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Classical network-formation games are played on a directed graph. Players have reachability 
objectives: each player has to select a path from his source to target vertices. Each edge 
has a cost, shared evenly by the players using it. We introduce and study network-formation 
games with regular objectives. In our setting, the edges are labeled by alphabet letters and 
the objective of each player is a regular language over the alphabet of labels.
Unlike the case of reachability objectives, here the paths selected by the players need not 
be simple, thus a player may traverse some edges several times. Edge costs are shared by 
the players with the share being proportional to the number of times the edge is traversed. 
We study the existence of a pure Nash equilibrium (NE), the inefficiency of a NE compared 
to a social-optimum solution, and computational complexity problems in this setting.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Network design and formation is a fundamental well-studied challenge that involves many interesting combinatorial 
optimization problems. In practice, network design is often conducted by multiple strategic users whose individual costs 
are affected by the decisions made by others. Early works on network design focus on analyzing the efficiency and fairness 
properties associated with different sharing rules (e.g., [24,32]). Following the emergence of the Internet, there has been 
an explosion of studies employing game-theoretic analysis to explore Internet applications, such as routing in computer 
networks and network formation [18,1,14,2]. In network-formation games (for a survey, see [38]), the network is modeled 
by a weighted graph. The weight of an edge indicates the cost of activating the transition it models, which is independent of 
the number of times the edge is used. Players have reachability objectives, each given by sets of possible source and target 
nodes. Players share the cost of edges used in order to fulfill their objectives. Since the costs are positive, the runs traversed 
by the players are simple. Under the common Shapley cost-sharing mechanism, the cost of an edge is shared evenly by the 
players that use it.

The players are selfish agents who attempt to minimize their own costs, rather than to optimize some global objective. 
In network-design settings, this would mean that the players selfishly select a path instead of being assigned one by a 
central authority. The focus in game theory is on the stable outcomes of a given setting, or the equilibrium points. A Nash 
equilibrium (NE) is a profile of the players’ strategies such that no player can decrease his cost by an unilateral deviation 
from his current strategy, that is, assuming that the strategies of the other players do not change.1

✩ The article is based on the conference publications [5] and [6].
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Reachability objectives enable the players to specify possible sources and targets. Often, however, it is desirable to refer 
also to other properties of the selected paths. For example, in a communication setting, edges may belong to different 
providers, and a user may like to specify requirements like “all edges are operated by the same provider” or “no edge 
operated by AT&T is followed by an edge operated by Verizon”. Edges may also have different quality or security levels (e.g., 
“noisy channel”, “high-bandwidth channel”, or “encrypted channel”), and again, users may like to specify their preferences 
with respect to these properties. In planning or in production systems, nodes of the network correspond to configurations, 
and edges correspond to the application of actions. The objectives of the players are sequences of actions that fulfill a 
certain plan, which is often more involved than just reachability [21]; for example “once the arm is up, do not put it down 
until the block is placed”.

The challenge of reasoning about behaviors has been extensively studied in the context of formal verification. While early 
research concerned the input-output relations of terminating programs, current research focuses on on-going behaviors of 
reactive systems [22]. The interaction between the components of a reactive system correspond to a multi-agent game, and 
indeed in recent years we see an exciting transfer of concepts and ideas between the areas of game theory and formal 
verification: logics for specifying multi-agent systems [3,11], studies of equilibria in games that correspond to the synthesis 
problem [10,9,17], an extension of mechanism design to on-going behaviors [27], studies of non-zero-sum games in formal 
methods [12,8], and more.

In this paper we extend network-formation games to a setting in which the players can specify regular objectives. This 
involves two changes of the underlying setting: First, the edges in the network are labeled by letters from a designated 
alphabet. Second, the objective of each player is specified by a language over this alphabet. Each player should select a path 
labeled by a word in his objective language. Thus, if we view the network as a nondeterministic weighted finite automaton
[15] (WFA, for short) A, then the set of strategies for a player with objective L is the set of accepting runs of A on some 
word in L. Accordingly, we refer to our extension as automaton-formation games. As in classical network-formation games, 
players share the cost of edges they use. Unlike the classical game, the runs selected by the players need not be simple, thus 
a player may traverse some edges several times. Edge costs are shared by the players, with the share being proportional to 
the number of times the edge is traversed. This latter issue is the main technical difference between automaton-formation 
and network-formation games, and as we shall see, it is very significant.

Many variants of cost-sharing games have been studied. A generalization of the network-formation game of [2], in which 
players are weighted and a player’s share in an edge cost is proportional to its weight is considered in [13], where it is 
shown that the weighted game does not necessarily have a pure NE. Resource allocation games [36] are more general and 
assume there is a latency function on each edge that maps the load on the edge to its cost. A special case is congestion games 
in which the functions are increasing, thus a higher load increases the cost for the players. Studied variants of congestion 
games include settings in which players’ payments depend on the resource they choose to use, the set of players using this 
resource, or both [31,28,29,20]. In some of these variants a pure NE is guaranteed to exist while in others it is not.

Since a path a player selects in an automaton-formation game need not be simple, a path corresponds to a multiset
of edges. Thus, automaton-formation games can be viewed as a special case of multiset resource-allocation games, where 
players’ strategies consist of multisets of resources. These games are general and subsume previously studied models such 
as weighted resource-allocation games [29], where each Player i has a weight wi , and when he selects a subset of resources, 
he adds a load of wi on the resources in the selected set. Closer to our multiset games are network routing games in which 
flow can be split into integral fractions [37] and its generalization to resource-allocation games [23]. There, again each player 
has a weight, only that he can split the weight between several strategies, assigning an integral weight to each strategy. The 
relation between automaton-formation games and multiset resource-allocation games is analogue to the relation between 
network-formation games and resource-allocation games, in the sense that each network-formation game can be viewed 
as a resource-allocation game, where each simple path in the network corresponds to a subset of the edges. Unlike the 
case of network-formation games, however, the richness of automaton-formation games make them sufficiently expressive 
to model every multiset resource-allocation game. Essentially (see Remark 2.1 for the detailed reduction), by associating 
each resource with a letter from the alphabet, we can translate each strategy in the multiset resource-allocation game to a 
word that should be traversed in a single-state network in which each resource induces a self-loop. Thus, our results apply 
also to the (seemingly) more general setting of multiset resource allocation game. Moreover, while the objectives in the 
resource-allocation game setting are given explicitly, in the automaton-formation game setting they are given symbolically 
by means of regular languages. This succinctness of the symbolic approach is very significant. In particular, there may be 
infinitely many strategies to fulfill an objective in an automaton-formation games.

The fact automaton-formation games capture all multiset resource allocation games extends the application of our work. 
In the context of formal methods, an appealing application of resource-allocation games is that of synthesis from components, 
where the resources are components from a library, and agents need to synthesize their objectives using the components, 
possibly by a repeated use of some components. In some settings, the components have construction costs (e.g., the money 
paid to the designer of the component), in which case the corresponding multiset game is a cost-sharing game [4], and our 
results here can be generalized to apply for this settings. In other settings, the components have congestion effects (e.g., the 
components are CPUs, and the more players that use them, the slower the performance is), in which case the corresponding 
game is a multiset congestion game [7].

We study the theoretical and practical aspects of automaton-formation games. In addition to the general game, we 
consider classes of instances that have to do with the network, the specifications, or to their combination. Recall that the 
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network can be viewed as a WFA A. We consider the following classes of WFAs: (1) all-accepting, in which all the states of 
A are accepting, thus its language is prefix closed (2) uniform costs, in which all edges have the same cost, and (3) single 
letter, in which A is over a single-letter alphabet. We consider the following classes of specifications: (1) single word, where 
the language of each player is a single word, (2) symmetric, where all players have the same objective. We also consider 
classes of instances that are intersections of the above classes.

Each of the restricted classes we consider corresponds to a real-life variant of the general setting. Let us elaborate 
below on single-letter instances. The language of an automaton over a single letter {a} induces a subset of N, namely the 
numbers k ∈ N such that the automaton accepts ak . Accordingly, single-letter instances correspond to settings in which 
a player specifies possible lengths of paths. Several communication protocols are based on the fact that a message must 
pass a pre-defined length before reaching its destination. This includes onion routing, where the message is encrypted in 
layers [35], or proof-of-work protocols that are used to deter denial of service attacks and other service abuses such as spam 
(e.g., [16]).

We provide a complete picture of the following questions for various instances (for formal definitions, see Section 2): 
(i) Existence of a pure Nash equilibrium. That is, whether each instance of the game has a profile of pure strategies that 
constitutes a NE. As we show, unlike the case of classical network design games, a pure NE might not exist in general 
automaton-formation games and even in very restricted instances of it. (ii) The complexity of finding the social optimum
(SO). The SO is a profile that minimizes the total cost of the edges used by all players; thus the one obtained when the 
players obey some centralized authority. We show that for some restricted instances finding the SO can be done efficiently, 
while for other restricted instances, the complexity agrees with the NP-completeness of classical network-formation games. 
(iii) An analysis of equilibrium inefficiency. It is well known that decentralized decision-making may lead to solutions that 
are sub-optimal from the point of view of society as a whole. We quantify the inefficiency incurred due to selfish behavior 
according to the price of anarchy (PoA) [26,34] and price of stability (PoS) [2] measures. The PoA is the worst-case inefficiency 
of a Nash equilibrium (that is, the ratio between the worst NE and the SO). The PoS is the best-case inefficiency of a Nash 
equilibrium (that is, the ratio between the best NE and the SO). We show that while the PoA in automaton-formation games 
agrees with the one in classical network-formation games and is equal to the number of players, the PoS also equals the 
number of players, again already in very restricted instances. This is in contrast with classical network-formation games, 
where the PoS tends to log the number of players. Thus, the fact that players may choose to use edges several times 
significantly increases the challenge of finding a stable solution as well as the inefficiency incurred due to selfish behavior. 
We find this as the most technically challenging result of this work. We do manage to find structural restrictions on the 
network with which the social optimum is a NE.

The technical challenge of our setting is demonstrated in the seemingly easy instance in which all players have the 
same objective. Such symmetric instances are known to be the simplest to handle in all cost-sharing and congestion games 
studied so far. Specifically, in network-formation games, the social optimum in symmetric instances is also a NE and the 
PoS is 1. Moreover, in some games [19], computing a NE is PLS-complete in general, but solvable in polynomial time for 
symmetric instances. Indeed, once all players have the same objective, it is not conceivable that a player would want to 
deviate from the social-optimum solution, where each of the k players pays 1

k of the cost of the optimal solution. We 
show that, surprisingly, symmetric instances in automaton-formation games are not simple at all. Specifically, a NE is not 
guaranteed to exist in the general case, and in single-letter networks, the social optimum might not be a NE, and the PoS 
is at least k

k−1 . In particular, for symmetric two-player automaton-formation games, we have that PoS = Po A = 2. We also 
show that the Po A equals the number of players already for very restricted instances.

Paper Organization: In Section 2 we provide a formal description of automaton-formation games, define the cost-sharing 
mechanism, and introduce some special classes we are going to study. We also define how inefficiency of pure Nash equilib-
rium is quantified in these games. In Section 3 we study the existence of pure NE and analyze the equilibrium inefficiency. 
Then, in Section 4, we analyze the computational complexity of three problems: finding the cost of a social optimum, find-
ing the best-response of a player, and deciding the existence of a pure NE. In Section 5 we define the family of resistant 
semi-weak instances, and show that for every such instance, a pure NE is guaranteed to exist, finding the social optimum 
can be done efficiently, and that the Price of Stability is 1. Finally, in Section 6 we consider the class of symmetric instances.

2. Preliminaries

2.1. Automaton-formation games

A nondeterministic finite weighted automaton on finite words (WFA, for short) is a tuple A = 〈�, Q , �, q0, F , c〉, where �
is a finite alphabet, Q is a finite set of states, � ⊆ Q × � × Q is a transition relation, q0 ∈ Q is an initial state, F ⊆ Q is a 
set of accepting states, and c : � →R≥0 is a function that maps each transition to the cost of its formation [30]. A run of A
on a word w = w1, . . . , wn ∈ �∗ is a sequence of states π = π0, π1, . . . , πn such that π0 = q0 and for every 0 ≤ i < n we 
have �(π i, wi+1, π i+1). The run π is accepting iff πn ∈ F . The length of π is n, whereas its size, denoted |π |, is the number 
of different transitions it traverses. Note that |π | ≤ n. It is sometimes convenient to view π as a sequence of transitions 
rather than states, and we note when we do so when it is not clear from the context.

An automaton-formation game (af game, for short) between k selfish players is a pair 〈A, O 〉, where A is a WFA over 
some alphabet � and O is a k-tuple of regular languages over �. Thus, the objective of Player i is a regular language Li , 
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Fig. 1. An example of a WFA.

and he needs to choose a word wi ∈ Li and an accepting run of A on wi in a way that minimizes his payments. The 
cost of each transition is shared by the players that use it in their selected runs, where the share of a player in the 
cost of a transition e is proportional to the number of times e is used by the player. Formally, the set of strategies for 
Player i is Si = {π : π is an accepting run of A on some word in Li}. We assume that Si is not empty. We refer to the set 
S = S1 × . . . × Sk as the set of profiles of the game.

Consider a profile P = 〈π1, π2, . . . , πk〉. We refer to πi as a sequence of transitions. Let πi = e1
i , . . . , e

�i
i , and let 

ηP : � → N be a function that maps each transition in � to the number of times it is traversed by all the strategies 
in P , taking into an account several traversals in a single strategy. Denote by ηi(e) the number of times e is traversed in πi , 
that is, ηi(e) = |{1 ≤ j ≤ �i : e j

i = e}|. When ηi(e) > 0, we say that e is in πi , denoted e ∈ πi . Then, ηP (e) = ∑
i=1...k ηi(e). 

The cost of Player i in the profile P is

costi(P ) =
∑

e∈πi

ηi(e)

ηP (e)
c(e). (1)

For example, consider the WFA A depicted in Fig. 1. The label e1 : a, 1 on the transition from q0 to q1 indi-
cates that this transition, which we refer to as e1, traverses the letter a and its cost is 1. We consider a game be-
tween two players. Player 1’s objective is the language L1 = {abi : i ≥ 2} and Player 2’s language is {ab, ba}. Thus, 
S1 = {{e1, e2, e2}, {e1, e2, e2, e2}, . . .} and S2 = {{e3, e4}, {e1, e2}}. Consider the profile P = 〈{e1, e2, e2}, {e3, e4}〉, the strate-
gies in P are disjoint, and we have cost1(P ) = 2 + 2 = 4, cost2(P ) = 1 + 3 = 4. For the profile P ′ = 〈{e1, e2, e2}, {e1, e2}〉, it 
holds that η1(e1) = η2(e1) and η1(e2) = 2 · η2(e2). Therefore, cost1(P ′) = 1

2 + 2 = 5
2 and cost2(P ′) = 1

2 + 1 = 3
2 .

We consider the following instances of af games. Let G = 〈A, O 〉. We start with instances obtained by imposing restric-
tions on the WFA A. In one-letter instances, A is over a singleton alphabet, i.e., |�| = 1. When depicting such WFAs, we 
omit the letters on the transitions. In all-accepting instances, all the states in A are accepting; i.e., F = Q . In uniform-costs
instances, all the transitions in the WFA have the same cost, which we normalize to 1. Formally, for every e ∈ �, we have 
c(e) = 1. We continue to restrictions on the objectives in O . In single-word instances, each of the languages in O consists 
of a single word. In symmetric instances, the languages in O coincide, thus the players all have the same objective. We also 
consider combinations on the restrictions. In particular, we say that 〈A, O 〉 is weak if it is one-letter, all states are accepting, 
costs are uniform, and objectives are single words. Weak instances are simple indeed – each player only specifies a length 
of a path he should patrol, ending anywhere in the WFA, where the cost of all transitions is the same. As we shall see, 
many of our hardness results and lower bounds hold already for the class of weak instances.

Remark 2.1. Recall that in resource allocation games (RAGs, for short) there is a set of resources, and the strategies of each 
player consist of subsets of resources. RAGs generalize NFGs, and there are RAGs with no equivalent NFG. Multiset RAGs 
generalize af games, and we show that unlike NFGs, every multiset RAG has an equivalent af game. Consider a multiset 
RAG with resources R and let Si be the set of strategies for Player i, thus each s ∈ Si is a multiset over R . We construct a 
simple af game with alphabet R . There is a single state in the WFA with |R| self loops. Each loop is labeled by a resource 
(letter) in R and its cost coincides with the cost of the resource in the RAG. Finally, we view each strategy in Si as a word 
over R , and set Player i’s language to be Si . Clearly, the strategies in both games coincide.

2.2. Nash equilibrium, social optimum, and equilibrium inefficiency

For a profile P , a strategy πi for Player i, and a strategy π , let P [πi ← π ] denote the profile obtained from P by replacing 
the strategy for Player i by π . A profile P ∈ S is a pure Nash equilibrium (NE) if no player i can benefit from unilaterally 
deviating from his run in P to another run; i.e., for every player i and every run π ∈ Si it holds that costi(P [πi ← π ]) ≥
costi(P ). In our example, the profile P is not a NE, since Player 2 can reduce his payments by deviating to profile P ′ .

Consider a profile P . A best response strategy for Player i is the most beneficial deviation Player i can perform (if one 
exists), thus it is the strategy that minimizes minπi∈Si costi(P [i ← πi]).

The (social) cost of a profile P , denoted cost(P ), is the sum of costs of the players in P . Thus, cost(P ) = ∑
1≤i≤k costi(P ). 

Equivalently, if we view P as a set of transitions, with e ∈ P iff there is π ∈ P for which e ∈ π , then cost(P ) = ∑
e∈P c(e). 

Note that the latter definition implies that cost(P ) can take only finitely many values. We refer to the social optimum
(SO, for short) as the cheapest profile, and denote its cost by O P T , thus O P T = minP∈S cost(P ). It is well known that 
decentralized decision-making may lead to sub-optimal solutions from the point of view of society as a whole. We quantify 
the inefficiency incurred due to self-interested behavior according to the price of anarchy (PoA) [26,34] and price of stability
(PoS) [2] measures. The PoA is the worst-case inefficiency of a Nash equilibrium, while the PoS measures the best-case 
inefficiency of a Nash equilibrium. Formally,
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Fig. 2. A weak instance of af games with no NE. The table lists the costs in some of the profiles, where Player 1’s cost is listed before Player 2’s cost.

Definition 2.1. Let G be a family of games, and let G ∈ G be a game in G . Let ϒ(G) be the set of Nash equilibria of the 
game G . Assume that ϒ(G) �= ∅.

• The price of anarchy of G is the ratio between the maximal cost of a NE and the social optimum of G . That is, Po A(G) =
maxP∈ϒ(G) cost(P )/O P T (G). The price of anarchy of the family of games G is Po A(G) = supG∈G Po A(G).

• The price of stability of G is the ratio between the minimal cost of a NE and the social optimum of G . That is, PoS(G) =
minP∈ϒ(G) cost(P )/O P T (G). The price of stability of the family of games G is PoS(G) = supG∈G PoS(G).

We use Po A and PoS without specifying the game or the family of games, when they are clear from the context.

Uniform sharing rule: A different cost-sharing rule that could be adopted for automaton-formation games is the uniform 
sharing rule, according to which the cost of a transition e is equally shared by the players that traverse e, independent of the 
number of times e is traversed by each player. Formally, let κP (e) be the number of runs that use the transition e at least 
once in a profile P . Then, the cost of including a transition e at least once in a run is c(e)/κP (e). This sharing rule induces a 
potential game [36], where the potential function is identical to the one used in the analysis of the classical network design 
game [2]. Specifically, let 	(P ) = ∑

e∈E c(e) · H(κP (e)), where H(0) = 0, and H(k) = 1 + 1/2 + . . . + 1/k. Then, 	(P ) is a 
potential function whose value reduces with every improving step of a player, thus a pure NE exists and BRD is guaranteed 
to converge. The similarity with classical network-formation games makes the study of this setting straightforward. Thus, 
throughout this paper we only consider the proportional sharing rule as defined in (1) above.

3. Properties of automaton-formation games

In this section we study the theoretical properties of af games: existence of pure NE and equilibrium inefficiency. We 
show that af games need not have a pure Nash equilibrium. This holds already in the very restricted class of weak instances, 
and is in contrast with network-formation games. There, BRD converges and a pure NE always exists.2 We then analyze the 
PoS in af games and show that there too, the situation is significantly less stable than in network-formation games.

Theorem 3.1. Automaton-formation games need not have a pure NE. This holds already for the class of weak instances.

Proof. Consider the WFA A depicted in Fig. 2 and consider a game with k = 2 players. The language of each player consists 
of a single word. Recall that in one-letter instances we care only about the lengths of the objective words. Let these be �1
and �2, with �1 � �2 � 0 that are multiples of 12. For example, �1 = 30000, �2 = 300. Let C3 and C4 denote the cycles 
of length 3 and 4 in A, respectively. Let D3 denote the path of length 3 from q0 to q1. Every run of A consists of some 
repetitions of these cycles possibly with one pass on D3.

We claim that no pure NE exists in this instance. We start by considering profiles in which the players either select a 
run that only traverses C4, or select a run that traverses D3 once and then stays in C3. Since we consider long runs, the 
fact that the last cycle might be partial is ignored in the calculations below. Let π1 = (C4)

�1
4 and π ′

1 = D3 · (C3)
�1
3 −3 be the 

two runs for Player 1, and π2 = (C4)
�2
4 and π ′

2 = D3 · (C3)
�2
3 −3 be the two runs for Player 2. The costs of the players in the 

four profiles using these runs are listed in the table in Fig. 2. We write ε to indicate a small cost, but these small costs are 
not the same in the different profiles.

None of these profiles is a NE as a sequence of best-response moves results in a clockwise cycle. We describe the intuition 
of this cycle as its idea will be helpful later on. One might expect the profile 〈π1, π2〉, which is the social optimum, to be 
a NE. However, it is not a NE as Player 1 can benefit from deviating to π ′

1. Indeed, in the social optimum, Player 1 pays 
almost all of the cost of the cycle C4, while in 〈π ′

1, π2〉, he pays the full cost of C3 while Player 2 pays most of the cost of 
the path D3, leaving a cost of ε for Player 1 for this path. Thus, the deviation decreases his cost from 4 − ε to 3 + ε (for 
different ε ’s). The profile 〈π ′

1, π2〉 is not a NE as Player 2 benefits from “joining” Player 1 by using D3 once and completing 
the run in C3, where most of the cost is paid by Player 1. This deviation decreases his cost from 4 − ε to 1.5 + ε . Now, 
Player 1 pays 4.5 + ε , which is more than buying C4 by himself, and he can benefit from deviating “back” to π1. Again, 
Player 2 benefits from joining Player 1. This concludes the best-response cycle.

2 Best-response-dynamics (BRD) is a local-search method where in each step some player is chosen and plays his best-response strategy, given that the 
strategies of the other players do not change.
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Fig. 3. A weak instance of af games for which PoS = k.

To conclude the proof, we show that none of the other profiles are a NE. Consider a profile P . We show that P is not 
a NE. Note that if cost1(P ) > 4, Player 1 can deviate to π1 and pay at most 4. We distinguish between several cases. First, 
assume that one of the players plays one of his pure strategies, i.e., one of π1, π ′

1, π2, or π ′
2, and the other plays a mix 

between C4 and C4. Note that the case in which both players play a pure strategy is taken care of above. If Player 1 plays π1
and Player 2 plays a mixed strategy, then Player 2 pays the full cost of C3, and can benefit from joining Player 1 in C4 and 
playing π2. Assume Player 1 plays π ′

1 and that he pays no more than 4. Since �1 � �2, Player 1 pays most of the cost of C3, 
thus Player 2 pays most of the cost of C4, which is 4 − ε . Thus, he can benefit from deviating to π ′

2 and joining Player 1, 
thereby reducing the cost to 1.5 + ε . Next, assume Player 1 plays a mixed strategy. The case in which Player 2 plays π2 is 
similar to the previous one. If Player 2 plays π ′

2 and Player 1 pays less than 4, Player 2 pays most of the cost of C3, and 
can benefit from deviating to π2. Finally, assume both players play a mixed strategy and Player 1 pays less than 4. Since 
�1 � �2, Player 2 pays for most of one of the cycles, thus he either pays 4 − ε or 3 − ε . In the first case he can benefit from 
deviating to π ′

2 and in the second to π2. We conclude that P is not a NE, and we are done. �
The fact a pure NE may not exist is a significant difference between standard cost-sharing games and af games. The bad 

news do not end here and extend to equilibrium inefficiency. We first note that the cost of any NE is at most k times the 
social optimum (as otherwise, some player pays more than the cost of the SO and can benefit from migrating to his strategy 
in the SO). Thus, it holds that PoS ≤ Po A ≤ k. The following theorem shows that this is tight already for highly restricted 
instances.

Theorem 3.2. The PoS in af games equals the number of players. This holds already for the class of weak instances.

Proof. We show that for every k, δ > 0 there exists a simple game with k players for which the PoS is more than k − δ. 
Given k and δ, let r be an integer such that r > max{k, k−1

δ
− 1}. We assume k ≥ 2 as the claim is trivial for k = 1. Consider 

the WFA A depicted in Fig. 3. Let L = 〈�1, �2, . . . , �k〉 for �2 = . . . = �k and �1 � �2 � 0 denote the lengths of the objective 
words. Thus, Player 1 has an “extra-long word” and the other k − 1 players have words of the same, long, length. Let Cr

and Cr+1 denote, respectively, the cycles of length r and r + 1 to the right of q0. Let Dr denote the path of length r from q0
to q1, and let Dkr denote the “lasso” consisting of the kr-path and the single-edge loop to the left of q0.

The social optimum of this game is to buy Cr+1. Its cost is r + 1 (recall that the cost of a profile is the sum of costs of 
the transitions it uses). However, as we show, the profile P in which all players use Dkr is the only NE in this game. We 
first show that P is a NE. In this profile, the players split evenly the cost of the first rk edges in the path, while Player 1
pays most of the cost of the self loop. Thus, Player 1 pays r + (1 − ε) and each other player pays r + ε/(k − 1). No player 
will deviate to a run that includes edges from the right side of A. Indeed, such a deviation requires using at least r + 1
edges in the right side of A, and these edges are not shared, thus the cost is at least r + 1, which is clearly not beneficial.

Next, we show that P is the only NE of this game. Thus, we show that there is no NE that uses edges in the right side 
of A. Showing that a profile in which all the players select a run in the right side of A is done in a similar manner to 
Theorem 3.1. Using similar arguments, we can show that it suffices to focus on pure strategies, namely ones of the form 
C∗

r+1 or Dr · C∗
r . Next, a profile with pure strategies is not an NE for similar reasons to these in Theorem 3.1. The social 

optimum is not a NE as Player 1 would deviate to Dr · C∗
r and will reduce his cost to r + ε′ . The other players, in turn, will 

also deviate to Dr ·C∗
r . In the profile in which they are all selecting a run of the form Dr ·C∗

r , Player 1 pays r + r/k −ε > r +1
and prefers to return to C∗

r+1. The other players will join him sequentially, until the non-stable social optimum is reached. 
Finally, a profile that uses edges from both the right and left parts of A cannot be a NE, and in any case, its cost is higher 
than the profile in which all players proceed left.

The cost of the NE profile is kr + 1 and the PoS is therefore kr+1
r+1 = k − k−1

r+1 > k − δ. �
4. Computational complexity issues in AF games

In this section we study the computational complexity of three problems: finding the cost of the social optimum, finding 
the best-response of a player, and deciding the existence of a NE. Recall that the social optimum (SO) is a profile that 
minimizes the total cost the players pay. It is well-known that finding the social optimum in a network-formation game is 
NP-complete. We show that this hardness is carried over to simple instances of af games. On the positive side, we identify 
non-trivial classes of instances, for which it is possible to compute the SO efficiently. The other issue we consider is the 
complexity of finding the best strategy of a single player, given the current profile, namely, the best-response of a player. In 
network-formation games, computing the best-response reduces to a shortest-path problem, which can be solved efficiently. 
We show that in af games, the problem is NP-complete. Finally, recall that af games are not guaranteed to have a NE. We 
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Fig. 4. The WFAs produced by the reduction for U = {1,2,3} and S = {{1,2}, {2,3}}.

study the problem of deciding, given an af game, whether it has a NE. We term this problem ∃NE. We show that the ∃NE
problem is �2

P -complete.
We start with the problem of finding the value of the social optimum. Similar hardness results are known for traditional 

network formation games [33].

Theorem 4.1. Given an af game G and a value c, deciding whether the value of the social optimum in G is at most c, is NP-complete. 
Moreover, it is NP-complete already in single-worded instances that are also uniform-cost and are either single-lettered or all-accepting.

Proof. We start with membership in NP. Consider a WFA A with objectives D1, . . . , Dk , where Di is a deterministic finite 
automaton that recognizes the regular language of Player i, for 1 ≤ i ≤ k, and a value c ∈ R. We claim that there is a social 
optimum profile in which, for 1 ≤ i ≤ k, the length of the i-th word does not exceed |A| · |Di |. Thus, we guess such a 
witness profile P and check whether it satisfies cost(P ) ≤ c in polynomial time. Assume towards contradiction that there 
is a social optimum profile P in which the words the players choose are the shortest, and in which Player i selects a 
word wi of length greater than |A| · |Di |. We claim that there is a word w ′ ∈ L(Di) of length shorter than w such that 
cost(P [i ← w ′]) ≤ cost(P ), which contradicts our assumption. Indeed, let r1 = q0, q1, . . . , q|w| and r2 = p0, p1, . . . , p|w| be 
the runs of A on w and Di on w , respectively. Then, using a pigeonhole-principle argument we can show that there are 
indices 0 ≤ j1 < j2 ≤ |w| such that there are loops in r1 and r2 between j1 and j2, thus q j1 = q j2 and p j1 = p j2 . We 
construct w ′ ∈ L(Di) by removing the sub-word that corresponds to this cycle. Shortening the word can only decrease the 
cost of P , thus we are done.

For proving hardness, we show a reduction from the Set-Cover (SC) problem. Consider an input 〈U , S, m〉 to SC. Recall 
that U is a set of elements, S = {C1, . . . , Cz} ⊆ 2U is a collection of subsets of elements of U , and m ∈ N. Then, 〈U , S, m〉 is 
in SC iff there is a subset S ′ of S of size at most m that covers U . That is, |S ′| ≤ m and 

⋃
C∈S ′ C = U .

Given an input 〈U , S, m〉 to SC, we construct a uniform-cost single-letter WFA A and a vector of k integers, where the 
i-th integer corresponds to the length of the (single) word in Li . We construct A = 〈{a}, Q , q0, �, {qacc}, c〉 as follows (see an 
example in the left of Fig. 4). The set Q includes the initial and accepting states, a state for every set in S , and intermediate 
states required for the disjoint runs defined below. Without loss of generality, we assume that U = {1, . . . , k}. Consider an 
element i ∈ U . For every C ∈ S such that i ∈ C , there is a disjoint run of length i from C to qacc . Also, for every C ∈ S , there 
is a transition 〈q0, C〉 in �. The cost of all transitions in � is 1. For every 1 ≤ i ≤ k, the length of the word in Li is i + 1. 
The size of A is clearly polynomial in |U | and |S|.

The construction for uniform-cost all-accepting instances is very similar (see an example in the right of Fig. 4). Let 
z = �log(k)� and � = {0, 1}. For C ∈ S and i ∈ C , we have a z-length path from C to qacc that is labeled with the binary 
representation of i − 1 (padded with preceding zeros if needed). The label on all transitions from q0 to the S states is 0. For 
1 ≤ i ≤ k, the word for Player i is a single 0 letter followed by the binary representation of i − 1. The size of A is clearly 
polynomial in |U | and |S|.

We claim that there exists a set-cover of size m iff O P T ≤ m + (1 +2 + . . .+k) for the uniform-cost single-letter instance 
and O P T ≤ m + k · z for the uniform-cost all-accepting instance. We prove the claim for the uniform-cost single-letter 
instance. The proof for the uniform-cost all-accepting instance is very similar. For the first direction, let S ′ = {si1 , . . . , sim }
be a set cover. We show a profile P = {π1, . . . , πk} such that cost(P ) = m + (1 + 2 + . . . + k). Recall that the input length for 
Player i is i + 1. Since S ′ is a set cover, there is a set s ∈ S ′ with i ∈ s. We define the run πi to proceed from q0 to s and 
from there to qacc on a run of length i. Clearly, the runs π1, . . . , πk are all legal-accepting runs. Moreover, the runs use m
transitions from {q0} × S ⊆ E . Thus, cost(P ) = m + (1 + 2 + . . . + k), implying O P T ≤ m + (1 + 2 + . . . + k), and we are done.

For the second direction, assume O P T = m′ + (1 + 2 + . . . + k) ≤ m + (1 + 2 + . . . + k), we prove that there is a set cover 
of size m′ . Let P∗ = 〈π1, . . . , πk〉. Thus, O P T = cost(P∗). Let S ′ ⊂ S be such that s ∈ S ′ iff the transition 〈q0, s〉 is used in 
one of the runs in P∗ . Note that the run of every player consists of a transition (q0, s) followed by a disjoint run of length 
i to qacc . Therefore, O P T = m′ + (1 + 2 + . . . + k), and, |S ′| = m′ ≤ m. We claim that S ′ is a set cover. For every i ∈ U , the 
first transition in the run is a transition 〈q0, s〉 for some s ∈ S , as otherwise, Player i can not proceed to qacc along a run of 
length i. By our definition of S ′ we have s ∈ S ′ , thus i ∈ U is covered. �

The hardness results in Theorem 4.1 for single-word specification use one of two properties: either there is more than 
one letter, or not all states are accepting. We show that finding the SO in instances that have both properties can be done 
efficiently, even for specifications with arbitrary number of words.

For a language Li over � = {a}, let short(i) = min j{a j ∈ Li} denote the length of the shortest word in Li . For a set O
of languages over � = {a}, let �max(O ) = maxi short(i) denote the length of the longest shortest word in O . Clearly, any 
solution, in particular the social optimum, must include a run of length �max(O ). Thus the cost of the social optimum is at 
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least the cost of the cheapest run of length �max(O ). Moreover, since the WFA is single-letter and all-accepting, the other 
players can choose runs that are prefixes of this cheapest run, and no additional transitions should be acquired. We show 
that finding the cheapest such run can be done efficiently.

Theorem 4.2. The cost of the social optimum in a single-letter all-accepting instance 〈A, O 〉 is the cost of the cheapest run of length 
�max(O ). Moreover, this cost can be found in polynomial time.

Proof. Clearly, any solution, in particular the social optimum, must include a run of length �max(O ). Thus the cost of the 
social optimum is at least the cost of the cheapest run of length �max(O ). Moreover, since there are no target vertices, the 
other players can be assigned runs that are prefixes of the cheapest run, and no additional transitions should be acquired.

We claim that finding the cheapest such run can be done efficiently. Recall that q0 is the initial state in A, and let 
|Q | = n. We view A as a weighted-directed graph G = 〈V , E, c〉, where the vertices V are the states Q , there is an edge 
e ∈ E between two vertices if there is a transition between the two corresponding states, and the cost of the edges is 
the same as the cost of the transition in A. For 0 ≤ i ≤ n, let di : V × V → R≥0 be the function that, given two vertices 
u, v ∈ V , returns the value of the cheapest path of length i from u to v , and ∞ if no such path exists. Note that there is no 
requirement that the path is simple, and indeed we may traverse cycles in order to accommodate i transitions. The function 
d : V × V → R≥0, returns the value of the cheapest path of any length between two given vertices, where, for v ∈ V , we 
require that d(v, v) is the value of a non-trivial cycle. Given two vertices u, v ∈ V , computing d(u, v) can be done using 
Dijkstra’s algorithm, and, given an index i ∈ N, it is possible to compute di(u, v) by a slight variation of the Bellman–Ford 
algorithm.

We distinguish between two cases. If �max > 2n − 2, we claim that the value of the social optimum is min{d(q0, v) +
d(v, v) : v ∈ V }. If �max ≤ 2n − 2, then we claim that the value of the social optimum is the minimum value of di(q0, v) +
d j(v, v), where v ∈ V , 0 ≤ i ≤ �max , 0 ≤ j ≤ �max − i, and if j = 0, then i = �max .

We start with the first case. Assume �max > 2n − 2. Let ALG = min{d(q0, v) + d(v, v) : v ∈ V }. Let P∗ be the social 
optimum profile, thus O P T = cost(P∗). For the first direction, we claim that ALG ≤ O P T . Let π be a run in P∗ of 
length �max , where we assume π is a sequence of transitions. We use cost(π) to denote the sum of the costs of the 
transitions that π traverses. Clearly, O P T ≥ cost(π). Since ALG takes the minimum over all vertices, it suffices to prove 
that cost(π) ≥ d(q0, v) + d(v, v) for some v ∈ V . Since |π | > 2n − 2, there is a vertex v that reoccurs in π . Let v be the 
first reoccurring vertex, and let τ1 · τ2 be a subpath of π such that τ1 starts in q0 and ends in the first occurrence of v , and 
τ2 is ends at the second occurrence of v . Since the cost of the edges are non-negative, we have cost(τ1 · τ2) ≤ cost(π). On 
the other hand, we have d(q0, v) ≤ cost(τ1) and d(v, v) ≤ cost(τ2), thus ALG ≤ cost(τ1 · τ2), and we are done.

We continue to prove that ALG ≥ O P T . Let v ∈ V be the vertex that attains the minimum in min{d(q0, v) + d(v, v) :
v ∈ V }. Let τ = τ1 · τ2 be a run such that τ1 is a simple path from q0 to v with cost(τ1) = d(q0, v) and τ2 is a simple cycle 
from v to itself with cost(τ2) = d(v, v). We claim that cost(τ ) ≥ O P T . Since τ1 and τ2 are simple, we have |τ1| ≤ n − 1
and |τ2| ≤ n − 1. Thus, |τ | ≤ 2n − 2. We extend τ to a path π of length �max by traversing the cycle τ2 sufficiently many 
times. Clearly, π is a legal run of the automaton A on a word of length �max as all states are accepting. Consider the profile 
P in which the players choose runs that are prefixes of π . Since the only transitions used in P are those in τ , we have 
cost(P ) = cost(τ ). Clearly cost(P ) ≥ O P T , thus ALG ≥ O P T , and we are done.

The case in which �max ≤ 2n − 2 is proven in a similar manner. �
We turn to prove the hardness of finding the best-response of a player. Our proof is valid already for a single player that 

needs to select a strategy on a WFA that is not used by other players (one-player game).

Theorem 4.3. Finding the best-response of a player in af games is NP-complete. Formally, given a af game G , a profile P in G , an 
index i, and a value c, deciding whether Player i has a strategy πi such that costi(P [i ← πi]) ≤ c, is NP-complete.

Proof. We start with membership in NP. Given a WFA A, runs r1, . . . , rk−1 of A, an objective DFA D for Player k, and value 
c ∈ R, we check whether there is a word w ∈ L(D) and a run rk of A on w such that costk(〈r1, . . . , rk〉) ≤ c. The same 
argument as in Theorem 4.1 shows that we can bound the length of w by |Di | · |A|. Thus, we can guess such a word w and 
a run of A on w , and check whether the corresponding profile P has costk(P ) ≤ c in polynomial time.

For proving hardness, we show a reduction from the Set-Cover (SC) problem. Consider an input 〈U , S, m〉 to SC. Recall 
that U = {1, . . . , n} is a set of elements, S = {C1, . . . , Cz} ⊆ 2U is a collection of subsets of elements of U , and m ∈ N. Then, 
〈U , S, m〉 is in SC iff there is a subset S ′ of S of size at most m that covers U . That is, |S ′| ≤ m and 

⋃
C∈S ′ C = U .

Given an input 〈U , S, m〉 to SC, we construct a one-player game 〈A, O 〉 such that 〈U , S, m〉 is in SC iff the cost of the 
SO in the game is at most m, where the SO coincides with the best response in such a game. We start by describing the 
specification L of the player. The alphabet of L is S ∪ U and it is given by the regular expression (C1 + . . . + Cm) · 1 · (C1 +
. . . + Cm) · 2 · . . . · (C1 + . . . + Cm) · n. The WFA A is over the alphabet S ∪ U . There is a single initial state qin and a state 
for every set in S . For 1 ≤ i ≤ z, there is a Ci -labeled transition from qin to the state Ci , and for every j ∈ Ci , there is a 
j-labeled transition from the state Ci back to qin . The first type of transitions cost 1 and the second cost 0 (for an example 
see Fig. 5).
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Fig. 5. The WFA produced by the reduction for U = {1,2,3} and S = {{1,2}, {2,3}}.

We prove the correctness of the reduction: For the first direction, assume there is a set cover of at most m. Consider the 
word w in which, for every 1 ≤ j ≤ n, the letter that precedes j is Ci ∈ S such that j ∈ Ci and Ci is in the set cover. Clearly, 
w ∈ L and since it uses at most m letters from S , the profile in which the player chooses it, costs at most m. Thus, the cost 
of the SO is also at most m. For the other direction, assume the SO is attained in a profile with the word w ∈ L. It is not 
hard to see that the letters from S that appear in w form a set cover of size at most m. �

We turn to study the problem of deciding whether a NE exists. We show that ∃NE is complete for � P
2 ; the second level 

of the polynomial hierarchy. Namely, decision problems solvable in polynomial time by a nondeterministic Turing machine 
augmented by an oracle for an NP-complete problem. An oracle for a computational problem is a black box that is able to 
produce a solution for any instance of the problem in a single operation. Thus, for every problem P ∈ � P

2 there is a machine 
such that for every x ∈ P there is a polynomial accepting computation (with polynomial many queries to the oracle). As 
co-NP is the dual complexity class of NP, the dual complexity class of � P

2 is �P
2 . Thus, a problem P is � P

2 -complete iff its 
complement P is �P

2 -complete.

Theorem 4.4. The ∃NE problem is � P
2 -complete.

Proof. The upper bound is similar to the two previous theorems. We guess a profile in which the length of the i-th word 
is at most |Di | · |A|, where for 1 ≤ i ≤ k, the DFA Di recognizes the language of Player i. We use k calls to an oracle for the 
best-response problem to verify that no player can benefit from deviating.

For the lower bound, we alter the reduction in [4], for the ∃NE problem in a similar game. The reduction is from 
the complement of the min-max vertex cover problem (MMVC, for short), which is known to � P

2 -complete [25]. The 
input to the MMVC problem is 〈G, I, J , N, c〉, where G = 〈V , E〉 is an undirected graph, I and J are sets of indices, 
N : V → {V i, j ⊆ V : i ∈ I and j ∈ J } partitions the vertices, and c ∈ N is a value. Note that since G is undirected, its edges 
are sets with two vertices. We refer to the sets in the partition {V i, j}i∈I, j∈ J as neighborhoods and for v ∈ V we refer to 
N(v) as the neighborhood of v . Note that there is a coarser partition of V , namely {V i}i∈I , where V i = ⋃

j∈ J V i, j . We refer 
to the elements in this partition as districts. For a function t : I → J we define Vt = ⋃

i∈I V i,t(i) . Intuitively, t is a choice 
of neighborhood in each district. Let Gt = 〈Vt , Et〉 be the induced subgraph of G on the vertex set Vt . Formally, for e ∈ E , 
we have e ∈ Et iff e ⊆ Vt . For a graph G , we say that S ⊆ V is a vertex cover of G if for every e = {u, v} ∈ E we have 
S ∩ {u, v} �= ∅. An input 〈G, I, J , N, c〉 is in MMVC iff for any choice of neighborhoods in the districts given by a function t , 
the smallest vertex cover of the resulting graph is at most c. Formally, maxt∈ J I min{|S| : S ⊆ Vt is a vertex cover of Gt} ≤ c. 
We assume without loss of generality that c ≤ |V |.

Given an instance 〈G, I, J , N, c〉, where G = 〈V , E〉, we construct an af game that has a NE iff 〈G, I, J , N, c〉 /∈ MMVC. For 
ease of presentation, we assume that the costs of the automaton are given on the vertices rather than on the transitions. 
It is easy to translate an instance of such a model to a standard af game by splitting vertices and adding letters to the 
words. We start by describing the automaton A (see Fig. 6 for an illustration). Its alphabet is � = V ∪ E ∪ I ∪ {#}. The 
states of A consist of an initial state q0, neighborhood states V i, j , for i ∈ I and j ∈ J , vertex states v ∈ V , and index states
i ∈ I , as well as other states that are depicted in the illustration, and we elaborate on them below. For i ∈ I and j ∈ J , the 
neighborhood state V i, j has an i-labeled self loop, and an i-labeled transition leading to the state i. For every e ∈ E such 
that e ∩ (V i \ V i, j) �= ∅, there is a cycle labeled with the word e# around V i, j . Finally, for every e ∈ E that has v ∈ e with 
v ∈ V i, j , there is an e-labeled transition leading to the vertex state v . For each vertex state as well as for the initial state, 
there are |I| · | J | outgoing transitions labeled with the letter # to all neighborhood states. The cost of every vertex state is 1, 
the cost of every neighborhood state is 2(c + 1) + 1, the cost of an index state is strictly less than (c + 2)/2, using the left 
path in A costs c + 1, and the other states cost 0.

There are |I| + 1 players in the af game. The players’ languages consist of a single word. The first type of players are 
index players and there are |I| such players. For i ∈ I , the word of Player i is # · i� , for a sufficiently large �, which we choose 
later on. So, a run for Player i starts from the initial state, continues to a neighborhood state V i, j , and either stays there, 
or proceeds at some point to the index state i. Note that the index players do not share vertices between themselves. We 
assume there is an arbitrary order on the edges in E . The word of Player 0 is #e1#e2# . . . #em . The left part of A recognizes 
this word. When choosing the run that proceeds left, he does not share any of the states, and pays c + 1. By proceeding 
right, he can hope to share the neighborhood states with the other players but buys the vertex states by himself. Clearly 
the reduction is polynomial.

We proceed to prove the correctness of the reduction. Assume first that 〈G, N, I, J , c〉 /∈ MMVC, and we show a NE in 
the af game. Let t : I → J be the function for which Gt has no VC of size at most c. Consider the following profile P . 



174 G. Avni et al. / Information and Computation 251 (2016) 165–178
Fig. 6. An illustration of the automaton that is constructed in the reduction from MMVC. The cost of a non-free state is stated in it, and the type of the 
state is given above it.

For i ∈ I , Player i chooses the run that proceeds from the initial state to the neighborhood state V i,t(i) , and stays there. 
Player 0 proceeds left. We claim that P is a NE. Since the index players do not share states, a deviation for Player i, for each 
i ∈ I , means that rather than paying only for V i,t(i) in P , he also buys the index state i, which is clearly not beneficial. We 
claim that Player 0 cannot benefit from unilaterally deviating. Assume towards contradiction that he can, and let r be the 
beneficial deviation. Let S ⊆ V be the vertex states that r traverses. We claim that S ⊆ Vt , and that it is a VC of Gt of size 
at most c, contradicting our assumption that Gt has no VC of size at most c. Since cost0(P ) = c + 1, and a neighborhood 
states costs more than c + 1, the run r traverses only neighborhood states that are used by an index player. Since � � 0, the 
index player pays most of the cost for the neighborhood state, leaving an ε > 0 to be paid by Player 0. We choose � such 
that the total cost Player 0 pays for neighborhood states, assuming the index players play the strategies described above, is 
less than 1. Since cost0(P [0 ← r]) < c + 1, index players do not use S , and r traverses at least one neighborhood state at a 
positive cost, we have |S| ≤ c. Consider an edge e ∈ Et and let V i,t(i) be the neighborhood state that r visits before e is read. 
There must be an e-labeled outgoing transition from V i,t(i) otherwise the run is stuck. Since e ∈ Et it cannot be part of the 
two-letter cycle, thus it leads to a vertex state v having v ∈ e. By our definition of the transitions, we have v ∈ V i,t(i) , thus 
S ⊆ Vt . By our choice of S , we have v ∈ S . Thus, S is a VC of Gt , and we are done.

Assume that 〈G, N, I, J , c〉 ∈ MMVC, and we show that the AF has no NE. Assume towards contradiction that there is a 
NE P . Since proceeding left cost c + 1 for Player 0, we have cost0(P ) ≤ c + 1. Assume first that Player 0 proceeds right. 
Thus, he uses some neighborhood state V i, j . Player i’s best response is the run ri that traverses V i, j once and ends in i. 
So, he splits evenly the cost of V i, j with Player 0, and the cost of the state i is less than half the cost of V i, j . Every other 
strategy clearly costs more. Thus, Player i chooses r in P , but then, Player 0 pays more than c + 1 for V i, j and can benefit 
from deviating to the run that proceeds left, and we reach a contradiction.

Next, we assume Player 0 proceeds left. Thus, each Player i chooses a run that stays in some neighborhood state V i, j . 
A function t : I → J clearly corresponds to the choices of the index players. Let S ⊆ Vt be a VC of size at most c for Gt . 
We describe a run r that is a beneficial deviation for Player 0. Consider e ∈ E . If e ∈ Et , then there is v ∈ (S ∩ e). Before 
reading e, the run r proceeds to the neighborhood state N(v), which has an e-labeled outgoing transition to the state v . 
Note that N(v) = V i,t(i) , for some i ∈ I , thus the cost Player 0 pays for N(v) is ε as Player i pays most of its cost. If e /∈ Et , 
there is a vertex v ∈ e such that v ∈ V i , Player i uses V i,t(i) , and v /∈ V i,t(i) . Thus, there is a e#-labeled cycle originating 
from V i,t(i) . Again, using V i,t(i) costs ε . The run r traverses at most c vertex states and neighborhood states that are used 
by index players. Thus, we have cost0(P [0 ← r]) < c + 1, and we are done. �
5. Tractable instances of AF games

In the example in Theorem 3.1, Player 1 deviates from a run on the shortest (and cheapest) possible path to a run that 
uses a longer path. By doing so, most of the cost of the original path, which is a prefix of the new path and accounts 
to most of its cost, goes to Player 2. We consider semi-weak games in which the WFA is uniform-cost, all-accepting, and 
single-letter, but the objectives need not be a single word. We identify a property of such games that prevents this type of 
deviation and which guarantees that the social optimum a NE. Thus, we identify a family of af games in which a NE exists, 
finding the SO is easy, and the PoS is 1.

Definition 5.1. Consider a semi-weak game 〈A, O 〉. A lasso is a path u · v , where u is a simple path that starts from the 
initial state and v is a simple cycle. A lasso ν is minimal in A if A does not have shorter lassos. Note that for minimal 
lassos u · v , we have that u ∩ v = ∅. We say that A is resistant if it has no cycles or there is a minimal lasso ν = u · v such 
that for every other lasso ν ′ we have |u \ ν ′| + |v| ≤ |ν ′ \ ν|.

Consider a resistant semi-weak game 〈A, O 〉. In order to prove that the social optimum is a NE, we proceed as follows. 
Let ν be the lasso that is the witness for the resistance of A. We show that the profile P∗ in which all players choose runs 
that use only the lasso ν or a prefix of it, is a NE. The proof is technical and we go over all the possible types of deviations 
for a player and use the weak properties of the network along with its resistance. By Theorem 4.2, the cost of the profile is 
the cost of the SO. Hence the following.

Theorem 5.1. For resistant semi-weak games, the social optimum is a NE.
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Proof. Consider a resistant semi-weak game 〈A, O 〉, thus A has no cycles or there is a minimal lasso in A that satisfies the 
resistance requirements. Recall that by Theorem 4.2, the social optimum is the profile P∗ in which all players use prefixes 
of the cheapest run of length �max(O ). Formally, let �1 ≥ �2 ≥ . . . ≥ �k , where for 1 ≤ i ≤ k, �i be the minimal length of a 
word in Li . That is, �1 = �max(O ). Then, P∗ = 〈π1, . . . , πk〉, where for 1 ≤ i ≤ k, the run πi is of length �i and π1 uses the 
lasso that is the witness for resistance, or an acyclic path if the lasso’s length is larger than �1 .

We claim that P∗ is a NE. Assume otherwise, thus there are 1 ≤ i ≤ k and π ′
i such that costi(P∗) > costi(P∗[i ← π ′

i ]). 
Assume Wlog that |π ′

i | = �i as otherwise Player i can deviate to a prefix of length �i of π ′
i and only improve his payment. 

We use P ′ to refer to P∗[i ← π ′
i ]. For 1 ≤ j ≤ k, let ν j be the set of transitions that are used in π j . Similarly, let ν ′

i be the 
transitions used in π ′

i . Note that ν1, . . . , νk, ν ′
i are paths of transitions.

We distinguish between four cases. In the first case, both νi and ν ′
i are simple paths. First, note that every transition in 

νi ∩ ν ′
i costs the same for Player i in both profiles. Next, we claim that every transition in ν ′

i \ νi costs at least as much as 
any transition in νi \ ν ′

i . Indeed, every transition in ν ′
i \ νi is used only by Player i, thus its cost is 1. On the other hand, 

every transition in νi \ ν ′
i is shared with at least one player, thus its cost is at most 1. Since the cost Player i pays for a 

transition in νi ∩ ν ′
i is the same in both profiles, we have costi(P∗) ≤ costi(P ′), and we reach a contradiction to the fact that 

Player i deviates.
In the second case, νi is simple and ν ′

i is lasso. Thus, |ν ′
i | ≤ |νi |. If |ν ′

i | = |νi |, we return to the previous case. We assume 
|ν ′

i | < |νi |, and show that we reach a contradiction to our assumption that A is resistant. Recall that |ν1| ≥ |νi |. If π1 uses a 
lasso, then ν ′

i is a shorter lasso, contradicting the minimality of the witness lasso for resistance. If π1 does not use a lasso, 
then we reach a contradiction to our assumption that the witness lasso has length greater than �1.

In the third case, νi is a lasso and ν ′
i is simple. Thus, νi = ν1. Consider a transition e ∈ νi . Let ae and a′

e be the number 
of times Player i uses e in πi and π ′

i , respectively. Thus, ae > 0 and a′
e ≤ 1. Let be be the number of times the other 

players use e in P∗ and also in P ′ as none of them alter their strategy. Consider a transition e ∈ νi having a′
e = 1. That is, 

Player i reduces his number of uses of transition e from ae to 1. Since the number of times Player i uses a transition in 
π ′

i is at most 1, there are (ae − 1) transitions that are not used by Player i in πi and are used once in π ′
i . Since νi = ν1, 

these transitions are all in ν ′
i \ νi and Player i pays 1 for each of them. Thus, there is a mapping between every such 

transition e ∈ νi to a set Se ⊆ ν ′
i of ae transitions, where for every e �= e′ ∈ νi , we have Se′ ∩ Se = ∅. We denote by coste

i (P∗)
the cost that Player i pays for e in P∗ . Note that coste

i (P∗) = ae
be+ae

. We denote by cost Se
i (P ′) the cost that Player i pays 

for Se in P ′ . Note that cost Se
i (P ′) = 1

be+1 + (ae − 1). A simple calculation shows that coste
i (P∗) − cost Se

i (P ′) ≥ 0. Similarly, 
when a′

e = 0, we have cost Se
i (P ′) = ae , and again coste

i (P∗) − cost Se
i (P ′) ≥ 0. We sum up for all the transitions νi . Note that 

∑
e∈νi

coste
i (P∗) = costi(P∗) and 

∑
e∈νi

cost Se
i (P ′) ≤ costi(P ′). Thus, 0 ≥ ∑

e∈νi
coste

i (P∗) − cost Se
i (P ′) ≥ costi(P∗) − costi(P ′), 

and we are done.
We continue to the final case in which both νi and ν ′

i are lassos. As in the previous case, νi = ν1. Recall that the lasso 
ν1 is the lasso that is the witness for the resistance of A. We show that the lasso ν ′

i violates our requirement for ν1 and 
thus we reach a contradiction. Let ν1 = u · v , where u is a simple path from the initial state and v is a simple cycle. Thus,

costi(P∗) = costi(P∗, u) + costi(P∗, v) ≤ costi(P∗, u ∩ ν ′
i ) + |u \ ν ′

i | + |v|.
Also,

costi(P ′) = costi(P ′, u ∩ ν ′
i ) + costi(P ′, ν ′

i ∩ v) + |ν ′
i \ νi | ≥ costi(P∗, u ∩ ν ′

i ) + |ν ′
i \ νi|.

Subtracting both inequalities we get:

costi(P∗) − costi(P ′) ≤ |u \ ν ′
i | + |v| − |ν ′

i \ νi|.
Since costi(P∗) − costi(P ′) > 0, we get:

|ν ′
i \ νi| > |u \ ν ′

i | + |v|,
which is a contradiction to the resistance of A, and we are done. �

A corollary of Theorem 5.1 is the following:

Corollary 5.2. For resistant semi-weak games, we have PoS = 1.

We note that resistance can be defined also in WFAs with non-uniform costs, with cost(ν) replacing |ν|. Resistance, 
however, is not sufficient in the slightly stronger model where the WFA is single-letter and all-accepting but not uniform-
cost. Indeed, given k, we show a such a game in which the PoS is kx, for a parameter x that can be arbitrarily close to 1. 
Consider the WFA A in Fig. 7. Note that A has a single lasso and is thus a resistant WFA. The parameter �1 is a function 
of x, and the players’ objectives are single words of lengths �1 � �2 � . . . � �k � 0. Similar to the proof of Theorem 3.2, 
there is only one NE in the game, which is when all players choose the left chain. The social optimum is attained when 
all players use the self-loop, and it is not a NE for similar reasons as in Theorem 3.1: Player 1 pays the majority of the 
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Fig. 7. A resistant all-accepting single-letter game in which the PoS tend to k.

cost of the self loop and can benefit from deviating to the run that uses the self loop once and traverses the path to q�1−1. 
The other players follow one by one until Player 1 buys the self loop by himself, in which case it is beneficial to return to 
the run that uses only the self loop. Then, all the players return one by one until the unstable social optimum is reached. 
Thus, for a game in this family, PoS = k·x

1 . Since x tends to 1, we have PoS = k for resistant all-accepting single-letter 
games.

6. Surprises in symmetric instances

In this section we consider the class of symmetric instances, where all players share the same objective. That is, there 
exists a language L, such that for all 1 ≤ i ≤ k, we have Li = L. In such instances it is tempting to believe that the social 
optimum is also a NE, as all players evenly share the cost of the solution that optimizes their common objective. While this 
is indeed the case in all known symmetric games, we show that, surprisingly, this is not valid for af-games, in fact already 
for the class of one-letter, all accepting, unit-cost and single-word instances.

Moreover, we start by showing that a NE need not exist in general symmetric instances.

Theorem 6.1. Symmetric instances of af-games need not have a NE.

Proof. We describe a two-player symmetric af game with no NE. Consider a WFA A consisting of a single accepting state 
with two self loops, labeled (a, 1) and (b, 5

14 − ε). Let n1 and n2 be such that 0 � n2 � n1. We define L = a6 + abn1 +
aabn2 + aaab. We denote the 4 strategies available to each of the players by A, B , C , and D , with A = (6, 0) indicating 6
uses of the a-transition and 0 uses of the b-transition, B = (1, n1), C = (2, n2), and D = (3, 1).

In order to show that there is no NE, we go over the profiles in the game and show that none of them is a NE. We start 
with the profile 〈A, A〉 in which both players pay 1

2 as they split the cost of the a-transition evenly. This is not a NE as 
Player 1 (or, symmetrically, Player 2) would deviate to 〈B, A〉, where he pays 1

7 for the a-transition and the full price of the 
b-transition, which is 5

14 − ε , thus he pays 1
2 − ε . The profile 〈B, A〉 is not a NE as Player 2 pays 6

7 for a, and can benefit 
from joining Player 1 in B , where both players pay 1

2 + 1
2 · ( 5

14 − ε) = 0.678 − ε .
In profile 〈B, B〉, both players pay 0.678 − ε . This is not a NE, as Player 1 would deviate to 〈C, B〉, where he pays 2

3 for 
the a-transition and, as n2 � n1, only ε for the b-transition. Again, Player 2 benefits from joining Player 1, thereby reducing 
his cost from 1

3 + 5
14 − ε ≈ 0.69 to 0.678 − ε .

In profile 〈C, C〉, again both players pay 0.678 −ε . By deviating to 〈D, C〉, Player 1 reduces his payment to 3
5 +ε . Player 2

benefits from joining Player 1, thereby reducing his cost from 2
5 + 5

14 − ε ≈ 0.757 to 0.678 − ε .

In profile 〈D, D〉, both players pay 0.678 − ε and when deviating to 〈A, D〉, Player 1 reduces his payment to 6
9 ≈ 0.667. 

Player 2 benefits from joining him, thereby reducing his cost from 1
3 + 5

14 − ε to 1
2 . The two final profiles to consider are 

〈C, A〉 from which Player 1 can benefit from deviating to B , and 〈D, B〉 from which Player 1 can benefit from deviating to C . 
The other profiles are symmetric, and we are done. �

We turn to study the equilibrium inefficiency, starting with the PoA. It is easy to see that in symmetric af games, 
we have Po A = k. This bound is achieved, as in the classic network-formation game, by a network with two paral-
lel edges labeled by a and having costs k and 1. The players all have the same specification L = {a}. The profile in 
which all players select the expensive path is a NE. We show that Po A = k is achieved even for weak symmetric in-
stances.

Theorem 6.2. The PoA equals the number of players, already for weak symmetric instances.

Proof. Recall that Po A ≤ k, and we show a lower bound of k. The example is a generalization of the PoA in cost sharing 
games [2]. For k players, consider the weak instance depicted in Fig. 8, where all players have the length k as their objective. 
Intuitively, the social optimum is attained when all players use the loop 〈q0, q0〉 and thus O P T = 1. This profile in a NE, but 
there is another, more expensive NE. Consider the profile in which all players use the run q0q1 . . .qk . Its cost is clearly k. 
This is a NE because a player has two options to deviate. Either to the run that uses only the loop, which costs 1, or to a 
run that uses the loop and some prefix of q0, q1, . . . , qk , which costs at least 1 + 1

k . Since he currently pays 1, he has no 
intention of deviating to either runs. Since O P T = 1 and the expensive NE costs k, we get Po A = k. �

We now turn to the PoS analysis. We first demonstrate the anomaly of having PoS > 1 with the two-player game 
appearing in Fig. 9. All the states in the WFA A are accepting, and the objectives of both players is a single long word. The 
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Fig. 8. The WFA A for which a symmetric game with |L| = 1 achieves Po A = k.

Fig. 9. The WFA A for which the SO in a symmetric game is not a NE.

Fig. 10. The network of the identical-specification game Gε,n , in which PoS tends to k
k−1 .

social optimum is when both players traverse the loop q0, q1, q0. Its cost is 2 + ε , so each player pays 1 + ε
2 . This, however, 

is not a NE, as Player 1 (or, symmetrically, Player 2) prefers to deviate to the run q0, q1, q1, q1, . . ., where he pays the cost 
of the loop q1, q1 and his share in the transition from q0 to q1. We can choose the length of the objective word and ε so 
that this share is smaller than ε

2 , justifying his deviation. Note that the new situation is not a NE either, as Player 2, who 
now pays slightly less than 2, is going to join Player 1, resulting in an unfortunate NE in which both players pay 1.5.

It is not hard to extend the example from Fig. 9 to k > 2 players by changing the 2-valued transition to k, and adjusting 
ε and the lengths of the players accordingly. The social optimum and the only NE are as in the two-player example. Thus, 
the PoS in the resulting game is 1 + 1

k .

A higher lower bound of 1 + 1
k−1 is shown in the following theorem. Although both bounds tend to 1 as k grows to 

infinity, this bound is clearly stronger. Also, for k = 2, the bound PoS = 1 + 1
k−1 = 2 is tight. We conjecture that k

k−1 is tight 
for every k > 1.

Theorem 6.3. In symmetric k-player games, the PoS is at least k
k−1 . This already holds for one-letter one-word all-accepting instances.

Proof. For k ≥ 2, we describe a family of symmetric games for which the PoS tends to k
k−1 . For n ≥ 1, the game Gε,n uses 

the WFA that is depicted in Fig. 10. Note that this is a one-letter instance in which all states are accepting. The players have 
an identical specification, consisting of a single word w of length � � 0. We choose � and ε = ε0 > . . . > εn−1 as follows. 
Let C0, . . . , Cn denote, respectively, the cycles with costs (kn + ε0), (kn−1 + ε1), . . . , (k + εn−1), 1. Let r0, . . . , rn be lasso-runs 
on w that end in C0, . . . , Cn , respectively. Consider 0 ≤ i ≤ n − 1 and let Pi be the profile in which all players choose the 
run ri . We choose � and εi so that Player 1 benefits from deviating from Pi to the run ri+1, thus Pi is not a NE. Note that 
by deviating from ri to ri+1, Player 1 pays the same amount for the path leading to Ci . However, his share of the loop Ci
decreases drastically as he uses the kn−i -valued transition only once whereas the other players use it close to � times. On the 
other hand, he now buys the loop Ci+1 by himself. Thus, the change in his payment is 1

k · (kn−i + εi) − (ε′ +kn−(i+1) + εi+1). 
We choose εi+1 and � so that εi

k > ε′ + εi+1, thus the deviation is beneficial.
We claim that the only NE is when all players use the run rn . We note that a profile in which a player uses two 

cycles Ci and C j , cannot be a NE as either moving the uses from Ci to C j is beneficial, or the other way around. So, 
we focus on profiles in which all players use a strategy in {r1, . . . , rn}. The case when all players select the same run ri , 
for 1 ≤ i ≤ n − 1, is taken care of in the above. Consider a profile P = 〈ri1 , ri2 , . . . , rik 〉, where 1 ≤ i1, i2, . . . , ik ≤ n. Wlog, 
assume that i1 ≤ i2 ≤ . . . ≤ ik . Using a similar argument as above, Player 1 benefits from deviating to ri1+1. Indeed, if 
i2 > i1, then he is the only player using Ci1 , so he pays roughly kn−i1 for it. By deviating, he exchanges this cost for 
paying at most (roughly) kn−i1/k + kn−(i1+1) , which is clearly beneficial. On the other hand, if i2 = i1, then he pays at least 
kn−i1/(k − 1) for the i1-th cycle, which he exchanges by deviating, to paying ε + kn−(i1+1) , which is again beneficial, and we 
are done. �

Finally, we note that our hardness result in Theorem 4.3 implies that finding the social optimum in a symmetric af-game 
is NP-complete. Indeed, since the social optimum is the cheapest run on some word in L, finding the best-response in a 
one-player game is equivalent to finding the social optimum in a symmetric game. This is contrast with other cost-sharing 
and congestion game (e.g. [19], where the social optimum in symmetric games can be computed using a reduction to 
max-flow).
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