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Abstract9

The frameworks of coverage and vacuity in formal verification analyze the effect of mutations applied10

to systems or their specifications. We adopt these notions to network formation games, analyzing the11

effect of a change in the cost of a resource. We consider two measures to be affected: the cost of the12

Social Optimum and extremums of costs of Nash Equilibria. Our results offer a formal framework to13

the effect of mutations in network formation games and include a complexity analysis of related14

decision problems. They also tighten the relation between algorithmic game theory and formal15

verification, suggesting refined definitions of coverage and vacuity for the latter.16
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1 Introduction23

Following the emergence of the Internet, there has been an explosion of studies employing24

game-theoretic analysis to explore applications such as network formation and routing in25

computer networks [21, 1, 20, 4]. In network-formation games (for a survey, see [38]), the26

network is modeled by a weighted graph. The weight of an edge indicates the cost of27

activating the transition it models, which is independent of the number of times the edge is28

used. Players have reachability objectives, each given by a source and a target vertex. Under29

the common Shapley cost-sharing mechanism, the cost of an edge is shared evenly by the30

players that use it. The players are selfish agents who attempt to minimize their own costs,31

rather than to optimize some global objective. In network-design settings, this would mean32

that the players selfishly select a path instead of being assigned one by a central authority.33

The study of networks from a game-theoretic point of view focuses on optimal strategies for34

the underlying players, stable outcomes of a given setting, namely equilibrium points, and35

outcomes that are optimal for the society as a whole.36

A different type of reasoning about networks is the study of their on-going behaviors. In37

particular, in recent years we see growing use of formal-verification methods in the context38

of software-defined networks [34, 33]. The study of networks from a formal-verification point39

of view focuses on specification and verification of their behavior. The primary problem40

here is model checking: given a system (in particular, a network) and a specification for its41

desired behavior, decide whether the system satisfies the specification [18]. Typically, the42

system is given by means of a labeled graph and the specification is given by a temporal-logic43

formula. An important element in model-checking methodologies is an assessment of the44
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10:2 Coverage and Vacuity in Network Formation Games

quality of the modeling of the system and the specifications as well as the exhaustiveness of45

the model-checking process. Researchers have developed a number of sanity checks, aiming46

to detect errors in the modeling [27]. Two leading sanity checks are vacuity and coverage.47

In vacuity, the goal is to detect cases where the system satisfies the specification in some48

unintended trivial way [10, 31, 14]. In coverage, the goal is to increase the exhaustiveness49

of the specification by detecting components of the system that do not play a role in the50

verification process [24, 25, 16, 15]. Both vacuity and coverage checks are based on analyzing51

the effect of applying local mutations to the system or the specification. The intuition is52

that model checking of an exhaustive well-formed specification should be sensitive to such53

mutations.54

Beyond the practical importance of sanity checks, their study highlights some general55

important theoretical properties regarding the sensitivity of systems and specifications to56

mutations. Examples to such properties include duality between mutations applied to the57

system and the specification [29], and trade-offs between desired and undesired insensitivity58

to mutations (for example, fault tolerance is associated with a desired insensitivity to59

mutations) [17]. A fundamental property of mutations in the context of formal verification is60

monotonicity: mutations to temporal-logic formulas are monotone, in the sense that if ψ is a61

formula and ϕ is a sub-formula of ψ that appears in a positive polarity (that is, nested in an62

even number of negations), then when we mutate ψ to ψ′ by replacing ϕ by ϕ′, then ψ′ → ψ63

iff ϕ′ → ϕ. Monotonicity turns out to be a very helpful property in the context of vacuity64

checking. Indeed, the basic notion in vacuity is of a subfumula ϕ not affecting the satisfaction65

of a specification ψ. Formally, consider a system S satisfying a specification ψ. A subformula66

ϕ of ψ does not affect (the satisfaction of) ψ in S if S also satisfies all specifications obtained67

by mutating ϕ to some other subformula [10]. Thanks to monotonicity, we can check whether68

ϕ affects ψ by examining only the most challenging mutation, namely one that replaces ϕ by69

false and the most helpful mutation, namely one that replaces ϕ by true.70

Our goal in this paper is to examine the sensitivity of network-formation games (NFGs,71

for short) to mutations applied to costs. While our study adopts from formal verification72

the notion of mutation-based analysis, we examine the effect of mutations on measures from73

game theory: the cost of stable and optimal outcomes. Recall that a strategy of a player74

in an NFG is a path from a source to a target vertex. A profile in the game is a vector of75

strategies, one for each player. A Social Optimum (SO) is a profile that minimizes the total76

cost to all players. A Nash equilibrium (NE) is a profile in which no player can decrease her77

cost by a unilateral deviation from her current strategy, that is, assuming that the strategies78

of the other players do not change.79

Consider an NFG N . We say that the edge e of N SO-affects N if a change in the cost of80

e leads to a change in the cost of the SO. Formally, there exists x ≥ 0 such that the cost of81

the SO profiles in N is different from the cost of the SO profiles in N [e← x], that is N with82

e being assigned cost x. We consider the function costeSO(N) : R→ R, mapping a cost x ≥ 083

to the cost of the SO profiles in N [e← x]. That is, costeSO(N) describes the cost of the SO84

in N as a function of the cost of the edge e. We say that costSO is monotonically increasing85

if for every NFG N and edge e of N , the function costeSO(N) is monotonically increasing.86

Likewise, costSO is continuous if for every NFG N and edge e, the function costeSO(N) is87

continuous. For the best and worst NEs, we similarly define when an edge e bNE-affects and88

wNE-affects N , and define the functions costbNE and costwNE , which describe the cost of89

the best and worst NEs as a function of the cost of an edge.90

Our first set of results concerns the way edge costs affect the SO. Here, the results are91

quite expected: costSO is monotonically increasing and continuous, which leads to simple92
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solutions to related decision problems: as is the case with model checking and temporal-logic93

specifications, we can decide whether an edge e SO-affects N by checking the cost of the94

SO in N [e ← 0] and N [e ← ∞N ], for a sufficiently large cost ∞N . This leads to ∆P
2 and95

ΘP
2 upper bounds (depending on whether costs are given in binary or unary, respectively),96

which we show to be tight. Also, we show that it is NP-complete and DP-complete to97

decide whether we can mutate a cost in a way that would cause the SO to be below or agree98

exactly with, respectively, a given threshold. The technically challenging results here are99

the ∆P
2 -lower bound (it is tempting to believe that thanks to monotonicity, we could decide100

whether e SO-affects N using only logarithmically many queries to an NP oracle that bounds101

the SO) and the DP upper bound (the upper and lower bounds on the SO that we can obtain102

by querying an NP and a co-NP oracle need not be associated with the same edge).103

Things become unexpected when we turn to study effects on the costs of the best and104

worst NEs. Here an edge may affect the bNE without participating in profiles that are NEs,105

and may thus affect the bNE both positively and negatively. In model checking, this is106

related to coverage and vacuity in a setting with multiple occurrences of subformulas. For107

example, the atomic proposition p appears in the formula ψ = (ϕ1 → p) ∧ (p → ϕ2) both108

positively and negatively. Consequently, we cannot decide whether p affects the satisfaction109

of ψ by examining its replacement by only true or false (in the context of vacuity), and we110

do not know the effect of mutating p in the system on the satisfaction of ψ (in the context of111

coverage). We show that costbNE is neither monotone nor continuous, and in fact a change112

in the cost of an edge may incentivize players in surprising ways. In particular (see Figure 5),113

an edge e may not participate in any bNE in N [e← x], for all x ≥ 0, and still the bNE may114

decrease as we increase the cost of e. We show that these challenges can be overcome by115

more restricted notions such as piecewise monotonicity and monotonicity on the participation116

of the mutated edge in bNE profiles. In particular, we show that these notions produce the117

same (tight) complexity bounds for the analogous decision problems we introduce for the118

SO. We note that while the general phenomenon of non-monotonicity is known (e.g., Braess’119

Paradox [12], the effectiveness of burning money [23, 36] or tax increase [19]), we are the120

first, to the best of our knowledge, to provide a comprehensive study of effects caused by121

cost mutation.122

Our results on NFGs give rise to two research directions in coverage and vacuity in formal123

verification. The first arises from the segmentation of R+ induced by the non-monotonicity124

of the bNE, which suggests a similar segmentation in the context of multi-valued specification125

formalisms [2]. The second is a study of coverage and vacuity in formalisms for specifying126

strategic on-going behaviors [3, 13]. We discuss these research directions in Section 5.127

Due to lack of space, some of the proofs are omitted, and can be found in the full version,128

as listed above.129

2 Preliminaries130

2.1 Network formation games131

A network formation game (NFG) is N = 〈k, V,E, c, γ〉, where k is a number of players, V132

is a set of vertices, E ⊆ V × V is a set of directed edges, c : E → R
+, where R+ is the set133

of positive real numbers including 0, is a cost function that maps each edge to the cost of134

forming it, and γ = {〈s1, t1〉, ..., 〈sk, tk〉} is a set of objectives, each specifying a source and a135

target vertex per player. Thus, for all 1 ≤ i ≤ k, the objective of player i is to form a path136

from si to ti. A strategy for player i is a simple path πi ⊆ E from si to ti. Note that since137

the path is simple, then πi is indeed a subset of E. A profile P = 〈π1, ..., πk〉 is a vector138

CSL 2020



10:4 Coverage and Vacuity in Network Formation Games

of strategies, one for each player. For an edge e ∈ E, we denote by usedP (e) the number139

of players that use e in their strategy in P , thus these with e ∈ πi. We say that e ∈ P if140

usedP (e) > 0.141

Players pay the cost of forming edges they use. If players share an edge, they also share142

its cost. Thus, the cost of a strategy πi in a profile P is costN,P (πi) =
∑
e∈πi

c(e)
usedP (e) . Note143

that since c is positive, it is indeed sufficient to consider only simple paths as strategies. The144

cost of P in N is the sum of costs of its strategies, that is cost(N,P ) =
∑k
i=1 costN,P (πi).145

Equivalently, cost(N,P ) =
∑
e∈P c(e).146

A Social Optimum (SO) of N is a profile with minimal cost. That is, a profile P is an147

SO if for every other profile P ′ we have that cost(N,P ) ≤ cost(N,P ′). Note that there may148

be several profiles that are a social optimum. We denote by SO(N) and costSO(N) the set149

of such profiles and their cost, respectively.150

We say that the profile P is a Nash Equilibrium (NE) inN if no player can decrease her cost151

by deviating to another strategy assuming the other players stay in their strategies1. Formally,152

for all 1 ≤ i ≤ k and every π′i 6= πi, the cost of π′i in P ′ = 〈π1, ..., πi−1, π
′
i, πi+1, ..., πk〉 is no153

lower than the cost of πi in P , i.e. costN,P (πi) ≤ costN,P ′(π′i). A best NE (bNE) in N is an154

NE profile with minimal cost, i.e. a profile P is bNE iff P is an NE, and for every profile P ′155

that is an NE, we have cost(N,P ) ≤ cost(N,P ′). We denote by bNE(N) and costbNE(N)156

the set of profiles that are bNE, and their cost, respectively.157

We dually define a worst NE (wNE) to be an NE profile with maximal cost, and denote158

by wNE(N ) and costwNE(N) the set of such profiles and their cost, respectively. The159

Price of Stability (PoS) of N is the ratio between the cost of the bNE and the SO, that is,160

PoS(N ) = costbNE(N)
costSO(N) .161

I Example 1. Consider the NFG N appearing in Figure 1.162

s

u v

t1 t2

4 4

3
4 2

1

Figure 1 The NFG N .

Player 2 π1
2 π2

2

Player 1 s→ u→ t2 s→ v → t2

π1
1 6 5

s→ u→ t1 5 7
π2

1 8 3
s→ v → t1 6 4
Table 1 Players’ costs in N .

Assume that N is formed by two players. The first has objective 〈s, t1〉. The available163

strategies for her are π1
1 = {(s, u), (u, t1)} and π2

1 = {(s, v), (v, t1)}. The second player164

has objective 〈s, t2〉. The available strategies for her are π1
2 = {(s, u), (u, t2)} and π2

2 =165

{(s, v), (v, t2)}. If Player 1 choses the strategy π1
1 and Player 2 uses the strategy π1

2 , then166

they share the cost of the edge (s, u), and their costs are 4
2 + 3 = 5 and 4

2 + 4 = 6 respectively.167

Table 1 describes the costs of the two players in the different profiles.168

The profile with the lowest cost is P = 〈π2
1 , π

2
2〉. Therefore, SO(N) = {P}, with cost169

costSO(N) = 7. Note that P is also the only NE in N . It is an NE since for the deviation170

P ′ = 〈π1
1 , π

2
2〉, it holds that 4 = costN,P (π2

1) < costN,P ′(π1
1) = 7 and for the deviation171

P ′′ = 〈π2
1 , π

1
2〉 it holds that 3 = costN,P (π2

2) < costN,P ′′(π1
2) = 8. It is the only NE in N172

1 Throughout this paper, we consider pure strategies and pure deviations, as is the case for the vast
literature on cost-sharing games.
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since for every other profile there is a beneficial deviation. Therefore, P is both a bNE and a173

wNE. Since the bNE and the SO coincide, it follows that PoS(N ) = 1 . J174

Consider an edge e ∈ E and a value x ∈ R+. We denote by c[e← x] the cost function that175

agrees with c on every edge except e, which is assigned x. That is, c[e ← x](e) = x, and176

for all edge e′ 6= e, we have c[e← x](e′) = c(e′). Let N = 〈k, V,E, c, γ〉, and let e ∈ E. We177

denote by N [e ← x] the network obtained from N by changing the cost of e to x. Thus,178

N [e← x] = 〈k, V,E, c[e← x], γ〉.179

Let c1 and c2 be cost functions. We say that c2 bounds c1 from above, denoted c1 ≤ c2, if for180

all e ∈ E, we have c1(e) ≤ c2(e). We extend the notation to NFGs. Let N1 = 〈k, V,E, c1, γ〉181

and N2 = 〈k, V,E, c2, γ〉 be two NFGs that differ only on their cost functions. If c1 ≤ c2, we182

say that N2 bounds N1 from above, denoted N1 ≤ N2.183

I Lemma 2. Let N1 and N2 be two NFGs that differ only on their cost functions. If184

N1 ≤ N2, then for every profile P , we have cost(N1, P ) ≤ cost(N2, P ).185

2.2 Affecting edges in NFGs186

Consider an NFG N and an edge e of N . We say that the edge e SO-affects N if there187

exists x ≥ 0 such that costSO(N [e← x]) 6= costSO(N). That is, when changing the cost of188

e to x, the cost of the SO profiles of N changes. We define bNE-affects, wNE-affects, and189

PoS-affects in a similar way, referring to the costs of the best and worst NEs, and the PoS.190

I Example 3. Consider the NFG N from Example 1, and consider the edge e = (s, v). The191

edge e SO-affects N , since, for example, for N [e← 2] we have that 〈π2
1 , π

2
2〉 is an SO with192

cost 5 < 7 = costSO(N). As another example, for N [e ← 10] we have that 〈π1
1 , π

1
2〉 is an193

SO with cost 11 > 7 = costSO(N). Next, consider the edge e = (u, t1). For every x ≥ 0,194

we have cost(N [e ← x], 〈π1
1 , π

1
2〉) = x + 8, cost(N [e ← x], 〈π1

1 , π
2
2〉) = x + 9, cost(N [e ←195

x], 〈π2
1 , π

1
2〉) = 14, and cost(N [e ← x], 〈π2

1 , π
2
2〉) = 7. Therefore, costSO(N [e ← x]) =196

min{x+ 8, x+ 9, 14, 7} = 7 = costSO(N), and so e does not SO-affect N .197

We proceed to bNE and wNE. Here, the change may affect the stability of profiles, and198

not just their cost. Consider the edge e = (s, u). Table 2 describes the costs of the different199

profiles of N [e← (1− ε)], for some 0 < ε < 1.200

Player 2 π1
2 π2

2

Player 1 s→ u→ t2 s→ v → t2

π1
1 4 1

2 −
ε
2 5

s→ u→ t1 3 1
2 −

ε
2 4− ε

π2
1 5− ε 3

s→ v → t1 6 4
Table 2 Costs in N [〈s, u〉 ← (1− ε)].

Player 2 π1
2 π2

2

Player 1 s→ u→ t2 s→ v → t2

π1
1 6 5

s→ u→ t1 2 + x 4 + x

π2
1 8 3

s→ v → t1 6 4
Table 3 Costs in N [〈u, t1〉 ← x].

We previously saw that the only NE profile in N is P = 〈π2
1 , π

2
2〉, with cost 7, and therefore201

it is both the bNE and the wNE. We can see that the cost of P is minimal for N [e← (1− ε)].202

However, P is no longer an NE. Indeed, for the profile P ′ = 〈π1
1 , π

2
2〉, obtained by a deviation203

of Player 1, we have that 4 − ε = costN [e←1−ε],P ′(π1
1) < costN [e←1−ε],P (π2

1) = 4. For204

N [e← (1− ε)], the only NE profile is 〈π1
1 , π

1
2〉, with cost 8− ε. For 0 < ε < 1 it therefore205

holds that 7 = costbNE(N) < costbNE(N [e ← 1 − ε]) = 8 − ε, and the same for wNE.206

Therefore, the edge e both bNE-affects and wNE-affects N . Furthermore, e PoS-affects N ,207

as PoS(N ) = 1 and PoS(N [e ← 1 − ε]) = 8−ε
7 > 1 .208

CSL 2020



10:6 Coverage and Vacuity in Network Formation Games

Next, consider the edge e = (u, t1). We show that e does not bNE-affect nor does it209

wNE-affect N . To see this, consider the costs of the different profiles of N [e← x] for x ≥ 0,210

described in Table 3. It can be easily verified that, for all x ≥ 0, the only NE in N [e← x] is211

〈π2
1 , π

2
2〉. Therefore, costbNE(N [e ← x]) = costwNE(N [e ← x]) = 7. As e neither SO-affect212

nor bNE-affect N , it follows that e does not PoS-affect N .213

It is also worth noting that it is not always the case that an edge either both bNE-affects214

and wNE-affects or both does not bNE-affect and wNE-affect N . As an example, consider215

the edge e = (u, t2). The cost table of N [e← x] appears in Table 4.216

Player 2 π1
2 π2

2

Player 1 s→ u→ t2 s→ v → t2

π1
1 2 + x 5

s→ u→ t1 5 7
π2

1 4 + x 3
s→ v → t1 6 4

Table 4 Costs in N [〈u, t2〉 ← x].

It is not hard to see that for 0 ≤ x ≤ 3, it holds that P1 = 〈π1
1 , π

1
2〉 and P2 = 〈π2

1 , π
2
2〉217

are NEs in N [e ← x]. However, cost(N [e ← x], P1) = 7 + x and cost(N [e ← x], P2) = 7.218

Therefore, costbNE(N [e ← x]) = min{7 + x, 7} = 7, and costwNE(N [e ← x]) = max{7 +219

x, 7} = 7 + x. Since for all x > 3, the profile P2 is the only NE in N [e← x], it follows that e220

does not bNE-affect N , and e wNE-affects N . J221

2.3 Monotonicity and continuity222

Consider a function f : R → R. We say that f is monotonically increasing if for all223

x1, x2 ∈ R, we have that x1 ≤ x2 implies f(x1) ≤ f(x2). For x0 ∈ R, we say that f is224

continuous at x0 if for every ε > 0 there exists δ > 0 such that for all x ∈ R, if |x− x0| < δ225

then |f(x)− f(x0)| < ε. Then, we say that f is continuous if f is continuous at x0 for all226

x0 ∈ R.227

For an edge e ∈ E, we define the function costeSO(N) : R → R by costeSO(N)(x) =228

costSO(N [e ← x]) if x ≥ 0, and costeSO(N)(x) = costSO(N [e ← 0]) otherwise. That is,229

costeSO(N) is the cost of the SO in N as a function of the cost of the edge e. We say230

that costSO is monotonically increasing, if for every NFG N and edge e of N , the function231

costeSO(N) is monotonically increasing. That is, costSO is monotonically increasing if an232

increase in the cost of any edge, for any NFG, can only cause an increase in the cost of the233

SO. Likewise, costSO is continuous, if for every NFG N and edge e, the functioncosteSO(N)234

is continuous. We define the monotonicity and the continuity of costbNE , costwNE and PoS235

in a similar way.236

3 Affecting the Social Optimum237

In this section we study the sensitivity of the SO to cost mutations. We first study the238

monotonicity and continuity of costSO, and then the complexity of relevant decision problems.239

3.1 Monotonicity and continuity of the SO240

I Theorem 4. [costSO is monotone] For every NFG N and edge e of N , the function241

costeSO(N) is monotone.242
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Proof. Let N1 and N2 be NFGs that differ only in their cost functions. We prove that if243

N1 ≤ N2, then costSO(N1) ≤ costSO(N2). In particular, this holds for N1 and N2 being N244

with cost functions that differ only in the cost of e. Let P1 ∈ SO(N1) and let P2 ∈ SO(N2).245

By the minimality of the SO for N1, we get that cost(N1, P1) ≤ cost(N1, P2). By Lemma 2, as246

N1 ≤ N2, we have that cost(N1, P2) ≤ cost(N2, P2). Therefore, cost(N1, P1) ≤ cost(N2, P2),247

and hence costSO(N1) ≤ costSO(N2). J248

Since costSO is monotonically increasing, a sufficient condition for an edge not to SO-affect249

the network is based on comparing the cost of the SO in the two extreme costs for the edge.250

The lowest cost is 0. For the highest cost, let ∞N be a sufficiently large value for a cost of251

an edge to be considered extreme in N , in the sense that if an edge e with cost ∞N is in252

some strategy, then the cost of that strategy is guaranteed to be larger than the cost of all253

strategies that do not contain e. For example, we can define ∞N to be 1 +
∑
e∈E c(e).254

I Lemma 5. For every NFG N and edge e of N , the edge e does not SO-affect N iff255

costSO(N [e← 0]) = costSO(N [e←∞N ]).256

Proof. Since N [e ← 0] ≤ N [e ← ∞N ] and the function costSO(N) is monotonically in-257

creasing, then costSO(N [e← 0]) = costSO(N [e←∞N ]) implies that for all x ≥ 0, we have258

costSO(N [e ← 0]) = costSO(N [e ← x]) = costSO(N [e ← ∞N ]). Thus, for all x ≥ 0, we259

have costSO(N) = costSO(N [e← x]), so the cost of e does not SO-affect N . For the other260

direction, if the cost of e does not SO-affect N , then, by definition, for all x ≥ 0, we have that261

costSO(N) = costSO(N [e ← x]). In particular, costSO(N [e ← 0]) = costSO(N [e ← ∞N ]),262

and we are done. J263

Note that it follows that for an NFG N and edge e in it, if there is a profile P ∈ SO(N) such264

that e ∈ P and c(e) > 0, then e SO-affects N , as reducing its cost to 0 reduces also the cost265

of the SO.266

In case e SO-affects N , we can characterize the behavior of costSO(N [e← x]) as follows.267

I Lemma 6. Consider an NFG N and an edge e of N . If e SO-affects N , then there is a268

value x ∈ R such that the following hold.269

1. For all values y with y > x, the edge e does not participate in any profile in SO(N [e← y])270

and costSO(N [e← y]) = x+ costSO(N [e← 0]).271

2. For all values y with y < x, the edge e participates in at least one profile in SO(N [e← y])272

and costSO(N [e← y]) = y + costSO(N [e← 0]).273

3. The edge e participates in at least one profile in SO(N [e← x]) and costSO(N [e← x]) =274

x+ costSO(N [e← 0]).275

Proof. Since e SO-affects N , then, by Lemma 5, we have that costSO(N [e ← 0]) <276

costSO(N [e ← ∞N ]). It is not hard to see that taking x to be min{y : costSO(N [e ←277

y]) = costSO(N [e ← ∞N ])} satisfies the conditions in the lemma. In particular, when e278

participates in all profiles in the SO, then x = min ∅ =∞. J279

I Theorem 7. For every NFG N and edge e of N , the function costeSO(N) is continuous.280

Proof. Consider an NFG N and edge e of N . First, if the edge e does not SO-affect N , then281

costeSO(N) is constant and therefore continuous. Otherwise, by Lemma 6, there is a value x ∈282

R such that for all values y with y ≥ x, we have that costSO(N [e← y]) = x+ costSO(N [e←283

0]), and for all values y with y < x, we have that costSO(N [e← y]) = y + costSO(N [e← 0]).284

Thus, continuity in all points except x follows immediately from continuity of linear functions.285

For the point x, Lemma 6 implies that for all ε > 0, we have that f(x+ ε)− f(x) = 0, and286

f(x)− f(x− ε) = ε, so costeSO(N) is continuous also at x. J287
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3.2 Decision problems288

The SO-cost decision problem is the problem of deciding, given an NFG N and a threshold289

κ ≥ 0, whether costSO(N) ≤ κ. The SO-cost problem is NP-complete [38]. In this section290

we study the following related decision problems.291

1. Edge-SO-affects: Given an NFG N and an edge e of N , does e SO-affect N? Thus,292

Edge-SO-affects = {〈N, e〉 | e SO-affects N}.293

2. Edge-SO-optimization: Given an NFG N , an edge e of N , and a threshold κ ≥ 0, is there a294

value x ≥ 0, such that costSO(N [e← x]) ≤ κ? Thus, Edge-SO-optimization = {〈N, e, κ〉 |295

there exists x ≥ 0 such that costSO(N [e← x]) ≤ κ}.296

3. SO-optimization: Given an NFG N and a threshold κ ≥ 0, is there an edge e of N and a297

value x ≥ 0, such that costSO(N [e ← x]) ≤ κ? Thus, SO-optimization= {〈N,κ〉 | there298

exist e and x ≥ 0 such that costSO(N [e← x]) ≤ κ}.299

4. SO-control: Given an NFGN and a threshold κ ≥ 0, is there an edge e ofN and a value x ≥300

0, such that costSO(N [e ← x]) = κ? Thus, SO-control= {〈N,κ〉 | there exist e and x ≥301

0 such that costSO(N [e← x]) = κ}.302

Analyzing the complexity of the problems, we assume that the costs of an NFG are given303

in binary. As we shall note below, this affects the complexity of the problems. In addition to304

the classes NP and co-NP, we are going to refer to the class ∆P
2 = PNP (ΘP

2 ), of decision305

problems that can be decided by a polynomial-time deterministic Turing machine that has306

access to polynomially many (logarithmically many, respectively) queries to an oracle to an307

NP-complete problem, and the class DP, of decision problems that are the intersection of308

an NP and a co-NP problem. That is, a decision problem L is in DP if there are decision309

problems L1, L2 such that L1 ∈ NP, L2 ∈ co-NP and L = L1 ∩ L2.310

I Theorem 8. The Edge-SO-affects problem is ∆P
2 -complete, and is ΘP

2 complete when costs311

are given in unary.312

Proof. We start with membership in ∆P
2 . Given an NFG N and an edge e in N , a313

deterministic Turing machine can use an oracle to SO-cost, calculate costSO(N [e← 0]) and314

costSO(N [e←∞N ]) and compare them. Since the maximal cost of a profile is
∑
e∈E c(e),315

and costSO is the sum of costs of a subset of edges, rather than an arbitrary number in316

R, the Turing machine can proceed by a binary search and thus the number of oracle317

calls is logarithmic in
∑
e∈E c(e). When costs are given in binary,

∑
e∈E c(e) is exponential318

in input, hence there are polynomially-many oracle calls. Thus, Edge-SO-affects∈ ∆P
2 .319

However, when costs are given in unary,
∑
e∈E c(e) is polynomial in input, hence there are320

logarithmically-many oracle calls. Thus, Edge-SO-affects∈ ΘP
2 .321

In the full version, we prove that the problem is ∆P
2 -hard by a reduction from maximum-322

satisfying-assignment, namely the problem of deciding, given a 3CNF formula ϕ if the323

lexicographically maximal assignment that satisfies ϕ has LSB that equals 1. It was shown by324

[26] that maximum-satisfying-assignment is ∆P
2 -complete. Essentially, given ϕ, we construct325

an NFG N such that profiles corresponds to assignments, and the cost of a profile decreases326

with lexicographically greater satisfying assignments. The edge e participates in profiles327

that correspond to assignments in which the LSB is 1, and is minimal only when the328

maximal lexicographic assignment has LSB 1. Consequently, 〈N, e〉 ∈ Edge-SO-affects iff ϕ ∈329

maximum-satisfying-assignment.330

In the full version, we prove that when costs are given in unary, the problem is ΘP
2 -hard.331

The proof is by a reduction from VC-compare, namely the problem of deciding, given two332

undirected graphs G1 = 〈V1, E1〉 and G2 = 〈V2, E2〉, whether the size of a minimal vertex333
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cover of G1 is less than or equal to the size of a minimal vertex cover of G2. Essentially,334

given G1 and G2, we construct an NFG N that subsumes both graphs and the objectives of335

the players are defined so that profiles correspond to choosing a vertex cover in one of the336

graphs. The edge e participates in profiles in which the players choose to proceed with a337

cover in G1, which happens only when the size of a minimal vertex cover of G1 is less than338

or equal to the size of a minimal vertex cover of G2. Consequently, 〈N, e〉 ∈ Edge-SO-affects339

iff 〈G1, G2〉 ∈ VC-compare. J340

We continue to the optimization problems. The proof is easy and can be found in the full341

version. In particular, the lower bounds are by a reduction from the SO-cost problem.342

I Theorem 9. The Edge-SO-optimization and SO-optimization problems are NP-complete.343

For the upper-bound of the SO-control problem, we first need the following lemma.344

I Lemma 10. Let N be an NFG and let κ ≥ 0 be a threshold. If there are (not necessarily345

distinct) edges e1 and e2 of N such that costSO(N [e1 ← 0]) ≥ κ and costSO(N [e2 ←∞]) ≤ κ,346

then there is an edge e of N and a value x ≥ 0 such that costSO(N [e← x]) = κ.347

Proof. Assume towards contradiction that for all edges e of N and value x ≥ 0, it holds348

that costSO(N [e ← x]) 6= κ. In particular, this means that costSO(N [e1 ← 0]) > κ and349

costSO(N [e2 ← ∞]) < κ. Hence, by monotonicity of costeSO(N), we get that costSO(N) =350

costSO(N [e2 ← c(e2)]) ≤ costSO(N [e2 ← ∞]) < κ < costSO(N [e1 ← 0]) ≤ costSO(N [e1 ←351

c(e1)]) = costSO(N). J352

I Theorem 11. The SO-control problem is DP-complete.353

Proof. We start with membership. Let L1 = {〈N,κ〉 | there exist an edge e and x ≥ 0354

such that costSO(N [e ← x]) ≤ κ} and L2 = {〈N,κ〉 | there exist an edge e and x ≥ 0355

such that costSO(N [e ← x]) ≥ κ}. Note that L1 is SO-optimization and is therefore in356

NP. We show that L2 is in co-NP. The complement of L2 is Lc2 = {〈N,κ〉 | for all edges357

e and x ≥ 0 we have costSO(N [e ← x] < κ)}. A witness for membership in Lc2 is a set358

S of |E| = m profiles, one for each edge, satisfying cost(N [e ← ∞], Pe) < κ for each359

Pe ∈ S. The witness is polynomial since we only require m profiles. By monotonicity, it360

holds that if such a profile Pe exists for an edge e, then for every x ≥ 0, we have that361

costSO(N [e ← x]) ≤ cost(N [e ← x], Pe) ≤ cost(N [e ← ∞], Pe) < κ. If this holds for every362

edge, then 〈N,κ〉 ∈ Lc2. In the other direction, if there is an edge e such that for every363

profile P it holds that cost(N [e←∞], P ) ≥ κ, then costSO(N [e←∞]) ≥ κ, and therefore364

〈N,κ〉 /∈ Lc2. Therefore, Lc2 is in NP, hence L2 is in co-NP. We show that L1∩L2 =SO-control.365

For the first direction, let 〈N,κ〉 ∈ SO-control. Therefore, there is an edge e ∈ E and366

a value x ≥ 0 such that costSO(N [e← x]) = κ. In particular, we have that costSO(N [e←367

x]) ≤ κ, therefore 〈Nκ〉 ∈ L1. Furtheremore, costSO(N [e← x]) ≥ κ, therefore 〈N,κ〉 ∈ L2.368

Hence, 〈N,κ〉 ∈ L1 ∩ L2.369

For the other direction, let 〈N,κ〉 ∈ L1 ∩ L2. Since 〈N,κ〉 ∈ L1, there is e1 ∈ E and370

x1 ≥ 0 such that costSO(N [e1 ← x1]) ≤ κ. If costSO(N [e1 ← ∞]) ≥ κ, then by continuity371

and the intermediate value theorem, there is x ≥ 0 such that costSO(N [e1 ← x]) = κ, hence372

〈N,κ〉 ∈ SO-control. If costSO(N [e1 ← ∞]) < κ, we use the fact that 〈N,κ〉 ∈ L2. Hence,373

there is e2 ∈ E and x2 ≥ 0 such that costSO(N [e2 ← x2]) ≥ κ. If costSO(N [e2 ← 0]) ≤ κ,374

then again by continuity and the intermediate value theorem, there is x ≥ 0 such that375

costSO(N [e2 ← x]) = κ. If costSO(N [e2 ← 0]) > κ, then since costSO(N [e1 ← ∞]) < κ by376

Lemma 10, there is an edge e ∈ E and a value x ≥ 0 such that costSO(N [e← x]) = κ, and377

therefore 〈N,κ〉 ∈ SO-control.378
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We turn to prove that the problem is DP-hard. We reduce SAT-UNSAT to SO-control.379

SAT-UNSAT is the problem of deciding, given two 3CNF formulas ϕ1 and ϕ2, whether ϕ1380

is satisfiable and ϕ2 is not satisfiable. That is, 〈ϕ1, ϕ2〉 ∈ SAT-UNSAT iff there exists an381

assignment f1 to the variables of ϕ1 such that f1 satisfies ϕ1, and for all assignments f2 to382

the variables of ϕ2, it holds that f2 does not satisfy ϕ2. It was shown in [35] that SAT-UNSAT383

is DP-complete.384

We propose the following reduction. For each formula ϕi, with i ∈ {1, 2}, we add a fresh385

variable zi. We first construct a new formula ϕ′i in the following way. For each clause, we386

disjunct the clause with zi. We also conjunct the entire formula with ¬zi. Note that if ϕi387

is satisfied by an assignment fi, then ϕ′i is satisfied by the assignment that agrees with fi388

on all the variables in ϕi, and has zi = false. Furthermore, if ϕi is unsatisfiable, then ϕ′i is389

unsatisfiable. Indeed, an assignment that satisfies ϕ′i must have zi = false, implying that all390

other clauses are satisfied by an assignment that satisfies ϕi as well. Next, we construct an391

NFG Ni = 〈ki, Vi, Ei, ci, γi〉, for i ∈ {1, 2}, as follows (see Figure 2).392

¬zizi...¬xijxij...¬xi1xi1

¬z′iz′i...¬x′j
i

x′j
i...¬x′1

i
x′1
i

si

bizbijbi1

cik
... ... cinici1 ci¬zi

i+ 1

i+
1 i

+
1 i+

1 i+ 1

i+ 1

i+ 1 i+ 1 i+ 1 i+ 1 i+ 1 i+ 1

0 0 0 00 0 0 0

0 00 0

Figure 2 The NFG Ni; each edge denotes a set of two parallel edges with the same cost.

Let ni be the number of variables in ϕi, and let mi be the number of clauses in ϕi. Thus,393

the number of variables in ϕ′i is ni + 1, and the number of clauses in ϕ′i is mi + 1. We define394

Vi =
⋃

1≤j≤ni+1{xij ,¬xij , x′j
i
,¬x′j

i
, bij}

⋃
1≤k≤mi+1{cik} ∪ {si}. That is, for each variable xij395

of ϕ′i, we have in Vi two vertices for the variable xij , denoted xij , x
′
j
i, two vertices for its396

negation ¬xij , denoted ¬xij ,¬x′j
i, and another vertex, denoted bij . We also have a vertex for397

each clause, and a source vertex. The edges and costs are as follows. There are two parallel398

edges, each with cost i+ 1, from si to both x′j
i
,¬x′j

i for every variable xij of ϕ′i. There are399

two parallel edges, each with cost i+1, from x′j
i to xij and from ¬x′j

i to ¬xij for every variable400

xij of ϕ′i. There are two parallel edges, each with cost 0 from both xij ,¬xij to bij . Finally, for401

every clause cik, there are two parallel edges, each with cost 0, from every literal appearing402

in cik to the vertex cik. Note that, in particular, this means that there are two parallel edges403

with cost 0 from zi to all clauses except the clause ¬zi. Finally, we have ki = ni + 1 +mi + 1404

players. The first ni + 1 players are clause players, and the objective of Player 1 ≤ k ≤ ni + 1405

is 〈si, cik〉. The rest are variable players, and the objective of Player ni + 2 ≤ j ≤ ni +mi + 2406
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is 〈si, bij〉. To complete the construction, we fix N = 〈k1 +k2, V1∪V2, E1∪E2, c1∪c2, γ1∪γ2〉407

and κ = 4n1 + 6n2 + 16.408

Note that since N1 and N2 are disjoint, it holds that costSO(N) = costSO(N1) +409

costSO(N2). We argue that if ϕi, for i ∈ [1, 2], is satisfiable, then costSO(Ni) = 2(i+1)·(ni+1),410

and otherwise costSO(Ni) = 2(i + 1) · (ni + 2). Thus, N has a distinct SO-cost to every411

combination of {SAT, UNSAT} × {SAT, UNSAT}, which enables us to point to a threshold κ412

such that 〈ϕ1, ϕ2〉 ∈ SAT-UNSAT iff 〈N,κ〉 ∈ SO-control. Details can be found in the full413

version. J414

4 Affecting the Best Nash Equilibrium415

In this section we study the sensitivity of the best NE to cost mutations. As we shall see,416

while the setting is less clean than in the SO case, we are able to obtain the same complexity417

bounds for analogous decision problems.418

4.1 Monotonicity and continuity of the bNE419

I Theorem 12. [costbNE is not monotone] There is an NFG N and an edge e of N , such420

that the function costebNE(N) is not monotone.421

Proof. Consider the NFG N appearing in Figure 3. The game is played between two players,422

with objectives 〈s, t1〉 and 〈s, t2〉. Let e = 〈s, t2〉. Table 5 describes the costs of the players423

in the possible four profiles of N [e← x]. When x ∈ [0, 1), the only NE is 〈π2
1 , π

1
2〉, with cost424

x+ 2. When x > 1, the only NE is 〈π2
1 , π

2
2〉, with cost 2. So, for all x ∈ (0, 1), we have that425

costbNE(N [e← x]) = 2 + x > 2 = costbNE(N [e← 1]), and thus costebNE(N) is not monotone.426

J

t2 v t1

s

x 32

00

Figure 3 The NFG N .

Player 2 π1
2 π2

2
Player 1 s→ t2 s→ v → t2

π1
1 x 2

s→ t1 3 3
π2

1 x 1
s→ v → t1 2 1

Table 5 Players’ costs in N .

427 I Theorem 13. [costbNE is not continuous] There is an NFG N and an edge e of N ,428

such that the function costebNE(N) is not continuous.429

Proof. We use the same NFG N and edge e as in the proof of Theorem 12. It is easy to see430

that costebNE(N) is not continuous at 1. J431

While costbNE is neither monotonous nor continuous, we now show that it is composed432

of finitely many linear segments. We say that a function f : R+ → R
+ is composed of linear433

segments if there is a segmentation 0 = x0 < x1 < ... < xn < xn+1 = ∞ of R+, for some434

n ≥ 0, such that for every 0 ≤ i ≤ n there is a linear function fi : R→ R such that for all435

x ∈ [xi, xi+1] it holds that f(x) = fi(x). We call x0, x1, ..., xn+1 the edge points of f . Given436

an NFG N , a profile P , and an edge e, the cost of P is a linear function with respect to the437

cost of e. Indeed, cost(N,P ) =
∑
e′∈P\{e} c(e′)+1P,ec(e), where 1P,e ∈ {0, 1} is an indicator438

of e being used in P . In particular, when 1P,e = 0, then cost(N,P ) is a constant function.439
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I Lemma 14. Given an NFG N , an edge e, and a profile P , the range of values x such that440

P is an NE in N [e← x] is a single (possibly empty) segment.441

Proof. By definition, a profile P is an NE if for every i and for every profile P ′ obtained442

from P by a deviation π′i of Player i that costN,P (πi) ≤ costN,P ′(π′i). Hence, P is an NE in443

N [e← x] in values x for which the set of constraints of the form costN,P (πi) ≤ costN,P ′(π′i)444

holds. As each constraint is a linear inequality in a single variable (that is, x), the solution445

set is a single (perhaps empty) segment. J446

We denote by bumps(P ) the set of edge points of the segment along which P is an447

NE in N [e ← x]. That is, bumps(P ) = {a, b} if P is an NE in N [e ← x] for exactly all448

a ≤ x ≤ b. By Lemma 14, bumps(P ) contains at most two points. We further denote by449

Bumps(N, e) =
⋃
P bumps(P ). Since the number of strategies per player and the number of450

players are finite, the number of profiles is finite as well. Hence, since |bumps(P )| ≤ 2 for451

every profile P , we get that Bumps(N, e) is finite.452

Consider two profiles P1 6= P2 in N . For an edge e, we say that a value x ≥ 0 is an453

intersection point for e, P1, and P2, if cost(N [e← x], P1) = cost(N [e← x], P2). Note that454

since cost(N [e← x], P ) is linear for every profile P , there is at most one intersection point455

for every edge and two profiles. Let Ints(N, e) be the set of all intersection points for e and456

pairs of profiles in N . Since the number of different profiles is finite, so is Ints(N, e).457

I Theorem 15. Consider an NFG N and an edge e in N . Then, costbNE(N [e ← x]) is458

composed of finitely many linear segments, and is monotonically increasing within each459

segment.460

Proof. Recall that costebNE(N)(x) = costbNE(N [e ← x]) = minP∈bNE(N [e←x]) cost(N [e ←461

x], P ) = minP∈bNE(N [e←x])
∑
e′∈P\{e} c(e′) + 1P,ex. Hence, costbNE(N [e← x]) is composed462

of linear segments. The set of edge points refines bumps(N, e) ∪ Ints(N, e), and since it is463

finite, so are the number of segments. Furthermore, as cost(N [e← x], P ) is monotonically464

increasing for every P , we get that costbNE(N [e ← x]) is monotonically increasing within465

each segment. J466

Figure 4 below contains plots2 of the function costbNE(N [e← x]). The left plot describes467

costbNE(N [e ← x]) where N is the NFG from Example 1 and e = 〈s, u〉. To its right, we468

describe a three-player NFG N and the plot of costbNE(N [e← x]) with e = 〈s, v2〉.

t3 t1

t2v1 v2

s

6 x 3

0.5

2.501

Figure 4 Plots for costbNE(N [e← x]).

469

2 The plots were generated by a simple Python program that gets as input an NFG by means of a
NetworkX weighted directed graph, and naively follows the segmentation from Theorem 15.
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4.2 Decision problems470

The bNE-cost decision problem is the problem of deciding, given an NFG N and a threshold471

κ ≥ 0, whether costbNE(N) ≤ κ. The bNE-cost problem is NP-complete [4]. In this section472

we study the following related decision problems.473

1. Edge-bNE-affects: Given an NFG N and an edge e of N , does e bNE-affect N? Thus,474

Edge-bNE-affects = {〈N, e〉 | e bNE-affects N}.475

2. Edge-bNE-optimization: Given an NFG N , an edge e of N , and a threshold κ ≥ 0, is476

there a value x ≥ 0, such that costbNE(N [e ← x]) ≤ κ? Thus, Edge-bNE-optimization477

= {〈N, e, κ〉 | there exists x ≥ 0 such that costbNE(N [e← x]) ≤ κ}.478

3. bNE-optimization: Given an NFG N and a threshold κ ≥ 0, is there an edge e of N and a479

value x ≥ 0, such that costbNE(N [e← x]) ≤ κ? Thus, bNE-optimization= {〈N,κ〉 | there480

exist e and x ≥ 0 such that costbNE(N [e← x]) ≤ κ}.481

Before we turn to analyze the complexity of the problems, let us illustrate the non-intuitive482

behavior of costbNE . Consider the NFG N appearing in Figure 5, and let e = 〈s, v2〉. As can483

be seen in Table 6, the profile 〈π3
1 , π

3
2〉 is an NE with cost 10 independent of the value of x.484

Then, when 0 ≤ x ≤ 1
2 , the profile 〈π2

1 , π
1
2〉 is an NE with cost 10.5 + x, and when x ≥ 1

2 , the485

profile 〈π1
1 , π

1
2〉 is an NE with cost 9. Accordingly, costbNE(N [e← x]) is 10 when 0 ≤ x < 1

2 ,486

and is 9 when x ≥ 1
2 . Though observations of the non-intuitive behavior of network exists in487

literature (e.g., Braess’ Paradox [12]), it is common that added/removed edges participate in488

equilibria profiles either before or after changing the network. In this example, however, the489

edge e, which bNE-affects N , does not participate in any bNE profile! Thus, costbNE is fixed490

in the two segments [0, 1
2 ) and [ 1

2 ,∞], yet still e bNE affects N .491

t1 t2

v1 v2 v3

s

4 x 8

4 1

5.5 5
1 1

Figure 5 The NFG N .

Player 2 π1
2 π2

2 π3
2

Player 1 s, v1, t2 s, v2, t2 s, v3, t2

π1
1 3 5 + x 9

s, v1, t1 6 8 8
π2

1 5 5 + x
2 9

s, v2, t1 5.5 + x 5.5 + x
2 5.5 + x

π3
1 5 5 + x 5

s, v3, t1 9 9 5

Table 6 Players’ costs in N .

I Lemma 16. Let N be an NFG, and let e be an edge in N . If there is an NE profile P492

such that e /∈ P , then for all x ≥ c(e), we have that P is an NE in N [e← x].493

Proof. Assume towards contradiction that there is x > c(e) such that P is not an NE.494

Then, there is a player i with strategy πi in P that has an incentive to unilaterally deviate495

to another strategy π′i. Denote by P ′ the deviation profile resulting from i’s deviation.496

Since P is an NE in N , we have that costN,P (πi) ≤ costN,P ′(π′i). Since e /∈ P , we have that497

costN [e←x],P (πi) = costN,P (πi). Since x > c(e) we have that costN,P ′(π′i) ≤ costN [e←x],P ′(π′i).498

Therefore costN [e←x],P (πi) ≤ costN [e←x],P ′(π′i), in contradiction to the fact that Player i has499

an incentive to deviate. J500

Lemma 16, together with the segmentation of bNE(N [e← x]), is used for proving the501

following characterization of an edge that does not bNE-affect N . The proof is based on a502

careful consideration of all cases and can be found in the full version.503
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I Theorem 17. Let N be an NFG. An edge e in N does not bNE-affect N iff there is a504

profile P ∈ bNE(N [e← 0]) such that e /∈ P and for all x ≥ 0 it holds that costbNE(N [e←505

x]) ≥ costbNE(N [e← 0]).506

I Theorem 18. The Edge-bNE-affects problem is ∆P
2 -complete, and is ΘP

2 -complete when507

costs are given in unary.508

Proof. We start with membership. First, note that given an NFG N , and edge e of N ,509

and a value κ ≥ 0, we can decide in NP whether there is a profile P such that e /∈ P and510

cost(N,P ) = κ.511

Let OPT0 = costbNE(N [e← 0]). As argued in the membership claim for Theorem 8, we512

can find OPT0 using polynomially-many queries to an NP oracle when costs are given in513

binary, and using logarithmically-many queries when costs are given in unary. Then, using a514

single query to Edge-bNE-optimization (with modification to strictly smaller) with input N, e,515

and OPT0, we can decide if there is a value x ≥ 0 such that costbNE(N [e← x]) < OPT0. If516

so, then e affects N . Otherwise, use a single query to ask if there is a profile P such that517

e /∈ P and cost(N [e← 0], P ) = OPT0. By Theorem 17, we have that e bNE-affects N iff the518

answer is no.519

The hardness results for ∆P
2 and ΘP

2 can be found in the full version. In both cases we520

use the same reduction as in the hardness results for Theorem 8. In the case of ∆P
2 we make521

a slight variation. Then we show that the profiles described for the SO is a superset of the522

bNE profiles. J523

Finally, for the optimization problems, the analysis is similar to the one in Theorem 9,524

except that we also have to argue that the witness value x is polynomial in input. The details525

can be found in the full version.526

I Theorem 19. The edge-bNE-optimization and bNE-optimization problems are NP-complete.527

I Remark 20. [On the PoS and the worst NE] Recall that PoS(N ) = costbNE(N)
costSO(N) . If an528

edge e bNE-affects N , it does not necessarily imply that e PoS-affects N . Indeed, e may529

participate also in the SO. Nevertheless, the NFG N used in the proofs of Theorems 12530

and 13 demonstrates that PoS is neither monotone nor continuous. To see this, note that531

for all x ≥ 0, we have that costSO(N [e← x]) = 2, we get that for x ∈ [0, 1), we have that532

PoS(N [e ← x]) = 1 + x
2 , and for x ≥ 1, we have that PoS(N [e ← x]) = 1 .533

As for the worst NE, since the NFG N used in the proofs of Theorems 12 and 13 is such534

that N [e← x] has a single NE for all values of x, the considerations about the best and worst535

NE coincide, and thus N demonstrate that costwNE is neither monotone nor continuous.536

5 Discussion and Future Work537

We studied the effect of mutations applied to the cost of edges in network formation games.538

Our results about monotonicity and continuity of the SO and NE are aligned with similar539

folk results in similar settings in game theory. We are, however, the first to introduce a540

formal framework to study these phenomena, and to provide a complexity analysis of the541

decision problems they induce. We also point to new surprising effects of the mutations.542

The mutations we study for NFGs are of a restricted type: an unbounded change in543

the cost of a single resource in the game. As has been the case in coverage and vacuity544

in formal verification, richer types of mutations reflect practical bounds on the possible545

mutations. For example, it would be interesting to study how one can control the bNE by a546

budget-restricted mutation of several edges. Also, while our definition of affect is Boolean,547
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namely an edge SO-, bNE-, or wNE-affects a network or it does not, it is interesting to548

examine a quantitative approach, where we care how much an edge affects these measures.549

Finally, while our optimization problems care about an upper bound to the costs of the SO550

and bNE, in some applications it is interesting to control these values by both an upper and551

lower bound. We leave the richer setting and variants for future research.552

Both game theory and formal verification aim at reasoning about behaviors of interacting553

entities, yet consider different aspects of the interaction. We view this work as another chain554

in an exciting transfer of concepts and ideas between the two areas [28]. In the context of555

game theory, this includes an extension of NFGs to objectives that are richer than reachability556

[9], to a timed setting [6], and to a setting where the strategies of the players are dynamic557

[7]. Beyond richer settings, it is shown in [30, 5] how ideas used in formal verification for558

abstraction and symbolic presentation of huge systems can be used for reasoning about NFGs.559

In the other direction, concepts from game theory are used in the formalization of strategic560

behaviors in formal verification (e.g., rational verification and synthesis [22, 39]). In the more561

economic view, cost-sharing mechanisms from NFGs are used in [8] in order to augment the562

problem of synthesis from component libraries by cost considerations.563

Our contribution here started with the transfer of concepts from formal verification to564

game theory, yet our results suggest new research directions in coverage and vacuity in formal565

verification, and logic in general. Studies of coverage and vacuity so far concern Boolean566

specification formalisms [27]. In contrast, the objectives of the players in typical game-567

theoretic settings, in particular NFGs, are quantitative. Recently, there is growing interest568

in multi-valued specification formalisms, which specify the quality of systems, and not only569

their correctness [2]. Moreover, the systems we reason about may be multi-valued too. For570

the multi-valued setting, we need to develop a theory of quantified multi-valued propositions.571

In particular, the segmentation of values in R+ we perform for bNE, is analogous to a572

segmentation of [0, 1] – the domain of values of atomic propositions and sub-formulas in573

typical multi-valued formalisms. Indeed, while mutations of sub-formulas that appear in a574

positive or negative polarity behave monotonically, sub-formulas with a mixed polarity may575

induce a non-trivial segmentation. Moreover, as has been the case with bumps(P ) in the576

bNE segmentation, the edge points of the segments may not be constants that appear in the577

formula. For example, when sub-formulas and atomic propositions take values in [0, 1], then578

the maximal satisfaction value of the formula p∧ (¬p) is when the satisfaction value of p is 1
2 .579

Furthermore, the need to reason formally about multi-agent systems has led to a devel-580

opment of specification formalisms that enable reasoning about on-going strategic behavi-581

ors [3, 13, 32, 11]. Essentially, these formalisms, most notably ATL, ATL?, and Strategy582

Logic (SL), include quantification of strategies of the different agents and of the computations583

they may force the system into, making it possible to specify concepts like SO and NE.584

While coverage and vacuity are traditionally viewed as sanity checks in model checking, in585

the context of SL specifications, they can also be used for revealing properties of games586

and strategic behaviors. Out work demonstrates how SL formulas that specify concepts587

like SO and NE explain properties like monotonicity. Indeed, non-monotonicity of the bNE588

corresponds to the mixed polarity of the objectives in the SL formula that describes an NE:589

a negative occurrence (left-hand side of an implication) when we refer to a deviation and a590

positive one (right-hand side of that implication) in for the current strategy. In contrast, in591

the formula for the SO, all occurrences of the objectives are positive, implying monotonicity.592

Moreover, for a specific given game, reasoning about the effect of mutations can be reduced to593

checking the coverage of SL formulas that specify properties of the game. Thus, a framework594

for coverage and vacuity in SL is interesting for both formal verification and game theory.595
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A Proofs693

A.1 The ∆P
2 lower bound in Theorem 8694

For a 3CNF formula ϕ, denote by n and m the number of variables and clauses in ϕ,695

respectively. We assume that n > 2. We assume that some order xn−1, . . . , x1, x0 over696
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the variables, with x0 being minimal in the order, and denote the clauses by c1, . . . , cm.697

Given ϕ, we define the NFG N = 〈n + m,V,E, c, γ〉 as follows. The set of vertices is698

V = {xi,¬xi, bi}n−1
i=0 ∪ {cj}mj=1 ∪ {x′0, s, s′, s′′}. The edges and their costs are as follows.699

There is an edge with cost 2n+1 from s to s′, and an edge with cost 2n + n · 2n from s to700

s′′. Next, there is an edge with cost 0 from s′′ to bi for all 0 ≤ i ≤ n − 1 and to cj for all701

1 ≤ j ≤ m. For all 1 ≤ i ≤ n− 1, there is an edge with cost 2n − 2i from s′ to xi, an edge702

with cost 2n from s′ to ¬xi, and an edge with cost 0 from both xi,¬xi to bi. There is an703

edge with cost 2n from s′ to ¬x0, an edge with cost 2n − 20 − 1
2 = 2n − 1 1

2 from s′ to x′0,704

and an edge with cost 1
2 from x′0 to x0. As for all other variables, there is an edge with cost705

0 from both x0,¬x0 to b0. For every 1 ≤ j ≤ m, there is an edge with cost 0 from li to cj706

for every literal li appearing in cj . We partition the n+m players into n variable players,707

where the objective of Player i, for 1 ≤ i ≤ n, is 〈s, bi−1〉, and m clause players, where the708

objective of Player n+ j, for 1 ≤ j ≤ m is 〈s, cj〉. Finally, we set e = (x′0, x0). A scheme of709

the construction is given in Figure 6. Note that the formula ϕ influences only the edges from710

the literals to the clause vertices, and all other edges depend only on n and m.

Figure 6 The NFG N .

711

The construction is polynomial, as the NFG N has O(n+m) vertices and edges and costs712

are exponential in n, thus require only O(n) bits to represent. Note that when costs are given713

in unary, the construction is exponential, thus, this result does not affect ΘP
2 -completeness714

in that case.715

We say that a profile P defines a satisfying assignment if 〈s, s′′〉 /∈ P and for every716

0 ≤ i ≤ n − 1 it holds that the path from s′ to xi is in P iff the path from s′ to ¬xi is717

not in P . That is, the variable players in P define an assignment by choosing between718

the path from s′ to xi and the path from s′ to ¬xi, and the clause players can reach their719

objective using only non-zero edges that are used by a variable player. Denote by fP the720

assignment that is induced by the choices the variable players make in P , then ϕ is satisfied721

by fP since every clause player chose a path that only use non-zero edges that a variable722

players uses. The path that the variable player chose induces a literal that is present in723

the clause, thus, it is satisfied. Note that every satisfying assignment f , using this profile724

construction, induces at least one profile that defines a satisfying assignment P , and it holds725

that f = fP . For an assignment f , let bfc10 denote the decimal value of f . For example, if726

n = 5, f(x0) = f(x2) = 0 and f(x1) = f(x3) = f(x4) = 1, then bfc10 = 21 + 23 + 24 = 26.727

We argue that for every profile P that defines a satisfying assignment fP it holds that if728
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fP (x0) = 1 then for every x ≥ 0 it holds that cost(N [e← x], P ) = 2n+1−n·2n−bfP c10− 1
2 +x,729

and otherwise cost(N [e ← x], P ) = 2n+1 + n · 2n − bfP c10. The cost of P is determined730

by the variable players, as the clause players only use edges with non-zero cost that the731

variable players are using. Then, if x0 = 1, the sum of costs of paths used in P from732

s′ is
∑

1≤i≤n−1 fP (xi)(2n − 2i) + 2n − 20 − 1
2 + x = n · 2n −

∑
0≤i≤n−1 fP (xi) · 2i − 1

2 +733

x = n · 2n − bfP c10 − 1
2 + x. Otherwise, the sum of costs of paths used in P from s′734

is
∑

0≤i≤n−1 fP (xi)(2n − 2i) = n · 2n −
∑

0≤i≤n−1 fP (xi) · 2i = n · 2n − bfP c10 The only735

other non-zero edge that is used in this profile is 〈s, s′〉 with cost 2n+1, thus the total cost736

of P is cost(N [e ← x], P ) = 2n+1 + n · 2n − bfP c10 if x0 = 0 and cost(N [e ← x], P ) =737

2n+1 + n · 2n − bfP c10 − 1
2 + x.738

Next, if ϕ is satisfiable, let fmax be a maximal lexicographic satisfying assignment.739

Denote by Pmax a profile that defines a satisfying assignment such that fP = fmax. By the740

observation above, note that at least one such profile exists. We argue that for 0 ≤ x ≤ 1
2 ,741

for every profile P it holds that cost(N [e← x], Pmax) ≤ cost(N [e← x], P ). We distinguish742

between the following cases:743

P defines a satisfying assignment fP . If fmax = fP , then the variable players in both744

profiles have the same strategies. Since in the case of a profile that defines a satisfying745

assignment it holds that the strategies of the clause players do not affect the cost of the746

profile, we have that for every x ≥ 0 it holds that cost(N [e← x], Pmax) = cost(N [e←747

x], P ). Otherwise, by maximality of fmax, it holds that bfmaxc10 ≥ bfP c10 + 1. Then, for748

0 ≤ x ≤ 1
2 we have that cost(N [e← x], Pmax) ≤ cost(N [e← 1

2 ], Pmax) = 2n+1 + n · 2n −749

fmax ≤ 2n+1 + n · 2n − (fP + 1) = 2n+1 + n · 2n − fP − 1 ≤ 2n+1 + n · 2n − fP − 1
2 + x ≤750

cost(N [e← x], fP ).751

P does not define a satisfying assignment. Then, by definition either 〈s, s′′〉 ∈ P , in which752

case cost(N [e← x], P ) ≥ 2n+1 +n ·2n ≥ 2n+1 +n ·2n−bfmaxc10 ≥ cost(N [e← x], Pmax)753

for every 0 ≤ x ≤ 1
2 , or there is a variable xi such that both the path from s′ to xi and754

the path from s′ to ¬xi are in P . The minimal cost of such a profile for 0 ≤ x ≤ 1
2 is755

attained where for all 0 ≤ i ≤ n− 1, the path from s′ to xi is in P , and there is a single756

variable xi such that the path from s′ to ¬xi is in P . The sum of costs of the paths from757

s′ to xi for all 0 ≤ xi ≤ n− 1 is n · 2n − (2n − 1)− 1
2 + x. The path from s′ to ¬xi adds758

2n to the total cost, and the edge 〈s, s′〉 adds an additional 2n+1 to the total cost of the759

profile. Thus, cost(N [e← x], P ) = 2n+1 + n · 2n + 1
2 + x > cost(N [e← x], Pmax).760

Thus, for 0 ≤ x ≤ 1
2 , we have that Pmax is minimal in cost.761

Assume first that ϕ is satisfiable and that in a maximal lexicographic assignment fmax762

it holds that fmax(x0) = 1. Let Pmax as above. Since for 0 ≤ x ≤ 1
2 we have that763

Pmax is minimal in cost, Pmax ∈ SO(N [e ← x]). Thus, for every such x we have that764

costSO(N [e← x]) = cost(N [e← x], Pmax). In particulat, we have that costSO(N [e← 0]) =765

cost(N [e← 0], Pmax) = 2n+1 +n ·2n−bfmaxc10− 1
2 < 2n+1 +n ·2n−bfmaxc10 = cost(N [e←766

1
2 ], Pmax) = costSO(N [e← 1

2 ]), hence e SO-affects N , therefore 〈N, e〉 ∈Edge-SO-affects.767

Next, assume that either ϕ is not satisfiable or that the maximal lexicographic assignment768

has x0 = 0. We distinguish between the two cases:769

ϕ is unsatisfiable. Note that it follows that for every profile P , we have that P does770

not define a satisfying assignment. Then let PUNSAT be the profile where for every771

player with objective 〈s, t〉, her strategy is {〈s, s′′〉, (s′′, t)}. For all x ≥ 0 it holds that772

cost(N [e ← x], PUNSAT ) = 2n+1 + n · 2n. Note that PUNSAT is the only valid profile773

that uses 〈s, s′′〉. For every other profile P , if both 〈s, s′〉, 〈s, s′′〉 ∈ P then cost(N [e ←774

x], PUNSAT ) ≤ 2n+2 + n · 2n ≤ cost(N [e← 0], P ) ≤ cost(N [e← x], P ). Otherwise, since775

P does not define a satisfying assignment, it must hold that 〈s, s′〉 ∈ P , 〈s, s′′〉 /∈ P and776
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there is a variable xi such that both the path from s′ to xi and the path from s′ to ¬xi are777

in P . Using a similar argument as above, the minimal cost of such a profile, for all x ≥ 0, is778

2n+1 +n ·2n+ 1
2 . Hence, cost(N [e← x], PUNSAT ) < 2n+1 +n ·2n+ 1

2 ≤ cost(N [e← x], P ).779

Therefore, for all x ≥ 0 we have that PUNSAT ∈ costSO(N [e← x]). Since e /∈ PUNSAT ,780

we get that e does not SO-affect N .781

If ϕ is satisfiable, and the maximal lexicographic assignment fmax has fmax(x0) = 0, then782

let Pmax as above. As we previously saw, for 0 ≤ x ≤ 1
2 , for every other profile P we have783

that cost(N [e← x], Pmax) ≤ cost(N [e← x], P ). Since e /∈ Pmax, for every x ≥ 0 we have784

that cost(N [e← x], Pmax) = cost(N [e← 0], Pmax) ≤ cost(N [e← 0], P ) ≤ cost(N [e←785

x], P ). Since the cost of Pmax is constant for all x ≥ 0, we have that e does not SO-affect786

N .787

In either case e does not SO-affect N , thus, 〈N, e〉 /∈Edge-SO-affects.788

A.2 The ΘP
2 lower bound in Theorem 8789

A vertex cover (VC, for short) for G is a set C ⊆ V such that for all edges 〈v, v′〉 ∈ E, we790

have {v, v′} ∩ C 6= ∅. We use a reduction from VC-compare, namely the problem of deciding,791

given two undirected graphs G1 = 〈V1, E1〉 and G2 = 〈V2, E2〉, whether the size of a minimal792

vertex cover of G1 is less than or equal to the size of a minimal vertex cover of G2. It is shown793

in [37] that the problem is ΘP
2 -complete. We first argue we can assume that |V1| = |V2| and794

|E1| = |E2|. Consider two graphs G1 = (V1, E1) and G2 = (V2, E1). Assume w.l.o.g that795

|E1|+ k = |E2|, for some k > 0. By adding to G1 two vertices that are connected by an edge,796

we adds a single edge to G1 and increase its VC by 1. By adding to G2 a vertex connected797

to k+ 1 other vertices to G2 (as we argue below, we can assume that |V2| > k), we add k+ 1798

edges to E2 and increase its VC by 1. Therefore, we can get two new graphs with an equal799

number of edges, with both VCs being increased by 1. Also, since adding isolated vertices800

does not change the number of edges nor the size of a VC, we can easily adjust the sizes of801

V1 and V2, namely make sure |V2| > k and |V1| = |V2|.802

Given G1 and G2 with |V1| = |V2| = n and |E1| = |E2| = m, we construct an NFG N803

and an edge e in it such that 〈G1, G2〉 ∈ VC-compare iff 〈N, e〉 ∈ Edge-SO-affects. We define804

N = 〈k, V,E, c, γ〉 as follows. First, V = V1 ∪ V2 ∪E1 ∪E2 ∪ {si}mi=1 ∪ {t1, t′1, t2, t′2, t}. That805

is, for each graph Gi, for i ∈ {1, 2}, the set V includes n vertices, termed vertex-vertices, and806

m vertices, termed edge-vertices. In addition, V includes m source vertices, a target vertex807

t, and four sub-target vertices t1, t′1, t2, and t′2. Let V1 = {v1
1 , . . . , v

n
1 }, V2 = {v1

2 , . . . , v
n
2 },808

E1 = {e1
1, ..., e

1
m}, and E2 = {e2

1, ..., e
2
m}. We define E = {〈si, e1

i 〉|e1
i ∈ E1} ∪ {〈si, e2

i 〉|e2
i ∈809

E2} ∪ {〈e1
i , v

1
j 〉|e1

i ∈ E1 and there exists v1
k ∈ V1 such that e1

i = 〈v1
j , v

1
k〉} ∪ {〈e2

i , v
2
j 〉|e2

i ∈810

E2 and there exists v2
k ∈ V2 such that e2

i = 〈v2
j , v

2
k〉} ∪ {〈v1

i , t1〉|v1
i ∈ V1} ∪ {〈v2

i , t2〉|v2
i ∈811

V2} ∪ {〈t1, t′1〉, 〈t2, t′2〉, 〈t′1, t〉, 〈t′2, t〉}.812

The edges of N and their costs are as follows. For each 1 ≤ i ≤ m, there is an edge with813

cost 0 from the source vertex si to the edge vertices e1
i and e2

i . For every e1
i = 〈v1

j1
, v1
j2
〉 ∈ E1,814

there are edges with cost 0 from e1
i to vj1 and to vj2 , and the same for E2. For every vertex815

v1 ∈ V1, there is an edge with cost 1 to t1, and the same for V2. There is an edge with cost816

n from t1 to t′1, and an edge with cost n+ 1 from t2 to t′2. We then connect both t′1 and t′2817

to t with cost 0. To complete the construction, we have m players. The objective of player818

1 ≤ i ≤ m is 〈si, t〉. Finally, we set e = 〈t′1, t〉. A scheme of the construction is given in819

Figure 7. Note that it follows from the construction that for every x ≥ 0, if a profile is in820

the SO of N [e← x], then either the strategies of all players use edges from G1’s side of the821

network, or the strategies of all players use edges from G2’s side. Otherwise, it must be that822

〈t1, t′1〉, 〈t′1, t〉 and 〈t2, t′2〉 are in the profile, and therefore the cost of the profile is strictly823
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Figure 7 The NFG N .

greater than 2n+ 1 + x. However, the cost of a profile that uses edges from only one side of824

the network is bounded by n+ n+ x ≤ 2n+ 1 + x.825

Let S1 be a vertex cover ofG1. We denote by PS1 the following profile. For every player 1 ≤826

i ≤ m, the strategy for player i is {(si, e1
i ), (e1

i , v
1
j ), (v1

j , t1),827

(t1, t′1), (t′1, t)}, where v1
j ∈ S1. Since S1 is a vertex cover for G1, there must be such a828

vertex v1
j for every i. We use a similar notation for G2. Furthermore, let P be a profile where829

all players only use G1’s side of the network. We denote by SP =
⋃m
i=1{v|(e1

i , v) ∈ P}. That830

is, the union of all vertices that the players chose in their strategies. Note that SP is a vertex831

cover of G1 since every player is associated with an edge, and each player selects a vertex832

that is adjacent to the edge she is associated with. We use similar notation for G2. Note833

that by construction, if S is a vertex cover for G1 then cost(N [e ← x], PS) = |S| + n + x,834

and if S is a vertex cover of G2 then cost(N,PS) = |S|+ n+ 1.835

Assume first that 〈G1, G2〉 ∈ VC-compare, that is, the size of a minimal vertex cover of836

G1 is less than or equal to the size of a minimal vertex cover of G2. Let S1, S2 be minimal837

vertex covers of G1, G2, respectively. We argue that PS1 is an SO profile of N . Assume838

towards contradiction that there is a profile P ′ such that cost(N,P ′) < cost(N,PS1). By839

the above observation, P ′ only use one side of the network. If P ′ only uses G1’s side, then840

|SP ′ | = cost(N,P ′) − n < cost(N,P ) − n = |S1|, in contradiction to S1 being a minimal841

vertex cover. Otherwise, if P ′ only uses G2’s side, then |S2| ≤ |SP ′ | = cost(N,P ′) − n <842

cost(N,P )− n = |S1|, in contradiction to the assumption.843

Next, we define d = |S2| − |S1| + 1. We argue that PS2 ∈ SO(N [e ← d]). Assume844

towards contradiction that there is a profile P such that cost(N [e ← d], P ) < cost(N [e ←845

d], PS2). If P only uses edges from G2’s side of the network, then |SP | = cost(N,P )− n <846

cost(N,PS2) − n = |S2|, in contradiction to the minimality of S2 in G2. Otherwise, if P847

only uses edges from G1’s side of the network, then cost(N [e ← d], P ) = |SP | + n + d ≥848

|S1| + n + d = |S2| + n + 1 = cost(N [e ← d], PS2), in contradiction to the assumption.849

Therefore, costSO(N [e ← 0]) = cost(N,PS1) = |S1| + n ≤ |S2| + n < |S2| + n + 1 =850

cost(N [e ← d], PS2) = costSO(N [e ← d]) ≤ costSO(N [e ← ∞]), hence e SO-affects N , and851

〈N, e〉 ∈ Edge-SO-affects.852

Next, assume that 〈G1, G2〉 6∈ VC-compare, that is, the size of a minimal vertex cover of G1853

is strictly larger than the size of a minimal vertex cover of G2. Let S1, S2 be minimal vertex854

covers of G1, G2, respectively. We argue that PS2 ∈ SO(N). Assume towards contradiction855

that there is a profile P such that cost(N,P ) < cost(N,PS2). If P only uses edges from856
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G2’s side of the network, then |SP | = cost(N,P )− n− 1 < cost(N,PS2)− n− 1 = |S2|, in857

contradiction to the minimality of S2. If P only uses edges from G1’s side of the network,858

then since |S1| > |S2| we have that |S1| ≥ |S2| + 1. Therefore, cost(N,P ) = |SP | + n ≥859

|S1|+ n ≥ |s2|+ n+ 1 = cost(N,PS2), in contradiction to the assumption. Note that this860

holds regardless of the value of e, therefore for all x ≥ 0 we have that P ∈ SO(N [e← x]),861

hence costSO(N [e← 0]) = costSO(N [e←∞]), hence e does not SO-affect N , and 〈N, e〉 /∈862

Edge-SO-affects.863

A.3 Proof of Theorem 9864

We start with membership of Edge-SO-optimization in NP. Given an NFG N , an edge e865

in N , and a threshold κ ≥ 0, it can be verified in polynomial time that a witness P is866

a valid profile with cost(N [e ← 0], P ) ≤ κ. By Theorem 4, there is a value x ≥ 0, such867

that costSO(N [e ← x]) ≤ κ iff costSO(N [e ← 0]) ≤ κ. Hence, it is sufficient to consider868

N [e ← 0]. Furthermore, if cost(N [e ← x], P ) ≤ κ, then by minimality of the SO, it holds869

that costSO(N [e← x]) ≤ cost(N [e← x], P ) ≤ κ. In the case of SO-optimization, the edge e870

is part of the witness.871

Next, we show that the problems are NP-hard by reductions from the SO-cost problem.872

The reduction to Edge-SO-optimization is trivial: Given N and κ, we construct N ′ by adding873

to N an isolated edge e, which does not SO-affect N . It is easy to see that 〈N,κ〉 ∈ SO-cost874

iff 〈N ′, e, κ〉 ∈ Edge-SO-optimization. In the case of SO-optimization we cannot point to e,875

and the reduction is more complicated. Again we construct N ′ by adding to N an isolated876

edge e. In addition, we add to N a player that has to include e in her strategy, and we set877

the cost of e to κ+ 1. Accordingly, if the cost of some edge can be changed in a way that878

causes the cost of the SO to go below κ, then this edge must be e, and so 〈N,κ〉 ∈ SO-cost879

iff 〈N ′, κ〉 ∈ SO-optimization.880

Formally, let N = 〈k, V,E, c, γ〉 and κ ≥ 0. We define N ′ = 〈k + 1, V ′, E′, c′, γ′〉, where881

V ′ = V ∪ {s, t}, E′ = E ∪ {〈s, t〉}, γ′ = γ ∪ {〈s, t〉}, and c′ agrees with c on all edges in E882

and c(〈s, t〉) = κ + 1. Assume first that costSO(N) ≤ κ. Therefore, costSO(N ′[e ← 0]) =883

costSO(N) ≤ κ, and hence 〈N ′, κ〉 ∈ SO-optimization. Next, assume that costSO(N) > κ.884

Let P ′ = 〈π1, ..., πk+1〉 be a profile in N ′. We denote by P the profile P ′ without the885

strategy of Player k + 1; that is, P = 〈π1, ..., πk〉. Note that P is a profile in N . If we886

set the cost of e to be 0, then cost(N ′[(s, t) ← 0], P ′) = cost(N,P ). By the minimality887

of the SO for N , we have that cost(N,P ) ≥ costSO(N) > κ, thus cost(N ′, P ′) > k. If888

we set the cost of an edge e 6= (s, t) to be 0, then since c((s, t)) = κ + 1, we have that889

cost(N ′[e ← 0], P ′) ≥ κ + 1 > κ. Since this holds for all profiles P ′ and for all e ∈ E′,890

we have that costSO(N ′[e ← x]) ≥ costSO(N ′[e ← 0]) > κ, for all x ≥ 0. Hence 〈N ′, κ〉 /∈891

SO-optimization, and we are done.892

A.4 DP-hardness proof in Theorem 11893

For the construction described in the proof for Theorem 11, we argue that if ϕi for i ∈ [1, 2] is894

satisfiable then costSO(Ni) = 2(i+ 1) · (ni + 1), and otherwise costSO(Ni) = 2(i+ 1) · (ni + 2).895

Assume first that ϕi is satisfiable. Then, ϕ′i is satisfiable. Let f i be a satisfying assignment896

for ϕ′i. We construct the following profile P . For each variable player j, her strategy is897

{(si, l′j), (l′j , lj), (lj , bij)}, where lj = xij if f i(xj) = true and lj = ¬xij if f i(xj) = false. Next,898

for each Clause Player k, her strategy is {(si, l′j), (l′j , lj), (lj , cik)}, where lj is a literal that899

is satisfied by f i. Note that since f i satisfies ϕ′i, for each clause there must be at least900

one literal that is satisfied by f i. Next, each variable player j has exactly two available901
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strategies- {(si, xij), (x′j
i
, xij), (xij , bj)} and {(si,¬x′j

i), (¬x′j
i
,¬xij), (¬xij , bij)}, each with cost902

2(i+ 1). Since all variable players do not have an option to share edges with each other, it903

follows that for every profile, each variable player contributes 2(i+ 1) to the total cost of the904

profile. Therefore, for every profile, the cost of the profile is at least 2(i+ 1) · (ni + 1). Since905

P attains the minimal cost of a profile in Ni, it is an SO profile with cost 2(i+ 1) · (ni + 1).906

Next, assume that ϕi is unsatisfiable. Therefore, ϕ′i is unsatisfiable. Assume first that907

costSO(Ni) < 2(i+ 1) · (ni + 2). We construct the following profile P . For every clause player908

k except for the clause of ¬zi, her strategy is {(si, zi′), (zi′, zi), (zi, cik)}. We set the strategy909

of the clause player of ¬zi to be {(si,¬zi′), (¬zi′,¬zi), (¬zi, c¬zi)}. The strategy of every910

variable player is assigned at random. Every variable player (except for zi) contributes 2(i+1)911

for the total cost of P . Since (si, zi′), (zi′, zi), (si,¬zi′), (¬zi′,¬zi) ∈ P , and since all other912

clause players don’t contribute any other non-zero edges to the profile, we have that the cost of913

P is 2(i+1) ·(ni+2). Next, assume towards contradiction that costSO(Ni) < 2(i+1) ·(ni+2).914

Since all non-zero edge in Ei have cost i+1, and since every strategy that has (si, l′j
i) for some915

literal lij must also include (l′j
i
, lij) the cost of every profile must be divisible by 2(i+1). Since916

the cost of every profile is at least 2(i+1)·(ni+1), it follows that costSO(Ni) = 2(i+1)·(ni+1).917

Let P ∈ SO(Ni). We define an assignment fP as follows. For each variable player j, if j’s918

strategy in P is {(si, x′j
i), (x′j

i
, xij), (xij , bij)} then fP (xij) = true. Otherwise, fP (xij) = false.919

Now, since the cost of P is 2(i+ 1) · (ni + 1), we have that all clause players use non-zero920

edges that the variable players use (otherwise, the cost of P will be greater). That is, for each921

clause player k, her strategy in P is {(si, lj ′), (lj ′, lj), (lj , cik)} where lj is a literal appearing922

in ck, and, the strategy of the variable player j is {(si, lj ′), (lj ′, lj), (lj , bij)}. Therefore, lj923

is satisfied by fP , and hence ck is satisfied by fP . Since this claim holds for all clause924

players, we have that fP satisfies ϕ′i, and therefore ϕi is satisfiable, in contradiction to the925

assumption.926

It remains to show that ϕ1 is satisfiable and ϕ2 is not satisfiable iff there exists an edge927

e ∈ E and a value x ≥ 0 such that costSO(N [e ← x]) = 4n1 + 6n2 + 16. We distinguish928

between the following cases:929

If ϕ1 and ϕ2 are satisfiable, then costSO(N) = costSO(N1)+costSO(N2) = 4n1+6n2+10 <930

4n1 + 6n2 + 16. Since by Theorem 4 the SO is monotone, it holds that the SO can be931

increased only by increasing the cost of some edge. Since every edge has a parallel edge932

with the same cost, increasing the cost of every edge does not change the cost of the SO,933

as there is an alternative path with a lower cost. Hence, the cost of the SO cannot be934

increased for all e ∈ E and for all x ≥ 0, in particular, for all e ∈ E and for all x ≥ 0 if935

holds that costSO(N [e← x]) 6= 4n1 + 6n2 + 16.936

If ϕ1 and ϕ2 are unsatisfiable, then costSO(N) = 4n1 + 6n2 + 14 < 4n1 + 6n2 + 16.937

Using the same argument as above, for all e ∈ E and for all x ≥ 0 it holds that938

costSO(N [e← x]) 6= 4n1 + 6n2 + 16.939

If ϕ1 is unsatisfiable and ϕ2 is satisfiable, then costSO(N) = 4n1 + 6n2 + 20. Note that940

the cost of the SO can be decreased by at most 3. First, the maximal cost of an edge941

in N is 3, the cost of every profile in SO(N) can be decreased by at most 3. Since all942

non-zero edges are on a path with two edges, each with cost i+ 1, when decreasing the943

cost of one of the non-zero edges to 0, the total cost of the path is i+ 1. Therefore, since944

the variable players must chose a path of cost 2(i+ 1), except, perhaps, one players that945

choses a path of cost i+ 1, in the case where ϕi is satisfiable the total cost of every profile946

is reduced by at most i+ 1. In addition, using the same argument for the case where ϕi947

is unsatisfiable, there must be exactly ni + 2 players that choses a non-zero path, thus in948

this case as well, the total cost can be reduced by at most i+ 1, hence, the cost of the949
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SO can be reduced by at most 3. Therefore, for all e ∈ E and for all x ≥ 0 it holds that950

costSO(N [e← x]) ≥ 4n1 + 6n2 + 17 > 4n1 + 6n2 + 16.951

If ϕ1 is satisfiable and ϕ2 is unsatisfiable, then costSO(N) = 4n1 + 6n2 + 16. Let e ∈ E,952

it holds that costSO(N [e← c(e)]) = 4n1 + 6n2 + 16.953

Hence, 〈ϕ1, ϕ2〉 ∈ SAT-UNSAT iff there exists an edge e ∈ E and a value x ≥ 0 such that954

costSO(N) = 4n1 + 6n2 + 16.955

A.5 Proof of Theorem 17956

Assume first that there is a profile P ∈ bNE(N [e← 0]) such that e /∈ P and for all x ≥ 0 it957

holds that costbNE(N [e← x]) ≥ costbNE(N [e← 0]). Since P ∈ bNE(N [e← 0]) and e /∈ P ,958

we have by Lemma 16 that for all x ≥ 0 it holds that P is an NE in N [e ← x]. Since959

e /∈ P , we have that for all x ≥ 0 it holds that cost(N [e ← x], P ) = cost(N [e ← 0], P ) =960

costbNE(N [e ← 0]). Therefore, by the minimality of the bNE, for all x ≥ 0, it holds that961

costbNE(N [e← x]) ≤ cost(N [e← x], P ) = costbNE(N [e← 0]). Since for all x ≥ 0, we have962

that costbNE(N [e ← x]) ≥ costbNE(N [e ← 0]), it follows that for all x ≥ 0, we have that963

costbNE(N [e← 0]) ≤ costbNE(N [e← x]) ≤ costbNE(N [e← 0]). Thus, for all x ≥ 0, we have964

that costbNE(N [e← x]) = costbNE(N [e← 0]), hence e does not bNE-affect N .965

For the other direction, assume that e does not bNE-affect N . Then, costbNE(N [e← x])966

is a constant function with value OPT . In particular, this means that for all 0 ≤ x ≤ ∞,967

it holds that costbNE(N [e ← 0]) = costbNE(N [e ← x]). Therefore, it is enough to show968

that there is a profile P in bNE(N [e← 0]) such that e /∈ P . Assume towards contradiction969

that for all profiles P ∈ bNE(N [e ← 0]) it holds that e /∈ P . We argue that there is a970

profile P such that for some x > 0, it holds that for all 0 < t ≤ x, the profile P is an NE971

and e /∈ P . Assume towards contradiction that there is ε > 0 such that for all 0 ≤ t ≤ ε,972

we have that e ∈ P for all profiles P ∈ bNE(N [e ← t]). Therefore, for each such profile973

P , its cost is strictly monotonically increasing in the cost of e. By Lemma 14, P is an974

NE in at most a single segment. Since P is an NE in N [e ← t] for 0 ≤ t ≤ ε, for each975

such profile there is a single range [aP , bP ] ⊆ [0, ε] where it is an NE. Since the cost of976

each profile is strictly monotonically increasing, the cost of each profile is a function of977

the form cP + x. Since e is constant, it must hold that for each profile P we have that978

cP + aP = OPT . Since there is a finite amount of profiles, and since the number of values in979

the range [0, ε] is infinite for all ε > 0, it follows that there is a range [l, r] ⊆ [0, ε] where for980

all t ∈ [l, r] it holds that bNE(N [e← l]) = bNE(N [e← t]). Since the cost of every profile in981

bNE(N [e← l]) is strictly monotonically increasing, and costbNE(N [e← l]) = OPT , it follows982

that costbNE(N [e← r]) > OPT , in contradiction to the fact that e does not bNE-affect N .983

A.6 The ∆P
2 lower bound in Theorem 18984

We use the same reduction as in the hardness result for Theorem 8, with a slight variation.985

Instead of having a single variable player per variable, we have two players with the same986

objectives.987

Assume ϕ is satisfiable, and let fmax be a maximal satisfying assignment. We show that988

if 0 ≤ x ≤ 1
2 , then there is a profile Pmax that defines a satisfying assignment such that989

fPmax = fmax, and that Pmax is an NE in N [e ← x]. Furthermore, if fmax(x0) = 0, then990

this claim holds for all x ≥ 0. Let P0 be the following profile. For every variable player991

with target bi such that i > 0, if fmax(xi) = 1 then her strategy is {(s, s′), (s′, xi), (xi, bi)},992

and otherwise her strategy is {(s, s′), (s′,¬xi), (¬xi, bi)}. For the variable players of b0993

their strategy is {(s, s′), (s′, x′0), (x′0, x0), (x0, b0)}. For every clause player cj , her strategy is994



G. Bielous and O. Kupferman 10:25

{(s, s′), (s′, l), (l, cj)} where l is a literal present in cj and that is satisfiable by fmax. Next,995

run BRD with P0 as the initial value. For t ≥ 0, denote by Pt+1 the profile obtained by a996

single BRD step from Pt, and let Pmax be the profile obtained from convergence. Note that997

it was shown in e.g. [38] that BRD converges in all NFGs, therefore Pmax is both well-defined998

and is an NE. We argue that for all t ≥ 0, it holds that for all variables 0 ≤ i ≤ n − 1,999

we have that the path from s′ to ¬fmax(xi) is not in Pt, and (s, s′′) /∈ Pt. The proof is by1000

induction over t. The base case is trivial for P0. Assume that the claim holds for some t ≥ 0,1001

and let Pt+1. Assume towards contradiction that there is some variable i such that either1002

the path from s′ to ¬f(xi) or (s, s′′) ∈ Pt+1. Then, there is a player j that has it in her1003

strategy. By the induction assumption, it follows that j deviated from Pt to Pt+1, and that1004

no other player has it in their strategy. Therefore, there is a variable player for bi that have1005

(s, fmax(xi)) in their strategy. Hence, the cost of Player j’s strategy in Pt+1 is either greater1006

than 2n − 2n−1 (if her strategy has the path from s′ to ¬fmax(xi) for some 0 ≤ i ≤ n− 1) or1007

2n+1 +n ·2n (if her strategy has (s, s′′)). Since i ≤ n−1, if 0 ≤ x ≤ 1
2 the cost of her strategy1008

in Pt is at most 2n−fmax(xi)2i− 1
2 +x

2 ≤ 2n
2 = 2n − 2n−1 ≤ 2n+1 + n · 2n, in contradiction to1009

the definition of a BRD step. If fmax(x0) = 0, then for every x ≥ 0 the cost of her strategy1010

in Pt is at most 2n−fmax(xi)2i
2 ≤ 2n

2 = 2n − 2n−1 ≤ 2n+1 + n · 2n, in contradiction to the1011

definition of a BRD step. Thus, the only non-zero paths in Pmax are from s′ to fmax(xi) for1012

all 0 ≤ i ≤ n− 1, and hence fPmax − fmax, and Pmax is an NE for all 0 ≤ x ≤ 1
2 , and is an1013

NE for all x ≥ 0 if fmax(x0) = 0.1014

Assume first that ϕ ∈maximum-satisfying-assignment, that is, ϕ is satisfiable, and for1015

the maximal lexicographic satisfying assignment fmax it holds that fmax(x0) = 1. Hence,1016

for every 0 ≤ x ≤ 1
2 there is a profile P xmax that is an NE in N [e ← x] that defines1017

a satisfying assignment, and fPxmax = fmax. As shown in the proof for Theorem 8, for1018

every profile P and 0 ≤ x ≤ 1
2 , it holds that cost(N [e ← x], P xmax) ≤ cost(N [e ← x], P ),1019

therefore P xmax ∈ bNE(N [e← x]), and for every such x it holds that cost(N [e← x], P xmax) =1020

costbNE(N [e← x]). In particular, we have that costbNE(N [e← 0]) = cost(N [e← 0], P 0
max)1021

and costbNE(N [e← 1
2 ]) = cost(N [e← 1

2 ], P
1
2
max). In the proof for Theorem 8 we also showed1022

that cost(N [e← x], P xmax) = 2n+1 +n · 2n−bfmaxc10− 1
2 + x, thus, cost(N [e← 0], P 0

max) <1023

cost(N [e ← 1
2 ], P

1
2
max), hence costbNE(N [e ← 0]) < costbNE(N [e ← 1

2 ]). Therefore, e bNE-1024

affects N and 〈N, e〉 ∈Edge-bNE-affects.1025

Next, assume that ϕ /∈maximum-satisfying-assignment. We distinguish between the1026

following cases:1027

ϕ is unsatisfiable. Let PUNSAT be the profile where for every player with objective 〈s, t〉,1028

her strategy is {(s, s′′), (s′′, t)}. In the proof for Theorem 8 we showed that for every1029

profile P and for every x ≥ 0 it holds that cost(N [e← x], PUNSAT ) ≤ cost(N [e← x], P ).1030

We argue that P is an NE in N [e ← x] for all x ≥ 0. For every player the cost of her1031

strategy is 2n+1+n·2n
2n+m < 2n+1+n·2n

2n = 2n
n + 2n−1 < 2n+1, which is a lower bound to the1032

cost of every strategy that is a deviation for her. Therefore, for all x ≥ 0 we have that1033

PUNSAT ∈ bNE(N [e ← x]), therefore, cost(N [e ← x], PUNSAT ) = costbNE(N [e ← x]).1034

Since for all x ≥ 0 we have that cost(N [e← x], PUNSAT ) is 2n+1 + n · 2n, we have that1035

costbNE(N [e← x]) is constant, thus, e does not bNE-affect N .1036

ϕ is satisfiable, and the maximal lexicographic assignment fmax has f(x0) = 0. As1037

shown above, for all x ≥ 0 there is a profile P xmax such that fPxmax = fmax and P xmax1038

is an NE. In the proof for Theorem 8 we showed that for every profile P and for all1039

x ≥ 0 we have that cost(N [e← x], P xmax) ≤ cost(N [e← x], P ). Furthermore, we showed1040

that for every such profile P xmax and for all x ≥ 0 we have that cost(N [e← x], P xmax) =1041

2n+1 + n · 2n − bfmaxc10. Therefore, for all x ≥ 0 we have that P xmax ∈ bNE(N [e← x])1042
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and hence costbNE(N [e← x]) = 2n+1 +n·2n−bfmaxc10. Therefore, e does not bNE-affect1043

N .1044

Since in either case e does not bNE-affect N , we have that 〈N, e〉 /∈Edge-bNE-affects.1045

A.7 The ΘP
2 lower bound in Theorem 181046

Assume first that 〈G1, G2〉 ∈ VC-compare. That is, if S1, S2 are two minimal VCs for G1, G21047

respectively, then it holds that |S1| ≤ |S2|. We define the following profile PS1 . Each player1048

i has the strategy {(si, e1
i ), (e1

i , v
1
j ), (v1

j , t1), (t1, t′1), (t′1, t)}, where v1
j ∈ S1. If both vertices1049

of ei are in S1, then select one at random. That is, each player choses G1’s side of the1050

network, then it uses a vertex that is in a minimal vertex cover of G1, and then choses the1051

only available path from there to the target objective t. Note that since S1 is a vertex cover1052

for G1, it holds that for every edge e1
i there is a vertex v1

j ∈ S1 such that v1
j touches e1

i in G1,1053

therefore, there is an edge in N from e1
i to v1

j . Finally, run BRD (Best-Response Dynamics)1054

until convergence, and denote the result as P . Note that it was shown in e.g. [38] that BRD1055

converges in all NFGs, therefore P is both well-defined and is an NE.1056

First, we argue that all strategies in P don’t use G2’s side of the network. Assume1057

towards contradiction that there is some step j in the run of BRD on PS1 such that just1058

before the jth step the current profile was P j , and after the jth step the current profile is1059

P j
′, such that all players in P j don’t have a strategy that uses G2’s side of the network, and1060

in P j ′ there is a player i that uses G2’s side of the network. Since the initial value for BRD1061

is PS1 , and all the players in PS1 don’t use G2’s side of the network, under the contradiction1062

assumption such j must exist. Let πji be the strategy of Player i in P j and let πji
′
be the1063

strategy of Player i in P j ′. By definition of BRD, it holds that costN,P j (πji ) > costN,P j ′(πji
′
).1064

However, since non of the players use G2’s side in P j and since P j ′ is a result of a BRD1065

step, we have that no player other than i uses G2’s side in P j
′. Therefore, it holds that1066

costN,P j ′(πji
′
) = 1 + n+ 1 > 1 + n ≥ costN,P j (πji ), hence we derive a contradiction.1067

Next, denote by S the set of vertex vertices that are incident to an edge in P . We argue1068

that |S| = |S1|. Assume towards contradiction that |S| 6= |S1|. We distinguish between the1069

following cases. First, assume that |S| < |S1|. Therefore, since P only uses G1’s side of the1070

network, S ⊂ E1. Therefore, every player i is associated with an edge e1
i , and a vertex v1

j ,1071

such that (e1
i , v

1
j ) ∈ P . Hence, each edge in G1 can be covered by a vertex in S, hence S1072

is a vertex cover of G1, that is smaller in size that S1, in contradiction to the minimality1073

of S1. Second, assume that |S| > |S1|. Therefore, there is a vertex v1
j such that v1

j ∈ S1074

and v1
j /∈ S1. By definition of S, this implies that there is some i such that (e1

i , v
1
j ) ∈ P ,1075

and, for all players k it holds that (e1
k, v

1
j ) /∈ PS1 . It follows that there was a BRD step t1076

such that before t the current profile was P t and after the tth step the current profile was1077

P t
′, such that (e1

i , v
1
j ) ∈ P t

′ and for all players k we have that (e1
k, v

1
k) /∈ P t. Let πi be1078

the strategy of Player i in P t and let πi′ be the strategy of Player i in P t′. It follows that1079

costN,P t(πi) ≤ 1 + n = costN,P t′(π′i), in contradiction to the definition of BRD.1080

It follows that, by construction, P is an NE inN . We argue that P is an NE inN [t′1, t← 1].1081

Let i be a player with strategy πi in P , and let P ′ be a deviation profile for P and Player i1082

such that the strategy for Player i in P ′ is π′i. If π′i uses G2’s side of the network, then since1083

no player in P use G2’s side of the network, we have that costN [t′1,t←1],P (πi) ≤ 1 + n+1
m <1084

1+n+1 = costN [t′1,t←1],P ′(π′i). If π′i uses G1’s side of the network, then since P is an NE in N ,1085

we have that costN [t′1,t←1],P (πi) = costN,P (πi)+ 1
m ≤ costN,P ′(π′i)+ 1

m = costN [t′1,t←1],P ′(π′i).1086

Hence, P is an NE in N [t′1, t← 1].1087

Finally, note that by construction we have that cost(N [t′1, t← x], P ) = |S1|+ n+ x. Let1088
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P ′ be a profile in N . If P ′ uses both sides of the network, then cost(N [t′1, t ← x], P ′) ≥1089

n+x+n+ 1 ≥ |S1|+n+x = cost(N [t′1, t← x], P ). If P ′ only uses G2’s side of the network,1090

then cost(N [t′1, t← x], P ′) ≥ |S2|+ n+ 1. Since |S1| ≤ |S2|, we have that for 0 ≤ x ≤ 1 it1091

holds that |S2|+n+ 1 ≥ |S1|+n+x = cost(N [t′1, t← x], P ). If P ′ only uses G1’s side of the1092

network, then by the minimality of S1 we get that cost(N [t′1, t← x], P ′) ≥ |S1|+ n+ x =1093

cost(N [t′1, t← x], P ). Therefore, we get that P ∈ bNE(N), bNE(N [t′1, t← 1]), and therefore1094

costbNE(N) < costbNE(N [t′1, t← 1]). Hence, 〈N, e, κ〉 ∈Edge-bNE-affects.1095

Next, assume that 〈G1, G2〉 /∈VC-compare. That is, if S1, S2 are two minimal VCs for1096

G1, G2 respectively, then it holds that |S1| > |S2|. We define the profile PS2 in the same way1097

that we defined PS1 above, and we define P to be the result of BRD with the initial value1098

PS2 . Using the same logic, it can be shown that all strategies in P don’t use G1’s side of the1099

network, and that the set of vertex vertices that are incident to some edge in P is a minimal1100

vertex cover for G2. Therefore, by construction, P is an NE in N . We argue that for all1101

x ≥ 0, P is an NE in N [t′1, t← x]. Let i be a player with strategy πi in P , and let P ′ be a1102

deviation profile for P and Player i such that the strategy for Player i in P ′ is π′i. If π′i uses1103

G1’s side of the network, then since no player in P use G1’s side of the network, we have1104

that costN [t′1,t←x],P (πi) ≤ 1 + n+1
m < 1 + n+ x = costN [t′1,t←x],P ′(π′i). If π′i uses G2’s side of1105

the network, then since P is an NE in N , we have that costN [t′1,t←x],P (πi) = costN,P (πi) ≤1106

costN,P ′(π′i) + x
m = costN [t′1,t←x],P ′(π′i). Hence, P is an NE in N [t′1, t← x].1107

Finally, note that by construction we have that cost(N [t′1, t← x], P ) = |S2|+ n+ 1. Let1108

P ′ be a profile in N . If P ′ uses both sides of the network, then cost(N [t′1, t ← x], P ′) ≥1109

n+ x+n+ 1 ≥ |S2|+n+ 1 = cost(N [t′1, t← x], P ). If P ′ only uses G1’s side of the network,1110

then since |S1| > |S2| we have that cost(N [t′1, t← x], P ′) ≥ |S1|+n+ x ≥ |S2|+ 1 +n+ x ≥1111

|S2|+ n+ 1 = cost(N [t′1, t← x], P ). Since |S1| ≤ |S2|, we have that for 0 ≤ x ≤ 1 it holds1112

that |S2| + n + 1 ≥ |S1| + n + x = cost(N [t′1, t ← x], P ). If P ′ only uses G2’s side of the1113

network, then by the minimality of S2 we get that cost(N [t′1, t← x], P ′) ≥ |S2|+ n+ 1 =1114

cost(N [t′1, t← x], P ). Therefore, we get that for all x ≥ 0 P ∈ bNE(N [t′1, t← x]), and since1115

the cost of P is independent of the cost of (t′1, t), e = (t′1, t) does not bNE-affect N . Hence,1116

〈N, e, κ〉 /∈Edge-bNE-affects.1117

A.8 Proof of Theorem 191118

We start with membership in NP. Given N, e and κ as above, a witness is a profile P1119

and a value x ∈ R. We first show that there always exists such x that is polynomial in1120

input. Let µ = inf{argmint∈RcostbNE(N [e ← t])}. That is, if OPT is the minimal value1121

of the cost of the bNE, and S = {t|costbNE(N [e ← t]) = OPT}, then µ = inf(S). Since1122

costbNE(N [e← x]) < κ we get that costbNE(N [e← µ]) < κ. We continue to show that µ is1123

representable by polynomially-many bits. Let P ∈ bNE(N [e← µ]). By Lemma 14, it follows1124

that there is a segment [aP , bP ] that is the maximal range where P is an NE. By definition,1125

P is an NE iff for every player i with strategy πi, it holds that Player i has no incentive to1126

deviate to an alternative strategy π′i. The cost of every strategy π of a profile P0 in N [e← x]1127

is given by
∑
e′∈π\{e}

c(e′)
usedP0 (e′) + 1e∈π

x
usedP0 (e) . We denote by cP0,π =

∑
e′∈π\{e}

c(e′)
usedP0 (e′) .1128

Since for every profile P0 and for every edge e′ it holds that usedP0(e′) = O(k), it holds1129

that for every strategy π the denominator of cP0,π is bounded by O(km), where m is the1130

number of edges in N , which can be represented using O(mlogk) = O(mk) bits. Since the1131

objective of every player and the cost of every edge are given as input, it is safe to assume1132

that O(mk) is polynomial in input. The numerator is therefore bounded by O(k
∑
e′∈E c(e)),1133

which again can be represented in polynomially many bits. Thus, cP0,π can be represented1134

in polynomially-many bits as the quotient of numbers representable by polynomially-many1135
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bits. Then, the requirement that no player has an incentive to deviate in N [e← x] induces1136

an inequality of the form cP,πi + 1e∈πi
x

usedP (e) ≤ cP ′,π′
i

+ 1e∈π′
i

x
usedP ′ (e) where P ′ is a1137

profile constructed from P using Player i’s deviation π′i. By using sub operator we get1138

x
usedP (e) ·1e∈πi −

x
usedP ′ (e) ·1e∈π′

i
≤ cP ′,π′

i
− cP,πi . The term cπ′

i
,P ′ − cπi,P is representable by1139

polynomially many bits as the difference of numbers that are representable by polynomially-1140

many bits. Next, if both 1e∈πi ,1e∈P ′ are 0, then the inequality either evaluates to True1141

or False regardless of x. If it does not hold, then P is never an NE in contradiction to the1142

definition of P , and otherwise we can say that it holds for 0 ≤ x ≤ ∞, both are polynomial in1143

input. This is also the case if both 1e∈πi ,1e∈P ′ are 0 and usedP (e) = usedP (e′). Otherwise,1144

if exactly one of them is 1, assume that 1e∈πi = 1. Then x
usedP ′ (e) · 1e∈π′

i
= 0. Therefore, we1145

have that usedP (e) ≥ 1 and hence the inequality is equivalent to x ≤ usedP (e)(cπ′
i
,P ′−cπi,P ).1146

Since both usedP (e) and cπ′
i
,P ′ − cπi,P are representable by polynomially-many bits, so is1147

their product. The argument is similar for the case where 1e∈π′
i

= 1 with the exception of1148

reversing the inequality. Finally, if both 1e∈πi ,1e∈π′
i

= 1 and usedP (e) 6= usedP ′(e), then the1149

inequality is equivalent to x ≤
(cπ′

i
,P ′−cπi,P )·usedP (e)·usedP ′ (e)

usedP (e)−usedP ′ (e) , which is again representable by1150

polynomially many bits as the quotient of numbers that are representable by polynomially-1151

many bits. The range [aP , bP ] where P is an NE is the solution set of this set of inequalities,1152

and is therefore their intersection. Since all inequalities are week, every inequality represents1153

a closed set, thus the solution set is a closed set, and in particular both aP and bP are the1154

edge points of one of the inequalities, thus, both are representable by polynomially-many1155

bits.1156

We argue that µ = infP∈bNE(N [e←µ])aP . Denote a = infP∈bNE(N [e←µ])aP . By definition,1157

for every P ∈ bNE(N [e ← µ]) it holds that cost(N [e ← µ], P ) = OPT . Therefore, for1158

every P ∈ bNE(N [e ← µ]), since P is an NE in N [e ← µ], it follows that aP ≤ µ. Hence1159

a ≤ aP ≤ µ. Furthermore, since for every such profile P it holds that aP ≤ µ, we get that1160

cost(N [e ← aP ], P ) ≤ cost(N [e ← µ], P ) = costbNE(N [e ← µ]) = OPT . By minimality of1161

OPT , we get that for every such profile P it holds that cost(N [e ← aP ], P ) = OPT . By1162

definition of µ, for every profile P it holds that if there is a value t such that cost(N [e ←1163

t], P ) = OPT , then µ ≤ t. Hence, for every profile P ∈ bNE(N [e← µ]) we have that µ ≤ aP .1164

Next, since there is a finite number of profiles, the set bNE(N [e← µ]) is finite. Hence, the1165

set {aP |P ∈ bNE(N [e← µ])} is finite, and therefore, a ∈ {aP |P ∈ bNE(N [e← µ])}. That1166

is, the infimum and the minimum coincide. Therefore, since for every such profile P we1167

have that µ ≤ aP , in particular µ ≤ a. Thus, a ≤ µ and µ ≤ a, hence µ = a. Now, since1168

a ∈ {aP |P ∈ bNE(N [e← µ])}, and we argued that for every P ∈ bNE(N [e← µ]) we have1169

that aP can be represented by polynomially many bits, µ can be represented by polynomially1170

many bits, as required.1171

Note that there can be exponentially many strategies per player, thus calculating µ can1172

be computationally hard and in particular not polynomial. However, we are not required to1173

be able to calculate µ efficiently. It is enough to bound the representation size of the result,1174

then the witness is polynomially bounded by input.1175

So, the witness x is polynomial in the input. Next, we argue that given a profile P , we1176

can verify that P is an NE in polynomial time. For each player i, fix the strategies of each of1177

the other players, then search for a lightest path from si to ti. If the cost of the strategy of1178

Player i in P is higher than the cost of the path we found, then it is a beneficial deviation,1179

hence P is not an NE. Therefore, it can be verified it polynomial time that P is an NE in1180

N [e← x] and that cost(N [e← x], P ) ≤ κ. In the case of bNE-optimization, the witness also1181

contains the edge e.1182

For hardness, we reduce bNE-cost to both problems. We use the same reductions as in1183
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Theorem 9. In the case of edge-bNE-optimization, the argument to bNE is trivially extended.1184

For bNE-optimization, assume first that 〈N,κ〉 ∈bNE-cost, that is, costbNE(N) ≤ κ. Therefore,1185

costbNE(N ′[e← 0]) = costbNE(N) ≤ κ, hence 〈N ′, κ〉 ∈bNE-optimization.1186

Next, assume that 〈N,κ〉 /∈bNE-cost. Therefore, costbNE(N) > κ. It holds for every1187

e′ 6= e and for every value x ≥ 0 that costbNE(N ′[e′ ← x]) = costbNE(N [e′ ← x]) +κ+ 1 > κ.1188

Furthermore, it holds that costbNE(N ′[e ← x]) = costbNE(N) + x ≥ costbNE(N) > κ.1189

Therefore, 〈N,κ〉 /∈bNE-optimization.1190
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