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Abstract6

The interaction among components in a system is traditionally modeled by a game. In the turned-7

based setting, the players in the game jointly move a token along the game graph, with each8

player deciding where to move the token in vertices she controls. The objectives of the players are9

modeled by ω-regular winning conditions, and players whose objectives are satisfied get rewards.10

Thus, the game is non-zero-sum, and we are interested in its stable outcomes. In particular, in the11

rational-synthesis problem, we seek a strategy for the system player that guarantees the satisfaction12

of the system’s objective in all rational environments. In this paper, we study an extension of the13

traditional setting by trading of control. In our game, the players may pay each other in exchange14

for directing the token also in vertices they do not control. The utility of each player then combines15

the reward for the satisfaction of her objective and the profit from the trading. The setting combines16

challenges from ω-regular graph games with challenges in pricing, bidding, and auctions in classical17

game theory. We study the theoretical properties of parity trading games: best-response dynamics,18

existence and search for Nash equilibria, and measures for equilibrium inefficiency. We also study19

the rational-synthesis problem and analyze its tight complexity in various settings.20
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1 Introduction25

Synthesis is the automated construction of a system from its specification. A useful way to26

approach synthesis of reactive systems is to consider the situation as a game between the27

system and its environment. Together, they generate a computation, and the system wins28

if the computation satisfies the specification. Thus, synthesis is reduced to generation of a29

winning strategy for the system in the game – a strategy that ensures that the system wins30

against all environments [1, 39].31

Nowadays systems have rich structures. More and more systems lack a centralized32

authority and involve selfish users, giving rise to an extensive study of multi-agent systems [2]33

in which the agents have their own objectives, and thus correspond to non-zero-sum games34

[37]: the outcome of the game may satisfy the objectives of a subset of the agents.35

The rich settings in which synthesis is applied have led to more involved definitions36

of the problem. First, in rational synthesis [30, 32, 25, 26, 34], the goal is to construct a37

system that satisfies the specification in all rational environments, namely environments38

that are composed of components that have their own objectives and act to achieve their39

objectives. The system can capitalize on the rationality of the environment, leading to40

synthesis of specifications that cannot be synthesized in hostile environments. Then, in41

quantitative synthesis, the satisfaction value of a specification in a computation need not be42

Boolean. Thus, beyond correctness, specifications may describe quality, enabling the specifier43

to prioritize different satisfaction scenarios. For example, the value of a computation may44

be a value in N, reflecting costs and rewards to events along the computation. A synthesis45

© O. Kupferman and N. Shenwald;
licensed under Creative Commons License CC-BY 4.0

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:orna@cs.huji.ac.il
mailto:noam.shenwald@mail.huji.ac.il
https://doi.org/10.4230/LIPIcs...
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


XX:2 Games with Trading of Control

algorithm aims to construct systems that satisfy their objectives in the highest possible value46

[3, 5, 6, 18, 20]. Quantitative rational synthesis then combines the two extensions, with47

systems composed of rational components having quantitative objectives [30, 32, 6, 19].48

Viewing synthesis as a game has led to a fruitful exchange of ideas between formal49

methods and game theory [17, 31]. The extensions to rational and quantitative synthesis make50

the connection between the two communities stronger. Indeed, rationality is a prominent51

notion in game theory, and most studies in game theory involve quantitative utilities for52

the players. Classical game theory concerns games for economy-driven applications like53

resource allocation, pricing, bidding, auctions, and more [41, 37]. Many more useful ideas in54

classical game theory are waiting to be explored and used in the context of synthesis [24].55

In this paper, we introduce and study a framework for extending synthesis with trading of56

control. For example, in a communication network in which each company controls a subset57

of the routers, companies may pay each other in exchange for committing on some routing58

decisions, and in a system consisting of a server and clients, clients may pay the server for59

allocating resources in some beneficial way. The decisions of the players in such settings60

depend on both their behavioral objectives and their desire to maximize the profit from the61

trade. When a media company decides, for example, how many and which advertisements it62

broadcasts, its decisions depend not only on the expected revenue but also on its need to63

limit the volume (and hopefully also content) of commercial content it broadcasts [16, 35].64

More examples include shields in synthesis, which can alter commands issued by a controller,65

aiming to guarantee maximal performance with minimal interference [7, 9].66

Our framework considers multi-agent systems modeled by a game played on a graph.67

Since we care about infinite on-going behaviors of the system, we consider infinite paths in68

the graph, which correspond to computations of the system. We study settings in which69

each of the players has control in different parts of the system. Formally, if there are n70

players, then there is a partition V1, . . . , Vn of the set of vertices in the game graph among71

the players, with Player i controlling the vertices in Vi. The game is turn-based: starting72

from an initial vertex, the players jointly move a token along the game graph, with each73

player deciding where to move the token in vertices she controls. A strategy for Player i74

directs her how to move a token that reaches a vertex in Vi. A profile is a vector of strategies,75

one for each player, and the outcome of a profile is the path generated when the players76

follow their strategies in the profile. The objectives of the players refer to the generated path.77

In classical parity games (PGs, for short), they are given by parity winning conditions over78

the set of vertices of the graph. Thus, each player has a coloring that assigns numbers to79

vertices in the graph, and her objective is that the minimal color the path visits infinitely80

often is even. While satisfaction of the parity winning condition is Boolean, the players get81

quantitative rewards for satisfying their objectives.82

In parity trading games (PTG, for short), a strategy for Player i is composed of two83

strategies: a buying strategy, which specifies, for each edge ⟨v, u⟩ in the game, how much84

Player i offers to pay the player that controls v in exchange for this player selling ⟨v, u⟩; that85

is, for always choosing u as v’s successor; and a selling strategy, which specifies, for each86

vertex v ∈ Vi, which edge from v is sold, as a function of the offers that Player i receives87

from the other players. Note that Player i need not sell the edge that gets the highest offer.88

Indeed, her choice also depends on her objective.89

Also note that selling strategies are similar to memoryless strategies in PGs, in the sense90

that a sold edge is going to be traversed in all the visits of the token to its source vertex,91

regardless of the history of the path. Recall that we consider parity winning conditions, which92

admits memoryless winning strategies. Accordingly, if a player can force the satisfaction of93
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her parity objective in a PG she can also force the satisfaction of her parity objective in the94

corresponding PTG.95

A profile of strategies in a PTG induces a set of sold edges, one from each vertex. Hence,96

as in PGs, the outcome of each profile is a path in the game. The utility of Player i in the97

game is the sum of two factors: a satisfaction profit, which, as in PGs, is a reward that98

Player i receives if the outcome satisfies her objective, and a trading profit, which is the sum99

of payments she receives from the other players, minus the sum of payments she gives others,100

where payments are made only for sold edges.101

Related work studies synthesis of systems that combine behavioral and monetary object-102

ives. One direction of work considers systems with budgets. The budget can be used for103

tasks such as sensing of input signals, purchase of library components [22, 15, 4], and, in104

the context of control – shielding a controller that interacts with a plant [7, 9]. Even closer105

is work in which the players can use the budget in order to negotiate control. The most106

relevant work here is on bidding games [12]: graph games in which in each turn an auction is107

held in order to determine which player gets control. That is, whenever the token is on a108

vertex v, the players submit bids, the player with the highest bid wins, she decides to which109

successor of v to move the token, and the budgets of the players are updated according to the110

bids. Variants of the game refer to its duration, the type of objectives, the way the budgets111

are updated, and more [13, 14, 11]. Trading games are very different from bidding games: in112

trading games, negotiation about buying and selling of control takes place before the game113

starts, and no auctions are held during the game. Also, the games include an initial partition114

of control, as is the natural setting in multi-agent systems. Moreover, control in trading115

games is not sold to the highest offer. Rather, selling strategies may depend in the objective116

of the seller. Finally, the games are non-zero-sum, and are studied for arbitrary number of117

players.118

Another direction of related work considers systems with dynamic change of control119

that do not involve monetary objectives, such as pawn games [10]: zero-sum turn-based120

games in which the vertices are statically partitioned between a set of pawns, the pawns are121

dynamically partitioned between the players, and the player that chooses the successor for122

a vertex v at a given turn is the player that controls the pawn to which v belongs. At the123

end of each turn, the partition of the pawns among the players is updated according to a124

predetermined mechanism.125

Since a PTG is non-zero-sum, interesting questions about it concern stable outcomes, in126

particular Nash equilibria (NE) [36]. A profile is an NE if no player has a beneficial deviation;127

thus, no player can increase her utility by changing her strategy in the profile. Note that in128

PTGs, a change of a strategy amounts to a change in the buying or selling strategies, or in129

both of them.130

We first study best response in PTGs – the problem of finding the most beneficial deviation131

for a player in a given profile. We show that the problem can be reduced to the problem of132

finding shortest paths in weighted graphs. Essentially, the weights in the graph are induced133

by the maximal profit that a player can make from selling edges from vertices she owns and134

the minimal profit she may lose in order to buy edges from vertices she does not own. We135

conclude that the problem can be solved in polynomial time. We also study best response136

dynamics – a process in which, as long as the profile is not an NE, some player is chosen137

to perform her best response. We show that trading makes the setting less stable, in the138

sense that best response dynamics need not converge to an NE, even when convergence is139

guaranteed in the underlying PG. On the positive side, as is the case in PGs, every PTG has140

an NE.141
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We continue and study rational synthesis in PTGs. Two approaches to rational synthesis142

have been studied. In cooperative rational synthesis (CRS) [30], the desired output is an143

NE profile whose outcome satisfies the objective of the system. In non-cooperative rational144

synthesis (NRS) [32], we seek a strategy for the system such that its objective is satisfied in145

the outcome of all NE profiles that include this strategy. In settings with quantitative utilities,146

in particular PTGs, the input to the CRS and NRS problems includes a threshold t ≥ 0,147

and we replace the requirement for the system to satisfy her objective by the requirement148

that her utility is at least t. The two approaches have to do with the technical ability to149

communicate strategies to the environment players, say due to different architectures, as well150

as with the willingness of the environment players to follow a suggested strategy. As shown151

in [6], the two approaches are related to the two stability-inefficiency measures of price of152

stability (PoS) [8] and price of anarchy (PoA) [33, 38], and we study these measures in the153

context of PTG.154

Problem Finding an NE Cooperative Rational Synthesis Non-cooperative Rational Synthesis

Parity Games UP \ co-UP fixed n
NP-complete unfixed n

[37], [Th. 5]

UP \ co-UP fixed n
NP-complete unfixed n

[22], [37]

PSPACE, NP-hard, co-NP-hard fixed n
EXPTIME, PSPACE-hard unfixed n

[22]

Parity Trading Games NP-complete
[Th. 10]

NP-complete n = 2
⌃P

2-complete n � 3
[Th. 12], [Th. 13]

Büchi Games PTIME
[37], [Th. 5]

PTIME
[37]

PTIME fixed n
PSPACE-complete unfixed n

[22]

Büchi Trading Games NP-complete
[Th. 10]

NP-complete n = 2
⌃P

2-complete n � 3 or unfixed n
[Th. 12], [Th. 13]

TABLE I
COMPLEXITY OF DIFFERENT PROBLEMS ON n-PLAYER PGS, PTGS, BGS, AND BTGS.

and to ensure the consistency of suggested assignments. When
the number of players in the environment is bigger than 2,
we can use trade among the environment players in order to
simulate universal quantification, which explains the transition
form NP to ⌃P

2 .
Our complexity results on !-regular trading games and their

comparison to standard !-regular non-zero-sum games are
summarized in Table I.

II. PRELIMINARIES

For n � 1, let [n] = {1, ..., n}. An n-player game graph
is a tuple G = h{Vi}i2[n], v0, Ei, where {Vi}i2[n] are disjoint
sets of vertices, each owned by a different player, and we let
V =

S
i2[n] Vi. Then, v0 2 V1 is an initial vertex, which we

assume to be owned by Player 1, and E ✓ V ⇥ V is a total
edge relation, thus for every v 2 V , there is at least one u 2 V
such that hv, ui 2 E. The size |G| of G is |E|, namely the
number of edges in it.

For every vertex v 2 V , we denote by succ(v) the set of
successors of v in G. That is, succ(v) = {u 2 V : hv, ui 2 E}.
Also, for every v 2 V , we denote by Ev the set of edges from
v. That is, Ev = {hv, ui : u 2 succ(v)}. Then, for every
i 2 [n], we denote by Ei the set of edges whose source vertex
is owned by Player i. That is, Ei =

S
v2Vi

Ev .
In the beginning of the game, a token is placed on v0. The

players control the movement of the token in vertices they
own: In each turn in the game, the player that owns the vertex
with the token chooses a successor vertex and moves the token
to it. Together, the players generate a play ⇢ = v0, v1, . . . in
G, namely an infinite path that starts in v0 and respects E: for
all i � 0, we have that (vi, vi+1) 2 E.

For a play ⇢ = v0, v1, . . ., we denote by inf(⇢) the set
of vertices visited infinitely often along ⇢. That is, inf(⇢) =
{v 2 V : there are infinitely many i � 0 such that vi = v}.
A parity objective is given by a coloring function ↵ : V !
{0, . . . , k}, for some k � 0, and requires the minimal color
visited infinitely often along ⇢ to be even. Formally, a play
⇢ satisfies ↵ iff min{↵(v) : v 2 inf(⇢)} is even. A Büchi
objective is a special case of parity. For simplicity, we describe
a Büchi objective by a set of vertices ↵ ✓ V . The condition

requires that some vertex in ↵ is visited infinitely often along
⇢, thus inf(⇢) \ ↵ 6= ;.

A parity game (PG, for short) is a tuple G =
hG, {↵i}i2[n], {Ri}i2[n]i, where G is a n-player game graph,
and for every i 2 [n], we have that ↵i : V ! {0, . . . , ki} is
a parity objective for Player i. Intuitively, for every i 2 [n],
Player i aims for a play ⇢ that satisfies her objective ↵i, and
Ri 2 N is a reward that Player i gets when ↵i is satisfied.
Büchi games (BG, for short) are defined similarly, with Büchi
objectives.

A strategy for Player i is a function fi : V ⇤ · Vi ! V that
directs her how to move the token in vertices she owns. Thus,
fi maps prefixes of plays to possible extensions in a way that
respects E: for every ⇢ · v with ⇢ 2 V ⇤ and v 2 Vi, we have
that (v, fi(⇢·v)) 2 E. A strategy fi for Player i is memoryless
if it only depends on the current vertex. That is, if for every
two histories h, h0 2 V ⇤ and vertex v 2 Vi, we have that
fi(h · v) = fi(h

0 · v). Note that a memoryless strategy can be
viewed as a function fi : Vi ! V .

A profile is a tuple ⇡ = hf1, ..., fni of strategies, one for
each player. The outcome of a profile ⇡ = hf1, ..., fni is
the play obtained when the players follow their strategies.
Formally, Outcome(⇡) = v0, v1, ... is such that for all j � 0,
we have that vj+1 = fi(v0, v1, . . . , vj), where i 2 [n] is such
that vj 2 Vi.

For every profile ⇡ and i 2 [n], we say that Player i wins
in ⇡ if Outcome(⇡) |= ↵i. Otherwise, Player i loses in ⇡. We
denote by Win(⇡) the set of players that win in ⇡. Then, the
satisfaction profit of Player i in ⇡, denoted sprofiti(⇡), is Ri

if i 2Win(⇡), and is 0 otherwise.
As the objectives of the players may overlap, the game is

not zero-sum and thus we are interested in stable profiles in
the game. A profile ⇡ = hf1, ..., fni is a Nash Equilibrium
(NE, for short) [33] if, intuitively, no player can benefit
(that is, increase her profit) from unilaterally changing her
strategy. Formally, for i 2 [n] and some strategy f 0

i for
Player i, let ⇡[i  f 0

i ] = hf1, ..., fi�1, f
0
i , fi+1, ..., fni be

the profile in which Player i deviates to the strategy f 0
i . We

say that ⇡ is an NE if for every i 2 [n], we have that
sprofiti(⇡) � sprofiti(⇡[i  f 0

i ]), for every strategy f 0
i for

Player i. That is, no player can unilaterally increase her profit.

3

Figure 1 Complexity of different problems on n-player PGs, PTGs, BGs, and BTGs.

In PGs, the tight complexity of rational synthesis is still open, and depends on whether155

the number of players is fixed. We show that in PTGs, CRS is NP-complete, and the156

complexity of NRS depends on the number of players: it is NP-complete for two players157

and is ΣP
2 -complete for three or more (in particular, unfixed number of) players. Our upper158

bounds are based on reductions to a sequence of shortest-path algorithms in weighted graphs.159

They hold also for an unfixed number of players, making rational synthesis with an unfixed160

number of players easier in PTGs than in PGs. Intuitively, it follows from the fact that161

deviations in the selling or buying strategies of single players in PTGs induce a change in the162

outcome only if they are matched by the buying and selling strategies, respectively, of players163

that do not deviate. Our lower bounds involve reductions from SAT and QBF2, where trade164

is used to incentive a satisfying assignment, when exists, and to ensure the consistency of165

suggested assignments. When the number of players in the environment is bigger than 2, we166

can use trade among the environment players in order to simulate universal quantification,167

which explains the transition form NP to ΣP
2 .168

Our complexity results on ω-regular trading games and their comparison to standard169

ω-regular non-zero-sum games are summarized in the table in Figure 1.170

2 Preliminaries171

For n ≥ 1, let [n] = {1, . . . , n}. An n-player game graph is a tuple G = ⟨{Vi}i∈[n], v0, E⟩,172

where {Vi}i∈[n] are disjoint sets of vertices, each owned by a different player, and we let173

V =
⋃

i∈[n] Vi. Then, v0 ∈ V1 is an initial vertex, which we assume to be owned by Player 1,174

and E ⊆ V × V is a total edge relation, thus for every v ∈ V , there is at least one u ∈ V175

such that ⟨v, u⟩ ∈ E. The size |G| of G is |E|, namely the number of edges in it.176
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For every vertex v ∈ V , we denote by succ(v) the set of successors of v in G. That is,177

succ(v) = {u ∈ V : ⟨v, u⟩ ∈ E}. Also, for every v ∈ V , we denote by Ev the set of edges from178

v. That is, Ev = {⟨v, u⟩ : u ∈ succ(v)}. Then, for every i ∈ [n], we denote by Ei the set of179

edges whose source vertex is owned by Player i. That is, Ei =
⋃

v∈Vi
Ev.180

In the beginning of the game, a token is placed on v0. The players control the movement181

of the token in vertices they own: In each turn in the game, the player that owns the vertex182

with the token chooses a successor vertex and moves the token to it. Together, the players183

generate a play ρ = v0, v1, . . . in G, namely an infinite path that starts in v0 and respects E:184

for all i ≥ 0, we have that (vi, vi+1) ∈ E.185

For a play ρ = v0, v1, . . ., we denote by inf(ρ) the set of vertices visited infinitely often186

along ρ. That is, inf(ρ) = {v ∈ V : there are infinitely many i ≥ 0 such that vi = v}. A187

parity objective is given by a coloring function α : V → {0, . . . , k}, for some k ≥ 0, and188

requires the minimal color visited infinitely often along ρ to be even. Formally, a play ρ189

satisfies α iff min{α(v) : v ∈ inf(ρ)} is even. A Büchi objective is a special case of parity. For190

simplicity, we describe a Büchi objective by a set of vertices α ⊆ V . The condition requires191

that some vertex in α is visited infinitely often along ρ, thus inf(ρ) ∩ α ̸= ∅.192

A parity game (PG, for short) is a tuple G = ⟨G, {αi}i∈[n], {Ri}i∈[n]⟩, where G is a193

n-player game graph, and for every i ∈ [n], we have that αi : V → {0, . . . , ki} is a parity194

objective for Player i. Intuitively, for every i ∈ [n], Player i aims for a play ρ that satisfies195

her objective αi, and Ri ∈ N is a reward that Player i gets when αi is satisfied. Büchi games196

(BG, for short) are defined similarly, with Büchi objectives. We assume that at least one197

condition is satisfiable.198

A strategy for Player i is a function fi : V ∗ · Vi → V that directs her how to move the199

token in vertices she owns. Thus, fi maps prefixes of plays to possible extensions in a way200

that respects E: for every ρ · v with ρ ∈ V ∗ and v ∈ Vi, we have that (v, fi(ρ · v)) ∈ E. A201

strategy fi for Player i is memoryless if it only depends on the current vertex. That is, if202

for every two histories h, h′ ∈ V ∗ and vertex v ∈ Vi, we have that fi(h · v) = fi(h′ · v). Note203

that a memoryless strategy can be viewed as a function fi : Vi → V .204

A profile is a tuple π = ⟨f1, . . . , fn⟩ of strategies, one for each player. The outcome of a205

profile π = ⟨f1, . . . , fn⟩ is the play obtained when the players follow their strategies. Formally,206

Outcome(π) = v0, v1, . . . is such that for all j ≥ 0, we have that vj+1 = fi(v0, v1, . . . , vj),207

where i ∈ [n] is such that vj ∈ Vi.208

For every profile π and i ∈ [n], we say that Player i wins in π if Outcome(π) |= αi.209

Otherwise, Player i loses in π. We denote by Win(π) the set of players that win in π. Then,210

the satisfaction profit of Player i in π, denoted sprofiti(π), is Ri if i ∈ Win(π), and is 0211

otherwise.212

As the objectives of the players may overlap, the game is not zero-sum and thus we are213

interested in stable profiles in the game. A profile π = ⟨f1, . . . , fn⟩ is a Nash Equilibrium214

(NE, for short) [36] if, intuitively, no player can benefit (that is, increase her profit) from215

unilaterally changing her strategy. Formally, for i ∈ [n] and some strategy f ′
i for Player i,216

let π[i ← f ′
i ] = ⟨f1, . . . , fi−1, f ′

i , fi+1, . . . , fn⟩ be the profile in which Player i deviates to217

the strategy f ′
i . We say that π is an NE if for every i ∈ [n], we have that sprofiti(π) ≥218

sprofiti(π[i ← f ′
i ]), for every strategy f ′

i for Player i. That is, no player can unilaterally219

increase her profit.220

In rational synthesis, we consider a game between a system, modeled by Player 1, and an221

environment composed of several components, modeled by Players 2 . . . n. Then, we seek a222

strategy for Player 1 with which she wins, assuming rationality of the other players. Note223

that the system may also be composed of several components, each with its own objective.224
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It is not hard to see, however, that they can be merged to a single player whose objective is225

the conjunction of the underlying components.226

We say that a profile π = ⟨f1, . . . , fn⟩ is a 1-fixed NE, if no player i ∈ [n] \ {1} has a227

beneficial deviation. We formalize the intuition behind rational synthesis in two ways, as228

follows. Consider an n-player game G = ⟨G, {αi}i∈[n], {Ri}i∈[n]⟩, and a threshold t ≥ 0.229

The problem of cooperative rational synthesis (CRS) is to return a 1-fixed NE π such that230

sprofit1(π) ≥ t. The problem of non-cooperative rational synthesis (NRS) is to return a231

strategy f1 for Player 1 such that for every 1-fixed NE π that extends f1, we have that232

sprofit1(π) ≥ t.233

As in traditional synthesis, one can also define the corresponding decision problems, of234

rational realizability, where we only need to decide whether the desired strategies exist. In235

order to avoid additional notations, we sometimes refer to CRS and NRS also as decision236

problems.237

3 Parity Trading Games238

Parity trading games (PTG, for short, or BTG, when the objectives of the players are Büchi239

objectives) are similar to parity games, except that now, the movement of the token along240

the game graph depends on trade among the players, who pay each other in exchange for241

certain behaviors. Thus, instead of strategies that direct them how to move the token, now242

the players have strategies that direct the trade.243

▶ Example 1. Consider a 3-player BTG ⟨G, {α1, α2, α3}, {R1, R2, R3}⟩, defined on top of244

the game graph G described in Fig. 2, in which the Büchi objectives for the players are245

α1 = {a, b}, α2 = {a}, and α3 = {b}, and the rewards are R1 = 1, R2 = 2, and R3 = 3. That246

is, Player 1 gets reward 1 if one of the vertices a and b is visited infinitely often, Player 2247

gets reward 2 if the vertex a is visited infinitely often, and Player 3 gets reward 3 if the248

vertex b is visited infinitely often.

va b

Figure 2 The game graph G. All the vertices are owned by Player 1.

249

Consider a PTG G = ⟨G, {αi}i∈[n], {Ri}i∈[n]⟩, defined on top of a game graph G =250

⟨{Vi}i∈[n], v0, E⟩. A buying strategy for Player i is a function bi : E → N that maps each251

edge e = ⟨v, u⟩ ∈ E to the price that Player i is willing to pay to the owner of v in exchange252

for selling e; that is, for always choosing u as v’s successor when the token is in v. For edges253

e ∈ Ei, we require bi(e) to be 0.254

Consider a vector β = ⟨b1, . . . , bn⟩ of buying strategies, one for each player. The vector β255

determines, for an edge e ∈ E, the collective price that the players are willing to pay for e.256

Accordingly, we sometime refer to β as a price list, namely a function in NE , where for every257

e ∈ E, we have that β(e) =
∑

i∈[n] bi(e).258

▶ Example 2. Consider the BTG from Example 1. A possible buying strategy for Player 2259

is b2(⟨v, a⟩) = 1 and b2(⟨v, b⟩) = b2(⟨a, v⟩) = b2(⟨b, v⟩) = 0, and a possible buying strategy260

for Player 3 is b3(⟨v, b⟩) = 2 and b3(⟨v, a⟩) = b2(⟨a, v⟩) = b2(⟨b, v⟩) = 0 . Then, the261
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corresponding price list is β = ⟨b1, b2, b3⟩, β(⟨v, a⟩) = b2(⟨v, a⟩) + b3(⟨v, a⟩) = 1 + 0 = 1, and262

β(⟨v, b⟩) = b2(⟨v, b⟩) + b3(⟨v, b⟩) = 0 + 2 = 2.263

A selling strategy for Player i determines which edges Player i sells. The strategy is a264

collection of policies, which determines for each v ∈ Vi, which edge from v to sell, given prices265

offered for the edges in Ev. Formally, a selling policy for v ∈ Vi is a function sv : NEv → Ev266

that maps each price list for the edges in Ev to an edge in Ev. Note that the mapping is267

arbitrary, thus a player need not sell the edge that gets the highest price. We refer to the268

selling strategy for Player i, thus the collection {sv : v ∈ Vi} of selling policies for her vertices,269

as a function si : NE → 2Ei that maps price lists to the set of edges that Player i chooses to270

sell. Note also that selling strategies in PTGs are similar to memoryless strategies in PGs, in271

the sense that the choice of the edge that is sold from v is independent of the history of the272

game.273

▶ Example 3. Consider the BTG from Example 1. The only possible selling policy sa for274

the vertex a (respectively, sb for the vertex b) is to map every price list to the edge ⟨a, v⟩275

(respectively, to the edge ⟨b, v⟩). A possible selling policy for the vertex v is sv such that for276

every price list β, if β(⟨v, a⟩) > β(⟨v, b⟩), then sv(β) = ⟨v, a⟩, and otherwise sv(β) = ⟨v, b⟩.277

That is, if the total price that the other players are willing to pay for the edge ⟨v, a⟩ is bigger278

than the total price they are willing to pay for the edge ⟨v, b⟩, then sell the edge ⟨v, a⟩. Then,279

a possible selling strategy for Player 1 is s1 = {sv, sa, sb}. Note that other possible selling280

policies for v include the policy to always sell the edge ⟨v, a⟩, regardless of the pricing list,281

and the policy to sell the edge ⟨v, a⟩ if the price list β is such that β(⟨v, b⟩) = 5.282

A profile is a tuple π = ⟨(b1, s1), . . . , (bn, sn)⟩ of pairs of buying and selling strategies, one283

for each player. We sometime refer to the pair of buying and selling strategies for Player i as284

a single strategy, and use the notation fi = (bi, si). We also use βπ to denote the price list285

induced by the buying strategies in π. We say that an edge e ∈ Ei is sold in π iff e ∈ si(βπ).286

We denote by S(π) the set of edges sold in π. Recall that for every v ∈ V , there exists exactly287

one edge e ∈ Ev such that e ∈ S(π). The outcome of a profile π, denoted Outcome(π), is288

then the path v0, v1, . . ., where for all j ≥ 0, we have that (vj , vj+1) ∈ S(π).289

As in PGs, the satisfaction profit of Player i in π, denoted sprofiti(π), is Ri if αi is290

satisfied in Outcome(π), and is 0 otherwise. In PTGs, however, we consider also the trading291

profits of the players: For every player i ∈ [n], the gain of Player i in π, denoted gaini(π),292

is the sum of payments she receives from other players, and the loss of Player i, denoted293

lossi(π), is the sum of payments she pays others. That is, gaini(π) =
∑

e∈S(π)∩Ei
βπ(e), and294

lossi(π) =
∑

e∈S(π) bi(e). Then, the trading profit of Player i in π, denoted tprofiti(π), is her295

gain minus her loss in π. That is, tprofiti(π) = gaini(π)− lossi(π). Note that while all the296

edges in Outcome(π) are in S(π), not all edges in S(π) are traversed during the play. Still,297

payments depend only on S(π), regardless of whether the edges are traversed. Finally, the298

utility of Player i in π, denoted utili(π), is the sum of her satisfaction and trading profits in299

π. That is, utili(π) = sprofiti(π) + tprofiti(π). The definitions of beneficial deviations, NEs,300

and 1-fixed NEs are then defined as in the case of PG.301

▶ Example 4. Consider the BTG from Example 1, and the profile π = ⟨(b1, s1), (b2, s2), (b3, s3)⟩302

defined by the selling an buying strategies s1, b2 and b3 described in Examples 3,2, and303

trivial b1, s2, and s3. Since βπ(⟨v, a⟩) = 1 < 2 = βπ(⟨v, b⟩), we have that sv(βπ) = ⟨v, b⟩, and304

so s1(βπ) = {⟨v, b⟩, ⟨a, v⟩, ⟨b, v⟩}. Hence, S(π) = {⟨v, b⟩, ⟨a, v⟩, ⟨b, v⟩}, Outcome(π) = (v · b)ω,305

util1(π) = 1 + 2 = 3, util2(π) = 0, and util3(π) = 3− 2 = 1.306

Note that the definition of a selling strategy si as a function from NE hides the fact307

that the selling policy for each vertex v ∈ Vi depends only on the price list for the edges in308
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Ev. Note also that as there are infinitely many price lists, a general presentation of selling309

strategies is infinite. We assume that selling strategies are given by a set of disjoint Boolean310

assertions over the prices suggested for each edge, thus have a finite representation and can be311

computed in polynomial time. For example, a selling strategy for a vertex v with successors312

{u1, u2, u3}, may be “if the price offered for u2 is at least p, then sell (v, u2); otherwise,313

sell (v, u1)". See more details in Appendix A. There, we also argue that every profile π314

of strategies can be simplified so that the set of winners and the utilities for the players315

are preserved, and all prices are of polynomial size. As we argue in the sequel, restricting316

attention to simple profiles and to strategies that can be represented symbolically does not317

lose generality, in the sense that whenever we search for a profile of strategies and a desired318

profile exists, then there is also a profile that consists of strategies that can be represented319

symbolically.320

Describing a profile π = ⟨(b1, s1), . . . , (bn, sn)⟩, we sometimes use a symbolic description,321

as follows. For players i, j ∈ [n], an edge e ∈ Ej , and a price p ∈ N, we say that Player i322

offers to buy e for price p if bi(e) = p, and that Player i pays p for e if, in addition, e ∈ sj(βπ).323

For a vertex v ∈ Vi, and an edge e = ⟨v, u⟩ ∈ Ev, we say that Player i moves from v to u,324

if e ∈ si(βπ), thus Player i sells e in βπ. Then, we say that Player i always moves from v325

to u, if Player i always sells e, thus e ∈ si(β) for every price list β. Describing a deviation326

from π to a profile π′ = ⟨(b′
1, s′

1), . . . , (b′
n, s′

n)⟩, we sometimes use a symbolic description, as327

follows. For a player i ∈ [n] and an edge e ∈ E, we say that Player i cancels the purchase of328

e if bi(e) > 0 and b′
i(e) = 0. For an edge e ∈ Ei, we say that Player i cancels the sale of e if329

e ∈ si(βπ) and e /∈ si(βπ′).330

4 Stability in Parity Trading Games331

In this section we study the stability of PTGs. We start with the best-response problem,332

which searches for deviations that are most beneficial for the players, and show that the333

problem can be solved in polynomial time. On the negative side, a best-response dynamics in334

PTGs, where players repeatedly perform their most beneficial deviations, need not converge.335

We then study the existence of NEs in PTGs, show that every PTG has an NE, and relate336

the stability in a PTG and its underlying PG. Finally, we study the inefficiency that may be337

caused by instability, and show that the price of stability and price of anarchy in PTGs are338

unbounded and infinite, respectively.339

Throughout this section, we consider an n-player game G = ⟨G, {αi}i∈[n], {Ri}i∈[n]⟩,340

defined on top of a game graph G = ⟨{Vi}i∈[n], v0, E⟩. We use GP and GT to denote G when341

viewed as a PG and PTG, respectively.342

4.1 Best response343

The input to the best response (BR, for short) problem is a game G, a profile π, and i ∈ [n].344

The goal is to find a strategy f ′
i for Player i such that utili(π[i ← f ′

i ]) is maximal. We345

describe an algorithm that solves the BR problem in polynomial time. The key idea behind346

our algorithm is as follows. Consider a profile π = ⟨(b1, s1), . . . , (bn, sn)⟩. Recall that the347

utility of Player i in π is the sum of her satisfaction and trading profits in π. If Player i348

ignores her objective and only tries to maximize her trading profit, then her strategy is349

straightforward: she buys no edge, and in each vertex v ∈ Vi, she sells an edge with the350

maximal price in βπ. If there is a strategy f∗
i as above such that the outcome of π[i← f∗

i ]351

satisfies αi, then clearly f∗
i is a best response for Player i, and we are done. Otherwise, the352

algorithm searches for a minimal reduction in the trading profit with which Player i can353
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induce an outcome that satisfies αi. For this, the algorithm labels each edge e = ⟨v, u⟩ in354

G by the cost of ensuring that e is sold. If Player i owns e, then this cost is the difference355

between βπ(e) and max{βπ(e′) : e′ ∈ Ev}. If Player i does not own e, thus v ∈ Vj , for some356

player j ̸= i, then this cost is the minimal price that Player i has to offer for e in order357

to change βπ to a price list β for which sj(β) = e. Once the graph G is labeled by costs358

as above, the desired strategy is induced by the path with the minimal cost that satisfies359

αi. Finally, if the minimal cost of satisfying αi is higher than her reward Ri, then the best360

response for Player i is to give up the satisfaction of αi and follow the strategy f∗
i , in which361

the maximal trading profit is attained.362

We now describe the algorithm in detail. We first label the edges from every vertex v ∈ V363

by costs in N. For every vertex v ∈ Vi, we denote by potential(π, v) the maximal price that364

Player i can get from selling an edge from v. That is, potential(π, v) = max{βπ(e) : e ∈ Ev}.365

For every vertex v ∈ Vi and edge e ∈ Ev, we define cost(π, e) as the cost for Player i of selling366

e rather then an edge that attains potential(π, v). That is, cost(π, e) = potential(π, v)−βπ(e).367

We continue to vertices v ̸∈ Vi. For j ∈ [n] \ {i} and an edge e ∈ Ej , we define cost(π, e)368

as the minimal price that Player i needs to pay to Player j in order for her to sell e. Formally,369

let Be
i be the set of buying strategies for Player i that cause Player j to sell e. That is,370

Be
i = {b′

i : E → N : e ∈ sj(βπ[i← b′
i])}. When Player i uses a strategy b′

i ∈ Be
i as her buying371

strategy, Player j sells e, and Player i pays the price b′
i(e). Hence, the minimal price that372

Player i needs to pay in order for Player j to sell e is cost(π, e) = min{b′
i(e) : b′

i ∈ Be
i }. Note373

that Be
i may be empty, in which case cost(π, e) =∞.374

We define best(π) ⊆ E as the set of edges that minimize the cost of Player i. Formally,375

best(π) =
⋃

v∈V best(π, v), where for v ∈ Vi, we have that best(π, v) ⊆ Ev is the set of376

edges from v with which potential(π, v) is attained, thus best(π, v) = {e ∈ Ev : βπ(e) =377

potential(π, v)}; and for v ∈ Vj , for j ̸= i, we have that best(π, v) is the set of edges from378

v that Player i can make Player j sell without paying for e, thus best(π, v) = {e ∈ Ev :379

cost(π, e) = 0}. Note that for every vertex v ∈ V , the set best(π, v) is not empty.380

We say that a path ρ in G is feasible if cost(π, e) <∞ for every edge e in ρ. In Lemma 5381

below (see proof in Appendix B.1), we argue that for every feasible path ρ, Player i can382

change her strategy in π so that the outcome of the new profile is ρ. We also calculate the383

cost required for Player i to do so.384

▶ Lemma 5. Let ρ be a feasible path in G. Then, there exists a strategy fρ
i for Player i385

such that Outcome(π[i ← fρ
i ]) = ρ, and tprofiti(π[i ← fρ

i ]) =
∑

v∈Vi
potential(π, v) −386 ∑

e∈ρ cost(π, e). Also, tprofiti(π[i← fρ
i ]) is the maximal trading profit for Player i when she387

changes her strategy in π to a strategy that causes the outcome to be ρ.388

For a path ρ in G, let fρ
i be a strategy for Player i such that the outcome of π[i← fρ

i ] is389

ρ. Note that fρ
i can be described symbolically.390

Our algorithms for finding beneficial deviations are based on a search for short lassos391

in weighted variants of the graph G. A lasso is a path of the form ρ1 · ρω
2 , for finite paths392

ρ1 ∈ V ∗ and ρ2 ∈ V +. When G is weighted, the length of the lasso is defined as the sum of393

the weights in the path ρ1 · ρ2.394

▶ Theorem 6. The BR problem in PTGs can be solved in polynomial time.395

Proof. Given an n-player PTG G, a profile π, and i ∈ [n], the algorithm for finding a BR for396

Player i proceeds as follows.397

1. Let Gbest(π) = ⟨V, best(π)⟩ be the restriction of G to edges in best(π).398

2. If there is a path ρ in Gbest(π) that satisfies αi, then return fρ
i . Otherwise, let f∗

i be a399

strategy for Player i that induces some lasso in Gbest(π).400
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3. Let G′ = ⟨V, E, w⟩ be the weighted extension of G, where w : E → N is such that for401

every edge e ∈ E, we have that w(e) = cost(π, e).402

4. Let ρ be a shortest (with respect to the weights in w) lasso that satisfies αi.403

5. If w(ρ) ≥ Ri, then return f∗
i , else return fρ

i .404

In Appendix B.2, we prove the correctness of the algorithm and analyze its complexity. ◀405

Recall that a best response dynamic (BRD) is an iterative process in which as long as the406

profile is not an NE, some player is chosen to perform a best response. In Theorem 7 below,407

we demonstrate that a BRD in a PTG (in fact, a BTG) need not converge, even in settings408

in which every BRD in the corresponding PG does converge.409

▶ Theorem 7. There is a game G such that every BRD in the PG GP converges to an NE,410

yet a BRD in GT need not converge.411

Proof. Consider the 2-player Büchi game G = ⟨G, {α1, α2}, {1, 3}⟩, where G is described in412

Figure 3, α1 = {a, c}, and α2 = {b, d}.413

v0v u

a

b d

c

Figure 3 The game graph G. All the vertices are owned by Player 1.

All the vertices in G are owned by Player 1, and the vertices in α1 are reachable sinks.414

Hence, once Player 1 is chosen to deviate in GP , an NE is reached.415

In Appendix B.3 we describe a BRD in GT that does not converge. ◀416

4.2 Nash equilibria417

We continue and show that while a BRD in GT needs not converge even when every BRD418

in GP does, we can still use NEs in GP in order to obtain NEs in GT . Consider a profile419

π = ⟨f1, . . . , fn⟩ of memoryless strategies for the players in GP . We define the trivial-trading420

analogue of π, denoted tt(π) as the a profile in GT that is obtained from π by replacing421

each strategy fi by the pair (bi, si), for an empty buying strategy bi (that is, bi(e) = 0 for422

all e ∈ E), and a selling strategy si that mimics fi (that is, for every price list β, we have423

that ⟨v, u⟩ ∈ si(β) iff fi(v) = u). Note that all the strategies in tt(π) can be described424

symbolically.425

▶ Lemma 8. If π is an NE in GP that consists of memoryless strategies, then tt(π) is an426

NE in GT .427

Lemma 8 (see proof in Appendix B.4) enables us to reduce the search for an NE in an428

n-player PTG GT to a search for an NE in the PG GP (see proof in Appendix B.5):429

▶ Theorem 9. Every PTG has an NE, which can be found in UP ∩ co-UP when the number430

of players is fixed, and in NP when the number of players is not fixed. For BTGs, an NE431

can be found in polynomial time.432

Recall that for solving the rational-synthesis problem, we are not interested in arbitrary433

NEs, but in 1-fixed NEs in which the utility of Player 1 is above some threshold. As434

we shall see now, the situation here is more complicated: searching for solutions for the435

rational-synthesis problem in a PTG, we cannot reason about the corresponding PG.436



O. Kupferman and N. Shenwald XX:11

▶ Theorem 10. There is a PTG GT and t ≥ 1 such that there is a 1-fixed NE πT in GT
437

with util1(πT ) ≥ t, yet for every 1-fixed NE of memoryless strategies π in GP , we have that438

util1(tt(π)) < t.439

Proof. Consider the 2-player BTG GT = ⟨G, {{a}, {b}}, {1, 3}⟩, where G appears in Figure 4.440

Consider a profile πT in which the strategy for Player 1 moves from v0 to b if Player 2441

offers to buy ⟨v0, b⟩ for price 2, and moves to a otherwise, and the strategy for Player 2442

offers to buy ⟨v0, b⟩ for price 2. In Appendix B.6, we prove that πT is a 1-fixed NE with443

util1(πT ) = 2, whereas for every 1-fixed NE of memoryless strategies π in GP , we have that444

util1(tt(π)) < 2. ◀445

Figure 4 The game graph G. All the vertices are owned by Player 1.

Note that while Theorem 10 considers a 1-fixed NE, and thus corresponds to the setting446

of CRS, the strategy for Player 1 described there is in fact an NRS solution for the threshold447

t = 2, and the latter cannot be obtained by extending an NRS solution for Player 1 in GP .448

4.3 Equilibrium inefficiency449

In this section we study the price of stability (PoS) and price of anarchy (PoA) measures450

[37] in PTGs, describing the best-case and worst-case inefficiency of a Nash equilibrium.451

Before we define these measures formally, we observe that for every PTG, outcomes that452

agree on the set of winners also agree in the sum of utilities of the players. Essentially, this453

follows from the fact that the trading profits for the players sum to 0. Formally, we have the454

following (see proof in Appendix B.7).455

▶ Lemma 11. Let ρ be a path in G, and let Win(ρ) be the set of players whose objectives456

are satisfied in ρ. Then, for every profile π with Outcome(π) = ρ, we have that the sum of457

utilities of the players in π is exactly
∑

i∈Win(ρ) Ri.458

The social optimum in a game G, denoted SO(G), is the maximal sum of utilities that the459

players can have in some profile. Thus, SO(G) is the maximal
∑

i∈[n] utili(π) over all profiles460

π for G. Since every path ρ in G can be the outcome of some profile, then, by Lemma 11, we461

have that SO(G) is the maximal
∑

i∈Win(ρ) Ri over all paths ρ in G.462

Let πB and πW be NEs with the highest and lowest sum of utilities for the players,463

respectively. We define BNE(G) =
∑

i∈[n] utili(πB) and WNE(G) =
∑

i∈[n] utili(πW ). We464

then define the price of stability in G as PoS(G) = SO(G)/BNE(G), and the price of anarchy465

in G as PoA(G) = SO(G)/WNE(G). Analyzing the prices of stability and anarchy of PTGs,466

we assume that all rewards in a game G are positive, thus Ri > 0 for all i ∈ [n]. Note that467

without this assumption, it is easy to define a game G with SO(G) > 0 yet BNE(G) = 0, and468

hence with PoS(G) = PoA(G) =∞.469

We start with the price of anarchy. It is easy to see that it may be infinite even in simple470

PTGs in which all rewards are positive:471

▶ Theorem 12. There is a 2-player BTG G with PoA(G) =∞.472

Proof. Consider the BTG G = ⟨GP oA, {{a}, {a}}, {1, 1}⟩, where the game graph GP oA473

is described in Figure 5. In Appendix B.8 we show that SO(G) = 1 + 1 = 2, whereas474

WNE(G) = 0, and so PoA(G) = 2/0 =∞. ◀475
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v0 v ab

Figure 5 The game graph GP oA. The circles are vertices controlled by Player 1, and the squares
are vertices controlled by Player 2.

We continue to the price of stability. It can be shown (see full proof in Appendix B.9)476

that every PG has an NE in which all players use memoryless strategies and at least one477

player satisfies her objective. Essentially, this follows from the fact that either at least one478

player in the game has a strategy to fulfill her objective from some vertex in all environments479

(that is, in the zero-sum game played with her objective), or all players do not have such480

a strategy. In the first case, the outcome of the required NE reaches the winning (in the481

zero-sum sense) vertex for the player along vertices that are losing (in the zero-sum sense)482

for the other players. In the second, the outcome traverses a lasso that satisfies the objective483

of at least one player but consists of vertices that are losing (again, in the zero-sum sense)484

for all players. By Lemma 8, it then follows that every PTG also has an NE in which at least485

one player satisfies her objective. Thus, as we assume that all rewards are strictly positive,486

we conclude that BNE(G) > 0 for every PTG G. Therefore, we cannot expect PoS(G) to be487

∞, and the strongest result we can prove is that PoS(G) is unbounded:488

▶ Theorem 13. For every x ∈ N, there exists a two-player BTG G with PoS(G) = x.489

Proof. Given x, consider the two-player game graph G = ⟨V1, V2, v1, E⟩, where V1 = ∅,490

V2 = {v1, . . . , vx+2, u}, and E = {⟨vi, vi+1⟩, ⟨vi, u⟩ : 1 ≤ i ≤ x + 1} ∪ {⟨u, u⟩, ⟨vx+2, vx+2⟩}491

(see Figure 6).492

Figure 6 The game graph G. All the vertices are owned by Player 2.

Consider the BTG G = ⟨G, {{vx+2}, {u}}, {x, 1}⟩. In Appendix B.10, we show that493

SO(G) = x whereas BNE(G) = 1, thus PoS(G) = x. ◀494

5 Cooperative Rational Synthesis in Parity Trading Games495

In this section, we study the complexity of the the CRS problem for PTGs and BTGs. Recall496

that for PGs, the CRS problem can be solved in UP ∩ co-UP when the number of players497

is fixed, and is in NP when the number of players is not fixed [25]. For BGs, CRS can be498

solved in polynomial time [40]. We show that trading make the problem harder: CRS in499

PTGs is NP-complete already for a fixed number of players and for Büchi objectives.500

▶ Theorem 14. CRS for PTGs is NP-complete. Hardness in NP holds already for BTGs.501

Proof. We start with membership in NP. Given a threshold t ≥ 0, an NP algorithm502

guesses a profile π, checks that util1(π) ≥ t, and checks that π is a 1-fixed NE as follows.503

For every i ∈ [n] \ {1}, it finds the best response f∗
i for Player i in π, and checks that504

utili(π) ≥ utili(π[i ← f∗
i ]), thus Player i has no beneficial deviation in π. By Theorem 6,505
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finding the best response for each player in π can be done in polynomial time, hence the506

check is in polynomial time.507

For the lower bound, we describe a reduction from 3-SAT to CRS in BTGs. Let508

X = {x1, . . . , xn}, X = {x1, . . . , xn}, and let φ be a Boolean formula over the variables in509

X, given in 3CNF. That is, φ = (l1
1 ∨ l2

1 ∨ l3
1)∧ · · · ∧ (l1

k ∨ l2
k ∨ l3

k), where for all 1 ≤ i ≤ k and510

1 ≤ j ≤ 3, we have that lj
i ∈ X ∪X. For every 1 ≤ i ≤ k, let Ci = (l1

i ∨ l2
i ∨ l3

i ).511

Given a formula φ, we construct (see Figure 7) a two-player BG G = ⟨GSAT , {α1, α2}, {R1, R2}⟩,512

where α1 = V \{s}, α2 = {s}, R1 = n+1 and R2 = 1, such that φ is satisfiable iff there exists513

a 1-fixed NE π in G in which util1(π) ≥ 1. The main idea of the reduction is that Player 1514

chooses an assignment to the variables in X, and then Player 2 challenges the assignment515

by choosing a clause of φ. The objective of Player 1 is to not get stuck in a sink, and the516

objective of Player 2 is to get stuck in the sink. Whenever Player 1 chooses an assignment to517

a variable, Player 2 has an opportunity to go to the sink, and Player 1 has to buy an edge518

in order to prevent her from doing so. The reward R1 for Player 1 is n + 1, and so Player 1519

can buy n edges and still have utility 1. If Player 1 chooses an assignment that satisfies φ,520

then she can prevent the game from going to the sink by buying only n edges – one for each521

variable. Otherwise, Player 2 can choose a clause that is not satisfied by the assignment,522

which forces Player 1 to buy more than n edges or give up the prevention of the sink. In523

Appendix B.11, we describe the reduction formally and prove its correctness. ◀524

Figure 7 The game graph GSAT . The circles are vertices owned by Player 1, and the squares
are vertices owned by Player 2. The dashed vertices are the corresponding literal vertices on the
assignment part of the graph.

6 Non-cooperative Rational Synthesis in Parity Trading Games525

In this section we study NRS for PTGs. Recall that in PGs, the NRS problem is in PSPACE526

when the number of players is fixed, and can be solved in exponential time when their number527

is not fixed [25]. In BGs, NRS can be solved in polynomial time when the number of players528

is fixed, and the problem is PSPACE-complete when the number of players is not fixed. We529

show that the NRS problem in PTGs and BTGs is NP-complete for games with two players,530

and is ΣP
2 -complete for games with three or more players.531

6.1 Two-player NRS532

Consider a game G = ⟨G, {α1, α2}, {R1, R2}⟩, a strategy f1 = (b1, s1) for Player 1, and a533

threshold t ≥ 0. We describe an algorithm that determines if f1 is an NRS solution for t in534

polynomial time. The key idea behind our algorithm is as follows. Let U2 be the maximal535

utility for Player 2 in a profile π that extends f1. Then, as Player 2 can ensure she gets536

utility of U2, we have that every profile π in which util2(π) = U2 is a 1-fixed NE, and every537
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profile π in which util2(π) < U2 is not a 1-fixed NE. Hence, f1 is an NRS solution iff for538

every profile π that extends f1 with util2(π) = U2, we have that util1(π) ≥ t.539

We now describe the algorithm in detail. The algorithm first labels the edges from every540

vertex v ∈ V by costs in N. Recall the weights cost(π, e) described in Section 4 in the context541

of deviations for Player i. Observe that cost(π, e) is independent of the strategy fi of Player i542

in π. In particular, when we consider deviations for Player 2, we have that cost(π, e) depends543

only on the function f1 of Player 1, and can thus be denoted cost(f1, e).544

▶ Lemma 15. Checking whether a given strategy for Player 1 is an NRS solution in a PTG545

can be done in polynomial time.546

Proof. Consider a PTG G = ⟨G, {α1, α2}, {R1, R2}⟩, a strategy f1 for Player 1, and a547

threshold t ≥ 0. Let G = ⟨V, E⟩.548

1. Let G′ = ⟨V, E, w⟩ be a weighted version of G, where for every edge e ∈ E, we have that549

w(e) = cost(f1, e).550

2. For every W ⊆ {1, 2}, let ρW be the shortest lasso in G′ such that the set of winners in551

ρW is W . Let fW
2 denote the corresponding strategy for Player 2.552

3. Let U2 = max{util2(⟨f1, fW
2 ⟩) : W ⊆ {1, 2}}. Note that U2 is the maximal utility that553

Player 2 can get when the strategy for Player 1 is f1.554

4. If there exists a set W ⊆ {1, 2} such that util2(⟨f1, fW
2 ⟩) = U2 and util1(⟨f1, fW

2 ⟩) < t,555

then f1 is not a NRS solution. Otherwise, f1 is an NRS solution.556

In Appendix B.12, we prove the correctness of the algorithm and analyze its complexity.557

◀558

Lemma 15 implies an NP upper bound for NRS for 2-players PTGs. A matching lower559

bound is proven by a reduction from 3SAT (see full proof in Appendix B.13).560

▶ Theorem 16. NRS for 2-players PTGs is NP-complete. Hardness in NP holds already for561

BTGs.562

6.2 n-player NRS for n ≥ 3563

We continue and study NRS for PTGs with strictly more than two players. As bad news, we564

show that the polynomial algorithm from the proof of Theorem 16 cannot be generalized565

for NRS with three or more players. Intuitively, the reason is as follows. In the case of two566

players, there is a single environment player, and when the strategy for the system player is567

fixed, we could find the maximal possible utility for the environment player. On the other568

hand, when there are two or more environment players, the maximal possible utility for569

each of them depends on both the strategy of the system player and the strategies of the570

other environment players, which are not fixed. Formally, we prove that NRS for PTGs with571

strictly more than two players is ΣP
2 -complete. As good news, NRS stays ΣP

2 also when the572

number of players in not fixed; thus is is easier than NRS in PGs, where the problem is573

PSPACE-hard for an unfixed number of players.574

▶ Theorem 17. NRS for n-players PTGs with n ≥ 3 is ΣP
2 -complete. Hardness in ΣP

2 holds575

already for BTGs.576

Proof. We start with the upper bound. We say that a profile π is good if util1(π) ≥ t, or π577

is not a 1-fixed NE. Checking whether a given profile π is good can be done in polynomial578

time. Indeed, for checking whether util1(π) ≥ t, we can find S(π) and Outcome(π), and then579

calculate util1(π) in polynomial time. For checking whether π is not a 1-fixed NE, we can580
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use Theorem 6 and check if some player i ∈ [n] \ {1} has a beneficial deviation. Hence, an581

algorithm in ΣP
2 for NRS guesses a strategy f1 for Player 1 and then checks that for all582

guessed strategies f2, . . . , fn for Players 2 . . . n, the profile ⟨f1, f2, . . . , fn⟩ is good. Note that583

the complexity is independent of n being fixed.584

We continue to the lower bound and show that NRS is ΣP
2 -hard already for three players585

in BTGs. We describe a reduction from QBF2, the problem of determining the truth of586

quantified Boolean formulas with one alternation of quantifiers, where the external quantifier587

is “exists”. Consider a QBF2 formula Φ = ∃x1, . . . , xn∀y1, . . . , ymφ. We assume that φ is a588

Boolean propositional formula in 3DNF. Let X = {x1, . . . , xn} and Y = {y1, . . . , ym}. Given589

Φ, we construct a 3-player Büchi game such that there exists an NRS solution f1 in G for590

t = 1 iff Φ = true.591

The main idea of the reduction is to construct a game in which Player 1 chooses an592

assignment to the variables in X; Player 2 tries to prove that Φ = false, by showing that593

there exists an assignment to the variables in Y with which for every clause Ci, there is594

a literal lj
i such that lj

i = false; and Player 3 can point out whenever Player 2’s proof is595

incorrect. The game has a sink s. The objective of Player 1 and Player 3 is to not get stuck596

in the sink, and the objective of Player 2 is V . That is, Player 2 wins in every path in the597

game. The reward to Player 1 is n + 1, and she can pay 1 for each assignment in order to598

ensure that the play does not reach s. If Player 1 chooses an assignment for the variables in599

X such that for every assignment to the variables in Y , we have that φ is satisfied, then she600

and Player 3 can prevent the game from going to s, with Player 1 paying a total price of n.601

Otherwise, Player 2 can prove that Φ = false, and by that forces the play to reach s, unless602

Player 1 pays more than n, which exceeds her reward. The details of the reduction and its603

correctness proof can be found in Appendix B.14. ◀604

7 Discussion605

We introduced trading games, which extend ω-regular graph games with trading of control.606

Our buying and selling strategies concern edges in the game graph, and the result of the607

trading is a set of sold edges. In this section we discuss richer settings, classified according608

to the parameter they extend the setting with.609

Buying strategies We see two interesting ways to enrich buying strategies. The first,610

which is common in game theory, is to allow dependencies between the sold goods, thus let611

players bid on sets of edges [37]. Indeed, a company may be willing to pay for the rights to612

direct the traffic in a certain router in a communication network only if it also gets the right613

to direct traffic in a certain neighbour router. While it is not hard to extend our results614

to a setting with such dependencies, it makes the description of strategies more complex.615

The second way concerns the type of control that is traded. Rather than buying edges, a616

player may buy ownership of vertices. In the case of games with objectives that only require617

memoryless strategies, the difference boils down to information: the new owner is still going618

to use the same edge in all visits to a vertex she bought, yet unlike in our setting, the seller619

of the vertex does not known which edge it is. For games in which memoryless strategies620

are too weak (for example, games with generalized parity objectives, or objectives in LTL621

[21]), the suggested model allows the buyer to proceed with different edges in different visits622

to the sold vertex. Moreover, by allowing buying strategies that specify scenarios in which623

control is wanted, we can let players share control on a vertex. Thus, buying strategies may624

involve regular expressions that specify conditions on the history of the computation, and625

the suggested prices depend on these conditions. For example, a user may be willing to pay626
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for an edge that guarantees a certain service only after certain events have happened.627

Pricing and deviations In our setting, payments are made for all the sold edges. It628

is not hard to see that stability can be increased by charging players only for edges that629

actually participate in the outcome of the profile. On the other hand, the latter charging630

policy encourages players to bid for more edges. Also, in our setting, a player can deviate631

from a profile only if unilaterally changing her buying or selling strategies increases her utility.632

This deviation rule prevents players from initiating a trade, even if both the seller and buyer633

benefit from it. This motivates the definition of joined deviations, where, for example, two634

players can deviate together by offering and accepting an offer, respectively, as long as they635

both increase their utilities.636

Game graphs The fact our games are turned-based makes the ownership of control637

simple: Player i controls and may sell the vertices in Vi. It is possible, however, to trade638

control also in concurrent games. There, the movement of the token depends on actions639

taken by all the players in all the vertices. Two natural ways to trade control in a concurrent640

setting are transverse – when players buy the right to choose an action for the seller in641

certain vertices, or longitudinal – when each player has a set of variables she controls, and642

an action amounts to assigning values to these variables. Then, players may buy variables,643

namely the right to assign values to these variable throughout the computation. For example,644

in a system with users that direct robots in warehouse by assigning them a direction and645

speed, a user may sell the control on her robot in certain locations in the warehouse, or sell646

the ability to decide its speed throughout the computation. Finally, as in other game-graphs647

studied in formal methods, it is interesting to study extensions to richer settings, addressing648

incomplete information, infinite domains, stochastic behavior, and more.649
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A A Symbolic Description of Selling Strategies753

Recall that a selling strategy for Player i is a function si : NE → 2Ei that maps price lists754

to the set of edges that Player i sells. As there are infinitely many price lists, a general755

presentation of selling strategies is infinite. Below we introduce a symbolic description of756

selling strategies. The description is based on Boolean assertions over the prices suggested757

for each edge.758

Consider a set X of variables. The set of terms over X, denoted TX , is defined inductively759

as follows.760

x and n, for x ∈ X and n ∈ N.761

t1 + t2 and t1 − t2, for t1, t2 ∈ TX .762

The set of Boolean assertions over X, denoted BX , is defined inductively as follows.763

t1 ≤ t2 for t1, t2 ∈ TX .764

¬b1 and b1 ∧ b2 for b1, b2 ∈ BX .765

Consider an assignment f : X → N to the variables in X. We extend f to terms766

in the expected way, thus f : TX → Z is such that f(t1 + t2) = f(t1) + f(t2), and767

f(t1 − t2) = f(t1)− f(t2), for all n ∈ N and t1, t2 ∈ TX .768

We also extend f to Boolean assertions over X, thus f : BX → {true, false} is defined769

inductively as follows.770

For t1, t2 ∈ TX , we have that f(t1 ≤ t2) = true iff f(t1) ≤ f(t2).771

f(¬b) = ¬f(b), for b ∈ BX .772
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f(b1 ∧ b2) = f(b1) ∧ f(b2), for b1, b2 ∈ BX .773

Each Boolean assertion b ∈ BX is a predicate on NX , thus an assignment f ∈ NX is in b774

iff f satisfies b.775

Boolean assertions can be used to define symbolically partial functions of the form776

g : NX → A, for some finite set A. Consider a set g ⊆ {⟨b, a⟩ ∈ BX×A} of pairs of predicates777

on NX (defined by Boolean assertions over X) and elements in A. If the predicates are778

pairwise disjoint, then g defines a partial function g : NX → A, where for every f ∈ NX , if779

there is ⟨b, a⟩ ∈ g such that f ∈ b, then g(f) = a.780

For the case of selling strategies for Player i, we take X = E, and describe a selling781

strategy si : NX → 2Ei by si ⊆ {⟨b, T ⟩ ∈ BX×2Ei}. For example, consider the 2-player game782

appearing in Figure 4. The edges in the game are e1 = ⟨v, u1⟩, e2 = ⟨v, u2⟩, e3 = ⟨u1, u1⟩,783

and e4 = ⟨u2, u2⟩, hence every price list is a vector β ∈ NE . Note that e3 and e4 are always784

sold. A selling strategy s1 for Player 1 may be “if the price offered for e1 is at least p,785

then sell e1; otherwise, sell e2", which can be symbolically represented by s1 = {⟨β(e1) ≥786

p, {e1, e3, e4}⟩, ⟨β(e1) < p, {e2, e3, e4}⟩}.787

In addition to a symbolic presentation of strategies, note that every profile π of strategies788

can be simplified as follows. We can change the buying strategy for each player to only offer789

to buy edges that are sold in π, for the same price. Also, we can change the selling strategy790

regarding an edge e = (v, u) to only depend on the offers made for the edges from v in the791

original profile. The simplification results in a profile with the same set of winners and the792

same utilities for the players, yet with prices that are of polynomial size.793

B Missing Proofs794

B.1 Proof of Lemma 5795

Given ρ, we construct the strategy fρ
i as follows.796

1. For every edge e = ⟨v, u⟩ ∈ ρ, if e ∈ Ei, then Player i sells e for price potential(π, v) −797

cost(π, e). Otherwise, namely if e /∈ Ei, then Player i pays the owner of e price cost(π, e)798

for e.799

2. For every vertex v ∈ V that is not visited along ρ, the strategy fρ
i is such that the sold800

edge e ∈ Ev in π[i← fρ
i ] is one of the best edges from v. That is, e ∈ best(π, v).801

Let πρ = π[i← fρ
i ]. By the definition of the cost function, we have that Outcome(πρ) = ρ802

and tprofiti(πρ) =
∑

v∈Vi
potential(π, v)−

∑
e∈ρ cost(π, e).803

We prove that Player i cannot induce the path ρ with a higher trading profit. For every804

edge e = ⟨v, u⟩ ∈ ρ ∩ Ei, Player i sells e for price βπ(e) = potential(π, v)− cost(π, e), which805

is the highest price Player i can sell e for. Also, for every edge e ∈ ρ \Ei, Player i pays for e806

price cost(π, e), which is the minimal price required for the owner of e to sell e. In addition,807

for every vertex v that is not visited in ρ, the sold edge from e is one of the best edges from v.808

Hence, Player i cannot increase her gain or decrease her loss without changing the outcome809

of πρ.810

B.2 Correctness of the Algorithm in Theorem 6811

First, it is not hard to see that the algorithm is polynomial in G. In particular, by [27, 28],812

the problem of finding a shortest lasso that satisfies a given parity objective can be solved in813

polynomial time.814
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We prove the correctness of the algorithm. We distinguish between three cases. First,815

if the algorithm terminates in Line 2, then, by Lemma 5, as all the edges e in ρ are such816

that cost(π, e) = 0, we have that utili(π[i← πρ]) = Ri +
∑

v∈Vi
potential(π, v), which is the817

maximal utility that Player i can get.818

Now, if the algorithm terminates in Line 5, then no path in Gbest(π) satisfies αi. Then,819

the path ρ from Line 4 is the shortest path that satisfies αi. Thus, together with Lemma 5,820

we get that the minimal cost required for Player i to induce an outcome that satisfies αi is821

w(ρ).822

If w(ρ) ≥ Ri, then this cost is bigger than Ri, implying that a best response for Player i823

should give up the satisfaction of αi and only maximize the trading profit, thus the deviation824

is to f∗
i . Otherwise, namely if w(ρ) < Ri, then a best response induces the outcome ρ, thus825

the deviation is to fρ
i .826

B.3 A BRD for the proof of Theorem 7827

We show that there exists a BRD in GT that does not converge. Thus, we show a sequence828

of profiles, π1, . . . , π5 = π1, each obtained from the previous one by a best response of one of829

the players. The dynamic starts in π1 where Player 1 always sells the edges ⟨v0, u⟩, ⟨u, c⟩ and830

⟨v, b⟩, and Player 2 offers to buy the edge ⟨v, b⟩ for price 2. The outcome of π1 is v0, u, cω,831

and so util1(π1) = 3 and util2(π1) = −2.832

Player 2 deviates from π1: she cancels the purchase of the edge ⟨v, b⟩, and offers to buy833

the edge ⟨u, d⟩ for price 2. Since ⟨u, d⟩ is not sold, the outcome of the obtained profile π2834

is still v0, u, cω, and so util1(π2) = 1, and util2(π2) = 0.835

Player 1 deviates from π2: she changes her strategy at u to move to d instead of c. That836

is, she accepts the offer of Player 2 to buy the edge ⟨u, d⟩ for price 2. She also changes837

her strategy at v0 to move to v instead of u, and at v, to move to a instead of b. She838

does not lose payment for this change, since Player 2 canceled her offer for ⟨v, b⟩. The839

outcome of the obtained profile π3 is v0, v, aω, and so util1(π3) = 3 and util2(π3) = −2.840

Player 2 deviates from π3: she cancels the purchase of the edge ⟨u, d⟩ and offers to841

buy ⟨v, b⟩ for price 2. The outcome of the obtained profile π4 is still v0, v, aω, yet now842

util1(π4) = 1, and util2(π4) = 0.843

Player 1 deviates from π4: she accepts the offer of buying ⟨v, b⟩ for price 2, and changes844

her strategy at v0 to move to u instead of v, and at u to move to c instead of d. The845

obtained profile π5 coincides with π1.846

B.4 Proof of Lemma 8847

Consider an NE π in GP that consists of memoryless strategies. We claim that tt(π) is an848

NE in GT . Indeed, if there exists a player that benefits from changing her selling strategy at849

some vertex v in tt(π), she benefits from changing her strategy at v in π in the same way.850

Also, since the selling strategies for the players are fixed, changing the buying strategies does851

not change the set of sold edges in the profile, hence no player benefits from changing her852

buying strategy, with or without changing her selling strategy.853

B.5 Proof of Theorem 9854

Consider an n-player PTG GT . By [29], the PG GP has an NE π that consists of memoryless855

strategies. By [40, 23], such an NE can be found in UP ∩ co-UP when the number of players856

is fixed, in NP when the number of players is not fixed, and in polynomial time for Büchi857
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objectives (and an unfixed number of players). By Lemma 8, the profile tt(π), which can be858

obtained from π in linear time, is an NE in GT .859

B.6 Proof of the argument in Theorem 10860

It is easy to see that πT is a 1-fixed NE with util1(πT ) = 2. Indeed, Player 2 has no beneficial861

deviation, since if she cancels her purchase, the game proceeds to a, where she loses. However,862

for every 1-fixed NE of memoryless strategies π in GP , we have that util1(tt(π)) < 2. Indeed,863

there are exactly two 1-fixed NEs in GP . In the first, Player 1 proceeds to a, and in the864

second, Player 1 proceeds to b. In both 1-fixed NEs, the utility of Player 1 is at most 1.865

B.7 Proof of Lemma 11866

Consider an edge e ∈ Ei that is sold in π. Then, the gain of Player i from selling e in π evens867

out with the loss of the players that bought e. Hence,
∑

i∈[n] gaini(π) =
∑

i∈[n] lossi(π). There-868

fore,
∑

i∈[n] tprofiti(π) =
∑

i∈[n](gaini(π)− lossi(π)) =
∑

i∈[n] gaini(π)−
∑

i∈[n] lossi(π) = 0.869

We then have that
∑

i∈[n] utili(π) =
∑

i∈[n](sprofiti(π) + tprofiti(π)) =
∑

i∈[n] sprofiti(π) =870 ∑
i∈Win(ρ) Ri.871

B.8 Analyzing the game in the Proof of Theorem 12872

Since the path ρ = v0, v, aω in GP oA is such that both players win in ρ, we have that873

SO(G) = 1 + 1 = 2. We describe an NE in which both players have utility 0. Consider the874

profile in which Player 1 and Player 2 always choose b as v0’s successor and v’s successor,875

respectively. Note that both players lose in the profile, and that non of them has a beneficial876

deviation. Hence, WNE(G) = 0, and so in this game PoA(G) = 2/0 =∞.877

B.9 On NEs in PGs878

Consider an n-player parity game G = ⟨G, {αi}i∈[n], {Ri}i∈[n]⟩. For a vertex v ∈ V and879

i ∈ [n], we say that Player i wins the zero-sum game from v if she has a winning strategy fi880

in the zero-sum game that starts from v. That is, for every profile π that includes fi, the881

objective αi of Player i is satisfied in Outcome(π). The winning region for Player i, denoted882

Wi, is the set of vertices from which Player i wins the zero-sum game. Then, Li = V \Wi is883

the losing region for Player i.884

▶ Theorem 18. Every PG G = ⟨G, {αi}i∈[n], {Ri}i∈[n]⟩ has a memoryless NE in which at885

least one player wins.886

Proof. First, it is easy to see that for every i ∈ [n] and v ∈Wi, we have that Player i wins887

in every NE in the game from v. Indeed, Player i can force the satisfaction of αi from v.888

Also note that for every i ∈ [n] and v ∈ Li, there exist strategies for the players in [n] \ {i}889

from v that force αi to be violated.890

We distinguish between two cases. In the first case, there exists i ∈ [n] such that Wi ̸= ∅.891

Then, consider a prefix of a simple path h · v ∈ V ∗ · V , where h consists of vertices that are892

in the losing regions of all the players, and v is in the winning region of some Player i. That893

is, h ∈ (
⋂

i∈[n] Li)∗, and v ∈Wi for some i ∈ [n]. Let πv be an NE in the game from v, and894

let π be a profile in which the players first generate h, and then use πv from v. Also, when a895

Player j tries to deviate from h, the other players punish her by deviating to strategies that896

force αj to be violated. The profile π is clearly an NE, and since its outcome reaches v, we897

have that Player i wins in π.898
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In the second case, for every i ∈ [n], we have that Wi = ∅. Consider a lasso path in which899

the objective of some player is satisfied. Let π be the profile in which the players generate ρ,900

and whenever a player deviates from ρ, the other players punish her. Since all the vertices in901

the graph are in the losing regions of all of the players, we have that π is an NE as well.902

Recall that if a player has a winning strategy in a PG, then she also has a memoryless903

winning strategy [29]. It follows that every PG has a memoryless NE in which some player904

wins, and we are done. ◀905

B.10 Analyzing the game in the Proof of Theorem 13906

By Lemma 11, we have that SO(G) = x. It is easy to see that there is no NE in which Player 1907

wins. Indeed, Player 1 can buy at most x edges, so there is always a vertex along the path908

from v1 to vx+2 from which Player 2 can go to u without canceling deals. Therefore, the909

only NEs are ones in which Player 2 wins, hence the sum of utilities is 1, and so BNE(G) = 1.910

It follows that PoS(G) = x.911

B.11 Details on the reduction in Theorem 14912

The game graph GSAT = ⟨V1, V2, v1, E⟩ is defined as follows (see Fig. 7).913

1. The set of vertices owned by Player 1 is V1 = {v1, . . . , vn} ∪ {C1, . . . , Ck}. The vertices914

{v1, . . . , vn} are variable vertices, and the vertices {C1, . . . , Ck} are clause vertices.915

2. The set of vertices owned by Player 2 is V2 = X ∪X ∪ {u, s}. The vertices X ∪X are916

literal vertices, the vertex s is a sink vertex, and the vertex u is a challenging vertex. For917

convenience, we sometime refer to u by vn+1.918

3. E contains the following edges.919

a. ⟨vi, xi⟩ and ⟨vi, xi⟩, for every 1 ≤ i ≤ n. That is, for every 1 ≤ i ≤ n, Player 1 moves920

from the variable vertex vi to the literal vertex xi and that by that assigns true to921

the variable xi, or to the literal vertex xi, and by that assigns false to the variable xi.922

b. ⟨l, vi+1⟩ and ⟨l, s⟩, for every 1 ≤ i ≤ n and l ∈ {xi, xi}. That is, for every 1 ≤ i ≤ n923

and a literal vertex l ∈ {xi, xi}, Player 2 moves from the literal vertex l to vi+1 and924

by that proceeds with the assignment, or to the sink vertex s.925

c. ⟨u, Ci⟩ for every 1 ≤ i ≤ k. That is, Player 2 moves from the challenging vertex u to926

one of the clause vertices.927

d. ⟨Ci, lj
i ⟩ for every 1 ≤ i ≤ k and 1 ≤ j ≤ 3. That is, for every 1 ≤ i ≤ k, Player 1 moves928

from the clause vertex Ci to one of the literal vertices that correspond to the literals929

of the clause Ci.930

We prove the correctness of the reduction. Assume first that φ is satisfiable. Then, there931

exists an assignment to the variables in X that satisfies φ. Consider such an assignment,932

and consider the following profile π.933

1. The strategy for Player 1 is described as follows.934

a. For every 1 ≤ i ≤ n, Player 1 moves from vi to a literal vertex according to the935

satisfying assignment. That is, Player 1 moves to the literal vertex xi if the variable936

xi is assigned true, and moves to the literal vertex xi if the variable is assigned false.937

b. For every 1 ≤ i ≤ n, if Player 1 chooses the literal vertex xi (respectively, xi), then938

Player 1 offers to buy the edge ⟨xi, vi+1⟩ (respectively, ⟨xi, vi+1⟩) for price 1.939

c. For every 1 ≤ i ≤ k, Player 1 moves from Ci to a literal vertex l ∈ {l1
i , l2

i , l3
i } such940

that l is already visited. That is, Player 1 chooses a literal of Ci such that there exists941
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1 ≤ j ≤ n with l ∈ {xj , xj}, and Player 1 moves from vj to l. Note that there exists942

such a successor for every Ci as we use an assignment that satisfies φ.943

2. The strategy for Player 2 is described as follows.944

a. For every literal vertex l ∈ X ∪X, if Player 1 does not offer to buy an edge from l,945

then Player 2 moves from l to the sink vertex s. Otherwise, Player 2 sells the edge.946

b. Player 2 moves from u to some clause vertex.947

We prove that the profile π is a 1-fixed NE and util1(π) = 1. Since Outcome(π) does not948

get stuck in the sink vertex, Player 1 wins in π, and so her satisfaction profit is n + 1. As949

Player 1 also buys n edges, each for price 1, her trading profit is −n, and so her utility is950

n + 1− n = 1. It is left to show that Player 2 has no beneficial deviation in π. First note951

that as R1 = 1, Player 2 does not benefit from canceling any of the sales, as she would lose952

1 in her trading profit and gain at most 1 in her satisfaction profit. Also, Player 2 cannot953

benefit from changing her strategy at the challenging vertex u. Indeed, for every 1 ≤ i ≤ k,954

Player 1 moves from the clause vertex Ci to a literal vertex l ∈ {xj , xj} for some 1 ≤ j ≤ n955

such that Player 1 buys the edge ⟨l, vj+1⟩. Hence, no matter what clause vertex Ci Player 2956

chooses at u, the game does not get stuck at the sink, and so there is no way for Player 2 to957

win and keep her trading profit from π. Thus, π is a 1-fixed NE, and we are done.958

Assume now that φ is not satisfiable, and consider a profile π such that util1(π) ≥ 1. We959

prove that Player 2 has a beneficial deviation in π. Thus, π is not a 1-fixed NE. First note960

that if Player 1 buys in π strictly more than n edges, or pays a total price of strictly more961

than n, then util1(π) ≤ 0. Hence, we assume that Player 1 buys at most n edges, for a total962

price of at most n. Below we show that in this case, Player 2 can ensure she wins without963

buying edges, and without canceling sales. We then conclude that Player 2 has a beneficial964

deviation in π. Indeed, since util1(π) ≥ 1, then Player 1 either wins in π, or loses in π with965

Player 2 buying edges from her. In both cases, Player 2 benefits from changing her strategy966

so she wins without buying edges, while keeping her trading profit from π.967

1. If there exists 1 ≤ i ≤ n such that Player 1 moves from vi to l ∈ {xi, xi}, and does not968

offer to buy the edge ⟨l, vi+1⟩, then Player 2 can move from l to the sink. This way,969

Player 2 both wins and does not cancel sales.970

2. Otherwise, for every 1 ≤ i ≤ n, if Player 1 moves from vi to l ∈ {xi, xi}, then she also971

offers to buy the edge ⟨l, vi+1⟩ for price 1. Since Player 1 offers to buy at most n edges,972

Player 2 can move from u to a clause vertex Ci that is not satisfied by the assignment973

Player 1 chooses, without canceling sales. Then, for every successor l ∈ {l1
i , l2

i , l3
i } for974

Ci, Player 1 does not offer to buy the edge from l that does not go to the sink. Hence,975

Player 2 can go from l to the sink without canceling sales.976

It follows that Player 2 has a beneficial deviation from every profile π with util1(π) ≥ 1.977

Hence, there does not exist a 1-fixed NE π with util1(π) ≥ 1, and we are done.978

B.12 Correctness of the algorithm in the proof of Lemma 15979

It is easy to see that the algorithm runs in polynomial time. In particular, for every980

W ⊆ {1, 2}, the shortest lasso searched for in Line 2 has to satisfy a conjunction of two981

parity conditions.982

We prove the correctness of the algorithm. If there exists W ⊆ {1, 2} such that983

util2(⟨f1, fW
2 ⟩) = U2 and util1(⟨f1, fW

2 ⟩) < t, then ⟨f1, fW
2 ⟩ is a 1-fixed NE, as Player 2984

has no incentive to deviate from it, and Player 1’s utility in it strictly smaller than t. Hence,985

f1 is not an NRS solution.986
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For the other direction, assume that for every set W ⊆ {1, 2} with util2(⟨f1, fW
2 ⟩) = U2,987

we have that util1(⟨f1, fW
2 ⟩) ≥ t. First, note that for every two profiles π and π′ where988

Win(π) = Win(π′), and util2(π) = util2(π′), we also have that util1(π) = util1(π′). Indeed, by989

Lemma 11, util1(π) + util2(π) =
∑

i∈Win(π) Ri. Hence, util1(π) =
∑

i∈Win(π) Ri − util2(π) =990 ∑
i∈Win(π′) Ri − util2(π′) = util1(π′). It then follows that for every W ⊆ {1, 2} such that991

util2(⟨f1, fW
2 ⟩) = U2, and a strategy f2 for Player 2 where Win(⟨f1, f2⟩) = W , we either have992

that util2(⟨f1, f2⟩) < U2, or util1(⟨f1, f2⟩) = util1(⟨f1, fW
2 ⟩).993

Now, consider a profile π = ⟨f1, f2⟩ with util1(π) < t. As explained above, it implies that994

util2(π) < U2. In this case, Player 2 has a beneficial deviation since she has a strategy that995

increases her utility to U2.996

B.13 Proof of Theorem 16997

For the upper bound, given a threshold t ≥ 0, a nondeterministic algorithm can guess a998

strategy f1 for Player 1 and then, as described in Lemma 15 checks in polynomial time999

whether f1 is an NRS solution.1000

For the lower bound, we modify the reduction from 3SAT in the proof of Theorem 14. For1001

a formula φ, recall the game graph GSAT described in the proof of Theorem 14. We claim1002

that φ is satisfiable iff the Büchi game G′ = ⟨GSAT , {V \ {s}, V }, {n + 1, 1}⟩ has an NRS1003

solution for the threshold t = 1. Note that the only change in the game is in the objective of1004

Player 2, which is now V instead of {s}. It is easy to see that if φ is satisfiable, then the1005

strategy for Player 1 described in the proof of Theorem 14 is an NRS solution for t = 1.1006

It is also easy to see that if φ is not satisfiable, then for every strategy for Player 1, there1007

exists a strategy for Player 2 such that the resulting profile π is such that Player 1 loses in π,1008

Player 2 sells all the edges that Player 1 offers to buy, and does not buy edges from Player 1.1009

Thus, π is a 1-fixed NE with util1(π) ≤ 0. Hence, there does not exist an NRS solution for1010

t = 1.1011

B.14 The reduction in Theorem 171012

We describe a reduction from QBF2, the problem of determining the truth of quantified1013

Boolean formulas with one alternation of quantifiers, where the external quantifier is “exists”.1014

Let X = {x1, . . . , xn} and Y = {y1, . . . , ym}, let φ be a Boolean propositional formula over1015

the variables X ∪ Y , and let Φ = ∃x1, . . . , xn∀y1, . . . , ymφ. Let X = {x1, . . . , xn} and Y =1016

{y1, . . . , ym}. We assume that φ is given in 3DNF. That is, φ = (l1
1∧l2

1∧l3
1)∨· · ·∨(l1

k∧l2
k∧l3

k),1017

where for all 1 ≤ i ≤ k and 1 ≤ j ≤ 3, we have that lj
i ∈ X ∪X ∪Y ∪Y . For every 1 ≤ i ≤ k,1018

let Ci = (l1
i ∨ l2

i ∨ l3
i ).1019

Given a QBF2 formula Φ = ∃x1, . . . , xn∀y1, . . . , ymφ, we construct a 3-player Büchi1020

game such that there exists an NRS solution f1 in G for t = 1 iff Φ = true. We define1021

G = ⟨GQBF 2 , {α1, α2, α3}, {R1, R2, R3}⟩, where GQBF 2 = ⟨V, v1, E⟩ is defined below, the1022

objectives for the players are α1 = V \ {s}, α2 = V and α3 = V \ {s, T}, and the rewards1023

are R1 = n + 1, and R2 = R3 = 1. The main idea of the reduction is to construct a game as1024

follows (see Fig. 8 for the general case and Fig. 9 for an example).1025

Player 1 chooses an assignment to the variables in X; Player 2 tries to prove that1026

Φ = false, by showing that there exists an assignment to the variables in Y with which1027

for every clause Ci, there is a literal lj
i such that lj

i = false; and Player 3 can point out1028

whenever Player 2’s proof is incorrect. The game has a sink s. The objective of Player 1 and1029

Player 3 is to not get stuck in the sink, and the objective of Player 2 is V . That is, Player 21030

wins in every path in the game. The reward to Player 1 is n + 1, and she can pay 1 for1031



O. Kupferman and N. Shenwald XX:25

v1

x1 s

x1 s
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s

Figure 8 The game graph GQBF 2 . The circles are vertices owned by Player 1, the squares are
vertices owned by Player 2, and the diamonds are vertices owned by Player 3.

each assignment in order to ensure that the play does not reach s. If Player 1 chooses an1032

assignment for the variables in X such that for every assignment to the variables in Y , we1033

have that φ is satisfied, then she and Player 3 can prevent the game from going to s, with1034

Player 1 paying a total price of n. Otherwise, Player 2 can prove that Φ = false, and by1035

that forces the play to reach s, unless Player 1 pays more than n, which exceeds her reward.1036

v1

x1 s

x1 s

C1 c21

c11

c31

T F 1
1

T F 2
1

T F 3
1

C2 c22

c12

c32

T F 1
2

T F 2
2

T F 3
2

s

Figure 9 An example of the construction for Φ = ∃x1∀y1, y2(x1 ∧ y1 ∧ y2) ∨ (x1 ∧ y1 ∧ y2). If
Player 2 claims that x1 = false, then Player 3 can move from F 1

1 and F 1
2 to x1. Also, if Player 2

claims that y1 = false, or y2 = false, then Player 3 can move from F 2
2 to c2

1, or from F 3
2 to c3

1,
respectively.

The game graph GQBF2 = ⟨V1, V2, V3, v1, E⟩ is defined as follows (see Fig. 8).1037

1. The set of vertices owned by Player 1 is V1 = {v1, . . . , vn}, which are the variable vertices.1038

2. The set of vertices owned by Player 2 is V2 = X ∪ X ∪
⋃

1≤i≤k{Ci, c1
i , c2

i , c3
i } ∪ {s, T}.1039

The vertices in X ∪X are literal vertices. The vertices {C1, . . . , Ck} are clause vertices,1040

and
⋃

1≤i≤k{c1
i , c2

i , c3
i }, are claim vertices. The vertex s is the sink, and T is the True1041

vertex.1042

For convenience, we refer to the clause vertex C1 also as vn+1.1043

3. The set of vertices owned by Player 3 is V3 =
⋃

1≤i≤k{F 1
i , F 2

i , F 3
i }, which are the False1044

vertices.1045

4. The set E contains the following edges.1046

a. ⟨vi, xi⟩ and ⟨vi, xi⟩, for every 1 ≤ i ≤ n. That is, for every 1 ≤ i ≤ n, Player 1 moves1047

from the variable vertex vi to the literal vertex xi and by that assigns true to the1048

variable xi, or to the literal vertex xi, and by that assigns false to xi.1049
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b. ⟨l, vi+1⟩ and ⟨l, s⟩, for every 1 ≤ i ≤ n and l ∈ {xi, xi}. That is, for every 1 ≤ i ≤ n1050

and an literal vertex l ∈ {xi, xi}, Player 2 moves from the literal vertex l to vi+1 and1051

by that proceeds with the assignment, or to the sink s.1052

c. ⟨Ci, cj
i ⟩, for every 1 ≤ i ≤ k and 1 ≤ j ≤ 3. That is, Player 2 moves from the clause1053

vertex Ci to a claim vertex cj
i for some 1 ≤ j ≤ 3.1054

d. ⟨cj
i , T ⟩ and ⟨cj

i , F j
i ⟩, for every 1 ≤ i ≤ k and 1 ≤ j ≤ 3. That is, for every 1 ≤ i ≤ k1055

and 1 ≤ j ≤ 3, Player 2 moves from the claim vertex cj
i to T and by that claims that1056

the literal lj
i is true, or moves to the False vertex F j

i and by that claims that the1057

literal lj
i is false.1058

e. ⟨F j
i , lj

i ⟩, for every 1 ≤ i ≤ k, 1 ≤ j ≤ 3, where lj
i ∈ X ∪X. That is, if Player 2 claims1059

that a literal lj
i ∈ X ∪X if false by moving to F j

i , then Player 3 can move from F j
i1060

to the appropriate literal vertex.1061

f. ⟨F j
i , cj′

i′ ⟩, for every 1 ≤ i′ < i ≤ k and 1 ≤ j, j′ ≤ 3, such that lj
i ∈ Y ∪ Y and lj′

i′ = lj
i .1062

Thus, if Player 2 claims that a literal lj
i ∈ Y ∪ Y is false by moving to F j

i , then1063

Player 3 can move from F j
i to every contradicting claim vertex cj′

i′ for i′ < i. That is,1064

a claim vertex that correspond to the literal lj
i , and to a clause Ci′ such that i′ < i.1065

g. ⟨F j
k , s⟩, for every 1 ≤ j ≤ 3. That is, Player 3 moves from F j

k to the sink, if she does1066

not move to a different successor already.1067

h. ⟨s, s⟩ and ⟨T, T ⟩.1068

We prove the correctness of the reduction. Assume first that Φ = true. Therefore, there1069

exists an assignment to the variables in X such that for every assignment to the variables in1070

Y , we have that φ is satisfied. Consider a strategy f1 for Player 1, described as follows.1071

1. For every 1 ≤ i ≤ n, Player 1 moves from vi to a literal vertex according to the satisfying1072

assignment. That is, Player 1 moves to the literal vertex xi if the variable xi is assigned1073

true, and moves to the literal vertex xi if the variable is assigned false.1074

2. For every 1 ≤ i ≤ n, if Player 1 chooses the literal vertex l ∈ {xi, xi}, then Player 1 offers1075

to buy the edge ⟨l, vi+1⟩ for price 1.1076

We prove that f1 is an NRS solution for the threshold t = 1.1077

Consider a profile π = ⟨f1, f2, f3⟩ such that util1(π) < 1. We show that π is not a 1-fixed1078

NE. Note that if Player 1 wins in π, then util1(π) = n + 1− n = 1, since Player 1 offers to1079

buy edges from Player 2 for a total price of n. We therefore assume that Player 1 loses in π.1080

Also note that since Player 2 always wins, she benefits from canceling purchases she may1081

have made, so we also assume that Player 2 does not buy edges. Finally, as Player 3 loses if1082

the profile gets stuck in the sink s, we assume that Player 3 does not buy edges that arrive1083

at s. Then, the following hold.1084

1. If there exists 1 ≤ i ≤ n and l ∈ {xi, xi} such that Player 1 moves from vi to l, and1085

Player 2 moves from l to the sink s, then Player 2 does not sell the edge ⟨l, vi+1⟩ that1086

Player 1 offers to buy for price 1. Recall that Player 3 does not buy edges that arrive1087

at s. Then, Player 2 benefits from changing her strategy to sell ⟨l, vi+1⟩. Indeed, since1088

Player 2 always wins, if she sells the edge her utility increases by 1.1089

2. Otherwise, π arrives at s at the end of Player 2’s proof. That is, for every 1 ≤ i ≤ k1090

there exists 1 ≤ ji ≤ 3 such that Player 2 claims that lji

i = false by moving from Ci1091

to the claim vertex cji

i , and from cji

i to the False vertex F ji

i . Also, Player 3 does not1092

challenge Player 2’s proof. That is, for every 1 ≤ i < k, Player 3 moves from F ji

i to Ci+1,1093

and moves from F jk

k to s. Note that Player 3 also loses in π. However, since Φ = true,1094

Player 2’s proof is incorrect, and so Player 3 benefits from changing her strategy as1095

described bellow.1096
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a. If there exists 1 ≤ i ≤ k such that lji

i ∈ X ∪X, and Player 1 assigns lji

i true, then1097

Player 2 lies when she claims that lji

i = false. In this case, Player 3 can change her1098

strategy to go from F ji

i to the literal vertex lji

i .1099

b. Otherwise, there exist 1 ≤ i′ < i ≤ k such that lji

i ∈ Y ∪ Y , and l
ji′
i′ = lji

i . That is,1100

Player 2 claims that two contradicting Y -literals are both false. In this case, Player 31101

can change her strategy to go from F ji

i to c
ji′
i′ .1102

Indeed, Player 3 loses in π because the game arrives at s, and after changing her strategy1103

the game gets stuck in V \ {s, T}. Therefore, Player 3 wins with her new strategy,1104

increasing her utility by 1.1105

Hence, we have that every profile π with util1(π) < 1 is not a 1-fixed NE, and so f1 is an1106

NRS solution for t = 1.1107

Assume now that Φ = false. Consider a strategy f1 for Player 1, which corresponds to1108

some assignment to the variables in X. We show that there exist strategies f2 and f3, for1109

Player 2 and Player 3 respectively, such that π = ⟨f1, f2, f3⟩ is a 1-fixed NE with util1(π) < 1.1110

Recall that since Φ = false, then for every assignment to the variables in X, in particular the1111

one induced by f1, there exists an assignment to the variables in Y such that every clause1112

Ci is not satisfied by the assignments to X and Y . That is, for every 1 ≤ i ≤ k, there exists1113

1 ≤ ji ≤ 3 such that lji

i = false. We define strategies for Player 2 and Player 3 as follows.1114

1. Player 2 and Player 3 sell all the edges that Player 1 offers to buy, and do not offer to1115

buy or sell other edges.1116

2. For every 1 ≤ i ≤ n and l ∈ {xi, xi}, if Player 1 does not offer to buy the edge ⟨l, vi+1⟩1117

for a price of at least 1, Player 2 moves from l to s.1118

3. Player 2 uses a correct proof. That is, when she is not paid to do otherwise, for every1119

1 ≤ i ≤ k, Player 2 moves from Ci to the claim vertex cji

i , and from cji

i to the False1120

vertex F ji

i .1121

4. For every literal lj
i that is true according to the assignments to X and Y , Player 2 moves1122

from the claim vertex cj
i to the True vertex T .1123

5. When she is not paid to do otherwise, Player 3 does not challenge Player 2’s proof.1124

We prove that π is a 1-fixed NE with util1(π) < 1. Note that in the case where Player 11125

offers to buy strictly more than n edges, or offers to buy edges for a total price that is strictly1126

higher than n, her utility is at most 0. We therefore assume that Player 1 offers to buy at1127

most n edges, for a total price of at most n. We then distinguish between the following cases.1128

1. If there exists 1 ≤ i ≤ n and l ∈ {xi, xi} where Player 1 moves from vi to l, and does not1129

offer to buy the edge ⟨l, vi+1⟩, then π arrives from l to s. Player 1 loses in the profile,1130

and the players do not buy edges from her, and so her utility is at most 0. Also, the1131

players do not have beneficial deviations. Indeed, both players sell all the edges that1132

Player 1 offers to buy and do not buy edges, and although Player 3 loses, she still loses1133

no matter how she changes her strategy.1134

2. Otherwise, for every 1 ≤ i ≤ n and l ∈ {xi, xi}, if Player 1 moves from vi to l, then she1135

also offers to buy the edge ⟨l, vi+1⟩. In this case, since Player 2 uses a correct proof in π1136

and Player 3 does not challenge the proof, the game arrives at s in the end of the proof.1137

Player 1 loses, and Player 3 has no beneficial deviation. Indeed, buying an edge from1138

Player 1 is not going to make her win, so she does not benefit from buying edges that1139

Player 1 offers to sell. Also, for every literal that Player 2 claims is false, Player 3 still1140

loses if she challenges the claim: if Player 2 claims that l = false for some l ∈ X ∪X,1141

since her proof is correct, if Player 3 changes her strategy to go from the False vertex to1142
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the literal vertex l, she gets stuck in the sink s. If Player 2 claims that l = false for some1143

l ∈ Y ∪ Y , since her proof is correct, she never claims that l = false, hence if Player 31144

goes to a claim vertex that corresponds to the literal l, she is going to get stuck in T ,1145

where she still loses.1146

It follows that for every strategy for Player 1, there exists a 1-fixed NE π where util1(π) < 1.1147

Hence, there does not exist an NRS solution for t = 1.1148


	1 Introduction
	2 Preliminaries
	3 Parity Trading Games
	4 Stability in Parity Trading Games
	4.1 Best response
	4.2 Nash equilibria
	4.3 Equilibrium inefficiency

	5 Cooperative Rational Synthesis in Parity Trading Games
	6 Non-cooperative Rational Synthesis in Parity Trading Games
	6.1 Two-player NRS
	6.2 n-player NRS for n3

	7 Discussion
	A A Symbolic Description of Selling Strategies
	B Missing Proofs
	B.1 Proof of Lemma 5
	B.2 Correctness of the Algorithm in Theorem 6
	B.3 A BRD for the proof of Theorem 7
	B.4 Proof of Lemma 8
	B.5 Proof of Theorem 9
	B.6 Proof of the argument in Theorem 10
	B.7 Proof of Lemma 11
	B.8 Analyzing the game in the Proof of Theorem 12
	B.9 On NEs in PGs
	B.10 Analyzing the game in the Proof of Theorem 13
	B.11 Details on the reduction in Theorem 14
	B.12 Correctness of the algorithm in the proof of Lemma 15
	B.13 Proof of Theorem 16
	B.14 The reduction in Theorem 17


