
Lower Bounds on Witnesses for Nonemptiness of
Universal co-Büchi Automata

Orna Kupferman1 and Nir Piterman2?

1 Hebrew University
2 Imperial College London

Abstract. The nonemptiness problem for nondeterministic automata on infinite
words can be reduced to a sequence of reachability queries. The length of a shortest
witness to the nonemptiness is then polynomial in the automaton. Nonemptiness
algorithms for alternating automata translate them to nondeterministic automata.
The exponential blow-up that the translation involves is justified by lower bounds
for the nonemptiness problem, which is exponentially harder for alternating au-
tomata. The translation to nondeterministic automata also entails a blow-up in the
length of the shortest witness. A matching lower bound here is known for cases
where the translation involves a 2O(n) blow up, as is the case for finite words or
Büchi automata.
Alternating co-Büchi automata and witnesses to their nonemptiness have applica-
tions in model checking (complementing a nondeterministic Büchi word automa-
ton results in a universal co-Büchi automaton) and synthesis (an LTL specification
can be translated to a universal co-Büchi tree automaton accepting exactly all the
transducers that realize it). Emptiness algorithms for alternating co-Büchi automata
proceed by a translation to nondeterministic Büchi automata. The blow up here is
2O(n log n), and it follows from the fact that, on top of the subset construction, the
nondeterministic automaton maintains ranks to the states of the alternating automa-
ton. It has been conjectured that this super-exponential blow-up need not apply to
the length of the shortest witness. Intuitively, since co-Büchi automata are memo-
ryless, it looks like a shortest witness need not visit a state associated with the same
set of states more than once. A similar conjecture has been made for the width of
a transducer generating a tree accepted by an alternating co-Büchi tree automaton.
We show that, unfortunately, this is not the case, and that the super-exponential
lower bound on the witness applies already for universal co-Büchi word and tree
automata.

1 Introduction

Finite automata on infinite objects were first introduced in the 60’s. Motivated by deci-
sion problems in mathematics and logic, Büchi, McNaughton, and Rabin developed a
framework for reasoning about infinite words and trees [2, 11, 16]. The framework has
proven to be very powerful. Automata, and their tight relation to second-order monadic
logics were the key to the solution of several fundamental decision problems in mathe-
matics and logic [17]. Indeed, for many highly expressive logics, it is possible to translate
? Supported by the UK EPSRC project Complete and Efficient Checks for Branching-Time Ab-

stractions (EP/E028985/1).

a formula in the logic to an automaton accepting exactly all the models satisfying the for-
mula. The formula is then satisfiable iff the language of the automaton is not empty. Thus,
decidability can be reduced to the emptiness problem.

Today, automata on infinite objects are used for specification and verification of non-
terminating systems [18, 9, 19]. The emptiness problem plays a key role also in these
more modern applications. Two important examples are model checking and synthesis.
Model checking a system with respect to a specification is reduced to checking the empti-
ness of the product of the system with an automaton accepting exactly all models that
violate the specification [19]. Synthesis of a reactive system that satisfies a desired spec-
ification is reduced to checking the emptiness of a tree automaton accepting all possible
strategies that realize the specification [15].

In the case of finite nondeterministic automata on finite words, the emptiness prob-
lem is simple: The automaton accepts some word if there is a path from an initial state
to an accepting state (c.f., [4]). Thus, the automaton is viewed as a graph, its alphabet
is ignored, and emptiness is reduced to reachability in finite graphs. An important and
useful outcome of this simplicity is the fact that when the language of the automaton
is not empty, it is easy to return a witness to the nonemptiness — a word v that labels
a path from an initial state to a final states. Clearly, reachability may be checked only
along simple paths, thus the length of a witness is bounded by the number of states of the
automaton.

The case of finite nondeterministic automata on infinite words is similar. Acceptance
in such automata depends on the set of states that a run visits infinitely often. For ex-
ample, in the Büchi acceptance condition, some states are designated as accepting, and
in order for a run to be accepting it has to visit at least one of these states infinitely of-
ten. Nonemptiness is slightly more complicated, but again, the automaton is viewed as
a graph, its alphabet is ignored, and emptiness is reduced to a sequence of reachability
queries in finite graphs. Now, the witness to the nonemptiness is a word of the form v ·uω ,
where the word v labels a path from an initial state to some accepting state, and the word
u labels a path from this accepting state to itself. Since both v and u are extracted from
reachability queries on the graph, their lengths are bounded by the number of states of the
automaton.1 For acceptance conditions more complicated than Büchi, the emptiness test
is more involved, but still, as long as we consider nondeterministic automata, emptiness
can be reduced to a sequence of reachability queries on the graph of the automaton, and
a nonempty automaton has a witness of the form v · uω for v and u polynomial in the
number of states of the automaton.

Alternating automata enrich the branching structure of the automaton by combining
universal and existential branching. In the presence of alternation, we can no longer ig-
nore the alphabet when reasoning about emptiness. Indeed, the different copies of the
automaton have to agree on the letters they read on the same position of the word. The
standard solution is to remove alternation by translating the automaton to an equiva-
lent nondeterministic automaton, and checking the emptiness of the latter. This simple
solution is optimal, as the exponential blow-up that the translation involves is justified
by lower bounds for the nonemptiness problem, which is exponentially harder in the

1 In fact, it can be shown that even the sum of their lengths is bounded by the number of states of
the automaton [6].

alternating setting (c.f., NLOGSPACE vs. PSPACE for nondeterministic vs. alternating
automata on finite words).

The translation to nondeterministic automata also entails an exponential blow-up in
the length of the shortest witness. Can this blow up be avoided? A negative answer for
this question is known for alternating automata on finite words and alternating Büchi
automata. There, removing alternation from an alternating automaton with n states results
in a nondeterministic automaton with 2O(n) states [3, 12], and it is not hard to prove a
matching lower bound [1]. Note also that a polynomial witness would have led to the
nonemptiness problem being in NP, whereas it is known to be PSPACE-complete.

Things become challenging when the removal of alternation involves a super-exponential
blow up. In particular, emptiness algorithms for alternating co-Büchi automata proceed
by a translation to nondeterministic Büchi automata, and the involved blow up is 2O(n logn).
Alternating co-Büchi automata have been proven useful in model checking (complement-
ing a nondeterministic Büchi word automaton results in a universal co-Büchi automaton)
and synthesis (an LTL specification can be translated to a universal co-Büchi tree au-
tomaton accepting exactly all the transducers that realize it [8, 5]). In the case of model
checking, the witness to the nonemptiness is a computation that violates the property. In
the case of synthesis, the witness is a system that realizes the specification). Thus, we
clearly seek shortest witnesses.

The 2O(n logn) blow up follows from the fact that, on top of the subset construction,
the nondeterministic automaton maintains ranks to the states of the alternating automa-
ton. It has been conjectured that this super-exponential blow-up need not apply to the
length of the shortest witness. Intuitively, since co-Büchi automata are memoryless, it
seems as if a shortest witness need not visit a state associated with the same set of states
more than once. This intuition suggests that a shortest witness need not be longer than
2O(n). A similar conjecture has been made for the width of a transducer2 generating a
tree accepted by an alternating co-Büchi tree automaton [8].

In this paper we show that, unfortunately, this is not the case, and the super-exponential
blow-up in the translation of alternating co-Büchi automata to nondeterministic Büchi au-
tomata is carried over to a super-exponential lower bound on the witness to the nonempti-
ness. In fact, the lower bound applies already for universal co-Büchi automata. We start
with the linear framework. There, we show that for every odd integer n ≥ 1, there exists
a universal co-Büchi word automaton An with n states such that the shortest witness to
the nonemptiness of An has a cycle of length n+1

2 !.
In the branching framework, the witness to the nonemptiness is a transducer that gen-

erates a tree accepted by the automaton. The linear case trivially induces a lower bound
on the size of such a transducer. In the branching framework, however, it is interesting
to consider also the width of the witness transducer. In particular, the LTL synthesis al-
gorithm in [8], which is based on checking the nonemptiness of a universal co-Büchi
tree automaton, is incremental, and it terminates after k iterations, with k being an upper
bound on the width of a transducer generating a tree accepted by the automaton. The
bound used in [8] is super-exponential, and has been recently tightened to 2n(n!)2 [14,
10]. It is conjectured in [8] that the bound can be improved to 2O(n). As in the word case,
the intuition is convincing: The alternating automaton may send a set of states to a sub-

2 Essentially, the width of a transducer is the number of different states that the transducer may
be at after reading different input sequences of the same length.

tree of the input tree, in which case the subtree should be accepted by all the states in the
set. The memoryless nature of the co-Büchi condition suggests that if in an accepting run
of the automaton the same set of states is sent to different subtrees, then there is also an
accepting run on a tree in which these subtrees are identical. Thus, we do not need more
than 2n different subtrees in a single level of the input tree. We show that, unfortunately,
this intuition fails, and there is a lower bound of n+1

2 ! on the width of the transducer. For-
mally, we show that for every odd integer n ≥ 1, there exists a universal co-Büchi tree
automaton Bn with n states such that every tree accepted by Bn is such that, all levels
beyond a finite prefix have at least n+1

2 ! different subtrees. Thus, the minimal width of a
transducer that generate a tree accepted by Bn has width at least n+1

2 !.
Our constructions use a very large alphabet. Indeed, the alphabet of the automataAn

and Bn has n+1
2 ! letters. In the case of words, the word accepted by the automaton is a

cycle consisting of all these letters ordered in some fixed order (say, lexicographically).
The case of trees is similar. We were not able to reduce the size of the alphabet. While
the question of a smaller alphabet is very interesting, it is of less practical importance:
Constructions for removal of alternation introduce an exponential alphabet in an interme-
diate step (where the exponent is quadratic in the number of states). The larger alphabet
is discarded at a later stage but the degree of nondeterminism induced by it remains in
the resulting nondeterministic automaton. Furthermore, the size of the alphabet does not
play a role in these constructions, and obviously does not play a role when checking the
emptiness of a nondeterministic automaton.

2 Universal co-Büchi Word Automata

A word automaton is A = 〈Σ,Q, δ,Qin, α〉, where Σ is the input alphabet, Q is a finite
set of states, δ : Q×Σ → 2Q is a transition function, Qin ⊆ Q is a set of initial states,
and α is an acceptance condition that defines a subset of Qω .

Given an input word w = σ0 · σ1 · · · in Σω , a run ofA on w is a word r = q0, q1, . . .
in Qω such that q0 ∈ Qin and for every i ≥ 0, we have qi+1 ∈ δ(qi, σi); i.e., the run
starts in the initial state and obeys the transition function. Since the transition function
may specify many possible transitions for each state and letter, A may have several runs
on w. A run is accepting iff it satisfies the acceptance condition α. We consider here
the Büchi acceptance condition, where α ⊆ Q is a subset of Q. For a run r, let inf(r)
denote the set of states that r visits infinitely often. That is, inf(r) = {q ∈ Q : qi =
q for infinitely many i ≥ 0}. A run r is accepting iff inf(r) ∩ α 6= ∅. That is, r is
accepting if some state in α is visited infinitely often. The co-Büchi acceptance condition
dualizes the Büchi condition. Thus, again α is a subset of Q, but a run r is accepting if
inf(r) ∩ α = ∅. Thus, r visits all the states in α only finitely often.

If the automaton A is nondeterministic, then it accepts an input word w iff it has an
accepting run on w. If A is universal, then it accepts w iff all its runs on w are accept-
ing. The language of A, denoted L(A) is the set of words that A accepts. Dualizing a
nondeterministic Büchi automaton (NBW, for short) amounts to viewing it as a universal
co-Büchi automaton (UCW, for short). It is easy to see that by dualizing A, we get an
automaton that accepts its complementary language.

In [7], Kupferman and Vardi analyze runs of UCW in terms of a ranking function one
can associate with their run DAG. In the rest of this section, we describe their analysis.

Let A = 〈Σ,Q,Qin, δ, α〉 be a universal co-Büchi automaton with α. Let |Q| = n.
The runs of A on a word w = σ0 · σ1 · · · can be arranged in an infinite DAG (directed
acyclic graph) G = 〈V,E〉, where

– V ⊆ Q× IN is such that 〈q, l〉 ∈ V iff some run of A on w has ql = q. For example,
the first level of G contains the vertices Qin × {0}.

– E ⊆
⋃
l≥0(Q×{l})× (Q×{l+ 1}) is such that E(〈q, l〉, 〈q′, l + 1〉) iff 〈q, l〉 ∈ V

and q′ ∈ δ(q, σl).

Thus, G embodies exactly all the runs of A on w. We call G the run DAG of A on w. We
say that a vertex 〈q, l〉 in G is an α-vertex iff q ∈ α. We say that G is accepting if each
path p in G contains only finitely many α-vertices. It is easy to see that A accepts w iff
G is accepting.

Let [2n] denote the set {0, 1, . . . , 2n}. A ranking for G is a function f : V → [2n]
that satisfies the following conditions:

1. For all vertices 〈q, l〉 ∈ V , if f(〈q, l〉) is odd, then q 6∈ α.
2. For all edges 〈〈q, l〉, 〈q′, l + 1〉〉 ∈ E, we have f(〈q′, l + 1〉) ≤ f(〈q, l〉).

Thus, a ranking associates with each vertex in G a rank in [2n] so that ranks along paths
decrease monotonically, and α-vertices cannot get an odd rank. Note that each path in
G eventually gets trapped in some rank. We say that the ranking f is an odd ranking if
all the paths of G eventually get trapped in an odd rank. Formally, f is odd iff for all
paths 〈q0, 0〉, 〈q1, 1〉, 〈q2, 2〉, . . . in G, there is l ≥ 0 such that f(〈ql, l〉) is odd, and for
all l′ ≥ l, we have f(〈ql′ , l′〉) = f(〈ql, l〉). Note that, equivalently, f is odd if every path
of G has infinitely many vertices with odd ranks.

We now analyze the form of accetping run DAGs. The following three lemmata relate
to DAGs induced by words accepted byA. Consider a (possibly finite) DAG G′ ⊆ G. We
say that a vertex 〈q, l〉 is finite in G′ iff only finitely many vertices in G′ are reachable
from 〈q, l〉. We say that a vertex 〈q, l〉 is α-free in G′ iff all the vertices in G′ that are
reachable from 〈q, l〉 are not α-vertices. Note that, in particular, 〈q, l〉 is not an α-vertex.

We define an infinite sequence of DAGs G0 ⊇ G1 ⊇ G2 ⊇ G3 ⊇ . . . as follows.

– G0 = G.
– G2i+1 = G2i \ {〈q, l〉 | 〈q, l〉 is finite in G2i}.
– G2i+2 = G2i+1 \ {〈q, l〉 | 〈q, l〉 is α-free in G2i+1}.

Lemma 1. For every i ≥ 0, there exists li such that for all l ≥ li, there are at most n− i
vertices of the form 〈q, l〉 in G2i.

Lemma 1 implies that G2n is finite, and G2n+1 is empty.
Each vertex 〈q, l〉 in G has a unique i ≥ 1 such that 〈q, l〉 is either finite in G2i or

α-free in G2i+1. This induces a function f : V → [2n] defined as follows.

f(〈q, l〉) =
[

2i If 〈q, l〉 is finite in G2i.
2i+ 1 If 〈q, l〉 is α-free in G2i+1.

Lemma 2. For every two vertices 〈q, l〉 and 〈q′, l′〉 in G, if 〈q′, l′〉 is reachable from
〈q, l〉, then f(〈q′, l′〉) ≤ f(〈q, l〉).

Lemma 3. For every infinite path in G, there exists and a vertex 〈q, l〉 such that all the
vertices 〈q′, l′〉 on the path that are reachable from 〈q, l〉 have f(〈q′, l′〉) = f(〈q, l〉).

We can now conclude with Theorem 1 below.

Theorem 1. [7] The DAG G is accepting iff it has an odd ranking.

Proof. Assume first that there is an odd ranking for G. Then, every path in G eventually
gets trapped in some odd rank. Hence, as α-vertices cannot get this rank, the path visits
α only finitely often, and we are done.

For the other direction, note that Lemma 2, together with the fact that a vertex gets
an odd rank only if it is α-free, imply that the function f described above is a ranking.
Lemma 3 then implies that the ranking is odd. ut

3 Lower Bound on Length of Accepted Words

In this section we construct, for every odd n ≥ 1, a UCW An with n states such that
the shortest words accepted by A have a cycle of length n+1

2 !. The alphabet Σn of An
has n+1

2 ! letters, and there is an ordering ≤ of all the letters in Σn such that An accepts
exactly all words vuω , where v ∈ Σ∗n and u ∈ (Σn)

n+1
2 ! has all the letters in Σn ordered

according to ≤.
Formally, given an odd n ≥ 1, let An = 〈Σn, Qn, δn, Qn, αn〉, where

– LetΠn be the set of permutations on {1, 3, 5, . . . , n} (the odd members of {1, . . . , n}),
and let ≤ be the lexicographic ordering3 on the members of Πn. Then, Σn ⊆
Πn × Πn is such that 〈π, π′〉 ∈ Σn iff π′ is the (cyclic) successor of π in the
order ≤. Thus, each letter of Σn is a pair 〈π, π′〉 of permutations, such that π′

is the successor of π in the lexicographic order of Πn. Note we refer to the or-
der in a cyclic way, thus 〈n . . . 31, 13 . . . n〉 is a letter in Σn. For example, Π5 =
{135, 153, 315, 351, 513, 531} andΣ5 = {〈135, 153〉, 〈153, 315〉, 〈315, 351〉, 〈351, 513〉,
〈513, 531〉, 〈531, 135〉}. Note that each permutation inΠn contributes toΣn one let-
ter, thus |Σn| = |Πn| = n+1

2 !.
– Qn = {1, . . . , n}.
– Consider a permutation π ∈ Πn. An even-extension of π is a permutation σ of
{1, 2, 3, . . . , n} obtained from π by using π for the odd positions and inserting in
each even position e the even number e. For example, if π = 153, then σ = 12543.
Let π and π′ be such that 〈π, π′〉 ∈ Σn, and let σ = i1 · · · in and σ′ = j1 · · · jn be
the even extensions of π and π′. Then, for every 1 ≤ k ≤ n, we define

δn(ik, 〈π, π′〉) =
{
{j1, . . . , jk} if k is odd
{j1, . . . , jk−1} if k is even.

That is, when a state h ∈ Qn reads 〈π, π′〉, it checks its location in σ (this is the
k for which h = ik) and sends copies to all states in smaller (or equal, if k is odd)
locations in σ′ (these are the states h′ for which h′ = jk′ for k′ smaller than (or equal
to) k. Note that for all even k’s, we have δn(ik, 〈π, π′〉) = δn(ik−1, 〈π, π′〉).

3 The proof stays valid with every ordering.

For example, δ5(3, 〈135, 153〉) = {1, 2, 5}. Indeed, the location of 3 in 12345 is 3
and the states located in the first three positions in 12543 are 1, 2, and 5. The other
transitions on the letter 〈135, 153〉 are defined similarly:
• δ5(1, 〈135, 153〉) = δ5(2, 〈135, 153〉) = {1},
• δ5(3, 〈135, 153〉) = δ5(4, 〈135, 153〉) = {1, 2, 5}, and
• δ5(5, 〈135, 153〉) = {1, 2, 3, 4, 5}.

– αn = {i | i is even}. Thus, every infinite run of An has to visit only finitely many
even states.

Note that for every word v ∈ Σω , the run DAG of An on v has all the states in Qn
appearing in every level of the DAG. This follows from the set of initial states ofAn being
Qn and the fact that for every letter a = 〈π, π′〉 ∈ Σn, there exists one state q in Qn (q
is last number in π) for which the transition from q on a contains all the states in Qn.

Let u be the word in (Σn)
n+1

2 ! that contains all the letters in Σn ordered lexi-
cographically. For example, when n = 5, we have that u = 〈135, 153〉 〈153, 315〉
〈315, 351〉〈351, 513〉 〈513, 531〉〈531, 135〉. We prove that An accepts the word uω . It
follows that An accepts vuω for every word v ∈ Σ∗.

1 2 3 4 5

1 2 5 4 3

3 2 1 4 5

3 2 5 4 1

5 2 1 4 3

5 2 3 4 1

1 2 3 4 5

〈135, 153〉

〈153, 315〉

〈315, 351〉

〈351, 513〉

〈513, 531〉

〈531, 135〉

Fig. 1. The accepting run of A5 on uω .

Lemma 4. uω ∈ L(An).

Proof. Consider the run DAG G of An on uω . In Figure 1, we describe the accepting
run DAG of A5 on uω . As argued above, each level l of G consists of all the vertices in
Qn × {l}. We arrange the vertices of G in columns numbered 1 to n. In the level that
reads 〈π, π′〉, we arrange the vertices according to the position of the state component of
each vertex in the even extension σ of π. For example, when we read 〈135, 153〉 in level
0, we consult the even extension 12345 of 135 and put the vertex 〈1, 0〉 in Column 1 (the
leftmost), put 〈2, 0〉 in Column 2, and so on. Since u contains all the letters inΣn ordered
lexicographically, the letter to be read in the next level is 〈π′, π′′〉, and the vertices are
arranged in columns in this level according to π′. By the definition of δn, the above
implies that the edges in G go from columns to smaller or equal columns. Accordingly,
all α-vertices appear in even columns and all other vertices appear in odd columns.

We prove that G has an odd ranking. For that, we prove, by induction on i, that the
vertices in Column i, for 1 ≤ i ≤ n, get rank i (independent of their level).

By definition, the set of successors of a vertex in Column 1 is a singleton containing
the next vertex in Column 1. As all vertices in this column are not α-vertices, they are
all α-free and they get rank 1. The set of successors of vertices in Column 2 is again
a singleton containing only the next vertex in Column 1. Since vertices in Column 2
are α-vertices, they do not get rank 1. In the DAG G2, however, these vertices have no
successors. Thus, they are finite, and get rank 2.

The induction step is similar: the DAG Gi contains only vertices in Columns i to n.
When i is odd, the vertices in Column i are α-free, and get rank i. When i is even, the
vertices in Column i are finite, and get rank i too. ut

Consider two letters 〈π1, π
′
1〉 and 〈π2, π

′
2〉 in Σn. We say that 〈π1, π

′
1〉 and 〈π2, π

′
2〉

are gluable if π′1 = π2. Otherwise, 〈π1, π
′
1〉 and 〈π2, π

′
2〉 are non-gluable. We say that

location i ∈ IN is an error in w if letters i and i+1 in w are non-gluable. A word w is bad
if w has infinitely many errors. The definition of non-gluable is extended to finite words
in the obvious way. Consider a word v ∈ Σ∗n. We denote by first(v) the permutation
π ∈ Πn such that the first letter of v is 〈π, π′〉, for the (lexicographic) successor π′ of π.
Similarly, we denote by last(v) the permutation π′ such that the last letter of v is 〈π, π′〉
for the predecessor π of π′. Given an even-extension σ = i1 · · · in of a permutation, we
say that the state ik is the k-th state appearing in σ.

Consider a fragment of a run that starts in permutation π and ends in permutation π′.
That is, the fragment reads the word v, the permutation π is first(v), and the permutation
π′ is last(v). We arrange the states in Qn according to their order in the even extensions
σ and σ′ of π and π′. In the following lemma, we show that if q is the k-th state in σ,
q′ is the k′-th state in σ′, and k′ ≤ k, then q′ is reachable from q in this run fragment.
Furthermore, if k′ < k then q′ is reachable from q along a run that visits α.

Lemma 5. Consider an infinite word σ0σ1 · · · and a run DAG G of An on it. Let l be a
level of G, let l′ > 0 be an integer, and let v = σl · · ·σl+l′ be the subword of length l′

read at the level l. Let k and k′ be such that k is odd and 1 ≤ k′ ≤ k ≤ n. Let q be
the k-th state in the even extension of first(v), and let q′ be the k′-th state in the even
extension of last(v). Then, the vertex 〈q′, l + l′〉 is reachable from the vertex 〈q, l〉 of G.
Moreover, if l′ > 1 and k′ < k, then 〈q′, l + l′〉 is reachable from 〈q, l〉 along a path that
visits α.

Proof. We start with the first part of the lemma and prove it by induction on l′ (that is, the
length of v). For l′ = 1, the lemma follows from the definition of the transition function.
For the induction step, consider a word v = wa. Let first(w) = π1, last(w) = π2 and
a = 〈π3, π4〉. Let i1 · · · in, j1 · · · jn, c1 · · · cn, and d1 · · · dn be the even extensions of π1,
π2, π3, and π4, respectively.

Consider the run DAG G ofAn on the input word. By the induction hypotheses, which
holds for w, we know that for every odd k and for all k′ ≤ k, the vertex 〈jk′ , l + |w|〉 is
reachable from the vertex 〈ik, l〉. We consider now the edges of G reading the last letter
a. We distinguish between two cases. If π2 = π3, the lemma follows from the definition
of the transition function. If π2 6= π3, consider the state ck appearing in the k-th position
in even extension of π3. Let m be such that jm = ck. We again distinguish between
two cases. If m ≤ k, the lemma follows from the definition of the transition function. If
m > k, then there exist m′ ≤ k and m′′ > k such that cm′′ = jm′ . By the induction
hypothesis, 〈jm′ , l + |w|〉 is reachable from 〈ik, l〉. As jm′ = cm′′ , the transition of cm′′

reading 〈π3, π4〉 implies that for every k′ < m′′ (and in particular for every k′ < k) the
vertex 〈dk′ , l + |w|+ 1〉 is reachable from 〈ik, l〉.

We now prove the second part of the lemma. By the first part, the vertex 〈jk−1, l + l′ − 1〉
is reachable from 〈ik, l〉. As k is odd, k − 1 is even, thus, by the definition of an even-
extension, ck−1 = k − 1, thus 〈ck−1, l + l′ − 1〉 is an α-vertex. By the definition of the
transition function, for every k′ < k − 1, there is an edge from 〈ck−1, l + l′ − 1〉 to
〈dk′ , l + l′〉. It follows that there is a path that visits α from 〈ik, l〉 to 〈dk′ , l + l′〉. ut

We use this result to show that bad words cannot be accepted by An. Indeed, when-
ever there is a mismatch between the permutations, we find a state that reduces its posi-
tion in the permutations. This state, gives rise to a fragment that visits α. If this happens
infinitely often, we get a run that visits α infinitely often.

Lemma 6. Every bad word u is rejected by An.

Proof. We start with the case that u = vwω . Assume that |w| > 1. Otherwise, we replace
w by w · w. By the definition of bad words, the word wω contains two successive letters
〈π1, π

′
1〉 and 〈π2, π

′
2〉 such that π′1 6= π2. Let l be a level in the run DAG of An on vwω

such that l > |v| is such that 〈π1, π
′
1〉 is being read in level l − 1 and 〈π2, π

′
2〉 is being

read in level l. Note that 〈π1, π
′
1〉 is then being read again at level l + |w| − 1.

We show that there exists a vertex 〈q, l + |w|〉 reachable from 〈q, l〉 such that the path
from 〈q, l〉 to 〈q, l + |w|〉 visits an α-vertex. SinceAn is universal, the block of |w| levels
of G that starts in level l repeats forever, thus it follows that G has a path with infinitely
many α-vertices.

Let w′ be the word read between levels l and l + |w|. Note that w′ is w shifted so
that first(w′) = π2, and last(w′) = π′1. Let σ = i1, . . . , in and σ′ = j1, . . . , jn be the
even-extensions of π2 and π′1, respectively. Since π2 6= π′1, there exists some odd k and
k′ such that ik = jk′ and k′ < k. Let q be the state ik = jk′ . The state q satisfies the
conditions of Lemma 5 with respect to level l and length l′ = |w|: it is the k-th state in
first(w′) for an odd k, and it is also the k′-th state in last(w′). Hence, since |w′| > 1 and
k′ < k, we have that 〈q, l + |w|〉 is reachable from 〈q, l〉 along a path that visits α.

Consider some bad word u ∈ Σω such that u does not have a cycle. It follows that u
can be partitioned to infinitely many finite subwords that are non-gluable. Consider two

such subwords w1 and w2. As w1 and w2 are non-gluable there exists some k and k′ such
that k′ < k and the k-th state in last(w1) is the k′-th state in first(w). There are infinitely
many subwords, we use Ramsey’s Theorem to find infinitely many points that have the
same k and k′. This defines a new partition to finite subwords. By using Lemma 5 we
can show that the run on w contains a path with infinitely many visits to α. ut

Corollary 1. The language of An is {vuω | v ∈ Σ∗n}.

In Figure 2, we describe a rejecting run of An on vω where v is obtained from
u by switching the order of the letters 〈315, 351〉 and 〈351, 513〉. The pair 〈153, 315〉
and 〈351, 513〉 is non-gluable. In the run DAG G, the state 1 satisfies the conditions of
Lemma 5 with l = 2 and l′ = 6. To see this, note that the subword of vω of length 6 that is
read at level 2 is w = 〈351, 513〉〈315, 351〉 〈513, 531〉 〈531, 135〉 〈135, 153〉〈153, 315〉,
with first(w) = 351 and last(w) = 315. The state 1 is the 5-th state in the even ex-
tension 32541 of first(w), thus k = 5, and is the 3-rd state in the even extension 32145
of last(w), thus k′ = 3. As promised in the lemma, the vertex 〈1, 8〉 is reachable from
the vertex 〈1, 2〉 via a path that visits the α-vertex 〈2, 3〉 — the rejecting path that is
highlighted in bold in the figure.

We can now conclude with the statement of the lower bound for the linear case.

Theorem 2. There is a n+1
2 ! lower bound on the length of a witness accepted by a UCW

with n states.

Proof. Consider the sequence of UCWs A1,A3, . . . defined above. By the above, the
language ofAn is {vuω | v ∈ Σ∗n}, where u is the word in (Σn)

n+1
2 ! that contains all the

letters inΣn ordered lexicographically. Thus, the length of witnesses is at least n+1
2 !. ut

4 Universal co-Büchi Tree Automata

Given an alphabet Σ and a set D of directions, a Σ-labeled D-tree is a pair 〈T, τ〉,
where T ⊆ D∗ is a tree over D and τ : T → Σ maps each node of T to a letter
in Σ. A transducer is a labeled finite graph with a designated start node, where the
edges are labeled by D and the nodes are labeled by Σ. A Σ-labeled D-tree is regular
if it is the unwinding of some transducer. More formally, a transducer is a tuple T =
〈D,Σ, S, sin, η, L〉, where D is a finite set of directions, Σ is a finite alphabet, S is a
finite set of states, sin ∈ S is an initial state, η : S ×D → S is a deterministic transition
function, and L : S → Σ is a labeling function. We define η : D∗ → S in the standard
way: η(ε) = sin, and for x ∈ D∗ and d ∈ D, we have η(x·d) = η(η(x), d). Intuitively, a
Σ-labeled D-tree 〈D∗, τ〉 is regular if there exists a transducer T = 〈D,Σ, S, sin, η, L〉
such that for every x ∈ D∗, we have τ(x) = L(η(x)). We denote by Ts the transducer
〈D,Σ, S, s, η, L〉, i.e., the transducer T with s as initial state. Given a transducer T , let
reach0(T) = {sin} and let reachi+1(T) =

⋃
s∈reachi(T)

⋃
d∈D{η(s, d)}. The width

of T is the minimal j such that |reachi(T)| = j for infinitely many i. That is, starting
from some i0, we have that |reachi(T)| ≥ j for all i ≥ i0. Note that while the width
of an infinite tree generated by a transducer is unbounded, the width of a transducer is
always bounded by its number of states.

1 2 3 4 5 levels 0, 6, 12, . . .

1 2 5 4 3 levels 1, 7, 13, . . .

3 2 1 4 5 levels 2, 8, 14, . . .

5 2 1 4 3 levels 3, 9, 15, . . .

3 2 5 4 1 levels 4, 10, 16, . . .

5 2 3 4 1 levels 5, 11, 17, . . .

1 2 3 4 5 levels 6, 12, 18, . . .

〈135, 153〉

〈153, 315〉

〈351, 513〉

〈315, 351〉

〈513, 531〉

〈531, 135〉

Fig. 2. The rejecting run ofA5 on (〈135, 153〉〈153, 315〉〈351, 513〉〈315, 351〉〈513, 531〉〈531, 135〉)ω .

A universal co-Büchi tree automaton (UCT, for short) is a tupleA = 〈Σ,D,Q,Qin, δ, α〉,
whereΣ,Q,Qin, and α are as in UCW,D is a set of directions, and δ : Q×Σ → 2(D×Q)

is a transition function. When the language of A is not empty, it accepts a regular Σ-
labeled D-tree [16, 13]. It is convenient to consider runs of A on transducers.

Consider a transducer T = 〈D,Σ, S, sin, η, L〉. A run of A on T can be arranged in
an infinite DAG G = 〈V,E〉, where

– V ⊆ S ×Q× IN.
– E ⊆

⋃
l≥0(S×Q×{l})× (S×Q×{l+1}) is such that E(〈s, q, l〉, 〈s′, q′, l + 1〉)

iff there is d ∈ D such that (d, q′) ∈ δ(q, L(s)) and η(s, d) = s′.

The run DAG G is accepting iff every path in it has only finitely many vertices in
S × α × IN. A transducer is accepted by A if its run DAG is accepting. In the sequel we
restrict attention to binary trees, i.e., D = {0, 1} and T = {0, 1}∗. All our ideas apply to
larger branching degrees as well.

5 Lower Bound on Width of Accepted Transducers

In [8], it is shown that if a UCT with n states is not empty, then it accepts a transducer of
width bounded by (2n!)n2n3n(n+1)/n!. An improved upper bound for determinization
shows that the width reduces to 2n(n!)2 [14, 10]. It is conjectured in [8] that this bound
can be tightened to 2O(n). Intuitively, it is conjectured there that if a UCT is not empty,
then different states of a transducer it accepts that are visited by the same set of states of
the UCT can be merged.

In this section we construct, for every odd n ≥ 1, a UCT Bn with n states such that
the language of Bn is not empty and yet the width of a transducer accepted by Bn is at
least n+1

2 !.
We extend the ideas in Section 3 to a tree automaton. The basic idea is to create a

mismatch between the permutation the automaton has to send to the left successor of a
node and the permutation the automaton has to send to the right successor. Doing so, we
force the input tree to display all possible permutations in one level. Thus, the minimal
width of a transducer generating such a tree is n+1

2 !.
Recall the alphabet Σn defined in Section 3. We reuse this alphabet in the context of

a tree. Whenever we refer to a letter 〈π, π′〉 ∈ Σn we assume that π′ is the successor
of π according to the lexicographic order. Consider a letter 〈π, π′〉 ∈ Σn and a node
x labeled by 〈π, π′〉. Intuitively, when the automaton Bn reads the node x, it “sends”
the permutation π′ to the left successor of x and it “sends” the permutation π (i.e., the
same permutation) to the right successor of x. Consider a Σn-labeled binary tree 〈T, τ〉.
Consider a node x and its two successors x · 0 and x · 1. Let τ(x) be 〈πx, π′x〉, τ(x · 0)
be 〈πx0, π′x0〉, and τ(x · 1) be 〈πx1, π′x1〉. We say that the node x is good if πx0 = π′x
and πx1 = πx. That is, the left successor of x is labeled by the successor permutation
π′x (paired with its successor permutation) and the right successor of x is labeled by the
same permutation πx (paired with its successor permutation). A tree 〈T, τ〉 is good if all
vertices x ∈ T are good. Given a permutation π there is a unique good tree whose root
is labeled by 〈π, π′〉. We denote this tree by 〈T, τπ〉.

Lemma 7. For every permutation π, the width of a transducer that generates 〈T, τπ〉 is
n+1

2 !.

Proof. We can construct a transducer generating 〈T, τπ〉 with n+1
2 ! states. Indeed, the

states of such a transducer are the letters of Σn. The 0-successor of a state 〈π, π′〉 is the
unique state 〈π′, π′′〉, for the successor π′′ of π′, and its 1-successor is 〈π, π′〉.

Let π0, . . . , πn+1
2 ! be an enumeration of all permutations according to the lexico-

graphic order. For simplicity we assume that π = π0. We can see that 〈π0, π1〉 appears
in every level in 〈T, τπ〉. By induction, 〈πi, πi+1〉 appears for the first time in 〈T, τπ〉 in
level i−1. It follows that 〈πi, πi+1〉 appears in 〈T, τπ〉 in all levels above i−1. In partic-
ular, in all levels after n+1

2 !, all permutations appear. It follows that |reachj(T)| ≥ n+1
2 !

for all transducers T that generate 〈T, τπ〉 and j ≥ n+1
2 !. ut

Corollary 2. Every transducer T that generates a tree that has a subtree 〈T, τπ〉, for
some permutation π, has width at least n+1

2 !.

We now define Bn as a UCT variant of the UCWAn constructed in Section 3. Essen-
tially, every transducer accepted by Bn generates a tree that contains 〈T, τπ〉 as a subtree,
for some permutation π of all the letters in Σn.

LetBn = 〈Σn, {0, 1}, Qn, δn, Qn, αn〉, whereQn = {1, . . . , n},αn = {i | i is even},
and δ : Qn ×Σn → 2{0,1}×Qn is as follows. Let 〈π, π′〉 ∈ Σn and let σ = i1 · · · in and
σ′ = j1 · · · jn be the even extensions of π and π′. Then, for every 1 ≤ k ≤ n, we define

δn(ik, 〈π, π′〉) =
{
{(0, j1), . . . , (0, jk), (1, i1), . . . , (1, ik)} if k is odd
{(0, j1), . . . , (0, jk−1), (1, i1), . . . , (1, ik−1)} if k is even

When going left, Bn treats the pair 〈π, π′〉 like the UCW An treats it. When going
right, Bn mimics the same concept, this time, without changing the permutation. From
state q ∈ Qn, our automaton checks the location of q in σ and sends copies to all states
in smaller (or equal, if k is odd) locations in σ′ in direction 0 and all states in smaller (or
equal) locations in σ in direction 1.

Consider a transducer T = 〈D,Σn, S, sin, η, L〉 accepted by Bn. Given a permu-
tation π, we say that π′ is the 0-successor of π for the successor π′ of π according to
the lexicographic order (i.e., the unique π′ such that 〈π, π′〉 ∈ Σn) and we say that π
is the 1-successor of π. Consider a path p = s0, a0, s1, a1, . . . ∈ (S × D)ω , where
si+1 = η(si, ai). We say that p is good if for all i ≥ 0 we have L(si+1) is the ai-
successor of L(si). We say that p is bad otherwise4. If p is bad, every location i ∈ IN
such that L(si) is not the ai−1-successor of L(si−1) is called an error in p.

Consider a transducer T = 〈D,Σn, S, sin, η, L〉 and an infinite path p = s0, a0, s1, a1, . . .
∈ (S×D)ω , where si+1 = η(si, ai). Consider a sub-path v = sl, al, . . . , sl′−1, al′−1, sl′ .
We denote by first(v) the permutation π ∈ Πn such that 〈π, π′〉 = L(sl). We denote by
last(v) the permutation π′′ ∈ Πn such that L(sl′−1) = 〈π, π′〉 and π′′ = π if al′−1 = 1
and π′′ = π′ if al′−1 = 0. That is, the last permutation read in v is determined by the last
direction p takes in v.

Let G be the DAG run of Bn on T , p = s0, a0, s1, a1, . . . an infinite path in T , and
v = sl, al, . . . , sl′−1, al′−1, sl′ a sub-path of p. Consider the part of G consisting of all
nodes in levels l to l′ that read the states sl, . . . , sl′ . Let π be first(v) and π′ be last(v).
We arrange the states in Q according to their order in the even extensions σ and σ′ of π
and π′. The following lemma is the tree variant of Lemma 5. It shows that if q is the k-th
state in σ and q′ is the k′-th state in σ′, then k′ ≤ k implies that q′ is reachable from q in
this part of the run. Furthermore, if k′ < k then q′ is reachable from q along a run that
visits α. The proof is identical to that of Lemma 5.

Lemma 8. Consider a transducer T = 〈D,Σn, S, sin, η, L〉 and the DAG run G of Bn
on it. Let p = s0, a0, s1, a1, . . . be a path in T and let v = sl, al . . . , sl′−1, al′−1, sl′ be
a sub-path of p. Let q be the k-th state in the even extension of first(v) for an odd k,
and let q′ be the k′-th state in the even extension of last(v), for k′ ≤ k. Then, the vertex
〈sl′ , q′, l′〉 in G is reachable from the vertex 〈sl, q, l〉. Moreover, if l′− l > 1 and k′ < k,
then a path connecting 〈sl, q, l〉 to 〈sl′ , q′, l′〉 visits α.

The following Lemma resembles Lemma 6. It shows that in a transducer accepted by
Bn, every path has only finitely many errors.

Lemma 9. For every path p in a transducer T ∈ L(Bn), the path p contains finitely
many errors.

4 Notice that the definition of bad here is slightly different from the definition of bad in Section 3.

Proof. Let G be an accepting run of Bn on T = 〈D,Σn, S, sin, η, L〉. Assume that
p = s0, a0, s1, a1, . . ., where si+1 = η(si, ai), is a path in T with infinitely many errors.
Let sl0 , sl1 , . . . denote the error locations in p. By definition, for every m ≥ 0 we have
L(slm) is not the alm−1-successor of L(slm−1). With every index lm we associate a
triplet 〈πm, π′m, dm〉 such that L(slm−1) = 〈π, π′〉 and πm is the alm−1-successor of
π (i.e., π′ if alm−1 = 0 and π otherwise), L(slm) = 〈π′m, π′′′〉, and dm = alm−1.
That is, we record the permutation π′m labeling slm , the unmatching πm, which is the
alm−1-successor of the label of slm−1, and the direction that takes from slm−1 to slm .
There are infinitely many errors and finitely many triplets. There is a triplet 〈π, π′, d〉
associated with infinitely many indices. We abuse notations and denote by sl0 , sl1 , . . . the
sub-sequence of locations associated with 〈π, π′, d〉. Without loss of generality, assume
that for all m ≥ 0 we have lm+1 − lm > 1.

For m,m′ ≥ 0 such that m 6= m′, let vm,m′ denote the sub-path of p that starts in
slm and ends in slm′ . Then π′ = first(vm,m′) and π = last(vm,m′). By assumption π′

is not the d-successor of π. Let σ = i1, . . . , in be the even extension of the d-successor
of π and let σ′ = j1, . . . , jn be the even extension of π′. Then there exists some odd k
and k′ such that jk = ik′ and k′ < k. Let q be the state jk = ik′ . The state q satisfies
the condition of Lemma 8 with respect to vm,m′ : it is the k-th state in first(vm,m′) for
an odd k, and it is also the k′-th state in last(vm,m′). Hence, since lm′ − lm > 1 and
k′ < k, the node 〈slm′ , q, lm′〉 in G is reachable from the node 〈slm , q, lm〉 along a path
that visits α.

For every two different integers m and m′ we identify one such state qm,m′ . By
Ramsey’s Theorem, there exist a state q and a sequence l′0, l

′
1, . . . such that for every

m ≥ 0 the sub-path vl′m,l′m+1
connects state q to itself with a path that visits α. We have

found a path in G that visits α infinitely often. ut

We now show that every tree generated by T contains 〈T, τπ〉 for some π as a subtree.

Lemma 10. For every T ∈ L(Bn), there exists a permutation π and a state s reachable
from sin such that the transducer Ts generates 〈T, τπ〉.

Proof. We add an annotation to the edges in T . Every edge s′ = η(s, a) such that s′ is
an error in a path that contains s and s′ is annotated by 1. Every other edge is annotated
by 0. According to Lemma 9, every path in T is annotated by finitely many 1’s.

We say that a state s is 1-free in T iff all the edges in T that are reachable from s
are not labeled by 1. It is enough to find one such state s. Assume by contradiction that
no such state s exists. We construct by induction a path that is labeled by infinitely many
1’s.5

By assumption, sin is not 1-free. Hence there is some state s1 reachable from sin and
a direction a1 such that the edge from s1 to η(s1, a1) is annotated by 1. By induction the
path from sin to η(si, ai) has at least i edges annotated by 1. By assumption η(si, ai) is
not 1-free. There exists a node si+1 reachable from η(si, ai) and a direction ai+1 such
that the edge from si+1 to η(si+1, ai+1) is annotated by 1. It follows that the path from
sin to η(si+1, ai+1) has at least i+ 1 edges annotated by 1. In the limit, we get a path in
T that has infinitely many edges labeled 1. In contradiction to Lemma 9.

5 Notice the resemblance to the definition of α-free in Section 2. Indeed, the proof of the existence
of a 1-free state follows closely the similar proof in [7].

It follows that there exists a state s in T such that s is 1-safe. As s is 1-safe, the subtree
generated by Ts contains no errors. Let π be the permutation such that L(s) = 〈π, π′〉.
Then Ts generates 〈T, τπ〉. ut

We can now conclude with the statement of the lower bound for the branching case.

Theorem 3. There is a n+1
2 ! lower bound on the width of a transducer accepted by a

UCT with n states.

Proof. Consider the sequence of UCTs B1,B3, . . . defined above. For every permutation
π, the transducer that generates 〈T, τπ〉 is accepted by Bn. By Lemma 10 and Corollary 2,
every transducer accepted by Bn is of width at least n+1

2 !. ut

References

1. J.A. Brzozowski and E. Leiss. Finite automata and sequential networks. Theoretical Computer
Science, 10:19–35, 1980.

2. J.R. Büchi. On a decision method in restricted second order arithmetic. In Proc. Int. Congress
on Logic, Method, and Philosophy of Science. 1960, pages 1–12. Stanford University Press,
1962.

3. A.K. Chandra, D.C. Kozen, and L.J. Stockmeyer. Alternation. Journal of the Association for
Computing Machinery, 28(1):114–133, 1981.

4. J.E. Hopcroft, R. Motwani, and J.D. Ullman. Introduction to Automata Theory, Languages,
and Computation (2nd Edition). Addison-Wesley, 2000.

5. O. Kupferman, N. Piterman, and M.Y. Vardi. Safraless compositional synthesis. In Proc
18th Int. Conf. on Computer Aided Verification, volume 4144 of Lecture Notes in Computer
Science, pages 31–44. Springer, 2006.

6. O. Kupferman and S. Sheinvald-Faragy. Finding shortest witnesses to the nonemptiness of
automata on infinite words. In 17th Int. Conf. on Concurrency Theory, volume 4137 of Lecture
Notes in Computer Science, pages 492–508. Springer, 2006.

7. O. Kupferman and M.Y. Vardi. Weak alternating automata are not that weak. ACM Transac-
tions on Computational Logic, 2(2):408–429, 2001.

8. O. Kupferman and M.Y. Vardi. Safraless decision procedures. In Proc. 46th IEEE Symp. on
Foundations of Computer Science, pages 531–540, 2005.

9. R.P. Kurshan. Computer Aided Verification of Coordinating Processes. Princeton Univ. Press,
1994.

10. W. Liu. A tighter analysis of piterman determinization construction.
http://nlp.nudt.edu.cn/ lww/pubs.htm, 2007.

11. R. McNaughton. Testing and generating infinite sequences by a finite automaton. Information
and Control, 9:521–530, 1966.

12. S. Miyano and T. Hayashi. Alternating finite automata on ω-words. Theoretical Computer
Science, 32:321–330, 1984.

13. D.E. Muller and P.E. Schupp. Simulating alternating tree automata by nondeterministic au-
tomata: New results and new proofs of theorems of Rabin, McNaughton and Safra. Theoretical
Computer Science, 141:69–107, 1995.

14. N. Piterman. From nondeterministic Büchi and Streett automata to deterministic parity au-
tomata. Logical Methods in Computer Science, 3(3):5, 2007.

15. A. Pnueli and R. Rosner. On the synthesis of a reactive module. In Proc. 16th ACM Symp. on
Principles of Programming Languages, pages 179–190, 1989.

16. M.O. Rabin. Decidability of second order theories and automata on infinite trees. Transaction
of the AMS, 141:1–35, 1969.

17. W. Thomas. Automata on infinite objects. Handbook of Theoretical Computer Science, pages
133–191, 1990.

18. M.Y. Vardi and P. Wolper. An automata-theoretic approach to automatic program verification.
In Proc. 1st IEEE Symp. on Logic in Computer Science, pages 332–344, 1986.

19. M.Y. Vardi and P. Wolper. Reasoning about infinite computations. Information and Computa-
tion, 115(1):1–37, 1994.

