
1

What Triggers a Behavior?
Orna Kupferman and Yoad Lustig

School of Engineering and Computer Science
Hebrew University, Jerusalem, 91904, Israel

Email: {orna,yoadl}@cs.huji.ac.il

Abstract—We introduce and study trigger querying. Given a
model M and a temporal behavior ϕ, trigger querying is the
problem of finding the set of scenarios that trigger ϕ in M . That
is, if a computation of M has a prefix that follows the scenario,
then its suffix satisfies ϕ. Trigger querying enables one to find,
for example, given a program with a function f , the scenarios
that lead to calling f with some parameter value, or to find, given
a hardware design with signal err, the scenarios after which the
signal err aught to be eventually raised.

We formalize trigger querying using the temporal operator
→ (triggers), which is the most useful operator in modern

industrial specification languages. A regular expression r triggers
an LTL formula ϕ in a system M , denoted M |= r → ϕ, if for
every computation π of M and index i ≥ 0, if the prefix of π up
to position i is a word in the language of r, then the suffix of
π from position i satisfies ϕ. The solution to the trigger query
M |=? → ϕ is the maximal regular expression that triggers ϕ
in M . Trigger querying is useful for studying systems, and it
significantly extends the practicality of traditional query checking
[6]. Indeed, in traditional query checking, solutions are restricted
to propositional assertions about states of the systems, whereas
in our setting the solutions are temporal scenarios.

We show that the solution to a trigger query M |=? → ϕ is
regular, and can be computed in polynomial space. Unfortunately,
the polynomial-space complexity is in the size of M . Conse-
quently, we also study partial trigger querying, which returns
a (non empty) subset of the solution, and is more feasible. Other
extensions we study are observable trigger querying, where the
partial solution has to refer only to a subset of the atomic
propositions, constrained trigger querying, where in addition to
M and ϕ, the user provides a regular constraint c and the
solution is the set of scenarios respecting c that trigger ϕ in M ,
and relevant trigger querying, which excludes vacuous triggers —
scenarios that are not induced by a prefix of a computation of
M . Trigger querying can be viewed as the problem of finding
sufficient conditions for a behavior ϕ in M . We also consider
the dual problem, of finding necessary conditions to ϕ, and show
that it can be solved in space complexity that is only logarithmic
in M .

I. INTRODUCTION

The field of formal verification developed from the need
to verify that a system satisfies its specification. Since its
conception, the field has enjoyed great progress in the de-
velopment of practical tools and better understanding of the
problems and models related to formal verification. One of the
concepts that has emerged in the context of formal verification
is that of model exploration. The idea, as first noted by
Chan in [6], is that, in practice, model checking is often
used for understanding the system rather than for verifying
its correctness.

Chan suggested to formalize model exploration by means
of query checking. The input to the query-checking problem
is a model M and a query ϕ, where a query is a temporal-
logic formula in which some proposition is replaced by the
place-holder “?” (e.g., AG?). A solution to the query is a
propositional assertion that, when replaces the place-holder,
results in a formula that is satisfied in M . For example, if the
query is AG?, then the set of solutions include all assertions
ψ for which M |= AGψ. A query checker should return the
strongest solutions to the query (strongest in the sense that
they are not implied by other solutions).1 The work of Chan
was followed by further work on query checking, studying its
complexity, cases in which only a single strongest solution
exists, the case of multiple (possibly related) place-holders,
and more [4], [8], [14], [7].

We believe that model exploration, and in particular query
checking, is a very natural and interesting task. Query check-
ing suffers, however, from a serious shortcoming: The result
of a query check is a propositional assertion. Thus, query
checking is restricted to questions regarding one point in
time, whereas most interesting questions about systems involve
scenarios that develop over time.

Consider, for example, a programmer trying to understand
the code of some computer program. In particular, the pro-
grammer is interested in situations in which some function is
called with some parameter value. The actual state in which
the function is called is by far less interesting than the scenario
that has lead to it. Query checking does not enable us to reveal
such scenarios.

In this work we introduce and study trigger querying, which
addresses the shortcoming described above. Given a model M
and a temporal behavior ϕ, trigger querying is the problem of
finding the set of scenarios that trigger ϕ in M . That is, the
set of scenarios such that if a computation of M has a prefix
that follows a scenario in the set, then its suffix satisfies ϕ.

We formalize trigger querying using the temporal operator
→ (triggers). The trigger operator was introduced in SUGAR

(the precursor of PSL [3], called suffix implication there). We
use the name trigger suggested in ForSpec [1] as it is more
indicative of the operator meaning. System Verilog Assertions
(SVA) [16] is another popular industrial specification formal-
ism in which the operator triggers plays an important role.
Consider a system M with a set AP of atomic propositions.
A word w over the alphabet 2AP triggers an LTL formula ϕ in

1Note that a query may not only have several solutions, but may also have
several strongest solutions.



the system M , denoted M |= w → ϕ, if for every computation
π of M , if w is a prefix of π, then the suffix of π from position
|w| satisfies ϕ (note that there is an “overlap” and the |w|-th
letter of π participates both in the prefix w and in the suffix
satisfying ϕ.) The solution to the trigger query M |=? → ϕ
is the set of words w that trigger ϕ in M . Since, as we show,
the solution is regular, trigger-querying algorithms return the
solution by means of a regular expression or an automaton on
finite words.

Let us consider an example. Assume that M models a
hardware design with a signal err that is raised whenever
an error occurs. We might be interested in characterizing the
scenarios after which the signal err is raised. This is, exactly
the set of scenarios that trigger err — the solution to the trigger
query M |=? → err. It may also be the case that we are really
interested in characterizing the scenarios after which err aught
to be raised. The difference is that now we are interested in
“crossing the point of no return”; that is, the point from which
err would eventually (possibly in the distant future) be raised.
The set of such scenarios are the solution to the trigger query
M |=? → F err.

Another way to see the importance of the extension of
query checking from a propositional to a temporal setting
is to go back to the context of model checking. It is wildly
acknowledged that if a bug is found, it should be reported with
a temporal counter example. Indeed, counter examples allow
the user to see the bug in context and to understand what has
caused the bug and how to fix it. This corresponds to the model
explorer need to see full scenarios rather than states. Getting
from a query checker the propositional assertions that are the
solutions to the query ? → F err (or even to G(? → F err)) is
much less informative than getting the full scenarios that lead
to err. 2

We solve trigger querying and show that the problem is tight
for polynomial space. Unlike LTL model-checking, whose
complexity is also polynomial space, here the polynomial-
space complexity is not only in the length of the specification
but also in the size of the system. Consequently, we consider
a more feasible version of trigger querying. The idea is that
when the user cannot get a complete characterization of the
scenarios triggering a behavior, he may still be interested in
getting examples of words triggering the behavior. In partial
trigger querying, the algorithm returns a subset of the solution
to the trigger query (unless the complete solution is empty,
the subset should not be empty). The complexity demands
of partial trigger querying are indeed lower than these of
trigger querying. Specifically, the complexity in the system
is nondeterministic polynomial time rather than polynomial
space. Beyond the lower complexity, partial trigger querying
can be implemented symbolically, and we describe BDD-based
and SAT-based algorithms for solving trigger querying.

In addition to trigger querying as presented above, we

2Note that temporal querying cannot be reduced to a search for counter
examples. For example, the solution to M |=? → Xerr is the set of words
w such that all the computations of M that start with w would reach err in
their next cycle. On the other hand, the counterexamples to M |= G¬Xerr
are words w such that there is a computation of M that starts with w and
reaches err in its next cycle; such words w do not necessarily trigger Xerr.

introduce and study several natural variants of the problem.
First, suppose that a finite word w cannot be generated by the
system M (i.e., it is not a prefix of a computation of M ).
Then, w satisfies the query M |=? → ϕ in a vacuous way,
as indeed, every computation of M that has w as a prefix
continues to a suffix satisfying ϕ. A user, however, is rarely
interested in seeing such vacuous triggers. In relevant trigger
querying, we exclude vacuous triggers, and the solution to a
relevant trigger query is restricted to words generated by the
system.

The next variant we consider is constrained trigger query-
ing. Model exploration is usually not a specific question to
which there is a definite answer but rather an open-ended
activity. Accordingly, trigger querying does not consist of a
single query but rather it is an interactive dialog between the
user and the trigger-query tool. A natural course of events is
one in which the user refines the trigger queries in order to
find scenarios that not only trigger the behavior in question,
but also satisfy some constraints. For example, the user may
search for scenarios that trigger F err and in which the signal
ack is never raised. In a constrained trigger query, the user
provides, in addition to the system M and the behavior ϕ, also
a regular expression c serving as a constraint for the possible
solutions. In the above example, c = (¬ack)∗. The solution
for a constrained trigger query is the set of words that trigger
ϕ in M and satisfy the constraint c.

Another variant is that of observable trigger querying. In
many cases, the user would like to get a solution that depends
only on a subset of the atomic propositions. For example, the
user may wonder whether the environment can control the
input signal req in a way that triggers the signal err, and if so,
how. Technically, this corresponds to asking whether there is a
word w over the alphabet 2{req} such that all words over 2AP

that agree with w on the assignment to req trigger err. Thus,
in addition to M and ϕ, the input to dominant trigger querying
contains a set O ⊆ AP of observable atomic propositions, and
the solution is a set of words over 2O.

The last variant of trigger querying we consider (in fact, it
is more dual than variant) is the problem of finding necessary
conditions. Recall that a word w triggers a behavior ϕ in M if
all the computations of M with prefix w continue to a suffix
that satisfies ϕ. Thus, a word triggering ϕ can be viewed
as a sufficient condition for ϕ to happen in M , and trigger
querying can be viewed as the problem of finding the set of
sufficient conditions. Dually, a set of necessary conditions for
ϕ to happen in M is a set N ⊆ (2AP )∗ such that for every
computation π of M and position i > 0, if the suffix of π
from position i satisfy ϕ, then the prefix of π up to position
i is in N . As with traditional query checking, ϕ may have
several sets of necessary conditions, and we are interesting in
the strongest one, where strongest here means minimal in the
language-containment partial order. Unlike traditional query
checking, we show that a unique strongest necessary condition
always exists. We also show that finding necessary conditions
is computationally easier than finding sufficient solutions (i.e.,
trigger querying), and is only polynomial in the size of M .
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II. PRELIMINARIES

A word over an alphabet Σ is a sequence of letters from Σ.
A word may be finite or infinite. We denote by Σ∗ (Σω) the set
of finite (resp. infinite) words over Σ. Also, Σ∞ = Σ∗ ∪ Σω .
For an infinite word w = w0w1w2 . . . and natural numbers
i ≤ j we denote by w[i..j] the finite word wiwi+1 . . . wj and
denote by wi the infinite word wiwi+1 . . ..

A language is a set of words. For a language L ⊆ Σ∞, we
denote by pref(L) the set of prefixes of words in L. That is,
pref(L) = {u ∈ Σ∗ | ∃v ∈ Σ∞ such that uv ∈ L}. For a
finite word w ∈ Σ∗ and a regular expression r over Σ, we use
w |= r to indicate that w ∈ L(r).

A Kripke structure is a quintuple M = 〈AP,Q, Q0, R, L〉,
where AP is a set of atomic propositions, Q is a set of
states, Q0 ⊆ Q is a set of initial states, R ⊆ Q × Q is a
transition relation, and L : Q → 2AP is a labelling function
that labels each state with the set of atomic propositions that
hold in it. We assume that the transition relation is total ;i.e.,
for every state q there exists at least one state q′ such that
R(q, q′). A sequence of states q0, q1 . . . is a computation of
M if q0 ∈ Q0 and for every i ≥ 0, we have R(qi, qi+1).
Unless we note otherwise, the computation is infinite. Each
computation q0, q1 . . . induces the word L(q0)L(q1) . . . over
the alphabet 2AP . The set of words induced by computations
of M is called the language of M and is denoted by L(M).
Note that L(M) ⊆ (2AP )ω .

For an LTL formula ϕ, a Kripke structure M , and a set of
states S, we use M, S |= ϕ to indicate that all the states in
S satisfy ϕ. That is, all the computations that start in states
in S satisfy ϕ. When S = S0, we write M |= ϕ. Also, when
S = {s} is a singleton, we write M, s |= ϕ.

The specification language PSL [9] introduces the suffix-
implication operator, denoted → . Similar operators exist in
other modern specification formalisms such as the operator
TRIGGERS in ForSpec [1] and in SVA (in fact, in SVA the
trigger operator is the only temporal operator) [16]. The syntax
of suffix implication is as follows. Let AP be the set of atomic
propositions. For a regular expression r over the alphabet 2AP

and an LTL formula ϕ over AP , the expression r → ϕ is in
PSL.3 The semantics of suffix implication is that an infinite
word w ∈ (2AP )ω satisfies r → ϕ iff for every i ≥ 0, if
w[0..i] |= r then wi |= ϕ. Note the overlap in the i-th letter,
which appears both in w[0..i] and in wi. Note also that the
semantics ignores empty prefixes of w. For a Kripke structure
M , a regular expression r, and an LTL formula ϕ, we say
that r triggers ϕ in M , denoted M |= r → ϕ, if all words in
L(M) satisfy r → ϕ.

III. TRIGGER QUERYING

For a Kripke structure M and an LTL formula ϕ, trigger
querying deals with question of the type “for which words
w ∈ Σ∗, it holds that M |= w → ϕ”. We denote this
instance of trigger querying by M |=? → ϕ. The solution

3In PSL, the regular expression r is not defined directly over the alphabet
2AP , but rather over the alphabet of Boolean expressions over 2AP . In our
setting, r would be the output of trigger querying, and it is natural to return
it as a regular expression over the alphabet 2AP .

of the trigger query M |=? → ϕ is the language of words
that trigger ϕ in M ; i.e. L = {w ∈ Σ∗ | M |= w → ϕ}.
While the solution language L may be infinite, the finiteness
of M implies that L is always regular. We therefore restrict
our attention to regular expressions (or finite automata) as
representations of the solution language. Thus, a solution to the
trigger query M |=? → ϕ is a regular expression r for which
L(r) = {w ∈ Σ∗ | M |= w → ϕ}. Note that the solution r
is the maximal (in terms of language containment) regular
expression that satisfies M |= r → ϕ.

Remark 1: The definition of trigger querying is not as
useful as first seem because of a technical subtlety: A word
w ∈ Σ∗ that is not a finite computation of M is a vacuously
solution to the trigger query M |=? → ϕ for any formula ϕ.
Vacuous solutions are rarely interesting to users and are still
members in the solution we define. In Section V-A, we define
relevant trigger querying, which excludes such solutions. As
discussed there, relevant trigger querying is technically very
similar to trigger querying, in the sense that the algorithms
and results about one variant carry on to the other one with
minor changes.

As a first step toward solving trigger querying, we provide
an alternative characterization for the set of words w that
satisfy M |= w → ϕ. Consider a word w = w0 . . . wn ∈ Σ∗,
and a finite computation s = s0 . . . , sn of M . We say that
s induces w iff for every i ∈ {0, . . . , n}, it holds that
L(si) = wi. Note that a word w may be induced by several
finite computations. We denote the set of finite computations
that induce w by induce(w). Also, we denote by δ(w) the set
of states s for which there exists a finite computation ending
in s that induces w. Formally, δ(w) = {sn ∈ Q | ∃s0 . . . sn ∈
induce(w)}.

Lemma 2: For a Kripke structure M and an LTL formula
ϕ, it holds that M |= w → ϕ iff M, δ(w) |= ϕ.

Proof: Assume first that M, δ(w) |= ϕ. Thus, every
computation starting in a state in δ(w) satisfies ϕ. Therefore,
since every prefix of a computation of M that induce w ends
in δ(w), we get that M |= w → ϕ.

For the other direction, assume that M |= w → ϕ. Consider
a state s ∈ δ(w). We show that M, s |= ϕ. Since s ∈ δ(w),
there exists a finite computation π = s0s1 . . . sn of M
such that s = sn and π induces w. Assume, by way of
contradiction, that M, s 6|= ϕ. Then, there exists a computation
s, s1s2 . . . that does not satisfy ϕ. Consider the computation
c = s0s1 . . . sn−1ss

1s2 . . . of M . By the above, c 6|= w → ϕ,
contradicting the assumption that M |= w

r→ ϕ.
The alternative characterization allows us to reduce trigger

querying to global model checking of ϕ on M .
Theorem 3: Trigger querying can be solved in polynomial

space, and is PSPACE-hard.4

Proof: Let M = 〈AP, Q, Q0, R, L〉 and let JϕKM = {s ∈
Q | M, s |= ϕ} denote the set of states s for which M, s |= ϕ.
Computing JϕKM is the global model-checking problem for
LTL, and is known to be in PSPACE [15].

4Trigger querying is not a decision problem and therefore cannot be
PSPACE-complete.
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By Lemma 2, the solution to the trigger query M |=? → ϕ
is the language L = {w ∈ Σ∗ | δ(w) ⊆ JϕKM}. We construct
a deterministic finite automaton A such that L(A) = L.
Finding a regular expression equivalent to A can be done using
standard methods.

Intuitively, we would like to “transform M into an au-
tomaton” and then apply the subset construction setting the
accepting states to be nonempty subsets of JϕKM . In an
automaton, the alphabet is on the transitions, whereas in a
Kripke structure, it is on the states. We move the label of a
state to the transitions into the state, which makes it easier to
deal with the overlap between the prefix and the suffix in the
definition of the trigger operator.

We define A = 〈Σ, 2Q ∪ {qin}, {qin}, ρ, F 〉, where qin is a
new state, and ρ and F are defined as follows:

• The transition relation ρ is defined for every σ ∈ 2AP

as follows. First, for the state qin, we define ρ(qin, σ) =
{s | s ∈ Q0 and L(s) = σ}. Then, for a state S ∈ 2Q,
we define ρ(S, σ) =

⋃
q∈S{s | R(q, s) and L(s) = σ}.

• The set F of accepting states is the collection of subsets
of JϕKM . Thus, F = {S ⊆ Q | S ⊆ JϕKM}.

It is not hard to prove by an induction on the length of w that
L(A) contains only words w such that δ(w) ⊆ JϕKM . Hence,
by Lemma 2, L(A) is the solution to M |=? → ϕ.

We turn now to the lower bound. PSPACE-hardness follows
from the PSPACE hardness of LTL model checking. Indeed,
for every Kripke structure M and LTL formula ϕ, we have
that M |= ϕ iff the solution to the trigger query M |=? → ϕ
contains 2AP (that is, all words of length 1). Unfortunately,
the situation for trigger querying is worse as the complexity
of the upper bound above is polynomial space in the size of
M and not only in the length of ϕ. Accordingly, we now
prove that the structure complexity of trigger querying, that is,
the complexity in terms of the Kripke structure, assuming the
formula is of a fixed length, is PSPACE-hard.

The proof is by a reduction from universality of nondeter-
ministic automata on finite words (NFA, for short), which is
known to be PSPACE-hard. Given an NFA A, we construct a
Kripke structure M and a formula ϕ of a fixed length, such
that for every word w ∈ Σ∗, it holds that M |= w → ϕ iff
w 6∈ L(A). Thus, a solution to the trigger query M |=? → ϕ
is an automaton that complements the language of A. Since the
length of ϕ is fixed, the PSPACE-hardness that follows is in-
deed for the structure complexity. LetA = 〈2AP , Q, Q0, ρ, F 〉.
To avoid vacuous solutions, we assume that A has a run on
every finite word (if this is not the case, we can add a rejecting
sink). Intuitively, we introduce a new atomic proposition a,
and construct M such that for every word w ∈ Σ∗, the word
w · aω ∈ L(M) iff w ∈ L(A). Thus, M |= w → X¬a iff
w 6∈ L(A).

In the NFA A, the alphabet is on the transitions, whereas
in the Kripke structure M , the alphabet is on the states.
We construct M such that each state of it is associated
with a state of A and the letter A is about to read. Thus,
a run q0q1 . . . qn of A on w1w2 . . . wn corresponds to the
computation 〈q0, w1〉〈q1, w2〉 . . . 〈qn−1, wn〉 of M . In addition
to the states associated with A’s states and letters, M contains

a special state qa, labelled {a}, corresponding to acceptance
in A. Formally, M = 〈AP ∪ {a}, S, S0, R, L〉, where
• S = (Q× Σ) ∪ {qa} where qa is a new state.
• S0 = Q0 × Σ.
• R = {(〈q, σ〉, 〈q′, σ′〉) | q′ ∈ ρ(q, σ)} ∪
{(〈q, σ〉, qa) | ρ(q, σ) ∩ F 6= ∅} ∪ { (qa, qa)}.

• L(〈q, σ〉) = σ and L(qa) = {a}.
For n > 0, it is not hard to prove, by an induction

on n, that 〈q0, w1〉〈q1, w2〉 . . . 〈qn−1, wn〉 ∈ pref(L(M)) iff
q0q1 . . . qn−1 is a run of A on w1 . . . wn−1. Therefore, w·aω ∈
L(M) iff w ∈ L(A). It follows that M |= w → X¬a iff
w 6∈ L(A) as desired.

Remark 4: A note for readers familiar with alternating
automata: Modulo the technical issue of the alphabet being
on the transitions vs. the states, the automaton A is simply
M when viewed as a universal automaton with JϕKM being
the set of accepting states. The construction described in the
proof translates this automaton to a deterministic one.

IV. PARTIAL SOLUTIONS FOR TRIGGER QUERYING

As shown in Section III, the complexity of solving trigger
querying is polynomial space in the size of the system.
Unfortunately, such complexity might prove infeasible for
many practical systems. Therefore, practical considerations
lead us to search for partial yet more efficient solutions.

A reasonable approach is to search for subsets of the solu-
tion to a trigger query. The motivation for such an approach
is that a user that is unable to get a complete characterisation
of the words that trigger a behavior is usually still interested
in specific scenarios that trigger the behavior.

A partial solution to a trigger query M |=? → ϕ is a
subset of the solution to the trigger query. We allow the
subset to be empty only if the complete solution is empty.
Also, as in the case of complete solutions, we restrict at-
tention to regular subsets. Formally, a partial solution to the
trigger query M |=? → ϕ is a regular expression r such
that L(r) ⊆ {w ∈ Σ∗ | M |= w → ϕ} and L(r) = ∅ iff
{w ∈ Σ∗ | M |= w → ϕ} = ∅.

The search of partial solutions may take various forms.
A natural possibility is to search for a single word as a
partial solution to a trigger query. It follows from the proof of
Theorem 3, however, that the system complexity of deciding
whether the solution to a trigger query is not empty is
already PSPACE-hard. We therefore move to the next natural
possibility, which is to search for a single word of a given
bounded length. If such a bound is given in binary, however,
the structure complexity of the problem remains PSPACE-
hard.5 An algorithm that searches for a single word in the
solution is interesting if it also outputs the word. It seems
natural, therefore, to consider the case in which the length
bound is given in unary. Accordingly, partial trigger querying
gets as input a structure M , a fixed formula ϕ, and a length

5This follows from the hardness proof in Theorem 3. There, given an NFA
A, we can reduce the problem of deciding the universality of A to trigger
querying. It is not hard to see that a A is universal iff it accepts all words
of length exponential in its size. Therefore, if we allow exponential bounds
(whose binary encoding is polynomial), the hardness proof carries over to the
partial-solution case.
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bound n, given in unary, and decides whether there exists a
word w of length at most n such that M |= w → ϕ.

Theorem 5: Partial trigger querying is NP-complete.
Proof: For the upper bound, we show that we can check,

given a word w, whether M |= w → ϕ in time polynomial in
M and the length of w (although not necessarily polynomial
in ϕ). Recall that M |= w → ϕ iff δ(w) ⊆ JϕKM . Computing
both JϕKM and δ(w) can be done in time polynomial in M
and the length of w. Thus, the decision problem is in NP.

We proceed to prove the lower bound by a reduction from
the following NP-complete problem [12]: given a directed
graph G = (V, E) and two vertices s, t ∈ V , are there two
vertex-disjoint paths, one from s to t and one from t to s (the
only vertices that appear in both paths are s and t).

For clarity of the presentation, we first present the reduction
to relevant trigger querying, in which the solution contains
only non-vacuous triggers (see Remark 1). We will later
comment on the technical adjustment to the general case.

Consider a graph G = (V, E), and two vertices s, t ∈ V .
Let n = |V |. Note that if two vertex-disjoint paths from s
to t and back exist, then two such paths of length at most n
exist. We therefore restrict our attention to paths of length at
most n. To simplify things further, we add an edge from t
to itself (if it does not exist). Then, we can also assume that
the paths are of the same length, as otherwise we can pad the
shorter path with t’s. Finally, we assume that each state in G
has a successor (otherwise, we can add a sink to which all
dead-ends go).

We intend to construct a Kripke structure M and a formula
ϕ such that the solution to M |=? → ϕ contains a word of
length at most n if there exist two vertex-disjoint paths from s
to t and back, and is empty otherwise. Let Σ = (V ×V )∪{p}.
For simplicity, we assume that the atomic propositions of M
encode letters in Σ. A finite computation of M that do not
reach a state labelled p encode two sequences of vertices in
G. For example, the word (x1, y1) . . . (xk, yk) encodes the two
sequences of vertices x1 . . . , xk and y1, . . . , yk. We define the
transitions of M so that the projection of a finite computation
on the first element encodes a path from s in G, while the
projection on the second element encodes a path from t. For
both elements the path may be followed by a p∗ suffix. In
addition, the following would hold.

1) If w ∈ Σ∗ encodes two vertex-disjoint paths from s
to t and back, then for all infinite suffixes v for which
wv ∈ L(M), the first letter of v is p.

2) If w ∈ Σ∗ does not encode two vertex-disjoint paths
from s to t and back, then there exists an infinite suffix
v whose first letter is not p and wv ∈ L(M).

If we succeed in constructing M as above, then for every
word w ∈ Σ∗, we have that w is a non-vacuous solution to
M |=? → Xp iff w encodes two vertex-disjoint paths from s
to t and back. Thus, setting ϕ = Xp, we are done.

We now proceed to define M in detail. In order to know
whether the two paths that correspond to a finite computation
of M are vertex-disjoint, M chooses nondeterministically one
vertex from each path and records it. If the first path reaches t
and the second path reaches s, then M compares the recorded

vertices. If the recorded vertices differ, M enters a sink state
labelled p. If, on the other hand, the recorded vertices are
the same, M continues to visit states that are not labelled by
p. Note that when the paths are vertex-disjoint, the recorded
vertices must be different. On the other hand, when the two
paths are not vertex-disjoint, and share a vertex v, then there
is a computation of M that generates these paths and chooses
to record the vertex v for both paths.

The states of M are tuples in V × V × (V ∪ {⊥}) ×
(V ∪ {⊥}) (as well as the special sink state sp). In the state
〈v1, v2, x1, x2〉, the values v1 and v2 stand for the current
vertices in the first and second paths, and the values x1

and x2 stand for the recorded vertices from these paths. The
symbol ⊥ stands for “no vertex is recorded yet”. A state
〈v1, v2, x1, x2〉 is labelled by atomic propositions encoding the
letter 〈v1, v2〉. The state sp is used to generate the pω suffixes
and is labelled by p. The state 〈s, t,⊥,⊥〉 is the single initial
state. The transition relation makes sure that a computation of
M generates only sequences of pairs that correspond to paths
in G. In addition, if the third (resp. fourth) element of a state
is ⊥, then a nondeterministic choice is made whether to record
the current vertex v of the first (resp. second) path, which is
done by replacing ⊥ with v. If the third (resp. forth) element
is not ⊥, then it retains its value. Finally, if a vertex of the
type 〈t, s, x1, x2〉 is reached and x1 6= x2 (or x1 equals x2 but
both equal s, t, or ⊥) then a transition to sp is taken.

Formally, M = 〈AP, S, S0, R, L〉, where AP , S, S0, and
L are defined above. Before defining R, we introduce the
following notation. For v ∈ V and x ∈ V ∪{⊥}, we denote by
rec(v, x) the set {v,⊥} if x = ⊥ and the set {x} if x 6= ⊥. We
proceed to define R (we define it as a function R : S → 2S):

• R(sp) = {sp}.
• For states of the type 〈t, s, x1, x2〉 in which x1 6= x2, or

x1 = x2 but x1 ∈ {s, t,⊥}, set R(〈t, s, x1, x2〉) = {sp}.
• For all other states, R(〈v1, v2, x1, x2〉) =
{ 〈v′1, v′2, x′1, x′2〉 | E(v1, v

′
1), E(v2, v

′
2), x′1 ∈

rec(v1, x1), x′2 ∈ rec(v2, x2) }.

It is not hard to prove that for every word w ∈ Σ∗, we have that
w is a non-vacuous solution to M |=? → Xp iff w encodes
two vertex-disjoint paths from s to t and back. Note that the
reduction is polynomial in the size of G, and that ϕ is fixed.

Since words w in the solution to M |=? → Xp may be
vacuous solutions, the reduction shows that relevant trigger
query is NP-hard. In order to prove NP-hardness for trigger
querying, we modify M so that M |=? → Xp would not have
vacuous solutions. For that, we have to modify M to a Kripke
structure M ′ such that pref(M ′) = Σ∗. We should make sure
that the non-vacuous solutions to M |=? → Xp continue to
trigger Xp in M ′. Thus, reading such a solution, we must
move to sp. We do this by defining M ′ to subsume M in
such a way that for every word w ∈ Σ∗, if w ∈ L(M), then
the set of computations that induce w in M ′ is equal to the set
of computations that induce it in M . Thus, M ′ only generates
new words but does not add ways to generate words that are
already in L(M). It is not hard to define M ′ by adding to M
a component that generate Σ∗ and to which computations get
whenever they get stuck in M .

5



A. practical considerations

We suggest two symbolic methods for searching for partial
solutions to a trigger query. Both methods consider a bound
n > 0 on the length of words in the solution. First, a BDD-
based method that computes all words of length n in the
solution. Second, a SAT-based method that searches for a
single word of length n in the solution.6 For reasons explained
below, we recommend the BDD-based method.

Let Σ = 2AP . The main task of the BDD procedure
is to compute the set {〈w1, . . . , wn, s〉 ∈ Σn × S | s ∈
δ(w1 . . . wn)}. For this purpose, we need BDD variables to
represent letters and states. 7 We encode the transition relation
as a set R ⊆ S×Σ×S where 〈s, σ, s′〉 ∈ R if s′ is a successor
of s and L(s′) = σ.

We use two vectors of BDD variables ~s and ~s′, encoding
states. Intuitively, ~s encodes current states and ~s′ succes-
sor states. In addition, we use n vectors of BDD variables
~w1, . . . , ~wn encoding letters. We also use another vector of

BDD variables ~σ encoding letters. In fact, the variables in ~σ are
not necessary but the presentation is clearer with ~σ. We assume
that the algorithm has access to BDDs for the set JϕKM (~s),
the initial set S0(~s), and the transition relation R(~s, ~σ, ~s′). We
also need a BDD B(~s, ~σ) for the set {〈s, L(s)〉 | s ∈ S}.

The function UNTAG gets a BDD with ~s′ variables and
no ~s variables and replaces all the ~s′ variables with the
corresponding ~s variables. Similarly, for each i ∈ {1, . . . , n},
the function i-TAG gets a BDD with with ~σ variables and
no ~wi variables and replaces all the ~σ variables with the
corresponding ~wi variables.

We describe the algorithm in Figure IV-A below.

Algorithm 1: BDD based algorithm

X ← S0;1

X ← X ∩ 1-TAG(B);2

for i = 2 to n do3

X ← UNTAG(∃s X ∩ i-TAG(R));4

end5

Y ← ∃s (X ∩ ¬JϕKM );6

Z ← (∃s X) \ Y ;7

return Z;8

Intuitively, in lines 1 – 5, the algorithm computes, in the
BDD X , the set {〈 ~w1, . . . , ~wi, ~s〉 | ~s ∈ δ( ~w1, . . . , ~wi)}, for the
i’s between 1 to n. Thus, after line 5, the BDD X contains
exactly all tuples {〈w1, . . . , wn, s〉 | s ∈ δ(w1 . . . wn)}.

Accordingly, in line 6, the algorithm computes all the words
w1 . . . wn for which δ(w1 . . . wn) 6⊆ JϕKM , namely words
that do not trigger ϕ. Finally, in line 7, the latter set is
complemented resulting in the set of all words that do trigger
ϕ, i.e, the solution to M |=? → ϕ.

As the NP-complete complexity for partial trigger querying
suggests, it is also possible to apply a SAT solver in order

6It is not hard to adapt the algorithms to words of length at most n. We
present the versions for length exactly n since they are technically simpler.

7In real applications, both states and letters are subsets of the atomic
propositions (an assignment to the atomic propositions induces a state, labelled
by the letter that corresponds to the observable atomic propositions that are
valid in the state). Our solution is general and does not assume such a relation
between letters and states.

to find partial solutions. The formula to be considered can
be built along the following lines: Let ~X be a vector of
variables representing a set of states of M . Let ~X ′ be another
such vector, and let ~σ be a vector of variables represent-
ing a letter. We denote by ψR( ~X,~σ, ~X ′) a formula that
is true iff ~X ′ represents the set of states that are succes-
sors of a state in ~X and whose labelling is ~σ. Formally,
~X ′ = {q′ ∈ S | ∃q ∈ ~X such that R(q, q′) and L(q′) = ~σ}.

Let ψϕ( ~X) be a formula that is true iff ~X represents a set that
is contained in JϕKM . Finally, let ψI( ~X) be a formula that is
true iff ~X represents the set S0. The formula to be fed into
the SAT solver is ψI( ~X0)∧

∧n
i=1 ψR( ~Xi−1, ~wi, ~Xi)∧ψϕ( ~Xn),

where ~X0, . . . , ~Xn and ~w1, . . . , ~wn are (vectors of) free vari-
ables.

A satisfying assignment assigns values to the (vectors of)
variables ~w1 . . . ~wn and ~X0, . . . , ~Xn. It is not hard to see that
the values assigned to ~w1 . . . ~wn encode a word that is partial
solution for the trigger query, and that the values assigned to
~X0, . . . ~Xn encode the sets δ( ~w1), δ( ~w1 ~w2), . . . δ( ~w1 . . . ~wn).

Note that unlike the case in bounded model checking, the
suggested algorithm uses as many variables as are states in
the structure M (rather than in the symbolic representation of
M ). The technical need for so many variables arise from the
need to consider all the elements of a set of states (encoded
in the ~Xi’s), and it occurs in other (already well challenged)
contexts of bounded model checking, e.g., when evaluating
the diameter of a model.

V. VARIANTS OF TRIGGER QUERYING

In this section we present several natural variants of trigger
querying.

A. Relevant trigger querying

As noted in Remark 1, the definition of trigger querying
allows the solution to contain vacuous solutions, namely
words that are not induced by finite computations of M .
Vacuous solutions are rarely interesting to users. In this section
we define relevant trigger querying, which exclude vacuous
solutions. We show that the algorithms and results we describe
for trigger querying apply, with minor modifications, to the
relevant case.

For a Kripke structure M , a word w ∈ Σ∗, and an LTL
formula ϕ, the word w relevantly triggers ϕ in M , denoted
M |= w

r→ ϕ, if w triggers ϕ in M and w is induced by a
finite computation of M . The solution to the relevant trigger
query M |=? r→ ϕ is the set of words that relevantly trigger
ϕ in M (i.e., {w ∈ Σ∗ | M |= w

r→ ϕ}).
Remark 6: Note that our notion of vacuity does not co-

incide with the notion of vacuity in the context of model
checking of trigger formulas [5]: when JϕKM = Q (for
example, when ϕ = true), the regular expression r does not
affect the satisfaction of r → ϕ in M . In such cases, all finite
computations of M are non-vacuous solutions according to
our definition. It is easy to adjust our solutions to a definition
that would cause all solutions to be vacuous in such cases.

Solving relevant trigger querying is very similar to solving
trigger querying. It is not hard to see that a word w ∈ Σ∗ is
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induced by a finite computation of a Kripke structure M , iff
δ(w) 6= ∅. Thus, the “relevant counterpart” of Lemma 2 is as
follows.

Lemma 7: For a Kripke structure M and an LTL formula
ϕ, it holds that M |= w

r→ ϕ iff δ(w) 6= ∅ and M, δ(w) |= ϕ.
It follows that the construction of A in the proof of Theo-

rem 3 is valid also for the case of relevant trigger querying,
except that we have to remove the empty set from F . The
lower bound proofs are also easy to adjust for the relevant
case. Hence, we can conclude with the following.

Theorem 8: Trigger querying can be solved in polynomial
space, and is PSPACE-hard.

B. Constrained trigger querying

Trigger querying typically does not consist of a single query
but rather it is an interactive dialog between the user and
the trigger-query tool. A natural course of events is one in
which the user refines the trigger queries in order to find
scenarios that not only trigger the behavior in question, but
also satisfy some constraints. For example, the user may search
for scenarios that trigger F err and in which the signal ack is
never raised. In a constrained trigger query, the user provides,
in addition to the system M and the behavior ϕ, also a regular
expression c serving as a mask for the possible solutions. In the
above example, c = (¬ack)∗. The solution for a constrained
trigger query is the set of words that trigger ϕ in M and satisfy
the constraint c.

Trigger querying can be viewed as a special case of con-
strained trigger querying with c = true. Also, solving a con-
strained trigger query can proceed by solving the trigger query
and intersecting the solution with the constraint language L(c)
(the intersection can be implemented as intersection of finite
automata). Hence, we have the following.

Theorem 9: Constrained trigger querying can be solved in
polynomial space and is PSPACE-hard.

Constrained trigger querying is of special interest when
combined with partial trigger querying. Note that in the
unconstrained case, it is possible to solve the trigger query and
only then intersect the solution with the constraint. In partial
trigger querying, such a course of action may lead to an empty
set of partial solutions although the set of solutions that satisfy
the constraint is not empty. Therefore, the constraint must
be taken into account during the search for partial solutions
(rather than after it). In practice, it is not hard to modify the
algorithms suggested in Subsection IV-A to take the constraint
c into account while searching for a partial solution.

Note that relevant trigger querying can be viewed as a spe-
cial case of constrained trigger querying — one in which the
constraint is the set of words induced by a finite computation
of the Kripke structure. Nevertheless, the direct algorithms for
relevant trigger querying are simpler than these that follow
from this view.

C. Observable trigger querying

In many cases, the user would like to get a solution to a
trigger query that depends only on a subset of the atomic
propositions. For example, the user may wonder whether

the environment can control the input signal req in a way
that triggers the signal err, and if so, how. Technically, this
corresponds to asking whether there is a word w over the
alphabet 2{req} such that all words over 2AP that agree with
w on the assignment to req trigger err.

Formally, for a word w over 2AP and a set O ⊆ AP ,
let w|O be the word over 2O obtained from w by pro-
jecting its letters on O. Then, for a word w′ ∈ 2O, let
wide(w′, AP \O) = {w : w|O = w′} be the set of words over
2AP obtained from w′ by extending its letters to AP . The input
to observable trigger querying contains, in addition to M and
ϕ, also a set O ⊆ AP of observable atomic propositions,
The solution to the observable trigger query M |=? → ϕ
with a set O of observable atomic propositions is the set
{w′ : M |= w → ϕ for all w ∈ wide(w′, AP \O)}.

Note that the observable atomic propositions are “observ-
able to the query”. Thus, unlike the standard interpretation
of observable and non-observable atomic propositions, here
the idea is not to hide internal signals, but rather to restrict
attention to the atomic propositions in terms of which we want
the solution to the trigger query to be expressed. Often, these
propositions would be related to implementation details or
other internal signals that are considered non-observable in
the standard context.

Theorem 10: Observable trigger querying can be solved in
polynomial space and is PSPACE-hard.

Proof: For the upper bound, we modify the construction
of the NFA A described in the proof of Theorem 3 as follows.
The modification is only in the definition of ρ, which now
assumes the alphabet 2O. For a letter σ ∈ 2O, we define
ρ(qin, σ) = {s | s ∈ Q0 and L(s) ∩ O = σ}, and for a
state S ∈ 2Q, we define ρ(S, σ) =

⋃
q∈S{s | R(q, s) and

L(s) ∩ O = σ}. Thus, the states in the successor states have
to agree with σ on the atomic propositions in O, and all other
atomic propositions are ignored. It is not hard to prove that
w ∈ 2O is accepted by the modified NFA iff all the words in
wide(w,AP \O) are accepted by A.

Since trigger querying can be viewed as a special case
of observable trigger querying (with O = AP ), PSPACE-
hardness follows from PSPACE-hardness of trigger querying.

Remark 11: A note for readers familiar with alternating au-
tomata and Remark 4. Recall that the automaton A constructed
in the proof of Theorem 3 is M when viewed as a univer-
sal automaton. For nondeterministic automata, the existential
projection of an automaton over the alphabet Σ1 × Σ2 to an
automaton over the alphabet Σ1 can be easily done by ignoring
the Σ2 component in the transitions. For universal automata,
existential projection involves an exponential blow up, but
universal projection is easy. This is why the transition to
observable trigger querying, which corresponds to a universal
projection of the solution, does not make the problem more
complex.

D. Necessary conditions

Recall that a word w triggers a behavior ϕ in M if all
the computations of M with prefix w continue to a suffix
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that satisfies ϕ. Thus, a word triggering ϕ can be viewed as a
sufficient condition for ϕ to happen in M , and trigger querying
can be viewed as the problem of finding the set of sufficient
conditions. In this section we study the dual problem, namely
finding the set of necessary conditions for ϕ to happen in M .

A necessary condition to ϕ in M is a regular expression r
such that for every computation π of M and for every i ≥ 0,
if πi |= ϕ, then π[0..i] |= r. It is easy to see that ϕ may have
several necessary conditions in M (in fact, Σ∗ is alway a
necessary condition). The necessary conditions, however, are
(partially) ordered by language containment. We say that a
necessary condition r is stronger than a necessary condition
r′, if L(r) ⊆ L(r′).

We show that there always exists a unique strongest inter-
esting necessary condition. Let G ⊆ S denote the set of states
from which there is a computation that satisfies ϕ. Formally,
G = {s ∈ S | M, s 6|= ¬ϕ}. Let r be a regular expression
for the set of words w ∈ Σ∗ for which there exists a finite
computation of M that induces w and ends in G. Formally,
L(r) = {w ∈ Σ∗ | δ(w) ∩G 6= ∅}.

For every computation π of M and for every i ≥ 0, if
πi |= ϕ, then, by the definition of G, it must be that π[0..i] ∈
L(r). Hence, r is a necessary condition. We prove that for
every necessary condition r′, we have L(r) ⊆ L(r′), thus
r is the strongest necessary condition. Let r′ be a necessary
condition. Consider a word w ∈ L(r). Let π and i be such
that w is induced by π[0..i]. Let s be the last state in π[0..i].
Since s is in G, there exists some computation πs of M that
starts in s and satisfies ϕ. The concatenation of π[0..i − 1]
and πs is a computation of M whose suffix from position i
satisfies ϕ. Since r′ is a necessary condition, it must be that
π[0..i] ∈ L(r′).

Theorem 12: Finding the strongest necessary condition can
be done in polynomial space and is PSPACE-hard. The struc-
ture complexity of the problem is nondeterministic logarithmic
space.

Proof: We start with the upper bounds. The set G above
can be computed by solving the global LTL model-checking
problem (G = Q \ J¬ϕKM ). An NFA for the strongest neces-
sary condition can be obtained from M be moving the labels
from the states to the transitions into the state (a new initial
state should be added), and defining G as the set of accepting
states. Since global LTL model-checking is in PSPACE and
its structure complexity is NLOGSPACE, we are done. The
lower bound also follows from LTL model checking: Checking
whether M |= ϕ can be reduced to checking whether there is
an initial state in the set {s ∈ S | M, s 6|= ϕ}, thus, it is
reducible to finding the strongest necessary condition for ¬ϕ,
in a Kripke structure that is obtained from M by marking the
initial states with a special atomic proposition.

VI. DISCUSSION

We introduced and studied trigger querying — a model-
exploration problem in which one searches for the set of
scenarios that trigger a behavior in a system.

Algorithms and modelling techniques originally developed
for formal verification have turned out to be useful in other

areas. This includes, for example, modelling and reasoning
about biological systems [11], [10], business processes [13],
and AI plans [2]. We believe that the application of trigger
querying in these areas is very natural. Indeed, the type of
questions one cares about in these areas are of the form “which
scenarios trigger an action of a particular cell / an activation
of some item in a contract / an action of the robot’s arm.”

Finally, our work here can be viewed as a first step
towards a general temporal-query checking methodology, in
which the “?” place-holder may be replaced by a temporal
behavior rather than a propositional assertion. It looks like
the most appropriate replacement for “?” are temporal events
of a bounded duration, and the most convenient way to
specify them are regular expressions, as done here. Also,
triggers seem to capture a large fraction of the natural model-
exploration questions interesting in practice. This, together
with the popularity of the triggers operator in industrial setting
has convinced us to restrict attention to trigger querying. At
any rate, the ideas introduced here for trigger querying are
useful in the general case.
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