
Minimizing Deterministic Lattice Automata

Shulamit Halamish and Orna Kupferman

Hebrew University, School of Engineering and Computer Science, Jerusalem 91904, Israel
Email: {lamit,orna}@cs.huji.ac.il

Abstract. Traditional automata accept or reject their input, and are therefore Boolean. In
contrast, weighted automata map each word to a value from a semiring over a large domain.
The special case of lattice automata, in which the semiring is a finite lattice, has interest-
ing theoretical properties as well as applications in formal methods. A minimal deterministic
automaton captures the combinatorial nature and complexity of a formal language. Determin-
istic automata are used in run-time monitoring, pattern recognition, and modeling systems.
Thus, the minimization problem for deterministic automata is of great interest, both theoreti-
cally and in practice.
For deterministic traditional automata on finite words, a minimization algorithm, based on the
Myhill-Nerode right congruence on the set of words, generates in polynomial time a canoni-
cal minimal deterministic automaton. A polynomial algorithm is known also for deterministic
weighted automata over the tropical semiring. For general deterministic weighted automata,
the problem of minimization is open. In this paper we study minimization of deterministic
lattice automata. We show that it is impossible to define a right congruence in the context
of lattices, and that no canonical minimal automaton exists. Consequently, the minimization
problem is much more complicated, and we prove that it is NP-complete. As good news, we
show that while right congruence fails already for finite lattices that are fully ordered, for this
setting we are able to combine a finite number of right congruences and generate a minimal
deterministic automaton in polynomial time.

Categories and Subject Descriptors: F.1.1 [Computation by Abstract Devices]: Models of
Computation–Automata, Relations between models; F.1.3 [Computation by Abstract De-
vices]: Complexity Measures and Classes–Reducibility and completeness; F.2.2 [Analysis of
Algorithms and Problem Complexity]: Nonnumerical Algorithms and Problems–Computations
on discrete structures; F.4.3 [Mathematical Logic and Formal Languages]: Formal Languages–
Classes defined by grammars or automata, Decision problems

General Terms: Algorithms, Languages, Theory, Verification

Additional Key Words and Phrases: Deterministic Finite Automata, Minimization, Lattice
Automata and Languages

1 Introduction

Automata theory is one of the longest established areas in Computer Science. Standard applica-
tions of automata theory include pattern matching, syntax analysis, and formal verification. In
recent years, novel applications of automata-theoretic concepts have emerged from numerous sci-
ences, like biology, physics, cognitive sciences, control, and linguistics. These novel applications
require significant advances in fundamental aspects of automata theory [2]. One such advance is
a transition from a Boolean to a multi-valued setting: while traditional automata accept or reject
their input, and are therefore Boolean, novel applications, for example in speech recognition and
image processing [19], are based on weighted automata, which map an input word to a value from
a semiring over a large domain [7].

Focusing on applications in formal verification, the multi-valued setting arises directly in
quantitative verification [11], and indirectly in applications like abstraction methods, in which
it is useful to allow the abstract system to have unknown assignments to atomic propositions and
transitions [10], query checking [5], which can be reduced to model checking over multi-valued
systems, and verification of systems from inconsistent viewpoints [12], in which the value of the
atomic propositions is the composition of their values in the different viewpoints.

Recall that in the multi-valued setting, the automata map words to a value from a semiring
over a large domain. A distributive finite lattice is a special case of a semiring. A lattice ⟨A,≤⟩
is a partially ordered set in which every two elements a, b ∈ A have a least upper bound (a
join b) and a greatest lower bound (a meet b). In many of the applications of the multi-valued
setting described above, the values are taken from finite lattices. For example (see Figure 2), in the
abstraction application, researchers use the lattice L3 of three fully ordered values [3], as well as
its generalization to Ln [6]. In query checking, the lattice elements are sets of formulas, ordered by
the inclusion order [4]. When reasoning about inconsistent viewpoints, each viewpoint is Boolean,
and their composition gives rise to products of the Boolean lattice, as in L2,2 [8]. Finally, when
specifying prioritized properties of system, one uses lattices in order to specify the priorities [1].

In [14], the authors study lattice automata, their theoretical properties, and decision problems
for them. In a nondeterministic lattice automaton on finite words (LNFA, for short), each transition
is associated with a transition value, which is a lattice element intuitively indicating the truth
of the statement “the transition exists”, and each state is associated with an initial value and an
acceptance value, indicating the truth of the statements “the state is initial/accepting”, respectively.
Each run r of an LNFA A has a value, which is the meet of the values of all the components of r:
the initial value of the first state, the transition value of all the transitions taken along r, and the
acceptance value of the last state. The value of a word w is then the join of the values of all the
runs of A on w. Accordingly, an LNFA over an alphabet Σ and lattice L induces an L-language
L : Σ∗ → L. Note that traditional finite automata (NFAs) can be viewed as a special case of
LNFAs over the lattice L2. In a deterministic lattice automaton on finite words (LDFA, for short),
at most one state has an initial value that is not ⊥ (the least lattice element), and for every state q
and letter σ, at most one state q′ is such that the value of the transition from q on σ to q′ is not ⊥.
Thus, an LDFA A has at most one run whose value is not ⊥ on each input word, and the value of
this run is the value of the word in the language of A. In case such a run does not exist, the value
of the word is ⊥.

For example, the LDFA A in Figure 1 below is over the alphabet Σ = {0, 1, 2} and the
lattice L = ⟨2{a,b,c,d},⊆⟩. All states have acceptance value ⊤ (the greatest value in the lattice,
which equals {a, b, c, d}), and this is also the initial value of the single initial state. The join and
meet operators coincide with union and intersection, respectively. Thus, the L-language of A is
L : Σ∗ → L such that L(ϵ) = ⊤, L(0) = {c, d}, L(0 · 0) = {d}, L(1) = {a, b}, L(1 · 0) = {a},
L(2) = {c, d}, L(2 · 0) = {c}, and L(x) = ⊥ for all other x ∈ Σ∗.

A minimal deterministic automaton captures the combinatorial nature and complexity of a
formal language. Deterministic automata are used in run-time monitoring, pattern recognition,
and modeling systems. Thus, the minimization problem for deterministic automata is of great
interest, both theoretically and in practice. For deterministic traditional automata on finite words
(DFAs, for short), a minimization algorithm, based on the Myhill-Nerode right congruence on the
set of words, generates in polynomial time a canonical minimal deterministic automaton [21, 22].
In more detail, given a regular language L over Σ, then the relation ∼L⊆ Σ∗×Σ∗, where x ∼L y
iff for all z ∈ Σ∗ we have that x · z ∈ L iff y · z ∈ L, is an equivalence relation, its equivalence
classes correspond to the states of a minimal automaton for A, and they also uniquely induce the
transitions of such an automaton. Further, given a deterministic automaton for L, it is possible to
use the relation ∼L in order to minimize it in polynomial time. From a theoretical point of view,

2

A A2

0, {c, d}

1, {a, b}

2, {c, d}

0, {d}

0, {c}

0, {a}

0, {c, d}
1, {a, b}

2, {c, d}

0, {c}

0, {c, d}

1, {a, b}
2, {c, d}

0, {d}

A1

0, {a, d} 0, {a, c}

⊤

⊤

⊤

⊤ ⊤ ⊤

⊤

⊤

⊤

⊤

⊤

⊤ ⊤ ⊤

Fig. 1. An LDFA with two different minimal LDFAs.

the insights obtained from the study of minimization of DFAs have turned out to be useful also
in the study of the complexity of regular languages and their algebraic properties. One theoretical
motivation for our study is to try to obtain similar observations in the latticed setting.

A polynomial algorithm based on a right congruence is known also for deterministic weighted
automata over the tropical semiring [19]. In such automata, each transition has a value in R, each
state has an initial and acceptance values in R, and the value of a run is the sum of the values of
its components. Unlike the case of DFAs, here there may be several different minimal automata.
They all, however, have the same graph topology, and only differ by the values assigned to the
transitions and states. In other words, there is a canonical minimal topology, but no canonical
minimal automaton. For semirings that are not the tropical semiring, and in particular, for lattice
automata, the minimization problem is open.

In this work we study the minimization problem for lattice automata. An indication that the
problem is not easy is the fact that in the latticed setting, the “canonical topology” property does
not hold. To see this, consider again the LDFA A in Figure 1. Note that an automaton for L(A)
must have at least three states. Indeed, if it has at most two then the word w = 000 would not
get the value ⊥, whereas L(000) = ⊥. Hence, the automata A1 and A2 presented on its right are
two minimal automata for L. Their topologies differ by the transition leaving the initial state with
the letter 1.1 The absence of the “canonical topology” property suggests that efforts to construct
the minimal LDFA by means of a right congruence are hopeless, as a right congruence induces a
canonical minimal topology (in which the states are the equivalence classes and reading a letter σ
from a state [x] leads to the state [xσ]).

We formalize these discouraging indications by showing that the problem of LDFA mini-
mization is NP-complete. This is a quite surprising result, as this is the first parameter in which
lattice automata are more complex than weighted automata over the tropical semiring. In par-
ticular, lattice automata can always be determinized [14, 16], which is not the case for weighted
automata over the tropical semiring [19]. Also, language containment between nondeterministic
lattice automata can be solved in PSPACE [14, 15], whereas the containment problem for weighted
automata on the tropical semiring is undecidable [17]. In addition, lattices have some appealing
properties that general semirings do not, which make them seem simpler. Specifically, the idem-
potent laws (i.e., a ∨ a = a and a ∧ a = a) as well as the absorption laws (i.e., a ∨ (a ∧ b) = a
and a ∧ (a ∨ b) = a), do not hold in a general semiring, and do hold for lattices. Nevertheless, as
mentioned, we are able to prove that their minimization is NP-complete.

1 Note that the automata A1 and A2 are not simple, in the sense that the transitions are associated with
values from the lattice that are not ⊥ or ⊤. The special case of simple lattice automata, where the value
of a run is determined only by the value associated with the last state of the run is simpler, and has been
solved in the context of fuzzy automata [18, 23]. We will get back to it in Section 2.3.

3

Our NP-hardness proof is by a reduction from the vertex cover problem [13]. The lattice used
in the reduction is L ⊂ 2E , for the set E of edges of the graph, with the usual set-inclusion order.
The reduction strongly utilizes the fact that the elements of 2E are not fully ordered. The most
challenging part of the reduction is to come up with a lattice that, on the one hand, strongly uses
the fact that L is not fully ordered, yet on the other hand is of size polynomial in E (and still
satisfies the conditions of closure under meet and join).

As pointed above, the NP-hardness proof involved a partially ordered lattice, embodied in the
“subset lattice”, and strongly utilizes the order being partial. This suggests that for fully ordered
lattices, we may still be able to find a polynomial minimization algorithm. Yet, as we shall show,
the property of no canonical minimal LDFA is valid already in the case of fully ordered lattice,
which suggests that no polynomial algorithm exists. As good news, we show that minimization
of LDFAs over fully ordered lattices can nevertheless be done in polynomial time. The idea of
the algorithm is to base the minimization on linearly many minimal DFAs that correspond to the
different lattice values. The fact that the values are fully ordered enables us to combine these
minimal automata into one minimal LDFA.

2 Preliminaries

This section introduces the definitions and notations related to lattices and lattice automata, as well
as some background about the minimization problem.

2.1 Lattices and Lattice Automata

Let ⟨A,≤⟩ be a partially ordered set, and let P be a subset of A. An element a ∈ A is an upper
bound on P if a ≥ b for all b ∈ P . Dually, a is a lower bound on P if a ≤ b for all b ∈ P . An
element a ∈ A is the least element of P if a ∈ P and a is a lower bound on P . Dually, a ∈ A is the
greatest element of P if a ∈ P and a is an upper bound on P . A partially ordered set ⟨A,≤⟩ is a
lattice if for every two elements a, b ∈ A both the least upper bound and the greatest lower bound
of {a, b} exist, in which case they are denoted a ∨ b (a join b) and a ∧ b (a meet b), respectively.
A lattice is complete if for every subset P ⊆ A both the least upper bound and the greatest lower
bound of P exist, in which case they are denoted

∨
P and

∧
P , respectively. In particular,

∨
A

and
∧
A are denoted ⊤ (top) and ⊥ (bottom), respectively. A lattice ⟨A,≤⟩ is finite if A is finite.

Note that every finite lattice is complete. A lattice ⟨A,≤⟩ is distributive if for every a, b, c ∈ A,
we have a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c) and a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c).

{b}

1

0

L2

{a, b}

{a} {c}

{b, c}

∅

2{a,b,c}

{a, b, c}

{a, c}

0

1

(1,1)

(0,0)

L2,2

(1,0)(0,1)

n − 1

n − 2

Ln

Fig. 2. Some lattices

In Figure 2 we describe some finite lattices. The elements of the lattice L2 are the usual truth
values 1 (true) and 0 (false) with the order 0 ≤ 1. The lattice Ln contains the values 0, 1...n− 1,

4

with the order 0 ≤ 1 ≤ ... ≤ n−1. The lattice L2,2 is the Cartesian product of two L2 lattices, thus
(a, b) ≤ (a′, b′) if both a ≤ a′ and b ≤ b′. Finally, the lattice 2{a,b,c} is the power set of {a, b, c}
with the set-inclusion order. In this lattice, join and meet coincide with union and intersection,
respectively, and we have, for example, {a} ∨ {b} = {a, b}, {a} ∧ {b} = ⊥, {a, c} ∨ {b} = ⊤,
and {a, c} ∧ {b} = ⊥.

Consider a lattice L (we abuse notation and refer to L also as a set of elements, rather than a
pair of a set with an order on it). For a set X of elements, an L-set over X is a function S : X → L
assigning to each element of X a value in L. Thus, S ∈ LX . It is convenient to think about S(x)
as the truth value of the statement “x is in S”. We say that an L-set S is Boolean if S(x) ∈ {⊤,⊥}
for all x ∈ X .

Consider a lattice L and an alphabet Σ. An L-language is an L-set over Σ∗. Thus, an L-
language L : Σ∗ → L assigns a value in L to each word over Σ.

A deterministic lattice automaton on finite words (LDFA, for short) is a tuple A = ⟨L, Σ,Q,Q0, δ, F ⟩,
where L is a finite lattice, Σ is a finite alphabet, Q is a finite set of states, Q0 ∈ LQ is an L-set of
initial states, δ ∈ LQ×Σ×Q is an L-transition-relation, and F ∈ LQ is an L-set of accepting states.
The fact that A is deterministic is reflected in two conditions on Q0 and δ. First, there is at most
one state q ∈ Q, called the initial state of A, such that Q0(q) ̸= ⊥. In addition, for every state
q ∈ Q and letter σ ∈ Σ, there is at most one state q′ ∈ Q, called the σ-destination of q, such that
δ(q, σ, q′) ̸= ⊥. The run of an LDFA on a word w = σ1 · σ2 · · ·σn is a sequence r = q0, . . . , qn
of n + 1 states, where q0 is the initial state of A, and for all 1 ≤ i ≤ n it holds that qi is the
σi-destination of qi−1. The value of w is val(w) = Q0(q0) ∧

∧n
i=1 δ(qi−1, σi, qi) ∧ F (qn). Intu-

itively, Q0(q0) is the value of q0 being initial, δ(qi−1, σi, qi) is the value of qi being a successor of
qi−1 when σi is the input letter, F (qn) is the value of qn being accepting, and the value of w is the
meet of all these values. The traversal value of w is tr val(w) = Q0(q0) ∧

∧n
i=1 δ(qi−1, σi, qi),

and its acceptance value is F (qn). The L-language of A, denoted L(A), maps each word w to the
value of its run in A. In case such a run does not exist, the value of the word is ⊥. An example of
an LDFA can be found in Figure 1.

Note that traditional deterministic automata over finite words (DFA, for short) correspond to
LDFA over the lattice L2. Indeed, over L2, a word is mapped to the value ⊤ iff the run on it uses
only transitions with value ⊤ and its final state has value ⊤.

An LDFA is simple if Q0 and δ are Boolean. Note that the traversal value of a run r of a simple
LDFA is either ⊥ or ⊤, thus the value of r is induced by F . Simple LDFAs have been studied in
the context of fuzzy logic and automata [18, 23].

Analyzing the size of A, one can refer to |Q|, |δ|, and |L| (where |L| denotes the number of
elements in L). Since the emphasize in this paper is on the size of the state space, we use |A| to
refer to the size of its state space. Our complexity results, however, refer to the size of the input,
and thus take into account the other components of A as well, and in particular the size of L.

2.2 Minimizing DFAs

This section is a reminder of the algorithm for minimizing DFAs using the Myhill-Nerode theorem
[21, 22, 9]. As we shall see, the properties of DFAs that make the algorithm valid are not main-
tained in the context of lattice automata. Still the algorithm and the related properties are going to
be relevant for understanding our contribution.

Given a Boolean language L over an alphabet Σ, consider the relation ∼L ⊆ Σ∗ ×Σ∗, where
x ∼L x′ iff for all z ∈ Σ∗ it holds that x · z ∈ L iff x′ · z ∈ L. In other words, x and x′ are
equivalent iff there is no tail z that distinguishes between them. It is well known that ∼L is an
equivalence relation. We present here the proof for completeness: Reflexivity and symmetry are

5

obvious, so left to show is transitivity. Given x, x′, x′′ ∈ Σ∗ such that x ∼L x′ and x′ ∼L x′′, we
show that x ∼L x′′. Assume by way of contradiction that this is not the case. Then, there exists
some z ∈ Σ∗ such that w.l.o.g x ·z ∈ L but x′′ ·z ̸∈ L. The contradiction is met when considering
x′ · z. If x′ · z ∈ L then x′′ · z ∈ L, contradicting the fact that x′′ · z ̸∈ L. On the other hand, if
x′ · z ̸∈ L then x · z ̸∈ L, contradicting the fact that x · z ∈ L.

The equivalence relation ∼L induces a canonical minimal DFA Amin. The states of Amin

correspond to the equivalence classes of ∼L, and the transitions between them are uniquely de-
termined such that reading σ from a state corresponding to [x] leads to the state corresponding to
[x · σ]. The initial state is the equivalence class of ϵ, and a state [x] is accepting iff x ∈ L.

The fact that L(Amin) = L can be easily proved by induction on the length of an input
word w, showing that Amin accepts w iff w ∈ L. To see that Amin is minimal and canonical,
consider a DFA for L, and let δ be its transition function. For every two words x, x′ ∈ Σ∗, if
δ(q0, x) = δ(q0, x

′), then it must be that x ∼L x′. Otherwise, there is z ∈ Σ∗ such that w.l.o.g
x · z ∈ L and x′ · z ̸∈ L, whereas the runs of A on x · z and x′ · z are either both accepting or both
rejecting. It follows that the state space of a DFA for L can only refine the state space of Amin,
showing that Amin is minimal and canonical.

The algorithm for minimizing a given DFA therefore partitions the states of the DFA according
to ∼L, and this process can be done in polynomial time [9].

2.3 Difficulties in Applying Existing Minimization Methods on LDFAs

As discussed above, Myhill and Nerode suggest a general paradigm for minimization, based on the
right congruence ∼L. This paradigm has the “canonical topology” property: the right congruence
directly induces a canonical minimal topology, in which the states correspond to the equivalence
classes and the transitions are uniquely determined such that reading σ from a state [x] leads to the
state [x · σ]. The canonicity derives from the fact that any other automaton for the same language
can only refine the state space of the automaton induced by the right congruence.

The above general minimization paradigm is widely used in variety of settings. In paricular, it
is used for minimizing weighted automata over the tropical semiring [19].

In this section we try to apply this paradigm on lattice automata, and explore the difficulties
arises in the latticed setting.

In fact, for the case of simple LDFAs, the plan proceeds smoothly (see [18, 23], where the
problem is discussed by means of fuzzy automata)2: Given an L-language L, we extend the def-
inition of ∼L to fit the nature of L-languages. For all x, x′ ∈ Σ∗, we say that x ∼L x′ iff for all
z ∈ Σ∗ it holds that L(x · z) = L(x′ · z). Clearly, ∼L is an equivalence relation, since it is based
on the equality relation. As in the case of DFA, we can build a minimal simple LDFA Amin for
L such that |Amin| = |∼L|. We construct it in the same manner, only that here the acceptance
values are defined such that F ([x]) = L(x). We show that every simple LDFA for L must have at
least |∼L| states. Indeed, if this is not the case, then we have two words x, x′ ∈ Σ∗ reaching the
same state q, while x ̸∼L x′. The contradiction is reached when reading the distinguishing tail z
from q, as in the case of DFA, due to the fact that in simple LDFAs the value of a word is solely
determined by the final state. We get that simple LDFAs can be minimized in polynomial time,
and the key for proving it was a generalization of the right congruence to require agreement on the
values of the words. As in [18, 23], we conclude with the following.

2 Several variants of fuzzy automata are studied in the literature. The difficulties we cope with in the mini-
mization of lattice automata are not applied to them, and indeed they can be minimized by variants of the
minimization construction described here [20].

6

Theorem 1. Simple LDFAs can be minimized in polynomial time.

Encouraged by this, we now turn to apply the above extended definition of ∼L on general
LDFAs. Unfortunately, the extension does not seem to work here. To see the difficulties, consider
an L-language L over Σ = L such that L(l1 · l2 · · · ln) =

∧n
i=1 li. The language L can be

recognized by an LDFA A with a single state q. The initial and acceptance values of q are ⊤, and
for every l ∈ Σ, there is an l-transition with value l from q to itself. Thus, the single run of A on
an input word maps it to the meet of its letters (see Figure 3).

⊤⊤
l, l

A

Fig. 3. An automaton A for the language L, in which L(l1 · l2 · · · ln) =
∧n

i=1 li.

Clearly, there exist x, x′ ∈ Σ∗ such that L(x) ̸= L(x′), and still A has only one state. Thus,
despite being mapped to different values, x and x′ reach the same state in A. This observation
shows a crucial difference between the setting of DFAs or simple LDFAs and the one of general
LDFAs. It is only in the latter, that words with different values can reach the same state, as the
value of a word is determined not only by the state it reaches, but also by the traversal value it
accumulates. This fact implies that an attempt to distinguish between words according to their
values results in LDFAs with needlessly more states.

However, the above example suggests another way to distinguish between words. In this ex-
ample, all words could reach the same state as they all ”want” to read the value l upon reading the
letter l. Accordingly, a right congruence that may be helpful has to take into account the values
that should be read with any possible tail, and in particular, in the case of L above, should have
only one equivalence class.

Following the above discussion, we now try to define such a right congruence. Let us first
consider a simpler model of LDFAs in which all acceptance values are ⊤. Note that in this model,
for all x, z ∈ Σ∗ we have that L(x · z) ≤ L(x). Let L be an L-language in the model above. We
define a relation ∼L ⊆ Σ∗ × Σ∗ such that x ∼L x′ iff for all z ∈ Σ∗ there exists l ∈ L such
that L(x · z) = L(x) ∧ l and L(x′ · z) = L(x′) ∧ l. That is, x and x′ are equivalent iff for all
tails z ∈ Σ∗ there exists some l ∈ L such that z can be read with the value l after reading either
x or x′. Note that the relation ∼L indeed takes into a consideration the values that should be read
after x and x′ are read. Also, this relation fits the automaton in Figure 3, as every two words are
equivalent under this relation (for a tail z = l1...ln, take l = l1 ∧ ... ∧ ln), and we therefore result
in one class containing all words.

Unfortunately, the relation suffers another crucial problem - it is not even transitive. For exam-
ple, for the language L of the LDFA A in Figure 1, we have 0 ∼L 1 (for z = 0, take l = {a, d})
and 1 ∼L 2 (for z = 0, take l = {a, c}), but 0 ̸∼L 2 (no l works for z = 0). The lack of transitivity
in this example implies that the words 0 and 2 must reach different states, while the word 1 is free
to join either of them. However, this results in two minimal automata with different topologies for
A! Their topologies differ by the transition leaving the initial state with the letter 1, as shown in
Figure 1.

Having seen that the “canonical topology” property does not hold in the latticed setting, it is
now clear why we could not come up with a right congruence. Indeed, as stated above, a right
congruence always induces a canonical minimal topology.

7

In conclusion, we have seen some evidences that minimization of LDFAs cannot follow the
minimization paradigm for DFAs and even not the one for deterministic weighted automata over
the tropical semiring. In the rest of the paper we show that in fact the minimization problem for
LDFAs is NP-complete in general. On the other hand, the evidences above do not contradict the
existence of a polynomial time algorithm which does not follow this paradigm, and indeed we also
describe a polynomial time algorithm for minimization of LDFAs over fully ordered lattices – a
special case for which the evidences still apply.

3 Minimizing General LDFAs

In this section we study the problem of minimizing LDFAs and show that unlike the case of
DFAs, and even the case of weighted DFAs over the tropical semiring, which can be minimized
in polynomial time, here the problem is NP-complete. We consider the corresponding decision
problem MINLDFA={⟨A, k⟩ : A is an LDFA and there exists an LDFA A′ with at most k states
such that L(A′) = L(A)}.

Theorem 2. MINLDFA is NP-complete.

Proof. We start with membership in NP. Given A and k, a witness to their membership in MINLDFA
is an LDFA A′ as required. Assuming k ≤ |A| (otherwise, ⟨A, k⟩ clearly belongs to MINLDFA),
the size of A′ is linear in the input. Deciding language equivalence between LDFAs is NLOGSPACE-
complete [14], thus we can verify that L(A′) = L(A) in polynomial time.

For the lower bound, we show a polynomial time reduction from the Vertex Cover problem
(VC, for short), proved to be NP-complete in [13]. Recall that VC={⟨G, k⟩ : G is an undirected
graph with a vertex cover of size k}, where a vertex cover of a graph G = ⟨V,E⟩ is a set C ⊆ V
such that for all edges (u, v) ∈ E we have u ∈ C or v ∈ C.

Before we describe the reduction, we need some definitions. Consider an undirected graph
G = ⟨V,E⟩. Let n = |V | and m = |E|. For simplicity, we assume that V and E are ordered,
thus we can refer to the minimum element in a set of vertices or edges. In particular, let E =
{e0, ..., em−1}. For v ∈ V , let touch(v) = {e : e = (v, u) for some u}. For e = (v1, v2) ∈ E, let
far(e) = min{e′ : e′ ̸∈ touch(v1) ∪ touch(v2)}. That is, far(e) is the minimal edge that is not
adjacent to e. Note that if {e′ : e′ ̸∈ touch(v1) ∪ touch(v2)} = ∅, then {v1, v2} is a VC of size
two, so we can assume that far(e) is well defined.

Example 1. In the graph G below, we have, for example, touch(1) = {a, b}, touch(2) = {d, e},
far(a) = d, far(b) = e, and far(c) = e.

1 2

3 4 5

a b

c

d e

touch(v){e, far(e)}

{a, d} {c, e}{b, e}

{a}{b}{c}{d}{e}

{a, b}{d, e}{a, c}{b, c, d}{e}{e, a}

G

Fig. 4. A graph and its corresponding lattice.

8

We now turn to describe the reduction. Given an input G = ⟨V,E⟩, we construct an LDFA
A = ⟨L, Q,Σ, δ,Q0, F ⟩ as follows.

– L ⊆ 2E contains the following elements: {∅, E} ∪ {{e} : e ∈ E} ∪ {{e, far(e)} : e ∈
E} ∪ {touch(v) : v ∈ V }, with the usual set-inclusion relation. In particular, ⊥ = ∅ and
⊤ = E. Note that L contains at most 2 + n+ 2m elements (“at most” since {e, far(e)} may
be identical to {far(e), far(far(e))}). For example, the graph in Example 1 induces the lattice
shown on its right (for clarity, we omit the elements ⊤ and ⊥ in the figure). Note that in this
example we have {a, far(a)} = {far(a), far(far(a))}, so we omit the unnecessary element.
We claim that though L does not contain all the elements in 2E , the operators join and meet
are well defined for all l1, l2 ∈ L.3 In the case l1 and l2 are ordered, the closure for both
join and meet is obvious. Otherwise, we handle the operators separately as follows. We start
with the case of meet. Closure to meet is easy since l1 ∧ l2 never contains more than one
edge. Indeed, if l1, l2 are of the form touch(v1), touch(v2) then their meet is the single edge
(v1, v2). In all other possibilities for l1 and l2 that are not ordered, one of them contains at
most two edges, so the fact they are not ordered implies that they have at most one edge in
their meet. As for join, given l1 and l2 let S = {l : l ≥ l1 and l ≥ l2}. We claim that all the
elements in S are ordered, thus we can define l1 ∨ l2 to be the minimal element in S. Assume
by way of contradiction that S contains two elements l and l′ that are not ordered. On the one
hand, l ∧ l′ ≥ l1 ∨ l2. Since l1 and l2 are not ordered, this implies that l ∧ l′ is of size at least
two. On the other hand, as we argued above, the meet of two elements that are not ordered
contains at most one edge, and we have reached a contradiction.

– Q = {qinit , q0, ..., qm−1}.
– Σ = {e0, ..., em−1} ∪ {#}.
– For 0 ≤ i < m, we define δ(qinit , ei, qi) = {ei, far(ei)} and δ(qi,#, q(i+1)modm) = {ei}.

For all other q, q′ ∈ Q and σ ∈ Σ, we define δ(q, σ, q′) = ⊥.
– Q0(qinit) = ⊤, and Q0(q) = ⊥ for all other q ∈ Q.
– F (q) = ⊤ for all q ∈ Q.

For example, the graph G in Example 1 induces the LDFA AG below (for clarity, we omit the
acceptance values in the figure, as they are all ⊤).

It is not hard to see that the L-language induced by A, denoted L, is such that for all e ∈ Σ, we
have that L(e) = {e, far(e)} and L(e·#) = {e}. In addition, L(ϵ) = ⊤, and for all other w ∈ Σ∗,
we have that L(w) = ⊥. Also, A is indeed deterministic, and has m+ 1 states. Finally, since the
components of A are all of size polynomial in the input graph, the reduction is polynomial.

We now turn to prove that G has a k-VC iff there is an LDFA with k+ 1 states for L. Assume
first that G has a k-VC {v0, ..., vk−1}. We construct an LDFA A′ = ⟨L, Q′, Σ, δ′, Q′

0, F
′⟩ for L

with k + 1 states as follows.

– Q′ = {qinit, qv0 , ..., qvk−1
}.

– The transition relation is defined as follows.
• Consider an edge e = (u1, u2). We distinguish between two cases: (1) if only one of the

vertices of e is in the cover, that is, there is a single i such that u1 = vi or u2 = vi, then
δ′(qinit, e, qvi) = {e, far(e)}. (2) if both vertices of e are in the cover, that is, there are i
and j such that u1 = vi and u2 = vj , then if j = (i+1)modk, we define δ′(qinit, e, qvj) =
{e, far(e)}. Otherwise, we define δ′(qinit, e, qvi) = {e, far(e)}. In other words, if v1 and

3 We note that this point has been the most challenging part of the reduction, as on the one hand, we have
to strongly use the fact that L is not fully ordered (as we show in Section 4, polynomial minimization is
possible for LDFAs over fully ordered lattice), yet on the other hand the reduction has to be polynomial
and thus use only polynomially many values of the subset lattice. See also Remark 1.

9

qinit

a, {a, d}

b, {b, e}
c, {c, e}
d, {d, a}

e, {e, a}

qinit

q1

q2

q3

q4

a, {a, d}

b, {b, e}

c, {c, e}

d, {d, a}

e, {e, a}

#, {a}

#, {b}

#, {c}

#, {d}

#, {e}

#, {a, c}

#, {b, c, d}

#, {e}

q0

qv0

qv1

qv2

⊤ ⊤

AG: Amin
G :

Fig. 5. The LDFA induced by G, and the minimal LDFA that corresponds to the 3-cover {3, 4, 5}.

v2 are adjacent, we choose the right one, where v(i+1)modk is considered “right” with
respect to vi.

• For all 0 ≤ i < k, we define δ′(qvi ,#, qv(i+1)modk
) = touch(vi).

• For all other q, q′ ∈ Q and σ ∈ Σ, we define δ′(q, σ, q′) = ⊥.
– Q′

0(qinit) = ⊤, and Q0(q) = ⊥ for all other q ∈ Q.
– F ′(q) = ⊤ for all q ∈ Q.

In Example 1, the set {3, 4, 5} is a minimal VC of G. Let v0 = 3, v1 = 4, v2 = 5. The
corresponding LDFA Amin

G shown on the right of Figure 3. Intuitively, in Amin
G it is possible to

merge states of AG that are associated with edges that are covered by the same vertex.

We prove that L(A) = L(A′). Let L′ = L(A′). For all e ∈ E, there is some v in the coverage
such that e ∈ touch(v). In addition, all the acceptance values are ⊤. Thus, for all e ∈ E we
have that L′(e) = {e, far(e)}. Also, after reading e, the letter # must be read with the value
touch(vi) such that e ∈ touch(vi). Hence, since {e, far(e)} ∧ touch(vi) = {e}, we get that
L′(e · #) = {e} for all e ∈ Σ, and the meet with ⊤ while reading the acceptance value has no
additional effect. We turn on to consider words of the form e ·# ·#+ and show that A′ maps them
to ⊥. It is enough to show that tr val(e ·# ·#) = ⊥. Note that tr val(e ·# ·#) = {e, far(e)}∧
touch(vi) ∧ touch(v(i+1)modk), for some 0 ≤ i < k such that e ∈ touch(vi). We already know
that {e, far(e)}∧ touch(vi) = {e}. Thus, it is enough to show that e ̸∈ touch(v(i+1)modk). Recall
that e ∈ touch(vi). Assume by way of contradiction that e ∈ touch(v(i+1)modk) as well, then
according to the order we induced on the vertices and since v(i+1)modk is the right with respect
to vi, we would get that the e-destination of qinit is v(i+1)modk rather than vi. Thus, we get that
e ̸∈ touch(v(i+1)modk), and this implies that A′ maps words of the form e ·# ·#+ to ⊥. Finally,
it is obvious that L(ϵ) = ⊤ and that L(w) = ⊥ for all other w ∈ Σ∗. Also, the number of the
states in the automaton is indeed k + 1, as required.

Assume now that there is an LDFA A′ = ⟨L, Q′, Σ, δ′, Q′
0, F

′⟩ with k + 1 states for L(A).
We show that G has a k-VC. Let us consider two subsets of Q′ as follows:

– T1 = {q0}, where q0 is the initial state of A′.
– T2 = {q ∈ Q′ : δ′(q0, e, q) ̸= ⊥ for some e ∈ Σ \ {#}}.

As we will see later, the states in T2 correspond to vertices in the cover. Accordingly, we now turn
to show that |T2| ≤ k. Recall that |Q′| = k+1, thus |T1 ∪ T2| ≤ k+1, and that |T1| = 1. Hence,
it is enough to show that T1 ∩ T2 = ∅.

10

Assume by way of contradiction that T1 ∩ T2 ̸= ∅. Thus, since T1 = {q0}, it follows that q0 ∈
T2, which means that there is some edge e for which δ′(q0, e, q0) ̸= ⊥. To reach the contradiction,
we look at L(A′) and show that L(A′)(e · e) ̸= L(A)(e · e). Recall that L(ϵ) = ⊤, and note that
therefore we have Q0(q

′
0) = F (q′0) = ⊤. Now, together with the fact that δ′(q0, e, q0) ̸= ⊥, we

get that L(A′)(e · e) ̸= ⊥, whereas L(A)(e · e) = ⊥. We conclude that |T2| ≤ k.

Consider the states in T2. Since L(A′)(e) ̸= ⊥ for all letters e ∈ Σ \{#}, then all these letters
reach some state in T2. We show that for each q ∈ T2 there exists a matching vertex vq ∈ V that
covers all edges corresponding to the letters reaching q in A′. The set of these vertices then covers
E.

For every state q ∈ T2, if there is only one letter e = (v1, v2), e ∈ Σ \ {#}, that reaches
q, then we can arbitrarily take vq = v1. The case where there are several such letters is more
complicated. In this case, we consider the state q′ that is reached when # is read from q and
the value l = δ(q,#, q′) ∧ F (q′). Since l ∈ L, it must be of the form ⊥,⊤, touch(v), {e}, or
{e, far(e)}. We claim that l must be of the form touch(v), and that the corresponding v covers
all edges that reach q. Indeed, it is clear that l ̸= ⊥, since L(e · #) ̸= ⊥ for all e ∈ Σ. Also,
l ̸= ⊤, since L(e · #) ̸= L(e) for all e ∈ Σ. In order to show that l is not of the forms {e}
or {e, far(e)}, we use the fact that there are at least two letters e1, e2 reaching q. Assume by
way of contradiction that l = {e} for some e ∈ E. Thus, we get that L′(e1 · #) ≤ {e} and
L′(e2 ·#) ≤ {e}. Also, since L′(e1 ·#) = {e1} and L′(e2 ·#) = {e2}, it follows that {e1} ≤ {e}
and {e2} ≤ {e}. Of course, this is a contradiction since e1 ̸= e2. It is left to show that l is not of
the form {e, far(e)}. We assume by way of contradiction that l = {e, far(e)} for some e ∈ E,
and in the same manner as above we get that {e1} ≤ {e, far(e)} and {e2} ≤ {e, far(e)}. Thus,
it must be that e = e1 or e = e2. Assume w.l.o.g that e = e1, and consider L′(e1 · #). Note
that since L′(e1) = {e1, far(e1)}, then after reading e1 from q0, we accumulate a value that is
greater or equal to {e1, far(e1)}. Thus, meeting with l = {e1, far(e1)}, when reading #, results
in {e1, far(e1)}, instead of {e1}. It follows that l must be of the form touch(v). Now it is easy
to see that the corresponding state v covers all edges that reach q. Indeed, for each such edge e it
holds that L(e ·#) = {e}, so the meet with the value touch(v) results in {e}, which means that
e ∈ touch(v). It follows that the set {vq : q ∈ T2} is indeed a VC, it has at most k vertices, and
we are done. ⊓⊔

Remark 1. In [24], the author proves NP-hardness of the problem of minimization for determin-
istic weighted finite-state automata, and in fact showed that the problem is NP-hard already for
lattice automata. The reduction in [24] (from the minimum clique partition problem) uses a lattice
that contains exponentially many elements. The lattice does have a polynomial description, thus
the reduction is polynomial, yet the result is weaker than our result here. Indeed, the result in [24]
only proves hardness for LDFAs over lattices with polynomial symbolic description (and possibly
exponentially many elements), while our reduction proves hardness even for LDFAs over lattices
with a polynomial number of elements.

4 Minimizing LDFAs Over Fully Ordered Lattices

In Section 3, we saw that the problem of minimizing LDFAs is NP-complete. The hardness proof
involved a partially ordered lattice, embodied in the “subset lattice”, and strongly utilized the order
being partial. This suggests that for fully ordered lattices, we may still be able to find a polynomial
minimization algorithm. On the other hand, as shown in Example 2, the property of no canonical
minimal LDFA is valid already in the case of fully ordered lattices, which suggests that following
the general “right-congruence paradigm” would fail in this case, and that different techniques
should be applied here.

11

Example 2. The LDFA A in Figure 6 below is over the alphabet Σ = {a, b, c,#} and the lattice
L = ⟨{0, 1, 2, 3},≤⟩. The join and meet operators correspond to max and min, respectively. Thus,
the L-language of A is L : Σ∗ → L such that L(ϵ) = 3, L(a) = 3, L(a · #) = 1, L(b) = 1,
L(b · #) = 1, L(c) = 3, L(c · #) = 2, and L(x) = 0 for all other x ∈ Σ∗. The automata
A1 and A2 presented on its right are two minimal automata for L. Their topologies differ by the
transition leaving the initial state with the letter b. Note that L is monotonic, in the sense that for
all x, z ∈ Σ∗, we have that L(x · z) ≤ L(x). Thus, even for a monotonic language over a fully
ordered lattice, there are two minimal LDFAs with different topologies.

a, 3

c, 3

a, 3

c, 3

b, 1

b, 1

A1 :A :

3

3

3

3 3 3
3 3

3

3

3

a, 3

c, 3
b, 1

3 3

3

3

3

A2:
#, 1

#, 2

#, 3

#, 1

#, 2 #, 2

#, 1

Fig. 6. An LDFA over a fully ordered lattice, with two different minimal LDFAs.

In this section we show that in spite of the non-canonicity, we are able to minimize such
LDFAs in polynomial time. We describe a polynomial time algorithm that is given an LDFA
A = ⟨L,Q,Σ,δ,Q0,F ⟩ over a fully ordered lattice, and returns an LDFA Amin with a minimal
number of states, such that L(Amin) = L(A). The algorithm produces one of the possible minimal
LDFAs.

Let L = {0, 1, ..., n − 1} be the fully ordered lattice, let L : Σ∗ → L be the language of
A, and let m = maxw∈Σ∗L(w); that is, m is the maximal value of a word in L(A). Finally, let
q0 ∈ Q be the single state with initial value that is not ⊥. For each 1 ≤ i ≤ m we define a DFA
Ai that accepts exactly all words w such that L(w) ≥ i. Note that it is indeed enough to consider
only the automata A1, ...,Am, as Am+1, ...,An−1 are always empty and hence not needed, and
A0 is not needed as well, as L(A0) = Σ∗.

For 1 ≤ i ≤ m, we define Ai = ⟨Qi,Σ,δi,q0,Fi⟩ as follows:

– Qi ⊆ Q contains exactly all states that are both reachable from q0 using transitions with value
at least i, and also have some state with acceptance value at least i that is reachable from them
using zero or more transitions with value at least i. Note that q0 ∈ Qi for all i.

– δi contains all transitions such that their value in A is at least i and such that both their source
and destination are in Qi.

– Fi ⊆ Qi contains all states such that their acceptance value in A is at least i.

For readers that wonder why we do not define δi first, as these transitions with value at least
i, and then define Qi and Fi according to reachability along δi, note that such a definition would
result in different automata that are not trim, as it may involve transitions that never lead to an
accepting state in Ai, and states that are equivalent to a rejecting sink. As we will see later, the fact
that all the components in our Ai are not redundant is going to be important. Essentially, it has to
do with the fact that the values of the transitions and states in the minimal LDFA are going to be
influenced by their membership in δi and Qi, respectively.

Note that for all 1 < i ≤ m, we have that Qi ⊆ Qi−1, δi ⊆ δi−1, and Fi ⊆ Fi−1. Also, it is
not hard to see that Ai indeed accepts exactly all words w such that L(w) ≥ i.

12

We now turn back to the given LDFA A and minimize it using A1, ...,Am. First, we apply
a pre-processing on A that reduces the values appearing in A to be the minimal possible values
(without changing the language)4. Formally, we define A′ = ⟨L, Q,Σ, δ′, Q0, F

′⟩, where:

– For all q, q′ ∈ Q and σ ∈ Σ, we have that δ′(q, σ, q′) = max{i : (q, σ, q′) ∈ δi}.
– For all q ∈ Q, we have that F ′(q) = max{i : q ∈ Fi}.

Note that since for all 1 < i ≤ m, we have that δi ⊆ δi−1 and Fi ⊆ Fi−1, then for all
1 ≤ i ≤ m, we also have that δ′(q, σ, q′) ≥ i iff (q, σ, q′) ∈ δi and F ′(q) ≥ i iff q ∈ Fi.

Lemma 1. L(A) = L(A′).

Proof. Let L′ = L(A′). We prove that L′(w) = L(w) for all words w ∈ Σ∗. Since we only
reduced values, then clearly L′(w) ≤ L(w) for all w ∈ Σ∗. As for the other direction, let
w = σ1...σk ∈ Σ∗, and let l = L(w). We prove that L′(w) ≥ l. Let r = q0, q1, ..., qk be the run
of A on w. Consider the values read along r, which are Q0(q0), δ(q0, σ1, q1), . . . , δ(qk−1, σk, qk),
and F (qk). Since L(w) = l, we know that all these values are at least l. Consider the automa-
ton Al. By definition, the transitions in r belong to δl, and qk belongs to Fl. Thus, the values
δ′(q0, σ1, q1), . . . , δ

′(qk−1, σk, qk), and F ′(qk) are all at least l. Together with the fact that the
initial values in A and A′ are the same, we get that L′(w) ≥ l. ⊓⊔

By Lemma 1, it is enough to minimize A′. We start with applying the algorithm for minimizing
DFA on A1, ...,Am. As described in Section 2.2, each such application generates a partition of
the states of Ai into equivalence classes.5 Let us denote the equivalence classes produced for Ai

by Hi = {Si
1, S

i
2, ..., S

i
ni
}.

Now, we construct from A′ a minimal automaton Amin = ⟨L,Qmin,Σ,δmin,Q0min
, Fmin⟩ as

follows.

– We obtain the set Qmin by partitioning the states of A′ into sets, each inducing a state in
Qmin. The partitioning process is iterative: we maintain a disjoint partition Pi of the states Q,
starting with one set containing all states, and refining it along the iterations. The refinement
at the i-th iteration is based on Hi, and guarantees that the new partition Pi agrees with Hi,
meaning that states that are separated in Hi are separated in Pi as well. At the end of this
process, the sets of the final partition constitute Qmin.
More specifically, the algorithm has m+ 1 iterations, starting with i = 0, ending with i = m.
Let us denote the partition obtained at the i-th iteration by Pi = {T i

1, ..., T
i
di
}. At the first

iteration, for i = 0, we have that d0 = 1, and T 0
1 = Q. At the i-th iteration, for i > 0, we are

given the partition Pi−1 = {T i−1
1 , ..., T i−1

di−1
}, and generate Pi = {T i

1, ..., T
i
di
} as follows. For

each 1 ≤ j ≤ di−1, we examine T i−1
j and partition it further. We do it in two stages. First,

we examine Si
1, S

i
2, ..., S

i
ni

and for each 1 ≤ k ≤ ni we compute the set U i
j,k = T i−1

j ∩ Si
k,

and if U i
j,k ̸= ∅, then we add U i

j,k to Pi. Thus, we indeed separate the states that are separated
in Hi. At the second stage, we consider the states in T i−1

j that do not belong to U i
j,k for all k.

Note that these states do not belong to Qi, so Ai is indifferent about them. This is the stage
where we have a choice in the algorithm. We choose an arbitrary k for which U i

j,k ̸= ∅, and

4 A “weight-pushing process” is useful also in the minimization of weighted automata over the tropical
semiring [19].

5 Note that, by definition, all the states in Qi have some accepting state reachable from them, so the fact we
do not have a rejecting state is not problematic, as such a state would have constitute a singleton state in
all the partitions we are going to consider.

13

add these states to U i
j,k. If no such k exists, we know that no state in T i−1

j appears in Qi, so
we have no reason to refine T i−1

j , and we can add T i−1
j to Pi. Finally, we define Qmin to be

the sets of Pm.
– The transition relation δmin is defined as follows. Consider a state T ∈ Qmin. We choose one

state qTrep ∈ T to be a representative of T , as follows. Let iTmax = max{i : there is q ∈ T

s.t. q ∈ Qi}, and let qTrep be a state in T ∩ QiTmax
. Note that T ∩ QiTmax

may contain more
than one state, in which case we can assume Q is ordered and take the minimal6, to make it
well defined. We now define the transitions leaving T according to the original transitions of
qTrep in A′. For σ ∈ Σ, let qdest ∈ Q be the σ-destination of qTrep in A′. For all T ′ ∈ Qmin, if
qdest ∈ T ′ we define δmin(T, σ, T

′) = δ′(qTrep, σ, qdest); otherwise, δmin(T, σ, T
′) = 0.

– For all T ∈ Qmin, if q0 ∈ T , where q0 is the initial state of A′, we define Q0min(T) = Q0(q0);
otherwise, Q0min(T) = 0.

– For all T ∈ Q, we define Fmin(T) = F ′(qTrep).

Example 3. We describe below how the minimization algorithm proceeds on an example. Let us
start with the LDFA U shown in Figure 7, over Σ = {a, b} and L = ⟨{0, 1, 2},≤⟩.

q0
02 a, 2

b, 2
2
q1

a, 1

2
q2

a, 2

b, 1

b, 2 0
q3

a, 1

b, 2

a, 1
b, 1

b, 1
a, 2

2

2

2

q4

q5

q6
a, 2
b, 2

U :

Fig. 7. An LDFA U to minimize.

The DFAs U1 and U2 induced by U are described in Figure 8. The dashed squares denote their
partitions into equivalence classes according to the minimization algorithm for DFAs. Note, for
example, that q2 ̸∈ Q2, as q2 is not reachable in U using transitions with values at least 2.

q0 q1

2
q2

q3

q4

q5

q6
a, b

a

b

a

b

b

a

a, b

a, b

a, b

q0 q1 q3

q5

q6
a, b

b

b
a, b

a

U1: U2:

Fig. 8. U1 and U2 obtained from U , with their partitions.

By using U1 and U2, we get U ′ as described in Figure 9. Note, for example, that the value of
the a-transition from q2 to itself has been reduced to 1.

6 We could make here any arbitrary choice.

14

q0
02 a, 2

b, 2
2
q1

a, 1

q2

b, 1

b, 2 0
q3

a, 1

b, 2

a, 1
b, 1

b, 1
a, 22

2

q4

q5

q6
a, 2
b, 2

1

a, 1

1

U ′:

Fig. 9. U ′ obtained from U

We now turn to obtain Qmin. We start with a partition P0 that contains all states. At the next
iteration, P0 is partitioned according to the partition of U1, thus we have that P1 = {{q0}, {q1, q2},
{q3}, {q4, q5, q6}}. At the last iteration, we partition P1 according to the partition of U2. Note, for
example, that q4 is not a member of Q2. Accordingly, we can have q4 in either the set of q5 or the
set of q6, and we chose q5. A similar choice could also be made for the state q2 that is not a member
of Q2, but since it belongs to a set with only two states in the previous partition P1, we have no
choice here and must have it in the set of q1. We get P2 = {{q0}, {q1, q2}, {q3}, {q4, q5}, {q6}},
as shown in Figure 10.

q0
02 a, 2

b, 2 2q1

a, 1

q2

b, 1

b, 2 0q3

a, 1

b, 2

a, 1
b, 1

b, 1
a, 22

2
q4

q5

q6
a, 2
b, 2

1

a, 1

1
1

a, 1

1

b, 2
a, 2

q6

q5

q4
2

2 a, 2
b, 1

b, 1
a, 1

b, 2

a, 1

q3
0b, 2

b, 1

q2

a, 1

q1
2b, 2

a, 22 0q0

1: 2:

Fig. 10. The algorithm iterations.

The set Qmin is then P2, and the representatives of the sets in it are q0, q1, q3, q5, and q6. Note
that q2 and q4 cannot be representatives. The induced transitions are described in the minimal
automaton Umin appearing in Figure 11.

q0
02 a, 2

b, 2
2
q1

b, 2 0
q3 b, 1

a, 22 2
q5 q6

a, 2
b, 2b, 2

a, 1

a, 1

Umin:

Fig. 11. A minimal automaton Umin.

Back to the formal proof. Let Lmin = L(Amin) and L′ = L(A′). We now turn to prove that
the construction is correct, that is, we prove that Lmin = L′, |Amin| is minimal, and the time
complexity of the construction of Amin is polynomial.

15

We first prove that Lmin = L′. For q, q′ ∈ Q, we say that q ∼i q
′ iff there exists some class

S ∈ Hi such that q, q′ ∈ S. Also, we say that q ≡i q
′ iff for all j ≤ i it holds that q ∼j q′. Note

that although ∼i and ≡i are equivalence relations over Qi×Qi, they are not equivalence relations
over Q × Q, as they are not reflexive. Indeed, for q ∈ Q \ Qi, there is no class S ∈ Hi such
that q ∈ S, so q ̸∼i q and of course q ̸≡i q. However, it is easy to see that ∼i and ≡i are both
symmetric and transitive over Q×Q.

Lemma 2 below explains the essence of the relation ≡i. As we shall prove, if q ≡i q
′ then q

and q′ agree on the transition and acceptance values in A′, if these values are less than i.

Lemma 2. For q, q′ ∈ Q, if q ≡i q
′ then for all j < i, the following hold.

– For all σ ∈ Σ, we have δ′(q, σ, s) = j iff δ′(q′, σ, s′) = j, where s, s′ ∈ Q are the σ-
destinations of q, q′ in A′, respectively. .

– F ′(q) = j iff F ′(q′) = j.

Proof. We first prove that δ′(q, σ, s) = j iff δ′(q′, σ, s′) = j for all j < i. Given j < i, it holds
by definition that q ∼j q′, as q ≡i q′ and j ≤ i. Thus, there exists some class S ∈ Hj such
that q, q′ ∈ S, which means that (q, σ, s) ∈ δj iff (q′, σ, s′) ∈ δj . Recall that (q, σ, s) ∈ δj iff
δ′(q, σ, s) ≥ j and that (q′, σ, s′) ∈ δj iff δ′(q′, σ, s′) ≥ j. Thus, we have that δ′(q, σ, s) ≥ j iff
δ′(q′, σ, s′) ≥ j. Also, since j < i we know that j + 1 ≤ i, so we can apply the same arguments
on j + 1 as well, and get that δ′(q, σ, s) ≥ j + 1 iff δ′(q′, σ, s′) ≥ j + 1. We conclude by noticing
that δ′(q, σ, s) = j iff δ′(q, σ, s) ≥ j and δ′(q, σ, s) < j + 1. The proof for F follows the same
arguments. ⊓⊔

In the case of DFA, we know that each state of the minimal automaton for L corresponds to
an equivalence class of ∼L, and the minimization algorithm merges all the states of the DFA that
correspond to each class into a single state. Consequently, the transition function of the minimal
automaton can be defined according to one of the merged states, and the definition is independent
of the state being chosen. In the case of our Amin, things are more complicated, as states that are
merged in Amin do not correspond to equivalence classes. We still were able, in the definition
of the transitions and acceptance values, to chose a state qTrep, for each state T . Lemma 3 below
explains why working with the chosen state is sound.

The lemma considers a word w ∈ Σ∗, and examines the connection between a state qi in the
run of A′ on w and the corresponding state Ti in the run of Amin on w. It shows that if L′(w) ≥ l
for some l ∈ L, then qi ≡l q

Ti
rep for all i. Thus, the states along the run of Amin behave the same

as the corresponding states in A′ on values that are less than l, and may be different on values that
are at least l, as long as they are both at least l. Intuitively, this is valid since after reaching a value
l, we can replace all subsequent values l′ ≥ l along the original run with any other value l′′ ≥ l.

Lemma 3. Let w = σ1σ2...σk be a word in Σ∗, and let q0, q1, ..., qk and T0, T1, ..., Tk be the
runs of A′ and Amin on w respectively. For l ∈ L, if L′(w) ≥ l then for all 0 ≤ i ≤ k it holds
that qi ≡l q

Ti
rep.

Proof. We prove the lemma by an induction on i. Let i = 0. To show that q0 ≡l q
T0
rep, we have to

show that for all j ≤ l it holds that q0 ∼j qT0
rep. Let j ≤ l. We first show that q0, qT0

rep ∈ Qj . Since
Qm ⊆ Qj , it is enough to show that q0, qT0

rep ∈ Qm. We already know that q0 ∈ Qm. Also, the
fact that q0 ∈ T0 implies that iT0

max = m, and therefore qT0
rep ∈ Qm as well. It is left to show that

q0 and qT0
rep belong to the same class in Hj . Indeed, if this is not the case then they would have

been separated in Pj , which contradicts the fact that they are in the same set in Qmin.

16

We now assume correctness for i − 1, and prove it for i. Let q ∈ Ti be the σi-destination of
q
Ti−1
rep in A′. We show that qi ≡l q and that q ≡l q

Ti
rep. By the transitivity of ≡l, this implies that

qi ≡l q
Ti
rep.

First, we show that qi ≡l q. By the induction hypothesis we know that qi−1 ≡l q
Ti−1
rep . Assume

by way of contradiction that qi ̸≡l q. Thus, there exists some j ≤ l for which qi ̸∼j q. Con-
sider Aj , and look at the transitions (qi−1, σi, qi) and (q

Ti−1
rep , σi, q). We claim that (qi−1, σi, qi),

(q
Ti−1
rep , σi, q) ∈ δj . Since L′(w) ≥ l we know that δ′(qi−1, σi, qi) ≥ l. Applying Lemma 2 on qi−1

and q
Ti−1
rep , we get that δ′(qTi−1

rep , σi, q) ≥ l as well. Since j ≤ l, we get that δ′(qi−1, σi, qi) ≥ j and
δ′(q

Ti−1
rep , σi, q) ≥ j, and thus (qi−1, σi, qi), (q

Ti−1
rep , σi, q) ∈ δj . Recall that qi ̸∼j q. Since both

(qi−1, σi, qi) and (q
Ti−1
rep , σi, q) are in δj , we can now conclude that qi−1 ̸∼j q

Ti−1
rep as well, which

means that qi−1 ̸≡l q
Ti−1
rep , and we have reached a contradiction.

It is left to show that q ≡l q
Ti
rep. By definition, we have to show that for all j ≤ l it holds that

q ∼j qTi
rep. Given j ≤ l, we first show that q, qTi

rep ∈ Qj . We already know that q ∈ Ql, since
qi ≡l q, and conclude that q ∈ Qj , since Ql ⊆ Qj . To show that qTi

rep ∈ Qj as well, recall that
q ∈ Ti, and consider iTi

max defined above. Since q ∈ Qj we get that iTi
max ≥ j, so Q

i
Ti
max

⊆ Qj .
Also, by the definition of qTi

rep we have that qTi
rep ∈ Q

i
Ti
max

, so we get that qTi
rep ∈ Qj . Now, we

show that q, qTi
rep are in the same class in Hj . Indeed, if they are separated in Hj , then they must

be separated in Pj as well, which is a contradiction, since they are in the same set in Qmin. ⊓⊔

Based on the above, we now turn to prove that Lmin = L′. Let w ∈ Σ∗, and let l = L′(w).
We show that Lmin(w) = l. Let r′ = q0, q1, ..., qk and rmin = T0, T1, ..., Tk be the runs of A′

and Amin on w respectively.
We first show that Lmin(w) ≥ l. Consider the values read along r′, which are Q0(q0),

δ′(q0, σ1, q1), . . ., δ′(qk−1, σk, qk), and F ′(qk). Since L′(w) = l we know that all these val-
ues are at least l. By Lemma 3 we get that for all 0 ≤ i ≤ k it holds that qi ≡l qTi

rep. Then by
applying the first part of Lemma 2 on q0, ..., qk−1 and the second part on qk, we get that the values
δ′(qT0

rep, σ1, s0), . . ., δmin(q
Tk−1
rep , σk, sk−1) and Fmin(q

Tk
rep) are all at least l, where si is the σi-

destination of qTi
rep for all 0 ≤ i < k. Thus, we get that δmin(T0, σ1, T1), . . . , δmin(Tk−1, σk, Tk)

and Fmin(Tk) are all at least l as well, since these values are defined according to qT0
rep, ..., q

Tk
rep.

Together with the fact that the initial value remains the same in Amin, we get that Lmin(w) ≥ l.
In order to prove that Lmin(w) ≤ l, we show that at least one of the values read along rmin

is l. Since L′(w) = l, at least one of the values read along r′ is l. If this value is Q0(q0) then
we are done, since by definition Q0(T0) = Q0(q0). Otherwise, it must be one of the values
δ′(q0, σ1, q1), . . . , δ

′(qk−1, σk, qk) or F ′(qk). Let qd be the state from which the value l is read for
the first time along r′, either as a transition value (d < k) or as an acceptance value (d = k). We
claim that qd ∈ Ql+1 (note that if l = m, then clearly Lmin(w) ≤ l, thus, we assume that l < m,
so Ql+1 is well defined). If d = 0, then we are done, since q0 ∈ Ql+1 by definition. Otherwise, we
look at the transition (qd−1, σd, qd). By the definition of qd, we know that δ′(qd−1, σd, qd) ≥ l+1,
and by the definition of δ′ it then follows that (qd−1, σd, qd) ∈ δl+1. Thus, we get that qd ∈ Ql+1.
Now, by the definition of Ql+1, there exists some state ql+1

acc ∈ Q with acceptance value at least
l + 1 that is reachable from qd in A using zero or more transitions with value at least l + 1. Let
w′ be the word read along these transitions from qd to ql+1

acc , and let w′′ = σ1...σd · w′. It is easy
to see that L′(w′′) ≥ l + 1. Thus, we can apply Lemma 3, and get that qd ≡l+1 qTd

rep. Then, by
applying Lemma 2 on qd and qTd

rep we conclude that the value l is read from Td along rmin, and
we are done.

We now turn to prove that |Amin| is minimal. Let N = |Amin|. We describe below N different
words w1, ..., wN ∈ Σ∗, and prove that for all i ̸= j the words wi and wj cannot reach the same

17

state in an LDFA for L. Clearly, this implies that an LDFA for L must contain at least N states, so
|Amin| is minimal.

We define the words w1, ..., wN as follows. Let T1, ..., TN be the states of Amin, and let
qT1
rep, ..., q

TN
rep be their representatives respectively. We go back to the original automaton A, and

for each such representative q, we define the following (with the expected extension of δ to words,
thus δ(q, w, q′) is the value of traversing w from q to q′):

– reach(q) = {w ∈ Σ∗ : δ(q0, w, q)>0}, where q0 is the initial state of A.
– maxval(q) = max{δ(q0, w, q) : w ∈ reach(q)}. Note that maxval(q) considers only the

traversal values of the words reaching q.
– maxw(q) is w ∈ Σ∗ for which δ(q0, w, q) = maxval(q). Note that there may be several such

words, so we can take the lowest one by lexicographic order, to make it well defined.

For all 1 ≤ i ≤ N , we now define wi = maxw(qTi
rep). Note that these words are indeed

different, as they reach different states in the deterministic automaton A. Consider two different
indices i and j. We prove that the words maxw(qTi

rep) and maxw(q
Tj
rep) cannot reach the same state

in an LDFA for L. Consider the states qTi
rep and q

Tj
rep. These states belong to different sets in Qmin.

Let 1 ≤ l ≤ m be the index of the iteration in which they were first separated.

We use the following lemmas:

Lemma 4. The states qTi
rep and q

Tj
rep belong to different classes in Hl.

Proof. Before proving the lemma, let us note that it does not follow directly from the fact that qTi
rep

and q
Tj
rep were first separated at the l-th iteration, as they could also be separated in the case where

one of them does not belong to Ql. So we start with proving that qTi
rep, q

Tj
rep ∈ Ql, and together

with the fact that qTi
rep and q

Tj
rep were separated at the l-th iteration, we get that they must belong to

different classes in Hl.

We denote by T l−1 the set that contains both qTi
rep and q

Tj
rep at the (l − 1)-th iteration. At the

l-th iteration, we compute the sets T l−1 ∩ Sl
k for 1 ≤ k ≤ nl. Since qTi

rep and q
Tj
rep were separated

at this iteration, at least two of these sets are not empty. Let us denote these non-empty sets by T l
i

and T l
j , with qTi

rep ∈ T l
i and q

Tj
rep ∈ T l

j . Since T l
i and T l

j are obtained by intersection with Hl, there
must be two states qi, qj ∈ Ql such that qi ∈ T l

i and qj ∈ T l
j . We show that qTi

rep ∈ Ql. The proof

that qTj
rep ∈ Ql follows the same arguments. Consider iTi

max. Since qTi
rep ∈ Q

i
Ti
max

, it is enough to
show that iTi

max ≥ l, as it implies that Q
i
Ti
max

⊆ Ql and thus qTi
rep ∈ Ql. To show that iTi

max ≥ l, we
show that there is a state q ∈ Ti ∩ Ql. To show that, we prove that in all iterations l′ ≥ l, the set
containing the state qTi

rep also contains some state of Ql. The proof proceeds by an induction on l′.
For the case l′ = l, we know that, at the l-th iteration, the set T l

i that contains qTi
rep also contains

the state qi ∈ Ql. Now, let l′ > l be some subsequent iteration, and let T l′−1
i be the set containing

qTi
rep at the (l′−1)-th iteration. If T l′−1

i is not separated at the l′-th iteration, then, by the induction
hypothesis, we are done. Otherwise, it must be that any newly created set contains a state q ∈ Ql′ ,
as these sets are obtained by intersections with Hl′ . Then, since Ql′ ⊆ Ql, we are done. Applying
this claim to the m-th iteration, we conclude that there is a state q ∈ Ti ∩Ql, and thus qTi

rep ∈ Ql.
⊓⊔

Lemma 5. tr val(maxw(qTi
rep)) ≥ l and tr val(maxw(q

Tj
rep)) ≥ l in all LDFA for L.

18

Proof. We prove the lemma for maxw(qTi
rep), and the proof for maxw(q

Tj
rep) follows the same

arguments. By Lemma 4 we know that qTi
rep ∈ Ql, so by definition qTi

rep is reachable in A from
the initial state using transitions with value at least l. Thus, tr val(maxw(qTi

rep)) ≥ l in A. Also,
by definition there is some state q ∈ Q with acceptance value at least l that is reachable in A
from qTi

rep using zero or more transitions with value at least l. Let w ∈ Σ∗ be the word read along
these transitions. Consider the word maxw(qTi

rep) ·w, it is now easy to see that L(A)(maxw(qTi
rep) ·

w)) ≥ l. Now, assume by way of contradiction that tr val(maxw(qTi
rep)) < l in some LDFA A′

for L. Then, since A′ is deterministic it follows that L(A′)(maxw(qTi
rep) · w)) < l, which is a

contradiction. ⊓⊔

Based on the above, we prove that the words maxw(qTi
rep) and maxw(q

Tj
rep) cannot reach the

same state in an LDFA for L. By Lemma 4, there is a distinguishing tail z ∈ Σ∗. That is, without
loss of generality, z is read in A from qTi

rep with value at least l, and is read from q
Tj
rep with value

less than l. Let us examine the words maxw(qTi
rep) · z and maxw(q

Tj
rep) · z. By applying Lemma 5

on A, we get that L(A)(maxw(qTi
rep) ·z) ≥ l and that L(A)(maxw(q

Tj
rep) ·z) < l. Now, let U be an

LDFA for L, and assume by way of contradiction that maxw(qTi
rep) and maxw(q

Tj
rep) are reaching

the same state in U . Let q be that state. Applying Lemma 5 on U , we get that both maxw(qTi
rep)

and maxw(q
Tj
rep) are reaching q with traversal value at least l. Now, let us examine the value vz

with which z is read from q. If vz ≥ l, then L(U)(maxw(q
Tj
rep) · z) ≥ l, which contradicts the fact

that L(A)(maxw(q
Tj
rep) · z) < l. On the other hand, if vz < l, then L(U)(maxw(qTi

rep) · z) < l,
which contradicts the fact that L(A)(maxw(qTi

rep) · z) ≥ l.
Thus, we conclude that |Amin| is minimal.
It is left to prove that the time complexity of the algorithm is polynomial. Recall that the algo-

rithm has three stages: constructing the automata A1,A2, . . . ,Am and minimizing them, generat-
ing A′ from A, and constructing Amin from A′. We analyze the running time of each stage.

In the first stage we construct O(|L|) automata and minimize them. The complexity of con-
structing and minimizing Ai is O(|Q| log |Q|+ |δ|) for all i, as follows. To get Qi, we have to get
rid of all states that are not reachable from the initial state using transitions with value at least i, or
have no state with acceptance value at least i that is reachable from them using zero or more tran-
sitions with value at least i. We start with A′

i in which Q′
i = Q, the transitions δ′i are all transitions

with value at least i, and F ′
i are all states with acceptance value at least i. It takes O(|Q| + |δ|)

to construct A′
i, since defining δ′i and F ′

i requires one pass on the edges and the states, and Q′
i is

already defined to be Q. We then apply BFS to A′
i, starting in the initial state, and omit from Q′

i

all unreachable states. This takes O(|Q|+ |δ|). Then we apply the algorithm for minimizing DFA
using the Myhill-Nerode theorem, and omit all those states that are equivalent to a rejecting sink.
This can be done in O(|Q| log(|Q|)) [9]. The states that remain are exactly the states of Qi. Also,
we get the partition of Qi according to the Myhill-Nerode theorem, that is, we minimize Ai. All
in all, we get time complexity of O(|L|(|Q| log |Q|+ |δ|)) for this part.

The time complexity of the second stage is O(|L|× (|Q|+ |δ|)), as defining δ′ and F ′ requires
one pass over all edges and states, performing at most |L| checks for each edge and state.

As for the third stage, note that in order to construct Qmin, we defined, for all 0 ≤ i ≤ m,
a function fi : Q → {1...di}, such that fi(q) = j iff q ∈ T i

j . Also, we defined gi : Q →
{1...ni} ∪ {#}, such that for q ∈ Qi we have gi(q) = k iff q ∈ Si

k, and for q ̸∈ Qi we
have gi(q) = #. In the above notations, we can get Qmin by finding fm. We show that for
all 1 ≤ i ≤ m, we can obtain fi from fi−1 and gi in time O(|Q| log |Q|). We first compute
fi−1 · gi : Q → {1...di−1}× ({1...ni} ∪ {#}), that is, fi−1 · gi(q) = ⟨fi−1(q), gi(q)⟩. Assuming
random access to fi−1 and gi, this can be done in O(|Q|). For all 1 ≤ j ≤ di−1, we then consider

19

the states that are mapped by fi−1 · gi to ⟨j,#⟩. We arbitrarily choose some value kj for which
⟨j, kj⟩ ∈ image(fi−1 · gi), and change the mapping of these states to be ⟨j, kj⟩. If no such kj
exists, we leave their mapping as is. This can be done in time O(|Q| log |Q|), by first sorting the
states according to their values in fi−1 · gi. We denote the new mapping by fi−1 · g′i. Finally, we
order the finite set image(fi−1 · g′i), and define fi(q) to be the index of fi−1 · g′i(q) in that order.
Note that di = |image(fi−1 · g′i)|. It also takes time O(|Q|). Altogether, constructing Qmin takes
time O(|L|×|Q| log |Q|). Defining δmin and Fmin requires to find qTrep for all T ∈ Qmin. We can
define in time O(|L| × |Q|) a mapping f : Q → {1...m} such that f(q) = i iff i is the maximal
index for which q ∈ Ai. Finding qTrep now takes time O(|T |), so finding qTrep for all T ∈ Qmin

takes time O(|Q|). After qTrep is found, it takes time O(|δ|) to define δmin, and time O(|Q|) to
define Fmin. Thus, the time complexity of this stage is O(|L| × |Q| log |Q|+ |δ|).

Altogether, we end up with a polynomial time complexity of O(|L|(|Q| log |Q|+ |δ|)).
We can now conclude with the following:

Theorem 3. An LDFA over a fully ordered lattice can be minimized in polynomial time.

References
1. R. Alur, A. Kanade, and G. Weiss. Ranking automata and games for prioritized requirements. In Proc.

20th CAV, LNCS 5123, pages 240-253, 2008.
2. ESF Network programme. Automata: from mathematics to applications (AutoMathA).

http://www.esf.org/index.php?id=1789, 2010.
3. G. Bruns and P. Godefroid. Model checking partial state spaces with 3-valued temporal logics. In Proc.

11th CAV, pages 274–287, 1999.
4. G. Bruns and P. Godefroid. Temporal logic query checking. In Proc. 16th LICS, pages 409–420. IEEE

Computer Society, 2001.
5. W. Chan. Temporal-logic queries. In Proc. 12th CAV, LNCS 1855, pages 450–463, Springer, 2000.
6. M. Chechik, B. Devereux, and A. Gurfinkel. Model-checking infinite state-space systems with fine-

grained abstractions using SPIN. In Proc. 8th SPIN, LNCS 2057, pages 16–36. Springer, 2001.
7. M. Droste, W. Kuich, and H. Vogler (eds.). Handbook of Weighted Automata. Springer, 2009.
8. S. Easterbrook and M. Chechik. A framework for multi-valued reasoning over inconsistent viewpoints.

In Proc. 23rd Int. Conf. on Software Engineering, pages 411–420. IEEE Computer Society Press, 2001.
9. J.E. Hopcroft and J.D. Ullman. Introduction to Automata Theory, Languages, and Computation. In

Addison-Wesley, 1979.
10. S. Graf and H. Saidi. Construction of abstract state graphs with PVS. In Proc. 9th CAV, LNCS 1254,

pages 72–83, 1997.
11. T.A. Henzinger. From boolean to quantitative notions of correctness. In Proc. 37th POPL, pages 157–

158, 2010.
12. A. Hussain and M. Huth. On model checking multiple hybrid views. Technical Report TR-2004-6,

University of Cyprus, 2004.
13. R.M. Karp. Reducibility among combinatorial problems. In Complexity of Computer Computations,

pages 85–103, 1972.
14. O. Kupferman and Y. Lustig. Lattice automata. In Proc. 8th VMCAI, LNCS 4349 of Lecture Notes in

Computer Science, pages 199 – 213, 2007.
15. O. Kupferman and Y. Lustig. Latticed simulation relations and games. International Journal on the

Foundations of Computer Science, 21(2):167–189, 2010.
16. D. Kirsten and I. Mäurer. On the determinization of weighted automata. Journal of Automata, Languages

and Combinatorics, 10(2/3):287–312, 2005.
17. D. Krob. The equality problem for rational series with multiplicities in the tropical semiring is undecid-

able. Journal of Algebra and Computation, 4:405–425, 1994.
18. Y. Li and W. Pedrycz. Minimization of lattice finite automata and its application to the decomposition

of lattice languages. Fuzzy Sets and Systems, 158(13):1423–1436, 2007.

20

19. M. Mohri. Finite-state transducers in language and speech processing. Computational Linguistics,
23(2):269–311, 1997.

20. D.S. Malik, J.N. Mordeson, and M.K. Sen. Minimization of fuzzy finite automata. Information Sciences
113: 323–330. Elsevier, 1999.

21. J. Myhill. Finite automata and the representation of events. Technical Report WADD TR-57-624, pages
112–137, Wright Patterson AFB, Ohio, 1957.

22. A. Nerode. Linear automaton transformations. Proceedings of the American Mathematical Society,
9(4):541–544, 1958.

23. L. Zekai and S. Lan. Minimization of lattice automata. In Proc. 2nd ICFIE, pages 194–205, 2007.
24. J. Eisner. Simpler and More General Minimization for Weighted Finite-State Automata. HLT-NAACL,

2003.

21

