. Thus Player 1 chooses successors in existential configurations, and Player 2809

chooses successors in universal ones. The challenging part of the reduction is to guarantee810

that the sequence of configurations generated is a legal computation, and to do it with a fixed811

size winning condition. When U is polynomial, it is easy to relate letters in the same address812

in successive configurations, making sure that the transition function of M is respected.813

When U is of a fixed size, it is not clear how to do it, as such letters are s(n)-letters apart.814

The key idea is to use AR in order to do the required counting: We let Player 2 choose an815

address k ∈ {1, . . . , s(n)} and challenge Player 1 by raising a flag whenever the address is k.816

The winning condition U checks that the transition function of M is respected whenever the817

flag is raised, which forces Player 1 to respect the transitions function of M in address k.818

Moreover, since Player 1 does not know k, she has to always respect the transition function.819

The above mechanism is not sufficient, as Player 2 may try to fail Player 1 by raising the820

flag maliciously, that is, not sticking to one address k. This is where the notifications enter821

the picture: the language R detects malicious flag raises and notifies Player 1 about them.822

For this, AR has to count to s(n), but this is allowed, and enables U to skip the counting. In823

addition, U restricts the check of Player 1 only to ones in which the flag is raised properly.824

Assuming the players form a valid branch of a valid computation tree, then if M accepts825

w, the branch reaches an accepting configuration. Also, if M rejects w then Player 2 is826

able to choose successors of universal configurations that lead to a rejecting configuration.827

That way, if the objective of Player 1 is to reach an accepting configuration, she P-wins G828

iff M accepts w.829

The challenge here is to force Player 1 to construct a correct branch in a computation830

tree of M on w with a winning condition of fixed size. To do that, we first describe831

the function nextl (the function nextr is defined the same way for the right branch); Let832

Σ = {#} ∪ (Q× Γ) ∪ Γ and let #σ1...σs(n)#σ′1...σ′s(n) be two successive configurations c and833

succl(c) of M . We also set σ0, σ
′
0 and σs(n)+1 to #. For each triple 〈σi−1, σi, σi+1〉 with834

1 ≤ i ≤ n, we know, by the transition relation of M , what σ′i should be. In addition, the835

letter # should repeat exactly every s(n) + 1 letters. Let nextl(〈σi−1, σi, σi+1〉) denote our836

expectation for σ′i in succl(c). That is:837

1. nextl(〈γi−1, γi, γi+1〉) = nextl(〈#, γi, γi+1〉) = nextl(〈γi−1, γi,#〉) = γi.838

2. nextl(〈(q, γi−1), γi, γi+1〉) = nextl(〈(q, γi−1), γi,#〉) =
{
γi If ((q, γi−1), 〈(q′, γ′i−1, L), (qr, γr, dr)〉) ∈ ∆
(q′, γi) If ((q, γi−1), 〈(q′, γ′i−1, R), (qr, γr, dr)〉) ∈ ∆839

3. nextl(〈γi−1, (q, γi), γi+1〉) = nextl(〈#, (q, γi), γi+1〉) = nextl(〈γi−1, (q, γi),#〉) = γ′i where840

((q, γi), 〈(q′, γ′i, d), (qr, γr, dr)〉) ∈ ∆.841

4. nextl(〈γi−1, γi, (q, γi+1)〉) = nextl(〈(#, γi, (q, γi+1)〉) =
{
γi If ((q, γi−1), 〈(q′, γ′i+1, R), (qr, γr, dr)〉) ∈ ∆
(q′, γi) If ((q, γi−1), 〈(q′, γ′i+1, L), (qr, γr, dr)〉) ∈ ∆842

5. nextl(〈σs(n),#, σ′1〉) = #.843

Consistency with nextl and nextr now gives us a necessary condition for a trace to encode a844

legal branch of a computation tree. Checking the consistency with nextl and nextr for every845
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position in the computation cannot be achieved by a fixed size NFW, so the size limit of846

the winning condition makes it impossible to force Player 1 to form the valid computation.847

This is because it must compare between the same address along the entire computation, for848

all the addresses of the working tape, which induce space complexity polynomial in s(n). We849

work around it by using a secret checkup. Player 2 can choose an address 1 ≤ k ≤ s(n)850

without Player 1 knowing, and let the winning condition check the consistency of the k-th851

cell between consecutive configurations by raising a flag whenever the address is k. In order to852

keep Player 2 from raising the flag maliciously and letting the winning condition compare853

between different addresses in consecutive configurations, the pattern automata monitors her854

behavior so Player 1 could reverse choices that leads to that. Since the wanted behavior855

of Player 2 is cyclic, were the length of the cycle is s(n), we can construct such pattern856

automata NFW of size polynomial in s(n).857

First we describe the game graph. During the game, the players are forming a branch858

of a computation tree of M on w; Player 2 chooses an annotation for the current let-859

ter of the configuration indicating whether the flag is raised and the winning condition860

should test the consistency of the current address between consecutive configurations or861

not, by choosing “1” or “0”, respectively. Once Player 2 marks an address k by “1”,862

we say that she is fair if from now on she marks the k-th tape cell by “1” and the other863

tape cells by “0”; otherwise, we say she is unfair. After Player 2 chooses an annota-864

tion, Player 1 has the option to reverse the choice of Player 2 by using the negation865

character “ ∼ ” or to keep it by using the character “X”, without knowing what was her866

choice or what is the outcome of reversing it. Then, Player 1 chooses the letter of the867

current address, and the process repeats. At the end of every existential configuration,868

Player 1 chooses whether to continue to the left or right successor configuration by choos-869

ing l or r, respectively. The same way, Player 2 chooses the direction of the successor870

configuration after every universal configuration. Thus, the play induce a sequence that is871

alternating between 1/0 annotations, tape cell content and branching choices, that form a872

sequence of consecutive configurations of M that are a branch of a computation tree of M873

on w: ...0#{d1}0γ10γ2...0(q, γi)...1γk...0γs(n)0#{d2}0γ′10γ′2...0(q′, γ′j)...1γ′k...0γ′s(n)..., where874

d1, d2 ∈ {l, r}. At the entrance to the game, Player 1 is forced “hard-coded" to form the875

initial configuration of M on w, while the annotation mechanism is enabled. Note that this876

is the part of the game that causes the polynomial complexity, and the necessity of that will877

be explained shortly.878

Next we describe the pattern automata NFW AR. Intuitively, We want to know when879

Player 2 is being unfair and tries to fail Player 1 by raising the flag maliciously, causing880

the winning condition to compare two different addresses in consecutive configurations, in881

order for Player 1 to be able to reverse such choices. So, AR accepts every word that is not882

a prefix of a word in the language L(0∗ · (1 · 0s(n))∗). This is a simplified description where883

the letters of the tape content and the branching choices are omitted. Moreover, if Player 1884

chooses to reverse Player 2 annotation upon AR’s notification, the modified annotation is885

considered fair. Namely, the sequence 0· ∼ is equal to the annotation 1 ·X and 1· ∼ is equal886

to 0 ·X. Note that if Player 1 is forming a correct branch of a computation tree, she can887

always reverse unfair annotation of Player 2 and so nothing prevents her from winning the888

game, assuming M does accept w, of course. Such NFW of size linear in s(n) can be easily889

constructed.890

Finally we describe the winning condition NFW U . Intuitively, we want to force Player 1891

to form a correct branch of a computation tree of M on w, and for that purpose we want the892

annotations to force consistency with nextl and nextr; Assuming Player 2 is fair, she raises893
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the flag whenever the address is k by marking every k tape cell by 1 for some 0 ≤ k ≤ s(n)894

starting from some configuration, and all the other tape cell by 0. Since k is not known895

to Player 1 and neither is the configuration that the checkup is starting from, if U forces896

consistency with nextl or nextr between any two consecutive 1 annotations, she must form897

the a correct branch of a computation tree with respect to the branching choices, otherwise898

she might lose. There are four conditions that Player 1 has to fulfil in order to P-win the899

game:900

1. The computation should start from the initial configuration.901

2. The computation should be consistent with nextl between consecutive flag raises with902

the l branching choice between them.903

3. The computation should be consistent with nextr between consecutive flag raises with904

the r branching choice between them.905

4. The computation should reach an accepting configuration.906

Note that a winning condition of fixed size cannot force an unconstrained computation to907

start from the initial configuration while supporting the checkup mechanism, since that908

requires separate attention to every possible choice of Player 2 of an address in the initial909

configuration to start the secret checkup. This is the reason we use the game itself to force910

the computation to start from the initial configuration.911

When M accepts w, it is in Player 1’s best interest to form the correct configurations912

with respect to the branching choices and reverse unfair annotations of Player 2. When M913

does not accept w, Player 1 cannot win, even if she is arriving at a vertex that corresponds914

with qacc. This is simply because she does not know the position of the secret checkup,915

and reversing fair annotations might not help; When Player 1 reverses a fair annotation,916

she doesn’t know if it was an 0 annotation or 1 annotation, and that can lead to forcing917

consistency with next between two different address unknown to Player 1. If Player 1918

tries to lie about the content, and the first address that she is trying to choose the incorrect919

letter is k, then Player 2 can choose this k to be the address to raise the flag upon.920

Now we specify the formal definitions of G,AR and U .921

1. The game graph G = 〈AP, V1, V2, v0, E, τ〉 is defined as follows:922

a. AP = Σ ∪ {$,∼,X, 1, 0, l, r}. the AP s are mutually exclusive, so we view them as the923

alphabet instead of 2AP .924

b. V1 = {v0}
⋃
t∈{e,u}{vt, v∼t , vXt , lt, rt}∪

⋃
0≤i≤s(n){v

$
i , v
∼
i , v

X
i , wi}∪

⋃
σ∈(Qe×Γ)∪Γ∪{#}{vσe }∪925 ⋃

σ∈(Qu×Γ)∪Γ{vσu}.926

The vertex v0 is the initial vertex. The vertices
⋃
σ∈(Qe×Γ)∪Γ∪{#}{vσe } are the existential content vertices,927

that are used to form the existential configurations, and have the informer vertex ve, the928

reverse vertex v∼e , and the preserve vertex vXe as their own annotation-reversing mechan-929

ism. The same way,
⋃
σ∈(Qu×Γ)∪Γ{vσu}, vu, v∼u , and vXu are the universal content vertices930

and their annotation-reversing mechanism.931

Upon arriving to an informer vertex, Player 1 finds out whether Player 2 chose932

the fair annotation. After that Player 1 chooses either to reverse the annotation by933

moving to the appropriate reverse vertex or to keep the annotation by moving to the934

preserve vertex, and then she chooses a letter.935

The vertices
⋃

0≤i≤s(n){v
$
i , v
∼
i , v

X
i , wi} are the vertices that form the initial configur-936

ation. For every 0 ≤ i ≤ s(n), the vertex wi represent the i-th letter in the initial937

configuration, and the vertices v$
i , v
∼
i and vXi are its separate annotation-reversing938

mechanism.939

The vertices le, re, lu and ru represent the branching choices. At the end of an existential940

configuration, Player 1 chooses what direction to proceed from by moving to le or re941
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from v#
e , and at the end of an universal configuration, Player 2 makes that choice at942

the vertex v#
u , by choosing either lu or ru. From both le and re, Player 1 moves to943

νu, to start the successor universal configuration. The same way, from both lu and ru,944

Player 1 moves to νe, to start the successor existential configuration.945

c. V2 =
⋃
t∈{e,u}{νt, ν0

t , ν
1
t } ∪

⋃
0≤i≤s(n){νi, ν0

i , ν
1
i } ∪ {v#

u }. The vertices {νe, ν0
e , ν

1
e} are946

the annotation mechanism of the existential configurations, where at νe Player 2947

chooses the annotation for the current letter by either moving to ν1
e or ν0

e , which948

annotate the letter as the supervised letter or an unsupervised letter, respectively.949

The vertices {νu, ν0
u, ν

1
u} are the annotation mechanism of the universal configurations,950

and the vertices {νi, ν0
i , ν

1
i } are the annotation mechanism of the i-th letter in the951

initial configuration. Finally, the vertex v#
u is the vertex that represent the end of an952

universal configuration, and upon arriving to it, Player 2 chooses what direction to953

proceed from by moving to lu or ru.954

d. The set E contains the following edges:955

i. 〈v0, ν0〉.956

ii. For every 0 ≤ i ≤ s(n) we have the following edges:957

〈νi, ν0
i 〉 and 〈νi, ν1

i 〉.958

〈ν0
i , v

$
i 〉 and 〈ν1

i , v
$
i 〉.959

〈v$
i , v
∼
i 〉 and 〈v$

i , v
X
i 〉.960

〈v∼i , wi〉 and 〈vXi , wi〉.961

iii. 〈wi, νi+1〉 for every 0 ≤ i ≤ s(n)− 1.962

iv. 〈ws(n), νe〉.963

v. For every t ∈ {e, u} we have the following edges:964

〈νt, ν0
t 〉 and 〈νt, ν1

t 〉.965

〈ν0
t , vt〉 and 〈ν1

t , vt〉966

〈vt, v∼t 〉 and 〈vt, vXt 〉.967

〈v∼t , vσt 〉 and 〈vXt , vσt 〉 for every σ ∈ (Qt × Γ) ∪ Γ ∪ {#}.968

〈vσt , νt〉 for every σ ∈ (Qt × Γ) ∪ Γ.969

〈v#
t , lt〉 and 〈v

#
t , rt〉.970

〈lt, νt′〉 and 〈rt, νt′〉 where t′ = {e, u} \ {t}.971

e. The labeling of the vertices is as follows:972

i. τ(v) = $ for every v ∈ {v0} ∪
⋃

0≤i≤s(n){νi, v
$
i } ∪

⋃
t∈{e,u}{νt, vt}.973

ii. τ(v) =∼ for every v ∈
⋃

0≤i≤s(n){v∼i } ∪
⋃
t∈{e,u}{v∼t }.974

iii. τ(v) = X for every v ∈
⋃

0≤i≤s(n){vXi } ∪
⋃
t∈{e,u}{vXt }.975

iv. τ(v) = 0 for every v ∈
⋃

0≤i≤s(n){ν0
i } ∪

⋃
t∈{e,u}{ν0

t }.976

v. τ(v) = 1 for every v ∈
⋃

0≤i≤s(n){ν1
i } ∪

⋃
t∈{e,u}{ν1

t }.977

vi. τ(vσt ) = σ for every σ ∈ (Qt × Γ) ∪ Γ{#} and t ∈ {e, u}.978

vii. τ(v) = l for every v ∈ {le, lu}.979

viii. τ(v) = r for every v ∈ {re, ru}.980

ix. τ(wi) = wi where wi is the i-th letter in the initial configuration and 0 ≤ i ≤ s(n).981

2. The NFW pattern automata AR = 〈AP, S, sinit,M, Sacc〉 is defined as follows:982

a. The states set S contain the following states:983

i. sinit and s1
false. the state s1

false is used to identify 1 annotations that are reversed984

before the first unchanged 1 annotation.985

ii. s1 indicating reading the first unchanged 1 annotation.986

iii. s0
i for every 1 ≤ i ≤ n indicating how many 0 annotations were read after the last 1987

annotation.988
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iv. Sacc = {sacci : 0 ≤ i ≤ s(n)} ∪ {sacc} indicating reading an unfair annotation after989

the i-th annotation starting from the latest 1 annotation.990

b. The transition function M defined as follows:991

i. M(s, σ) = s for every s ∈ S and σ ∈ Σ ∪ {$,X, l, r}. M(sacc, σ) = sacc for every992

σ ∈ AP .993

ii. M(sinit, 0) = sinit.994

iii. M(sinit, 1) = {s1, s1
false}.995

iv. M(s1
false,∼) = sinit.996

v. M(sinit,∼) = s1.997

vi. M(s1, 0) = s0
1,M(s0

s(n), 1) = s1, and M(s0
i , 0) = s0

i+1 for every 1 ≤ i ≤ s(n)− 1.998

vii. M(s1, 1) = sacc0 ,M(s0
s(n), 0) = saccs(n) and M(s0

i , 1) = sacci for every 1 ≤ i ≤ s(n)− 1.999

viii. M(sacci ,∼) = s0
i+1 for every 0 ≤ i ≤ s(n)− 1, and M(saccs(n),∼) = s1.1000

ix. M(s, σ) = sacc for every s ∈ Sacc \ {sacc} and σ ∈ AP \ {∼}.1001

3. The NFW winning condition U = 〈AP,W,winit, δ,Wacc〉 is defined as follows:1002

a. First, we define δ(w, $) = w for every w ∈W .1003

b. Next, we attend to the requirement of consistency between consecutive 1 annotations1004

with respect to the branching choice. For every (〈σ1, σ2, σ3〉, d) ∈ (Σ × (Σ \ {#}) ×1005

Σ)× {l, r} we define a subset of W called Wσ1,σ2,σ3,d:1006

i. The states of the component are: bx, bxfalse, bxtrue, σ1
x, 1x, 1xfalse, 1xtrue, σ2

x, 0x,1007

0xfalse, 0xtrue, σ3, ex, exfalse and extrue, where x = (σ1, σ2, σ3, d).1008

Upon entering the component, we stay at the beginning state bx, waiting for the1009

beginning of the sequence 0σ11σ20σ3. The component guesses when the sequence1010

begins, and then move to σ1
x indicating we expect σ1, from there to 1x to read 1,1011

to σ2
x, 0x,σ3

x to read the sequence σ20σ3, and then move to the exit state of the1012

component ex. We then stay at ex until the end of the current configuration.1013

The states bxfalse, bxtrue, 1xfalse, 1xtrue,0xfalse, 0xtrue, exfalse and extrue, are for dealing1014

with the annotation-reversing mechanism. For example, assume that when we read1015

0 in state s, we move to state s′. Recall that both sequences 0 ·X and 1· ∼ are1016

considered the same. Then, upon reading 0, we move to state strue and then expect1017

to read X in order to proceed to s′. In a symmetrical manner, upon reading 1 we1018

move to sfalse, and then expect to read ∼ in order to proceed to s′.1019

ii. The definition of the transitions between those states describes the behavior specified1020

earlier:1021

δ(bx, σ) = bx for every σ ∈ Σ \ {#}.1022

δ(bx, 0) = bxtrue and δ(bx, 1) = bxfalse.1023

δ(bxtrue,X) = δ(bxfalse,∼) = {bx, σ1
x}.1024

δ(σ1
x, σ1) = 1x.1025

δ(1x, 0) = 1xfalse and δ(1x, 1) = 1xtrue.1026

δ(1xtrue,X) = δ(1xfalse,∼) = σ2
x.1027

δ(σ2
x, σ2) = 0x.1028

δ(0x, 0) = 0xtrue and δ(0x, 1) = 0xfalse.1029

δ(0xtrue,X) = δ(0xfalse,∼) = σ3
x.1030

δ(σ3
x, σ3) = ex.1031

δ(ex, σ) = ex for every σ ∈ Σ \ {#}.1032

δ(ex, 0) = extrue and δ(ex, 1) = exfalse.1033

δ(extrue,X) = δ(exfalse,∼) = ex.1034
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The d parameter indicate that we are currently reading the configuration succd(c)1035

where c is the previous configuration, and thus δ(w, d) = w for all w ∈Wσ1,σ2,σ3,d,1036

which implies that reading {l, r} \ {d} causes the computation to be rejected.1037

Then, for every x = (σ1, σ2, σ3, d) ∈ Σ3 × {l, r}, we have that δ(ex, {ε,#}) = {by :1038

y ∈ Σ × {nextd′(〈σ1, σ2, σ3〉)} × Σ × {d′}, d′ ∈ {l, r}}. Namely, after the end of the1039

current configuration, we can continue from Wσ1,σ2,σ3,d to any other component that is1040

expecting to see nextl(〈σ1, σ2, σ3〉) or nextr(〈σ1, σ2, σ3〉) after the 1 annotation, with1041

respect to the branching choice.1042

c. We define a special component W# for the case where the # character is annotated1043

by 1:1044

i. The states of the component are: w1, w1
false, w1

true, w#, wwait, wwaitfalse and wwaittrue.1045

The state w1 is expecting to read 1, then it move to w#, that is expecting to read1046

#, and then it move to wwait to wait until the next 1 annotation is occurring. We1047

use the same technique to deal with the annotation-reversing mechanism.1048

ii. The definition of the transitions between those states describes the behaviour1049

specified earlier:1050

δ(w1, 1) = w1
true and δ(w1, 0) = w1

false.1051

δ(w1
true,X) = δ(w1

false,∼) = w#
1052

δ(w#,#) = wwait.1053

δ(wwait, σ) = wwait for every σ ∈ Σ \ {#}.1054

δ(wwait, 1) = wwaitfalse and δ(wwait, 0) = wwaittrue.1055

δ(wwaitfalse,∼) = δ(wwaittrue,X) = wwait.1056

δ(wwaitfalse,X) = δ(wwaittrue,∼) = w#.1057

d. We now describe the transitions of the initial state:1058

i. δ(winit, ε) = w for every w ∈ {w1} ∪
⋃
x∈Σ×(Σ\{#})×Σ×{d,l}{bx}. Those transitions1059

represent guessing the position of the first 1 annotation.1060

ii. δ(winit, σ) = winit for every σ ∈ {l, r} ∪ Σ. Those transitions represent waiting1061

for the first 1 annotation to occur. We add the states winitfalse and winittrue to allow1062

unlimited 0 annotations, using the transitions:1063

δ(winit, 0) = winittrue and δ(winit, 1) = winitfalse.1064

δ(winittrue,X) = δ(winitfalse,∼) = winit.1065

e. Wacc = {wacc}∪ {ex : x = (σ1, σ2, σ3, d) ∈ Σ3×{l, r} where σ1 ∈ ({qacc}×Γ) or σ2 ∈1066

({qacc} × Γ) or σ3 ∈ ({qacc} × Γ)} and we have that1067

δ(w, (qacc, γ)) = wacc for every γ ∈ Γ and w ∈ {winit, wwait} ∪ {bx, ex : x =1068

(σ1, σ2, σ3, d) ∈ Σ3 × {l, r} where σ1 /∈ ({qacc} × Γ) and σ2 /∈ ({qacc} × Γ) and σ3 /∈1069

({qacc} × Γ) and d ∈ {l, r}}.1070

We continue to the case t = multi and AR is a DFW (or NFW). The reduction is similar:1071

Let R′ and A′R be the regular language and the NFW described above, respectively. The1072

only challenge is to construct a regular language R such that an instance of true∗ ·R occurs1073

iff an instance of R occurs, where R can be described by a DFW of size polynomial in s(n).1074

This goal can be achieved with R = 1 · (0)s(n) · 0 + 1 · (0)k · 1, for every k < s(n). Indeed,1075

whenever the suffix of the computation is in R, Player 1 knows that the annotation of the1076

last letter is incorrect. We can define an equivalent DFW AR = 〈AP, S, sinit,M, sacc〉 of size1077

linear in s(n) as follows.1078

1. The states set S contains the following states:1079

a. sinit, srej and sacc which are the initial, rejecting and accepting states, respectively.1080

b. si for every 0 ≤ i ≤ s(n).1081

2. The transition function M defined as follows:1082
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a. M(s, σ) = s for every s ∈ S \ {sacc} and σ ∈ Σ ∪ {$, l, r}. M(s, σ) = srej for1083

s ∈ {aacc, srej} and for every σ ∈ AP .1084

b. M(sinit, 1) = s0 and M(sinit, 0) = srej .1085

c. M(si, 0) = si+1 and M(si, 1) = sacc for every 0 ≤ i ≤ s(n)− 1.1086

d. M(ss(n), 0) = sacc and M(ss(n), 1) = srej .1087
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